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Plug and Play: Enabling Pluggable Attribute Unlearning in
Recommender Systems

Anonymous Author(s)∗∗

Abstract
With the escalating privacy concerns in recommender systems,
attribute unlearning has drawn widespread attention as an effec-
tive approach against attribute inference attacks. This approach
focuses on unlearning users’ privacy attributes to reduce the per-
formance of attackers while preserving the overall effectiveness of
recommendation. Current research attempts to achieve attribute
unlearning through adversarial training and distribution alignment
in the statistic setting. However, these methods often struggle in
dynamic real-world environments, particularly when considering
scenarios where unlearning requests are frequently updated. In this
paper, we first identify three main challenges of current methods in
dynamic environments, i.e., irreversible operation, low efficiency,
and unsatisfied recommendation preservation. To overcome these
challenges, we propose a Pluggable Attribute Unlearning frame-
work, PAU. Upon receiving an unlearning request, PAU plugs an
additional erasure module into the original model to achieve un-
learning. This module can perform a reverse operation if the request
is later withdrawn. To enhance the efficiency of unlearning, we
introduce rate distortion theory and reduce the attack performance
by maximizing the encoded bits required for users’ embedding
within the same class of the unlearned attribute and minimizing
those for different classes, which eliminates the need to calculate
the centroid distribution for alignment. We further preserve recom-
mendation performance by constraining the compactness of the
user embedding space around a reasonable flood level. Extensive
experiments conducted on four real-world datasets and three main-
stream recommendation models demonstrate the effectiveness of
our proposed framework.

CCS Concepts
• Information systems → Recommender systems; Collab-
orative filtering; • Security and privacy → Social network
security and privacy.

Keywords
Recommender Systems, Collaborative Filtering, Attribute Unlearn-
ing
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1 INTRODUCTION
Recommender systems employ highly personalized information
extracted from user data to implement personalized recommenda-
tions, gaining widespread adoption in practical applications and
profoundly influencing people’s lifestyles [5, 13, 31]. However,
as recommender systems continue to evolve, privacy concerns
within personalized recommendations have increased, with more
users demanding protection against the misuse of their sensitive
information. As one protective measure, the right to be forgot-
ten has been proposed [3, 30], requiring recommendation plat-
forms to allow users to withdraw their personal data and its as-
sociated impacts. This legal requirement has spurred research on
machine/recommendation unlearning.

Existing recommendation unlearning primarily focuses on input
unlearning [4, 28], where the model inputs, such as users, items, or
ratings, serve as the target for unlearning. Although input unlearn-
ing benefits multiple parties, it cannot effectively remove the latent
attributes. This concern primarily stems from the attribute infer-
ence attacks (AIA) [1, 20], where the recommendation model, due
to its powerful information extraction capabilities, might inadver-
tently encode sensitive attributes into its latent embeddings [1, 12].
This prompts research into attribute unlearning. User-sensitive
attributes that are not directly used in training but are implicitly
learned during the model embedding process [22] (e.g., gender, race,
and age) serve as the target for attribute unlearning.

Existing research on attribute unlearning aims to reduce the
effectiveness of attacks while preserving recommendation perfor-
mance. These studies can be categorized into two types based on
the stage of unlearning implementation [22]: in-training unlearn-
ing and post-training unlearning. In-training unlearning, such as
adversarial training methods [1, 9], involves introducing an ad-
ditional attack discriminator during model training, which can
effectively maintain recommendation performance. However, this
approach requires access to the original training data. Neverthe-
less, due to practical legal and regulatory constraints, accessing
the original training data may be challenging during the execu-
tion of unlearning. In contrast, post-training unlearning, which
involves manipulating model parameters without relying on train-
ing data, includes methods such as reducing attack performance
through distribution alignment and maintaining recommendation
performance through parameter regularization [6, 22]. Although
post-training unlearning methods can avoid direct access to origi-
nal training data, their application in dynamic real-world scenarios
still faces challenges when unlearning requests frequently change.
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For instance, modifications to privacy protection policies might
lead to previously unlearned data attributes no longer requiring
unlearning, or changes in the attributes themselves that need to
be unlearned. Specifically, this approach encounters three main
challenges: i) The unlearning operation is irreversible, as it involves
altering model parameters; ii) The efficiency of unlearning is low, as
each unlearning operation requires recalculating aligned centroid
distributions; iii) The performance of recommendations is com-
promised, as frequent changes in unlearning requests significantly
reduce the effectiveness of parameter regularization.

To address these challenges, we propose a novel pluggable at-
tribute unlearning framework named PAU. Instead of altering the
parameters of the original recommendation model, PAU framework
introduces an additional erasure module. The user’s embedding
first passes through this erasure module before proceeding with the
subsequent computation. Moreover, when there is a change in the
unlearning request, only the erasure module needs to be replaced.
In other words, our proposed erasure module features a plug-and-
play design. Specifically, to optimize this erasure module, we need
to achieve two key unlearning objectives. Firstly, to mitigate the
potential impact of attacks, i.e., removing information related to
the unlearned attributes from user embeddings, we aim for the
users’ embeddings from the same class of the unlearned attribute
to be uncorrelated and to exhibit similarity to embeddings from
other classes, thus making attackers difficult to extract attributes
information. To enhance efficiency, we achieve this by maximizing
the encoded bits (i.e., rate distortion) required for users’ embedding
within the same class of the unlearned attribute and minimizing
those for different classes, which eliminates the need to calculate
the centroid distribution for alignment. Further, to better preserve
the recommendation performance, we use a rate-distortion func-
tion to limit the compactness of the user embedding space around a
reasonable flood level, aimed at ensuring non-correlation with the
unlearned attribute classes while minimizing the impact on other
information, thereby reducing negative effects on recommendation
performance. By combining these two objectives, we formulate a
constrained optimization problem, and by solving this problem,
we update and optimize the parameters of the erasure module. We
summarize the main contributions of this paper as follows:

• We propose a pluggable recommendation attribute unlearning
framework, featuring a plug-and-play design, which effectively
addresses the frequently updated unlearning requests in the real
world without altering the parameters of the original model.
• To enhance the efficiency of unlearning, we introduce rate-distortion

theory, reducing the potential risk of attacks by maximizing the
encoded bits required for users’ embedding within the same
unlearned attribute class and minimizing those for different at-
tribute classes.

