
Trajectory-Aware Eligibility Traces for
Off-Policy Reinforcement Learning

Brett Daley 1 2 Martha White 1 2 3 Christopher Amato 4 Marlos C. Machado 1 2 3

Abstract

Off-policy learning from multistep returns is cru-
cial for sample-efficient reinforcement learning,
but counteracting off-policy bias without exacer-
bating variance is challenging. Classically, off-
policy bias is corrected in a per-decision manner:
past temporal-difference errors are re-weighted by
the instantaneous Importance Sampling (IS) ratio
after each action via eligibility traces. Many off-
policy algorithms rely on this mechanism, along
with differing protocols for cutting the IS ratios
to combat the variance of the IS estimator. Un-
fortunately, once a trace has been fully cut, the
effect cannot be reversed. This has led to the
development of credit-assignment strategies that
account for multiple past experiences at a time.
These trajectory-aware methods have not been ex-
tensively analyzed, and their theoretical justifica-
tion remains uncertain. In this paper, we propose
a multistep operator that can express both per-
decision and trajectory-aware methods. We prove
convergence conditions for our operator in the
tabular setting, establishing the first guarantees
for several existing methods as well as many new
ones. Finally, we introduce Recency-Bounded
Importance Sampling (RBIS), which leverages
trajectory awareness to perform robustly across
λ-values in several off-policy control tasks.

1. Introduction
Reinforcement learning concerns an agent interacting with
its environment through trial and error to maximize its ex-
pected cumulative reward. One of the great challenges of re-

1Department of Computing Science, University of Alberta,
Edmonton, AB, Canada 2Alberta Machine Intelligence Institute
3Canada CIFAR AI Chair 4Khoury College of Computer Sciences,
Northeastern University, Boston, MA, USA. Correspondence to:
Brett Daley <brett.daley@ualberta.ca>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

inforcement learning is the temporal credit assignment prob-
lem (Sutton, 1984): upon receiving a reward, which past ac-
tions should be held responsible and, hence, be reinforced?
Basic temporal-difference (TD) methods assign credit to the
immediately taken action (e.g., Watkins, 1989; Rummery &
Niranjan, 1994), bootstrapping from previous experience to
learn long-term dependencies. This process requires a large
number of repetitions to generate effective behaviors from
rewards, motivating research into multistep return estimation
in which credit is distributed among multiple past actions
according to some eligibility rule (e.g., Sutton, 1988).

One challenge of multistep estimators is that they generally
have higher variance than 1-step estimators (Kearns &
Singh, 2000). This is exacerbated in the off-policy setting,
where environment interaction is conducted according to a
behavior policy that differs from the target policy for which
returns are being estimated. The discrepancy between the
two policies manifests mathematically as bias in the return
estimation, which can be detrimental to learning if left
unaddressed (Precup et al., 2000). Despite these challenges,
off-policy learning is important for exploration and sample
efficiency. The canonical bias-correction technique is Im-
portance Sampling (IS; Kahn & Harris, 1951), wherein the
bias due to the differing policies is eliminated by the product
of their probability ratios (Precup et al., 2000). Although
IS theoretically resolves the off-policy bias, it can suffer
from extreme variance that makes it largely impractical.

Directly managing the variance of the IS estimator has been
a fruitful avenue for developing efficient off-policy algo-
rithms. Past work has focused on modifying the individual
IS ratios to reduce the variance of the full update: e.g., Tree
Backup (Precup et al., 2000), Qπ(λ) (Harutyunyan et al.,
2016), Retrace (Munos et al., 2016), ABQ (Mahmood et al.,
2017), and C-trace (Rowland et al., 2020). All of these
methods can be implemented online with per-decision rules
(Precup et al., 2000) that determine how much to reduce,
or cut, the IS ratio according to the current state-action
pair. The re-weighted TD error is then broadcast to previ-
ous experiences using eligibility traces (Barto et al., 1983;
Sutton, 1984). The decisions made by these algorithms are
Markov in the sense that each iterative off-policy correction
depends on only the current state-action pair. One issue

1

Trajectory-Aware Eligibility Traces

with this is that it can lead to suboptimal decisions, since
fully cutting a trace cannot be reversed later. In contrast, a
trajectory-aware method can examine an entire sequence
of past state-action pairs to make globally better decisions
regarding credit assignment; for example, when a specific
transition yields a high IS ratio, a trajectory-aware method
can choose to not cut the trace if the product of all previous
IS ratios remains small.