• To maintain the recommendation performance, we limit the com-
pactness of the user embedding space to an adjustable flooding
parameter through the rate distortion function, thereby mini-
mizing the impact on other information outside the unlearned
attributes.

• We conducted extensive experiments on four real-world datasets
and three mainstream recommendation models. The experimen-
tal results validate the effectiveness of our method, and compared

to existing baselines, our method significantly outperforms them
in terms of unlearning efficiency and maintaining recommenda-
tion performance.

2 RELATEDWORK
2.1 Recommendation Model
Recommender systems provide personalized services based on the
interaction information between users and items. Collaborative
filtering (CF) is a widely recognized algorithm used to analyze
such information [32], with its objectives comprising user and item
embedding matrices. According to existing literature [21], CF is
primarily categorized into three types: matrix factorization-based
CF [26], neural network-based CF [17], and graph-based CF [16]. In
this paper, we explore the problem of attribute unlearning within
recommendation models, targeting user embeddings as the main
focus for both attacks and unlearning, andwe validate the generality
of our methods across these three mainstream CF models.

2.2 Attribute Unlearning
Existing research on machine unlearning primarily focuses on un-
learning specific samples from training data (i.e., input unlearning)
while often overlooking potential attributes that are not explicitly
represented in the training data. Guo et al. [12] are among the first
researchers to explore the problem of attribute unlearning and pro-
posed a method for unlearning specific attributes in facial images,
such as smiles, beards, and large noses, through the manipulation
of disentangled representations. Specifically, their approach decom-
poses the model into a feature extractor and a classifier and then
inserts a network block between them to achieve manipulation. Ad-
ditionally, Moon et al. [27] study attribute unlearning in generative
models, including generative adversarial networks and Variational
Autoencoders (VAE). They transform images containing the target
attribute to images without it through unlearning.

2.3 Recommendation Attribute Unlearning
Given that recommendation systems capture sensitive user infor-
mation such as gender, race, and age, the application of attribute
unlearning in recommendation scenarios is particularly crucial.
Ganhor et al. [9] employ an adversarial training approach using
VAE to achieve attribute unlearning in recommendation models.
This method implements unlearning during model training, involv-
ing manipulation of the training process and requiring access to the
original data, which is often challenging to implement in real-world
scenarios. In contrast, Li et al. [22] explore post-training attribute
unlearning by directly manipulating model parameters without
accessing training data or other training information such as gra-
dients. They achieve unlearning through distribution alignment
while maintaining recommendation performance through parame-
ter regularization. However, both methods involve altering model
parameters, which is unsuitable in real-world scenarios where un-
learning requests frequently change. Thus, in this paper, we propose
a pluggable attribute unlearning framework that incorporates an
additional erasure module, allowing for attribute unlearning with-
out altering the original parameters. This framework effectively
addresses the challenges posed by dynamic environments in real-
world scenarios.

2
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3 PRELIMINARIES
3.1 Attacking Setting
Following the settings in previous research [22, 34, 37], the at-
tack process in the attribute unlearning problem of recommender
systems is also referred to as AIA, which is divided into three
main stages: exposure, training, and inference. During the exposure
phase, we adopt the assumption of a gray-box attack, meaning
not all model parameters are exposed to the attacker; only the em-
beddings of the users and their related attribute information are
revealed. In the training phase, it is assumed that the attacker trains
the attacking model on an i.i.d. shadow dataset [29]. Although train-
ing using a shadow dataset might reduce the performance of the
attack, such an assumption is reasonable because assuming that
the attacker possesses the entire dataset is overly idealistic and
impractical. The attack process is considered a classification task,
where the attacking model takes user embeddings as input and
attribute information as labels. In the inference phase, the attacker
utilizes their attacking model to make predictions.

3.2 Rate Distortion
In our framework, the unlearning operation is implemented by
ensuring non-correlation among user embeddings under the same
unlearned attribute class, be consistent. Therefore, the attacker can-
not infer sensitive attribute information through user embedding.
To achieve this goal, an objective function known as rate distortion
is employed to assess the compactness of a set of user embeddings.
This section will elaborate on the fundamental principles of rate
distortion theory [33, 36].

Nonasymptotic rate distortion for finite samples. In the field of
lossy data compression [7], the compactness of random distribu-
tion is measured using rate distortion theory. For a given random
variable 𝒛 and a prescribed precision 𝜖 , the rate-distortion 𝑅(𝒛, 𝜖) is
defined as the minimum number of binary bits required to encode
𝒛 to ensure that the expected decoding error is less than 𝜖 , i.e.,
the decoded �̂� satisfies E

[
∥𝒛 − �̂�∥2

]
≤ 𝜖 . Although this framework

successfully elucidates the feature selection mechanism in deep
networks [24], a major challenge in practice is that we often do
not precisely know the distribution of 𝒛, making 𝑅(𝒛, 𝜖) difficult to
compute directly. Instead, we can only rely on a limited number of
samples to learn representations. For example, given data samples
𝑿 = [𝒙1, . . . , 𝒙𝑚], we have 𝒛𝑖 = 𝑓 (𝒙𝑖 , 𝜃 ) ∈ R𝑑 , 𝑖 = 1, . . . ,𝑚, where
𝑚 denotes the number of samples and 𝑑 denotes the dimension of
the representation. Fortunately, prior research [23] has provided
precise estimates of the binary bits required to encode finite samples
from subspace distributions, with the total number of bits required
given by the following expression:

L(𝒁 , 𝜖) =
(
𝑚 + 𝑑
2

)
log det

(
𝑰 + 𝑑

𝑚𝜖2
𝒁𝒁⊤

)
, (1)

where 𝒁 = [𝒛1, . . . , 𝒛𝑚] denotes the set of the learned represen-
tation. This enables us to apply this measure of compactness to
real-world data, even though the underlying distribution of these
data may not be well-defined. Further, the overall compactness of
the learned features can be assessed by calculating the average
encoding length per sample [23], i.e., the optimal encoding rate

w.r.t. precision 𝜖 . Given that𝑚 is usually much larger than 𝑑 , the
following expression can be derived:

𝑅(𝒁 , 𝜖) = 1
2
log det

(
𝑰 + 𝑑

𝑚𝜖2
𝒁𝒁⊤

)
. (2)

Generally, a set of compact vectors (low information content) re-
quires fewer bits for encoding, corresponding to smaller values of
𝑅(𝒁 , 𝜖), and vice versa.

Rate distortion of data with a mixed distribution. In general, the
feature set𝒁 ofmulti-class datamay reside inmultiple low-dimensional
subspaces. To more accurately evaluate the rate distortion of such
mixed data, it is feasible to partition data 𝒁 into 𝑘 subsets, denoted
as 𝒁 = 𝒁1 ∪ 𝒁2 ∪ . . . ∪ 𝒁𝑘 , where each subset lies within a distinct
low-dimensional subspace. Consequently, the rate 𝑅(𝒁 𝑗 , 𝜖) can be
computed for the 𝑗-th subset utilizing the given formula Eq (2). To
facilitate such computations, let 𝚷 =

{
𝚷 𝑗 ∈ R𝑚×𝑚

}𝑘
𝑗=1 represent

a set of diagonal matrices, where the diagonal elements signify the
membership of𝑚 samples in 𝑘 classes. More specifically, the diag-
onal element 𝚷 𝑗 (𝑖, 𝑖) in matrix 𝚷 𝑗 indicates the probability that
sample 𝑖 belongs to subset 𝑗 . Thus, the matrix set 𝚷 resides within
a simplex space Ω =

{
𝚷 | 𝚷 𝑗 ≥ 0,𝚷1 + · · · + 𝚷𝑘 = 𝑰

}
. Following

prior research [23], the average number of bits per sample (i.e., the
rate distortion) w.r.t such a partition is:

𝑅𝑐 (𝒁 , 𝜖 | 𝚷) =
𝑘∑︁
𝑗=1

tr
(
𝚷 𝑗

)
2𝑚

log det
(
𝑰 + 𝑑

tr
(
𝚷 𝑗

)
𝜖2

𝒁𝚷 𝑗𝒁
⊤
)
. (3)

When 𝒁 is specified, 𝑅𝑐 (𝒁 , 𝜖 | 𝚷) is a concave function of 𝚷. The
function log det(·) in the aforementioned expression has long been
considered an effective heuristic for rank minimization problems,
ensuring convergence to a local minimum [8].

4 METHODOLOGY
In this section, we first introduce our proposed pluggable attribute
unlearning framework PAU, which is achieved by incorporating
an erasure module. Then, we derive the two primary objectives of
attribute unlearning, followed by the optimization process of the
erasure module. Finally, we present the computational details.

4.1 Pluggable Attribute Unlearning Framework
To effectively manage the frequently updated unlearning requests
encountered in real-world applications, we introduce an additional
attribute erasuremodule, denoted as a function 𝑓 (·). Figure 1 presents
an overview of our proposed attribute unlearning framework. Specif-
ically, when a set of user-item interaction data is input into the
recommendation model, it first passes through the model’s embed-
ding layer, resulting in the corresponding user and item embedding
matrices. We define the user embedding matrix as the representa-
tion set 𝑼 = 𝑼 1 ∪ 𝑼 2 ∪ . . . ∪ 𝑼𝑘 , where 𝑘 represents the number
of class in the unlearned attribute (i.e., unlearning target), and
𝑼 𝑗 denotes the embedding sub-matrix corresponding to the 𝑗-th
class. The user embeddings first pass through the attribute erasure
module, resulting in 𝑼 (𝜃 ) = 𝑓 (𝑼 , 𝜃 ) ∈ R𝑚×𝑑 .For convenience, we
will use 𝑼 to represent 𝑼 (𝜃 ) in subsequent expressions. Then, 𝑼
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Unlearning objective

Figure 1: Overview of pluggable attribute unlearning framework in recommender systems.

replaces the original user embeddings 𝑼 and is used in conjunc-
tion with item embeddings for further computations in subsequent
modules.

4.2 Erasure Module Optimization
To optimize the attribute erasure module, we primarily focus on
two objectives in attribute unlearning: reducing the effectiveness
of attacks and maintaining recommendation performance.

Unlearning efficiency. Previous research achieves these objec-
tives through distribution alignment, typically involving two steps:
first calculating the centroid distribution of all class distributions,
followed by aligning the distributions. However, computing the
centroid distribution is computationally expensive, and with each
round of parameter update, the class distributions also change, ne-
cessitating the recalculation of the centroid distribution, which
significantly limits unlearning efficiency. In light of this, we employ
the rate distortion theory to link the attribute unlearning objec-
tives with the erasure module. Thus, we can directly measure the
compactness of all distributions without recalculation each round.
In the remainder of this section, we conduct a detailed analysis of
these two conceptual objectives to derive the formalized objectives.

4.2.1 Reducing the effectiveness of attacks. To reduce the at-
tacker’s performance, i.e., to ensure that the correlations among
user embeddings after processed by the erasure module are mini-
mized, the transformed embeddings 𝑼 need to satisfy the following
conditions:
• Intra-class Inconsistency. User embeddings belonging to the

same class of the unlearned attribute should be highly uncorre-
lated and thus possess significant intra-class variance. This im-
plies that each unlearned attribute class needs to cover a broader
space (or subspace), thereby increasing the number of bits re-
quired to encode each sample within the class. Consequently, it
is necessary to maximize 𝑅𝑐 (𝑼 , 𝜖 | 𝚷) .

• Inter-classConsistency.To reduce the distinguishability among
user embeddings, the coherence between different unlearned at-
tribute classes should be as high as possible. Consequently, these
classes should collectively cover the smallest possible space, and
the overall encoding rate of the set 𝑼 should be minimized, i.e.,
the rate distortion 𝑅(𝑼 , 𝜖) should be minimized.

Formalizing these conditions can be expressed as:

max
𝑼 ,𝚷

J
(
𝑼 ,𝚷

)
= 𝑅𝑐

(
𝑼 , 𝜖 | 𝚷

)
− 𝑅(𝑼 , 𝜖). (4)

(a) Original (b) 𝑚𝑎𝑥 𝑅𝑐(෡𝑈, 𝜖|∏) (c) 𝑚𝑎𝑥−𝑅(෡𝑈, 𝜖) (d) 𝑚𝑎𝑥−𝜆|𝑅(෡𝑈, 𝜖) − 𝑏|

Flood level

Figure 2: Comparison of different optimization objectives.