Indeed, some existing off-policy methods already conduct
offline bias correction in a trajectory-aware manner. Perhaps
the simplest example is Truncated IS, where the IS ratio
products are pre-calculated offline and then clipped to
some finite value (see Section 4). More recently, Munos
et al. (2016) suggested a recursive variant of Retrace that
automatically relaxes the clipping bound when its historical
trace magnitude becomes small; the authors conjectured that
this could lead to faster learning. No theoretical analysis
has been conducted on trajectory-aware algorithms such
as these; their convergence properties are unknown, and the
space of possible algorithms has not yet been fully explored.

To better understand these algorithms, and to support new
discoveries of efficient algorithms, we introduce a unifying
theoretical perspective on per-decision and trajectory-aware
off-policy corrections. We propose a multistep operator that
accounts for arbitrary dependencies on past experiences,
significantly generalizing the per-decisionR operator intro-
duced by Munos et al. (2016). We prove that our operator
converges for policy evaluation and control. In the latter
case, we remove the assumptions of increasingly greedy
policies and pessimistic initialization used by Munos et al.
(2016), which has implications for per-decision methods.
Finally, we derive a new method from our theory, Recency-
Bounded Importance Sampling (RBIS), which performs
favorably to other trajectory-aware methods across a wide
range of λ-values in an off-policy control task.

2. Preliminaries
We consider Markov Decision Processes (MDPs) of the
form (S,A, P,R, γ). S and A are finite sets of states and
actions, respectively. Letting ∆X denote the set of distri-
butions over a set X , then P : S ×A → ∆S is the transi-
tion function, R : S × A → R is the reward function, and
γ ∈ [0, 1) is the discount factor. A policy π : S → ∆A
determines an agent’s probability of selecting a given action
in each state. A value function Q : S ×A → R represents
the agent’s estimate of the expected return achievable from
each state-action pair. For a policy π, we define the operator

(PπQ)(s, a) :=
∑
s′∈S

∑
a′∈A

P (s′|s, a)π(a′|s′)Q(s′, a′).

As a shorthand, we represent value functions and the reward
function as vectors in Rn, where n = |S × A|. Linear op-

erators such as Pπ can hence be interpreted as n× n square
matrices that multiply these vectors, with repeated applica-
tion corresponding to exponentiation: P t

πQ = Pπ(P
t−1
π Q).

In the policy evaluation setting, we seek to estimate the
expected discounted returns for policy π, given by Qπ :=∑∞

t=0 γ
tP t

πR. The value function Qπ is the unique fixed
point of the Bellman operator TπQ := R + γPπQ, i.e., it
uniquely solves the Bellman equation TπQ

π = Qπ (Bell-
man, 1966). In the control setting, we seek to estimate the
expected returns Q∗ under the optimal policy π∗. Q∗ is
the unique fixed point of the Bellman optimality operator
(TQ)(s, a) := maxπ (TπQ)(s, a), i.e., it uniquely solves
the Bellman optimality equation TQ∗ = Q∗. We are partic-
ularly interested in the off-policy learning case, where tra-
jectories of the form (S0, A0), (S1, A1), (S2, A2), . . . are
generated by interacting with the MDP using a behavior
policy µ, where µ ̸= π. We define the TD error for policy π
at time t as

δπt := Rt + γ
∑
a′∈A

π(a′|St+1)Q(St+1, a
′)−Q(St, At),

where Rt := R(St, At). Let ρk := π(Ak|Sk)
µ(Ak|Sk)

for brevity.
Munos et al. (2016) introduced the off-policy operator

(RQ)(s, a) := Q(s, a) +

Eµ

[∞∑
t=0

γt

(
t∏

k=1

ck

)
δπt

∣∣∣∣∣ (S0, A0) = (s, a)

]
, (1)

where ck := c(Sk, Ak) ∈ [0, ρk]. We refer to the
product

∏t
k=1 ck as the trace for (s, a) at time t. If

any ck < ρk, we say that the trace has been (partially)
cut. If any ck = 0, then we have fully cut it. If
the trace is fully cut at t = 1, i.e., c1 = 0, then
(RQ)(s, a) = Q(s, a) + E[δπ0 | (S0, A0) = (s, a)] =
R(s, a)+γE[

∑
a′∈A π(a′|S1)Q(S1, a

′)|(S0, A0) = (s, a)],
which is the standard 1-step bootstrap target like in TD(0)
(Sutton, 1988). Notice that each ck is Markov, as it depends
only on (Sk, Ak) and is otherwise independent of the pre-
ceding trajectory. In other words, the update forR can be
calculated per decision (Precup et al., 2000), permitting an
efficient online implementation with eligibility traces.