Considering that the objective function J (𝑼 ,𝚷) is monotonic
on the scale of user embeddings 𝑼 [36], and to ensure that the
impact of different user embeddings on the objective function
is comparable, it is necessary to normalize the scale of user em-
beddings after erasure. We achieve this by applying the Frobe-
nius norm to scale user embeddings 𝑼 𝑗 with the number of users:
∥𝑼 𝑗 ∥2𝐹 =

∑𝑚 𝑗

𝑖=1
∑𝑑
𝑙=1 𝑼 𝑗 (𝑖, 𝑙)2 =𝑚 𝑗 , where𝑚 𝑗 represents the num-

ber of samples in the class 𝑗 .This is equivalent to normalizing each
embedding to the unit sphere: 𝑼 𝑗 (𝑖, 𝑙) ∈ S𝑑−1. Thus providing a the-
oretical basis for implementing batch normalization in the practice
of training deep neural networks [18]. Once the comparability of
the impact of user embeddings on the objective function J (𝑼 ,𝚷)
is established, our objective can be written in the following form:

max
𝑼 ,𝚷

J
(
𝑼 ,𝚷

)
= 𝑅𝑐

(
𝑼 , 𝜖 | 𝚷

)
− 𝑅(𝑼 , 𝜖)

s.t.



𝑼 𝑗




2
𝐹
=𝑚 𝑗 ,𝚷 ∈ Ω. (5)

Solving Eq (5) can ensure that the transformed user embeddings
are uncorrelated with the unlearned class information.

4.2.2 Maintaining recommendation performance. Although
our derived objective Eq (5) effectively reduces the effectiveness of
attackers, it fails to maintain the performance of the recommender
system and could even lead to a decline in recommendation per-
formance. As illustrated in Figure 2 (b), when only the intra-class
inconsistency condition is met, decision boundaries may still exist
between different user embeddings. Based on this consideration, we
introduce inter-class consistency conditions. However, as shown in
Figure 2 (c), due to the user embedding space becoming extremely
compact, a significant overlap of user embeddings occurs. This in-
deed results in the loss of the attribute information that needs to
be unlearned but also leads to the loss of other useful information.
Such destruction of general representational capacity ultimately
causes a decline in recommendation performance.
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To address this issue, a direct approach would be to relax the
inter-class consistency constraints moderately. However, this re-
laxation needs to be limited; excessive relaxation might lead to
a loss of the unlearning effect, potentially degrading to the state
shown in Figure 2 (b) in extreme cases. Consequently, following
[19], we adopt a solution called flooding as shown in Figure 2. When
the overall embedding space becomes overly compact, specifically
when 𝑅(𝑼 , 𝜖) falls below a reasonable value 𝑏, which is referred to
as flood level, we intentionally relax constraints. Conversely, when
the embedding space is too loose, we proactively tighten the con-
straints. We ensure that 𝑅(𝑼 , 𝜖) fluctuates around the flood level,
thereby achieving a balance between the unlearning effect and
maintaining recommendation performance. Specifically, we rewrite
Eq (5) as:

max
𝑼 ,𝚷

Ĵ
(
𝑼 ,𝚷

)
= 𝑅𝑐

(
𝑼 , 𝜖 | 𝚷

)
− 𝜆

���𝑅(𝑼 , 𝜖) − 𝑏���
s.t.




𝑼 𝑗




2
𝐹
=𝑚 𝑗 ,𝚷 ∈ Ω, (6)

where 𝜆 is a hyperparameter. In Eq (6), the second term represents
the penalty introduced if the total volume of the embedding space
(i.e., its compactness) deviates significantly from the parameter 𝑏.

4.3 Computational Implementation
To address the optimization problem posed by Eq (6), we employ
an alternating optimization strategy [2, 11]. In each iteration, the
variables 𝚷 and 𝑼 are updated alternately. This strategy effectively
decomposes the complex problem into manageable subproblems,
thereby incrementally approaching the global optimum. We pro-
vide a detailed description below, and the complete algorithmic
procedure can be found in Algorithm 1.

Optimization of 𝚷. With 𝑼 held constant, we can directly com-
pute the gradient of the objective function Ĵ (·) w.r.t. 𝚷 𝑗 (i.e., ele-
ment in 𝚷). Given that 𝚷 𝑗 is a diagonal matrix, it suffices to derive
the gradients for the diagonal elements, yielding:

∇
𝚷 𝑗

𝑅𝑐 (𝑼 , 𝜖 | 𝚷) =
tr

(
𝚷 𝑗

)
2𝑚

(
𝑼
⊤

(
𝑰 + 𝑑

tr
(
𝚷 𝑗

)
𝜖2

𝑼𝚷 𝑗𝑼
⊤
)−1

𝑼

)
.

(7)
we can employ gradient ascent to update 𝚷 𝑗 to obtain 𝚷

new
𝑗 . Since

𝚷must satisfy the constraint of simplex space:𝚷 ∈ Ω, it is projected
onto set Ω. Specifically, this involves successive projections for non-
negativity 𝚷

proj
𝑗
(𝑖, 𝑖) = max(0,𝚷new

𝑗 (𝑖, 𝑖)) and satisfying allocation
constraints 𝚷final

𝑗 (𝑖, 𝑖) = 𝚷
proj
𝑗
(𝑖, 𝑖)/𝑠𝑖 , where 𝑠𝑖 =

∑𝑘
𝑗=1 𝚷

proj
𝑗
(𝑖, 𝑖).

Optimization of 𝑼 . We first derive the gradient of 𝑅(𝑼 , 𝜖) w.r.t.
𝑼 . For convenience, we define𝑨 = 𝑑/𝑚𝜖2, thereby allowing the rate
distortion function to be rewritten as𝑅(𝑼 , 𝜖) = 1

2 log det
(
𝑰 +𝑨𝑼𝑼⊤

)
.

Utilizing the properties of matrix differentiation, the gradient can
be obtained as

∇
𝑼
𝑅(𝑼 , 𝜖) = 𝑨𝑼

(
𝑰 + 𝑼⊤𝑨𝑼

)−1
. (8)

Similarly, since 𝑅𝑐 (𝑼 , 𝜖 | 𝚷) is the sum of multiple determinants, a
similar approach can be used to derive

∇
𝑼
𝑅𝑐 (𝑼 , 𝜖 | 𝚷) =

𝑘∑︁
𝑗=1

𝑨𝚷 𝑗𝑼

tr
(
𝚷 𝑗

) (
𝑰 + 𝑑

tr
(
𝚷 𝑗

)
𝜖2

𝑼𝚷 𝑗𝑼
⊤
)−1

. (9)

Then, we can employ gradient ascent to update 𝑼 to obtain 𝑼
new.