3. Trajectory-Aware Eligibility Traces
While per-decision traces are convenient from a computa-
tional perspective, they require making choices about how
much to cut the trace without considering the effects of
previous choices. This can lead to suboptimal decisions;
for example, if the trace is cut by setting ck = 0 at some
timestep, then the effect cannot be reversed later. Regardless
of whatever new experiences are encountered by the agent,
experiences before time k will be ineligible for credit as-
signment, resulting in an opportunity cost. In fact, this exact

2

Trajectory-Aware Eligibility Traces

Figure 1. The Tightrope Problem. Starting from state s1, the agent
must take a specific sequence of n actions to receive +1 reward.

phenomenon is why Watkins’ Q(λ) (Watkins, 1989) often
learns more slowly than Peng’s Q(λ) (Peng & Williams,
1996), even though the former avoids off-policy bias (Sutton
& Barto, 1998; Daley & Amato, 2019; Kozuno et al., 2021).
The same effect (but to a lesser extent) impacts Tree Backup
and Retrace, where ck ≤ 1 always in Eq. (1), implying that
the traces for past experiences can never increase.

We illustrate this phenomenon in a small, deterministic MDP
that we call the Tightrope Problem (see Figure 1). The envi-
ronment consists of n sequential, non-terminal states with
two actions a1, a2 available. The agent starts in state s1 and
advances from si to si+1 whenever it takes action a1. If
i = n, then the episode terminates and the agent receives
+1 reward. Taking action a2 in any state immediately ter-
minates the episode with no reward. Clearly, the optimal
policy is to execute a1 regardless of the state.

Now consider the following off-policy learning scenario.
Suppose the agent’s behavior policy µ is uniform random,
but the target policy π is ϵ-greedy with respect to a value
function Q. For each state s, it follows that π(a|s) = 1− ϵ
if a = argmaxa′ Q(s, a′) and π(a|s) = ϵ otherwise. We
assume ϵ is small in the sense that ϵ < 1

2 , and that γ = 1.
Suppose now that the agent successfully receives the +1
reward during an episode, implying that it took action a1
on every timestep. We can compute the eligibility of the
initial state-action pair (s1, a1) as an expression in the num-
ber k of incorrect actions in the greedy policy (i.e., where
argmaxa′ Q(s, a′) ̸= a1). Letting λ ∈ [0, 1] be a decay
parameter, the standard IS estimator (which does not cut
traces when λ = 1) provides an eligibility of(

λ
1− ϵ

1 / 2

)n−k (
λ

ϵ

1 / 2

)k

= λn[2(1− ϵ)]n−k(2ϵ)k. (2)

This value can be greater than 1 when k ≪ n, which sug-
gests that the agent’s behavior should be heavily reinforced
when the greedy policy agrees closely with the optimal pol-
icy; however, a per-decision method like Retrace, which cuts
traces without considering the full trajectory (see Section 4),
ultimately assigns a much lower eligibility:[
λmin

(
1,

1− ϵ

1 / 2

)]n−k[
λmin

(
1,

ϵ

1 / 2

)]k
= λn(2ϵ)k.

The eligibility now decays monotonically for every sub-
optimal action in the greedy policy, illuminating how per-

decision trace cutting can lead to excessively small eligibili-
ties, especially when ϵ is close to 0.

This issue stems from the fact that Retrace is not aware of
its past eligibilities, and continues to decay them even when
they already form an underestimate compared to IS. This
issue is not unique to Retrace, and affects other per-decision
methods like Tree Backup. Instead, a trajectory-aware
method that can actively adapt its trace-cutting behavior
based on the magnitude of past eligibilities would be better.