Considering that each element of 𝑼 new must satisfy the constraint
of Frobenius norm, the following scaling operation is required
to project it onto the set that satisfies the constraint: 𝑼 final

𝑗 (𝜃 ) =

𝑼
new
𝑗 (𝜃 ) ·

√︃
𝑚 𝑗/∥𝑼

new
𝑗 (𝜃 )∥2

𝐹
.

Algorithm 1 Pluggable Attribute Unlearning
1: Input: User embedding 𝑼 , training epoch 𝐸, adjustable thresh-

old 𝑏, hyperparameter 𝜆, update step size 𝜂.
2: Initial: Erasure module parameter 𝜃0, erased user embedding

𝑼 (𝜃0) = 𝑼 1 (𝜃0)∪𝑼 2 (𝜃0)∪. . .∪𝑼𝑘 (𝜃0), set of diagonal matrices
𝚷
0 = {𝚷0

𝑗 ∈ R
𝑚×𝑚}𝑘

𝑗=1.
3: for 𝑒 = 0 to 𝐸 do
4: Compute gradients: ∇

𝚷
𝑒
𝑗
𝑅𝑐 (𝑼 , 𝜖 | 𝚷) as defined in Eq (7).

5: Update 𝚷𝑒+1: 𝚷𝑒+1
𝑗 ← 𝚷

𝑒
𝑗 + 𝜂∇𝚷𝑒

𝑗
𝑅𝑐 (𝑼 , 𝜖 | 𝚷).

6: Non-negative projection: 𝚷𝑒+1
𝑗 = max(0,𝚷𝑒+1

𝑗 (𝑖, 𝑖)).
7: Allocation projection: 𝚷𝑒+1

𝑗 = 𝚷
𝑒+1
𝑗 (𝑖, 𝑖)/

∑𝑘
𝑔=1 𝚷

𝑒+1
𝑔 (𝑖, 𝑖).

8: Compute gradients: ∇
𝑼 (𝜃𝑒 ) Ĵ (𝑼 (𝜃𝑒 ),𝚷) as defined in Eq (8)

and Eq (9).
9: Updata parameter: 𝑼 (𝜃𝑒+1) = 𝑼 (𝜃𝑒 ) +𝜂∇𝑼 (𝜃𝑒 ) Ĵ (𝑼 (𝜃𝑒 ),𝚷).

10: Frobenius norm projection: 𝑼 𝑗 (𝜃𝑒+1) = 𝑼 𝑗 (𝜃𝑒+1) ·√︃
𝑚 𝑗/∥𝑼 𝑗 (𝜃𝑒+1)∥2𝐹 .

11: end for
12: return Erasure module parameter 𝜃𝐸 .

5 EXPERIMENTS
In this section, we evaluate three aspects, i.e., unlearning effec-
tiveness, recommendation performance, and unlearning efficiency.
We conduct unlearning on various attributes, including both bi-
nary and multi-class attributes. Additionally, we investigate the
effect of hyper-parameters, and conduct an ablation study for each
component of our proposed loss function.

5.1 Experimental Settings
5.1.1 Datasets. We conduct experiments on four publicly accessi-
ble real-world datasets, each containing user-item interaction data
(i.e., ratings) and user attribute data (e.g., gender and age).
• MovieLens 100K (ML-100K): The MovieLens dataset is rec-

ognized as one of the most extensively utilized resources for
recommendation systems research [14, 15]. It encompasses user
ratings for movies along with various attributes such as gender,
age, and occupation. ML-100K specifically comprises approxi-
mately 100,000 interaction records.

• MovieLens 1M (ML-1M): ML-1M comprises approximately 1
million records, providing a broader scope for analysis.
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Table 1: Summary of datasets.

Dataset Attribute Category # User # Item # Rating # Sparsity

ML-100K Gender 2 943 1,349 99,287 92.195%Age 3

ML-1M Gender 2 6,040 3,416 999,611 95.155%Age 3

LFM-2B Gender 2 19,972 99,639 2,829,503 99.858%Age 3

KuaiSAR Feat1 8 21,852 140,367 2,166,893 99.929%Feat2 2

• LFM-2B: THe LFM-2B dataset includes over 2 billion listening
events designed for music retrieval and recommendation pur-
poses [25]. LFM-2B also collects users’ attributes such as gender,
age, and country. In our experiments, we utilize a subset that
contains more than 3 million interaction records.

• KuaiSAR1: KuaiSAR serves as a comprehensive dataset for rec-
ommendation search, derived from user behavior logs collected
from the short-video mobile application, Kuaishou2. In our ex-
periments, we utilize KuaiSAR-small, which includes two anony-
mous user attributes (i.e., Feat1 and Feat2).

We summarize the statistics of the above datasets in Table 1.

Dataset pre-processing. For these datasets, we first exclude users
with incomplete or invalid attribute information. Next, we retain
only users who have interacted with at least five items and items
that have received at least five user interactions.

Train-test split. To assess recommendation performance, the two
most recent interaction items from each user (sorted by interaction
timestamp) are retained, one for validation and the other for testing.

Dataset attributes. The age attribute is divided into three groups:
under 35 years old, between 35 and 45, and over 45. The available
gender attribute is restricted to male and female categories. For
KuaiSAR, we use anonymized one-hot encoded categories of users
as the target attributes.

5.1.2 Recommendation Models. We validate the effectiveness
of our proposed method across three well-acknowledged recom-
mendation models.
• DMF: Deep Matrix Factorization (DMF) is a prominent deep

learningmodel within the framework of matrix factorization [35].
• NCF: Neural Collaborative Filtering (NCF) is a foundational

collaborative filtering model that employs neural network archi-
tectures [17].

• LightGCN: Light Graph Convolution Network (LightGCN) is
the State-Of-The-Art (SOTA) collaborative filtering model that
optimizes recommendation performance through a simplified
graph convolutional network design [16].

Training parameters. For model-specific hyper-parameters in
recommendation models, we adhere to the recommendations pro-
vided in respective original papers. Specifically, we utilize the SGD

1https://kuaisar.github.io/
2https://www.kuaishou.com/

optimizer with a learning rate of 1e-4 and set the embedding dimen-
sion to 32. All model parameters are initialized using a Gaussian
distribution N(0, 0.12)

5.1.3 Evaluation metrics. We specify the evaluation metrics
of unleanring effectiveness and recommendation performance as
follows.

Unlearning Effectiveness. As mentioned in Section 3.1, the attack-
ing process is considered a classification task, where the attacking
model takes user embeddings as input and attributes information as
labels. Following [22], We build a Multilayer Perceptron (MLP) [10]
as an adversarial classifier, because MLP stands out as the attacker
with the best performance. The dimension of MLP’s hidden layer is
set as 100 and a softmax layer is used as the output layer. we set the
L2 regularization weight to 1.0, the initial learning rate to 1e-3, and
the maximal iteration to 500, leaving the other hyper-parameters
at their defaults in scikit-learn 1.1.3. To evaluate the effectiveness
of attribute unlearning, we utilize two widely used classification
metrics: the micro-averaged F1 score (F1) and Balanced Accuracy
(BAcc). Lower values of F1 and BAcc indicate greater effectiveness
of unlearning.We train theMLP using 80% of users and test with the
remaining 20%. We report the results of attacking through five-fold
cross-validation, averaged over 10 runs.

Recommendation Effectiveness. To assess the recommendation
performance, we employ the leave-one-out testing. We leverage
Hit Ratio at rank K (HR@K) and Normalized Discounted Cumula-
tive Gain at rank K (NDCG@K) as measures of recommendation
performance. HR@K measures whether the test item is in the top-
K list, while NDCG@K is a position-aware ranking metric that
assigns higher scores to the hits at the upper ranks. In our experi-
ment, the entire negative item sets are used to compute HR@K and
NDCG@K. Note that we compare the recommendation effective-
ness performance of several compared methods under the condition
of achieving optimal unlearning effectiveness.

5.1.4 Unlearning Methods. We compare our proposed method
(PAU) with the original model and three representative attribute
unlearning methods.

• Original: This is the original model without attribute unlearning.
• DP [38]: This method protects user attributes by introducing

noise perturbation to the user embedding during the model pre-
diction process.

• AU [22]: This method represents the SOTA attribute unlearning
method, which is achieved through distribution alignment.

• Adv [9]: This method uses adversarial training to achieve at-
tribute unlearning. Thus, it not only intervenes in the training
process of the original model, but also requires access to the
training data.

We run all models 10 times and report the average results.

Hyper-parameters. To obtain the optimal performance, we use
grid search to tune the hyper-parameters. The number of epochs is
set to 15 for DMF and NCF, and 200 for LightGCN. Additionally, in
our proposed PAU, we assign the trade-off coefficient as 𝜆 = 1 and
set the flood level 𝑏 to 3.
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Table 2: Results of unlearning performance (i.e., the performance of attackers, denoted by pink blocks) and recommendation
performance (denoted by yellow blocks). Except for Original, the best results are highlighted in bold.

Dataset Attribute Method DMF NCF LightGCN

HR@5 NDCG@5 HR@10 NDCG@10 BAcc F1 HR@5 NDCG@5 HR@10 NDCG@10 BAcc F1 HR@5 NDCG@5 HR@10 NDCG@10 BAcc F1

ML-100K

Gender

Original 0.0961 0.0688 0.1550 0.0830 0.6889 0.6746 0.1023 0.0674 0.1610 0.0850 0.6771 0.6639 0.1074 0.0678 0.1697 0.0880 0.6000 0.6145
DP 0.0130 0.0090 0.0210 0.0110 0.5149 0.4660 0.0310 0.0200 0.0540 0.0270 0.6586 0.6665 0.0300 0.0190 0.0580 0.0290 0.5906 0.5476
AU 0.0940 0.0600 0.1530 0.0790 0.4712 0.3962 0.0980 0.0650 0.1530 0.0830 0.4529 0.4104 0.1043 0.0665 0.1659 0.0854 0.5113 0.5287
Adv 0.0820 0.0520 0.1470 0.0790 0.6881 0.6742 0.0840 0.0540 0.1510 0.0740 0.5673 0.5334 0.1006 0.0644 0.1524 0.0812 0.5401 0.5517

PAU (ours) 0.0947 0.0671 0.1528 0.0822 0.4539 0.3865 0.1018 0.0645 0.1607 0.0821 0.4016 0.3967 0.1033 0.0672 0.1676 0.0843 0.5164 0.5340

Age

Original 0.0961 0.0680 0.1550 0.0830 0.6660 0.6746 0.1023 0.0674 0.1610 0.0850 0.5607 0.5609 0.1074 0.0678 0.1697 0.0880 0.5102 0.6025
DP 0.0130 0.0090 0.0210 0.0110 0.3810 0.3809 0.0310 0.0200 0.0540 0.0270 0.5133 0.5138 0.0300 0.0190 0.0580 0.0290 0.5126 0.5126
AU 0.0830 0.0520 0.1430 0.0710 0.2830 0.2824 0.1000 0.0640 0.1540 0.0810 0.2061 0.2062 0.0975 0.0625 0.1556 0.0792 0.3443 0.5710
Adv 0.0680 0.0450 0.1180 0.0600 0.5989 0.6017 0.0950 0.0620 0.1530 0.0820 0.3761 0.5974 0.1006 0.0651 0.1581 0.0845 0.3688 0.6047

PAU (ours) 0.0895 0.0549 0.1488 0.0708 0.2651 0.2742 0.1007 0.0638 0.1542 0.0818 0.2354 0.2529 0.1016 0.0658 0.1597 0.0853 0.3177 0.5067

ML-1M

Gender

Original 0.0658 0.0401 0.1060 0.0520 0.7487 0.7501 0.0699 0.0439 0.1126 0.0589 0.7485 0.7545 0.0690 0.0430 0.1100 0.0579 0.7022 0.6987
DP 0.0090 0.0050 0.0150 0.0070 0.7059 0.7023 0.0090 0.0050 0.0150 0.0070 0.7341 0.7318 0.0260 0.0160 0.0430 0.0220 0.7080 0.7055
AU 0.0600 0.0380 0.1000 0.0510 0.4910 0.4868 0.0660 0.0410 0.1050 0.0530 0.4504 0.4662 0.0664 0.0421 0.1087 0.0559 0.5068 0.5187
Adv 0.0560 0.0360 0.0970 0.0500 0.6106 0.6181 0.0470 0.0280 0.0980 0.0480 0.5551 0.5574 0.0634 0.0397 0.1035 0.0532 0.5515 0.5874