One way to obtain a trajectory-aware method is to compute
the exact IS product in Eq. (2), and then make adjustments
to it to achieve certain properties (e.g., convergence and vari-
ance reduction). For example, Truncated IS (see Section 4)
simply imposes a fixed bound on the IS estimator:

λn min
(
1, [2(1− ϵ)]n−k(2ϵ)k

)
. (3)

Ignoring λ, Truncated IS reduces the eligibility only when it
exceeds a pre-specified threshold, effectively avoiding trace
cuts when the true IS estimate is small. In Section 6, we
propose an algorithm, RBIS, which achieves a similar effect
using a recursive, time-decaying threshold.

As this example demonstrates, it can be advantageous to
consider the agent’s past experiences to produce better de-
cisions regarding credit assignment. One of our principal
contributions is the proposal and analysis of an off-policy
operatorM that encompasses this possibility. Let Ft :=
(S0, A0), (S1, A1), . . . , (St, At). We defineM such that

(MQ)(s, a) := Q(s, a) +

Eµ

[∞∑
t=0

γtβtδ
π
t

∣∣∣∣∣ (S0, A0) = (s, a)

]
, (4)

where βt := β(Ft) is a trace that generally depends on
the history Ft. We define β0 := 1 to ensure that the first
TD error, δπ0 , is applied. In Section 5, we characterize the
values of βt for t ≥ 1 that lead to convergence.

The major analytical challenge of M—and its main
novelty—is the complex dependence on the sequence Ft.
This makes the operator difficult to analyze mathematically,
as the terms in the series 1+γβ1+γ2β2+· · · generally share
no common factors that would allow a recursive formula for
eligibility traces. Some off-policy methods, however, cannot
be described by factored traces, and therefore removing this
assumption is necessary to understand existing algorithms
(see Section 4), while also paving the way for new credit-
assignment methods. In the special case where βt does
factor into Markov coefficients, i.e., βt =

∏t
k=1 ck, then

Eq. (4) reduces to Eq. (1), taking us back to the per-decision
setting studied by Munos et al. (2016).M, therefore, unifies
per-decision and trajectory-aware methods.

3

Trajectory-Aware Eligibility Traces

4. Unifying Off-Policy Algorithms
The operatorM is a strict generalization of the previous
operator considered for trace-based methods, allowing us to
express existing algorithms in this form. We provide a non-
exhaustive list of examples below with the corresponding
βt used inM. For brevity, let Πt :=

∏t
k=1 ρk.

Importance Sampling: βt = λtΠt (Kahn & Harris, 1951).
The standard approach for correcting off-policy bias. Al-
though it is the only unbiased estimator in this list (if λ = 1),
it suffers from high variance, making it difficult to utilize.

Qπ(λ): βt = λt (Harutyunyan et al., 2016). A straightfor-
ward algorithm that decays the TD errors by a fixed constant.
The algorithm does not require explicitly knowing µ, which
is desirable, but can diverge if π and µ differ too much
(Harutyunyan et al., 2016, Theorem 1).

Tree Backup: βt=
∏t

k=1 λπ(Ak|Sk) (Precup et al., 2000).
A method that automatically cuts traces according to the
product of probabilities under π, which forms a conservative
lower bound on the IS estimate. Tree Backup converges for
any behavior policy µ, but it is not efficient since traces are
cut excessively—especially in the on-policy case.

Retrace: βt =
∏t

k=1 λmin(1, ρk) (Munos et al., 2016).
A convergent algorithm for arbitrary policies π and µ that
remains efficient in the on-policy case because it does not cut
traces (if λ = 1); however, the fact that βt never increases
can cause the trace products to decay too quickly in practice
(Mahmood et al., 2017; Rowland et al., 2020).

All of the above can be analyzed using a per-decision opera-
tor. The next two, on the other hand, have weightings based
on the entire trajectory. We use the theory for our general
M operator to prove properties about these methods.

Recursive Retrace: βt=λmin(1, βt−1ρt) (Munos et al.,
2016). A modification to Retrace conjectured to lead to
faster learning. It clips large products of ratios, rather than
individual ratios. Its convergence for control is an open
question, which we solve in Section 5.

Truncated Importance Sampling: βt = λt min(1, Πt)
(Ionides, 2008). A simple but effective method to combat
the variance of IS. Variations of this algorithm have been ap-
plied in the reinforcement learning literature (e.g., Uchibe &
Doya, 2004; Wawrzyński & Pacut, 2007; Wawrzyński, 2009;
Wang et al., 2017), but, to our knowledge, its convergence
in an MDP setting has not been studied. In Section 5.3, we
show that it can diverge in at least one off-policy problem.

5. Convergence Analysis
In this section, we study the convergence properties of the
M operator for policy evaluation and control. It will be
convenient to re-express Eq. (4) in vector notation for our

analysis. To do this, let us first bring the expectation inside
the sum, by linearity of expectation:

(MQ)(s, a) = Q(s, a) +
∞∑
t=0

γtEµ

[
βtδ

π
t

∣∣ (S0, A0) = (s, a)
]
. (5)

To write Eq. (5) in vector form, we define an operator Bt

such that, for an arbitrary vector X in Rn,

(BtX)(s, a) :=Eµ

[
βtX(St, At)

∣∣ (S0, A0) = (s, a)
]
, (6)

allowing us to express theM operator as

MQ = Q+

∞∑
t=0

γtBt(TπQ−Q). (7)

Bt is a linear operator and hence can be represented as a
matrix in Rn×n, the elements of which are nonnegative.
Each element of Bt, row-indexed by (s, a) and column-
indexed by (s′, a′), has the form

Bt((s, a), (s
′, a′))=Pr

µ
((St, At)=(s′, a′) |(S0, A0)=(s, a))

× Eµ

[
βt

∣∣(S0, A0)=(s, a), (St, At)=(s′, a′)
]
. (8)

We justify this form in Appendix A. Note that B0 = I , the
identity matrix, because of our earlier definition of β0 := 1.
In the following sections, all inequalities involving vectors
or matrices should be interpreted element wise. We let
∥X∥ := ∥X∥∞ for a matrix (or vector) X , which corre-
sponds to the maximum absolute row sum of X . We also
define 1 ∈ Rn to be the vector of ones, such that X1 gives
the row sums of X .

5.1. Convergence for Policy Evaluation

We start in the off-policy policy evaluation setting. Specif-
ically, our goal is to prove that the repeated application of
theM operator to an arbitrarily initialized vector Q ∈ Rn

converges to Qπ .

Condition 5.1. βt ≤ βt−1ρt, ∀ Ft, ∀ t ≥ 1.

Theorem 5.2. If Condition 5.1 holds, then M is a con-
traction mapping with Qπ as its unique fixed point. Conse-
quently, limi→∞MiQ = Qπ , ∀ Q ∈ Rn.

Proof. In Lemma B.1 (Appendix B.1), we show that Qπ is
a fixed point ofM and that

MQ−Qπ = Z(Q−Qπ), (9)

where Z :=
∑∞

t=1 γ
t(Bt−1Pπ −Bt). In Lemma B.2 (Ap-

pendix B.2), we also show that Z ≥ 0 and Z1 ≤ γ using the
assumption that βt ≤ βt−1ρt, ∀ Ft, ∀ t ≥ 1 (Condition 5.1).
Consequently, Z(Q−Qπ) is a vector whose components

4

Trajectory-Aware Eligibility Traces

each comprise a nonnegative-weighted combination of the
components of Q − Qπ, where the weights add up to at
most γ. This means ∥MQ−Qπ∥ ≤ γ∥Q−Qπ∥, andM
is a contraction mapping. Its fixed point, Qπ , must therefore
be unique by the Banach fixed-point theorem, implying that
limi→∞MiQ = Qπ for every Q ∈ Rn when γ < 1.

Given that the ratio βt

βt−1
is bounded by ρt (Condition 5.1),

theM operator converges to Qπ. Intuitively, we can think
of this ratio as the effective per-decision factor at time t;
convergence is guaranteed whenever this factor is no greater
than ρt, analogous to the convergence result for theR oper-
ator (Munos et al., 2016, Theorem 1). Our theorem implies
the existence of a space of convergent trajectory-aware
algorithms, because each trace βt can be chosen arbitrarily
so long as it always satisfies the bound on this ratio.

5.2. Convergence for Control

We now consider the more challenging setting of control.
Given sequences of target policies (πi)i≥0 and behavior
policies (µi)i≥0, we aim to show that the sequence of value
functions (Qi)i≥0 given by Qi+1 := MiQi converges to
Q∗. Here,Mi is theM operator defined for πi and µi.