PAU (ours) 0.0642 0.0397 0.1038 0.0502 0.4396 0.4317 0.0688 0.0437 0.1115 0.0574 0.4485 0.4693 0.0661 0.0425 0.1098 0.0565 0.4819 0.4939

Age

Original 0.0658 0.0401 0.1060 0.0520 0.7487 0.7501 0.0699 0.0439 0.1126 0.0589 0.6241 0.6241 0.0690 0.0430 0.1100 0.0579 0.5664 0.5664
DP 0.0090 0.0050 0.0150 0.0070 0.5150 0.5150 0.0090 0.0050 0.0150 0.0070 0.6110 0.6110 0.0260 0.0160 0.0430 0.0220 0.5626 0.5625
AU 0.0600 0.0380 0.0990 0.0500 0.2911 0.2911 0.0650 0.0400 0.1040 0.0530 0.2611 0.2611 0.0669 0.0422 0.1077 0.0556 0.3347 0.5671
Adv 0.0500 0.0320 0.0880 0.0450 0.7120 0.7120 0.0510 0.0320 0.0990 0.0490 0.3707 0.6125 0.0621 0.0382 0.1058 0.0528 0.3779 0.6114

PAU (ours) 0.0679 0.0395 0.1003 0.0543 0.2475 0.2491 0.0691 0.0436 0.1038 0.0567 0.2367 0.2722 0.0667 0.0421 0.1088 0.0562 0.3180 0.5228

LFM-2B

Gender

Original 0.0120 0.0080 0.0200 0.0100 0.6802 0.6717 0.0170 0.0110 0.0280 0.0140 0.6779 0.6809 0.0220 0.0140 0.0340 0.0180 0.6162 0.6219
DP 0.0010 0.0000 0.0030 0.0010 0.6349 0.6278 0.0010 0.0010 0.0020 0.0010 0.6691 0.6727 0.0030 0.0020 0.0060 0.0030 0.6187 0.6179
AU 0.0050 0.0030 0.0080 0.0040 0.4478 0.4477 0.0120 0.0070 0.0210 0.0107 0.4470 0.4527 0.0176 0.0102 0.0271 0.0145 0.5032 0.5114
Adv 0.0100 0.0070 0.0160 0.0073 0.6259 0.6336 0.0130 0.0080 0.0210 0.0100 0.5436 0.5547 0.0165 0.0098 0.0260 0.0135 0.5479 0.5643

PAU (ours) 0.0095 0.0072 0.0169 0.0072 0.3876 0.3911 0.0153 0.0090 0.0263 0.0124 0.4125 0.4172 0.0175 0.0103 0.0274 0.0144 0.4682 0.4965

Age

Original 0.0120 0.0080 0.0200 0.0100 0.6802 0.6717 0.0170 0.0110 0.0280 0.0140 0.3187 0.3787 0.0220 0.0140 0.0340 0.0180 0.3353 0.3351
DP 0.0010 0.0000 0.0030 0.0010 0.3320 0.3323 0.0010 0.0010 0.0020 0.0010 0.3325 0.3328 0.0030 0.0020 0.0060 0.0030 0.3295 0.3293
AU 0.0120 0.0070 0.0190 0.0090 0.3330 0.3331 0.0120 0.0070 0.0200 0.0100 0.3160 0.3160 0.0220 0.0140 0.0350 0.0180 0.3274 0.3275
Adv 0.0080 0.0050 0.0160 0.0080 0.3624 0.3626 0.0150 0.0090 0.0220 0.0110 0.3750 0.3745 0.0140 0.0090 0.0240 0.0120 0.3246 0.3248

PAU (ours) 0.0116 0.0077 0.0173 0.0104 0.3141 0.3014 0.0141 0.0086 0.0233 0.0115 0.2261 0.2232 0.0216 0.0142 0.0358 0.0176 0.2259 0.2236

KuaiSAR

Feat1

Original 0.0190 0.0120 0.0310 0.0150 0.2667 0.2483 0.0180 0.0126 0.0370 0.0178 0.3427 0.4152 0.0200 0.0130 0.0360 0.0180 0.2132 0.4419
DP 0.0030 0.0020 0.0050 0.0020 0.1787 0.1809 0.0020 0.0010 0.0050 0.0020 0.4333 0.4242 0.0060 0.0040 0.0110 0.0050 0.2812 0.2866
AU 0.0150 0.0100 0.0270 0.0130 0.1167 0.1135 0.0180 0.0120 0.0300 0.0150 0.1652 0.3760 0.0193 0.0127 0.0328 0.0173 0.1426 0.3819
Adv 0.0170 0.0100 0.0310 0.0150 0.2305 0.2253 0.0150 0.0100 0.0350 0.0170 0.1608 0.4065 0.0186 0.0124 0.0317 0.0165 0.1681 0.4125

PAU (ours) 0.0168 0.0117 0.0306 0.0129 0.1019 0.1077 0.0185 0.0116 0.0313 0.0172 0.1541 0.2475 0.0195 0.0128 0.0331 0.0175 0.1140 0.3357

Feat2

Original 0.0190 0.0120 0.0310 0.0150 0.2667 0.2483 0.0180 0.0126 0.0370 0.0178 0.1500 0.1522 0.0200 0.0130 0.0360 0.0180 0.7481 0.7488
DP 0.0030 0.0020 0.0050 0.0020 0.5333 0.5333 0.0020 0.0010 0.0050 0.0020 0.1590 0.1549 0.0060 0.0040 0.0110 0.0050 0.5777 0.5503
AU 0.0150 0.0090 0.0270 0.0130 0.1759 0.1715 0.0180 0.0110 0.0300 0.0150 0.1311 0.1309 0.0186 0.0125 0.0331 0.0168 0.5476 0.5543
Adv 0.0160 0.0100 0.0300 0.0150 0.6333 0.6327 0.0080 0.0050 0.0350 0.0170 0.2143 0.2251 0.0185 0.0124 0.0324 0.0164 0.5821 0.5957

PAU (ours) 0.0172 0.0096 0.0313 0.0149 0.1542 0.1571 0.0182 0.0119 0.0325 0.0159 0.1016 0.1181 0.0192 0.0123 0.0341 0.0173 0.5242 0.5471

Hardware information. All models and algorithms are imple-
mented using Python 3.8 and PyTorch 1.9. The experiments are
conducted on a server running Ubuntu 20.04, equipped with 256GB
of RAM and an NVIDIA GeForce RTX 4090 GPU.