Compared to the convergence proof of the R operator
(Munos et al., 2016, Theorem 2), the main novelty of our
proof is the fact that the traces underM are not Markov.
Consequently, we require new techniques to establish
bounds on Q−Q∗, since Eq. (4) is not representable as
an infinite geometric series and so the summation does not
have a closed-form expression. We additionally relax two
assumptions in the previous work, on initialization of the
value function and on increasing greediness of the policy.
We require only that the target policies become greedy in
the limit. We say that a sequence of policies is greedy in the
limit if Tπi

Qi → TQi as i → ∞. We discuss the signifi-
cance of these relaxations to the assumptions in Section 5.4.

First, let Ci :=
∑∞

t=0 γ
tBt for the policies πi and µi, and

write theM operator at iteration i as

MiQ = Q+ Ci(TπiQ−Q). (10)

We now present our convergence theorem for control.

Theorem 5.3. Consider a sequence of target policies
(πi)i≥0 and a sequence of arbitrary behavior policies
(µi)i≥0. Let Q0 be an arbitrary vector in Rn and define
the sequence Qi+1 := MiQi, whereMi is the operator
defined by Eq. (10). Assume that (πi)i≥0 is greedy in the
limit, and let ϵi ≥ 0 be the smallest constant such that
Tπi

Qi ≥ TQi − ϵi∥Qi∥1. If Condition 5.1 holds for all i,
then

∥MiQi −Q∗∥ ≤ γ∥Qi −Q∗∥+ ϵi
1− γ

∥Qi∥, (11)

and, consequently, lim
i→∞

Qi = Q∗.

Proof (sketch; full proof in Appendix B.3). We define ma-
trices Zi and Z∗

i , which correspond to Z in Eq. (9) for
target policies πi and π∗, respectively, and behavior policy
µi. We then derive the inequalities

Z∗
i (Qi−Q∗)−ϵi∥Qi∥Ci1 ≤MiQi−Q∗ ≤ Zi(Qi−Q∗),

which together imply Eq. (11). Thus,Mi is nearly a contrac-
tion mapping with Q∗ as its unique fixed point, excepting
the influence of the O(∥Qi∥) term. However, the greedy-
in-the-limit target policies guarantee that ϵi → 0. Show-
ing that ∥Qi∥ remains finite completes the proof because
∥Qi −Q∗∥ → 0 must follow.

The convergence criteria for βt (Condition 5.1) is the same
for both policy evaluation and control. In fact, the only
additional assumption we need for control is the greedy-in-
the-limit target policies. Crucially, the proof allows arbitrary
behavior policies and an arbitrary value function initializa-
tion Q0, which we further discuss in Section 5.4.

5.3. Examples of Convergence and Divergence

The generality of the M operator means that it provides
convergence guarantees for a number of credit-assignment
methods that we did not discuss in Section 4. These include
variable or past-dependent λ-values (e.g., Watkins, 1989;
Singh & Sutton, 1996; Yu et al., 2018). All of these can be
represented in a common form and shown to satisfy Condi-
tion 5.1; convergence for policy evaluation and control for
the instantiated trajectory-aware operator follows as a corol-
lary, since Condition 5.1 is sufficient to apply Theorems 5.2
and 5.3.

Proposition 5.4. Any traces expressible in the form
βt =

∏t
k=1 λ(Fk)ρk, λ(Fk) ∈ [0, 1], satisfy Condition 5.1.

Proof. βt = βt−1λ(Ft)ρt ≤ βt−1ρt.

In Section 4, we also discussed two existing trajectory-aware
methods whose convergence is unknown. We show that
Recursive Retrace satisfies our required condition.

Proposition 5.5. Recursive Retrace satisfies Condition 5.1.

Proof. For Recursive Retrace, βt = ctβt−1, where ct =
λmin

(
1

βt−1
, ρt

)
(Munos et al., 2016, Eq. 9). This means

βt = λmin

(
1

βt−1
, ρt

)
βt−1

= λmin (1, βt−1ρt)

≤ βt−1ρt, (12)

which is the bound required by Condition 5.1.

Unfortunately, the traces for Truncated IS do not always
satisfy the required bound.

Proposition 5.6. Truncated IS may violate Condition 5.1.

5

Trajectory-Aware Eligibility Traces

Proof. We show this by providing a counterexample. Recall
that Truncated IS has βt = λt min(1, Πt). Assume a trajec-
tory Ft such that Πt−1 = 2 and 1

2 < ρt < λ. (It is straight-
forward to define an MDP, behavior policy, and target policy
to create such a trajectory.) Because ρt > 1/Πt−1, then
Πt = Πt−1ρt > 1. Thus, βt = λt and βt−1 = λt−1, and
Condition 5.1 is violated because βt

βt−1
= λ ̸≤ ρt.

Because Theorems 5.2 and 5.3 cannot be applied, the precise
conditions under which Truncated IS converges remains an
open problem. We do know Condition 5.1 is sufficient for
convergence, but it is unlikely to be strictly necessary. This
is because our proofs of Theorems 5.2 and 5.3 use this
assumption to guarantee that the matrix Z in Eq. (9) has
nonnegative elements, making it straightforward to show
that its row sums are sufficiently bounded to guarantee that
M is a contraction mapping. However,M could remain a
contraction mapping even when Z has negative elements,
so long as ∥Z∥ < 1. It could theoretically be the case for
Truncated IS that Z occasionally contains negative elements
but ∥Z∥ is still bounded enough to permit convergence.

Nevertheless, we are able to find at least one off-policy
problem for which this is not true, implying that certain
initializations of the value function could ultimately cause
Truncated IS to diverge.

Counterexample 5.7 (Off-Policy Truncated IS). Consider
Truncated IS with λ = 1, so βt = min(1, Πt). Assume
the MDP has one state and two actions: S = {s} and
A = {a1, a2}, the behavior policy µ is uniform random,
and π selects a1 with probability p ∈ (0, 1) and selects a2
otherwise. When p = 0.6 and γ = 0.94, then ∥Z∥ > 1.

Many choices of p and γ make ∥Z∥ > 1, but we discuss
specific ones for the counterexample in Appendix C.1.

Compared to the per-decision case, where Munos et al.
(2016) showed that arbitrary trace cuts always produce a
convergent algorithm, this result is surprising. Why would
the analogous result—in which we ensure that βt ≤ Πt for
all timesteps—not hold here? After all, clipping βt such
that it never exceeds the IS estimate Πt would be expected
to simply incur bias in the return estimation. For some in-
sight, assume the following expectations are conditioned on
(S0, A0) = (s, a), and observe that Eq. (4) is equivalent to

Eµ

[∞∑
t=0

γtβtRt

]
+ Eµ

[∞∑
t=1

γt(βt−1ρt − βt)Q(St, At)

]
.

We show the derivation in Appendix A. The first term is
a (partially) bias-corrected estimate of the discounted re-
turn. The second term is a weighted combination of value-
function bootstraps, whose weights are nonnegative when
Condition 5.1 is met. If the condition is violated on any
timestep, then we may actually be subtracting bootstraps
from the return estimate, which does not seem sensible.

We believe this is related to the root cause of divergence
in Counterexample 5.7; however, it remains open whether
Condition 5.1 is necessary or merely sufficient.

As our next counterexample example will demonstrate, this
effect can even cause divergence in on-policy settings.

Counterexample 5.8 (On-Policy Binary Traces). Assume
the MDP has one state and two actions: S = {s} and
A = {a1, a2}. Define a trajectory-aware method such that
βt = 1 if At = a1 and βt = 0 if At = a2 (without loss of
generality). Assume π and µ are uniform random. When
γ ≥ 2

3 , then ∥Z∥ ≥ 1.

We provide details in Appendix C.2. Even though βt ≤
Πt = 1 always, we are able to produce a non-contraction.
The method either fully cuts a trace or does not cut it at all,
producing backups that consist of a sparse sum of on-policy
TD errors. It is therefore surprising that divergence occurs.
For the same reason we described above, the non-Markov
nature of the trace appears to sometimes cause adverse boot-
strapping effects; in this instance, the ability to examine each
trajectory allows the method to strategically de-emphasize
certain state-action pairs, ultimately producing a detrimen-
tal effect on learning. Notice that Condition 5.1 is indeed
violated in this case because there is always some chance
that βt = 1 after βt−1 = 0. If we add the restriction that
βt−1 = 0 =⇒ βt = 0, i.e., we permanently cut the traces,
then convergence is reestablished by Theorem 5.2.