5.2 Results and Discussion
5.2.1 Unlearning Effectiveness. Reducing the attacking performance
of AIA is the primary goal of attribute unlearning. To comprehen-
sively evaluate attacking performance, we report two metrics, i.e.,
F1 score and BAcc, in Table 2. We have the following observations
from the above results.

• Firstly, attackers achieve an average F1 score of 0.54 and BAcc
of 0.56 on the original embedding, indicating the users’ attribute
information in embeddings can be inferred by the attacker. Note
that the average performance of these results encompasses both
binary and multi-class attributes. Thus, a value of 0.5 does not
represent the optimal outcome.

• Secondly, all compared methods can effectively unlearn attribute
information in embeddings to varying degrees. DP, AU, Adv, PAU
decrease the F1 scores by an average of 14.23%, 35.37%, 11.76%,
and 40.72%, respectively. Furthermore, PAU achieves an aver-
age reduction in BAcc by 43.32%, while AU only reduces BAcc
by 37.90%. Thus, our proposed PAU demonstrates a significant
advantage over compared unleanring methods.

5.2.2 Recommendation Performance. Preserving recommendation
performance is another important goal of attribute unlearning.
While users’ attributes are unlearned, the impact on recommen-
dation performance should be minimized to promise the utility of
the recommendation model. We use NDCG and HR to evaluate rec-
ommendation performance after unlearning and truncate the rank
list at 5 and 10 for both metrics. As shown in Table 2 unlearning
methods indeed affect recommendation performance in varying
degrees. DP significantly decreases the utility of the recommen-
dation model. Specifically, compared with the original model, DP
decreases the NDCG@5 and NDCG@10 by 83.00% and 80.02%, and
decreases HR@5 and HR@10 by 83.83% and 78.97%, respectively,
on average. Adv and AU decrease NDCG by 27.57% and 22.57%,
and decrease the HR by 29.39% and 24.41%, respectively, on aver-
age. As for comparison, PAU only has an average degradation of
19.53% on NDCG and 17.17% on HR. This can be attributed to the
fact that PAU more effectively preserves recommendation perfor-
mance by incorporating the flooding-level controlled compactness
regularization.

5.2.3 Unlearning Efficiency. We use running time to assess the
efficiency of unlearning methods. We conduct experiments on ML-
1M dataset and report the running time of both binary (gender) and
multi-class (age) attribute unlearning. From Figure 3, we observe
that
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Figure 3: Results of unlearning efficiency. We present the running time of compared methods on ML-1M dataset across three
recommendation models. The results are reported in seconds (s).
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Figure 4: Effect of the hyper-parameter trade-off coefficient 𝜆 and flood level 𝑏. We conduct experiments on ML-1M dataset and
KuaiSAR dataset, using the LightGCN model. We use BAcc and NDCG@10 to represent the performance of unlearning and
recommendation respectively.

• Our proposed PAU significantly outperforms Adv. Compared to
Adv, PAU reduces the running time by 90.49%, 90.73%, and 65.73%
on DMF, NCF, and LightGCN respectively. This is because Adv
uses a time-consuming adversarial training approach to achieve
attribute unlearning.

• Compared to AU, PAU reduces the running time of unlearning
binary attributes by 13.39% on average.

• For the multi-class attribute unlearning, PAU demonstrates a
more significant advantage, achieving an average reduction of
36.96%. This is because AU spends exponentially more time re-
calculating centroid distribution for multi-class attributes. In
contrast, our proposed PAU utilizes rate distortion theory to
directly measure the compactness of distributions, thereby sig-
nificantly enhancing unlearning efficiency.

5.2.4 Parameter Sensitivity Analysis. We investigate the effect of
key hyper-parameters, i.e., trade-off coefficient 𝜆 and flood level 𝑏,
on both unlearning effectiveness and recommendation performance.
As shown in Fig 4, we use BAcc and NDCG@10 to represent the
performance of unlearning and recommendation respectively.

• Trade-off Coefficient 𝜆. Regarding the trade-off coefficient
𝜆, we set 𝜆 values to 0.3, 0.5, 0.7, 1.0, 1.3, 1.5. We observe in-
significant fluctuation of 𝜆. The results demonstrate that our
PAU method’s BAcc and NDCG@10 exhibit good robustness to
different 𝜆 values.

• Flood Level 𝑏. Concerning the flood level 𝑏, we compare model
performance with flood level 𝑏 values of 1, 2, 3, 4, 5, and 6. We
observe that as 𝑏 increases, both NDCG and BAcc. But the fluc-
tuations are not significant. After 𝑏 = 3, the increase levels off,
forming a plateau. To better preserve the recommendation per-
formance, we set 𝜆 = 1 for other experiments. Note that the
maximal BAcc remains below 0.6.

6 CONCLUSIONS
This paper investigates the problem of attribute unlearning in rec-
ommender systems, aiming to protect user attribute information
from attackers while maintaining recommendation performance.
Existingmethods employ adversarial training and distribution align-
ment to updatemodel parameters for attribute unlearning. However,
these methods are challenging to apply in dynamic real-world en-
vironments, particularly when unlearning requests are frequently
updated. The primary challenges faced by these methods include
irreversible operation, low efficiency, and unsatisfied recommen-
dation preservation. To overcome these challenges, we propose
a pluggable attribute unlearning framework, PAU, based on rate
distortion theory. Our proposed framework reduces attack perfor-
mance by maximizing the bits required to encode user embeddings
within the same unlearned attribute class and minimizing those for
different attribute classes. Additionally, PAU maintains recommen-
dation performance by constraining the compactness of the user
embedding space around a reasonable flood level. We conducted
extensive experiments on four real-world datasets and three main-
stream recommendation models to evaluate the effectiveness of
our proposed method. The results demonstrate that our approach
effectively achieves attribute unlearning under pluggable condi-
tions and significantly outperforms existing baseline methods in
terms of unlearning efficiency and maintaining recommendation
performance. Our research offers valuable insights for other ma-
chine unlearning tasks, encouraging future studies to focus more
on practical scenarios. In future research, we plan to explore the un-
learning of continuous attributes or more generic vector attributes,
which may require further improvements and optimization of our
current methods.
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