5.4. Discussion

In this section, we summarize our main theoretical
contributions and their significance. We focused on
characterizing the contraction properties of theM operator,
both for policy evaluation and control, in the tabular setting.
These results parallel those for the R operator underlying
Retrace, where M is a strict generalization of R. These
results indicate that using fixed-point updates, like dynamic
programming and temporal difference learning updates,
may have divergence issues. It does not, however, imply
other algorithms, such as gradient-based algorithms, cannot
find these fixed points. We show the fixed points still exist
and are unbiased, but that algorithms based on iterating
with theM operator might diverge.

Removal of the Markov assumption. Removing the
Markov (per-decision) assumption of the R operator
(Munos et al., 2016) to enable trajectory-aware eligibility
traces was our primary goal. When the trace factors are
Markov, the operator Bt is independent of t, allowing the
sum

∑∞
t=0 γ

tBt to be reduced to
∑∞

t=0(γPcµ)
t for a linear

operator Pcµ. The resulting geometric series can then be
evaluated analytically, as was done by Munos et al. (2016).
In our proofs, we avoided the Markov assumption by di-
rectly analyzing the infinite summation, which generally

6

Trajectory-Aware Eligibility Traces

does not have a closed-form expression. Our work is the
first to do this, establishing the first convergence guarantees
for general trajectory-aware methods.

Arbitrary initialization of the value function. We permit
any initialization of Q0 in the control setting. In contrast,
Munos et al. (2016) made the assumption that Tπ0Q0 −
Q0 ≥ 0 in order to produce a lower bound onRiQi −Q∗,
accomplished in practice by a pessimistic initialization of
the value function: Q0(s, a) = −∥R∥ / (1− γ), ∀ (s, a) ∈
S ×A. SinceR is a special case of our operatorM where
each trace βt factors into Markov coefficients, we deduce as
a corollary that Retrace and all other algorithms described by
R do not require pessimistic initialization for convergence.

Greedy-in-the-limit policies. Our requirement of greedy-
in-the-limit target policies in Theorem 5.3 is less restrictive
than the increasingly greedy policies proposed by Munos
et al. (2016). We need only limi→∞ Tπi

Qi = TQi, and
we do not force the sequence of target policies to satisfy
Pπi+1Qi+1 ≥ PπiQi+1. This implies that the agent may
target non-greedy policies for any finite period of time, as
long as the policies do eventually become arbitrarily close
to the greedy policy. As a corollary, increasingly greedy
policies are not necessary for the optimal convergence of
Retrace and other per-decision methods.

6. Recency-Bounded Importance Sampling
Theorem 5.2 guarantees convergence to Qπ whenever Con-
dition 5.1 holds, but we do not expect that all choices of
coefficients that satisfy this condition will perform well
in practice. At one extreme, if βt ≤

∏t
k=1 λmin(1, ρk)

for every Ft, then we have a method that cuts coefficients
more aggressively than Retrace does; it seems unlikely that
such a method would learn faster than Retrace, or other
per-decision methods. At the other extreme, when βt = Πt

for every Ft, we recover the standard IS estimator, which
suffers from high variance and is often ineffectual. We there-
fore know that it is possible to have a method that preserves
traces too much, to the point of being detrimental. Thus,
it is important to maintain some minimum efficiency by
avoiding unnecessary cuts, yet equally important to control
the overall variance of the traces.

Intuitively, we want something that falls between Retrace
and IS in terms of trace cutting, in order to quickly backprop-
agate credit while still managing the variance. We further
hypothesize that effective trajectory-aware methods will
first compute βt−1ρt—i.e., the maximum trace permitted
by Condition 5.1—and then apply some transformation that
limits its magnitude to reduce variance. This ensures that
traces are cut only as needed.

We propose one method, Recency-Bounded Importance
Sampling (RBIS), which achieves this by cutting the traces

only when they exceed an exponentially decaying threshold.
Specifically, we define

βt = min(λt, βt−1ρt). (RBIS)

It is easy to see that RBIS always converges, by construction.

Proposition 6.1. RBIS satisfies Condition 5.1.

Proof. βt = min(λt, βt−1ρt) ≤ βt−1ρt.

For further insight, we unroll the recursion to obtain

min(λt, βt−1ρt)

= min(λt, min(λt−1, βt−2ρt−1)ρt)

· · ·
= min(λt, λt−1ρt, λ

t−2ρt−1ρt, . . . , Πt). (13)

RBIS effectively takes the minimum of all past, discounted
n-step IS estimates. This reveals another property of RBIS:
its traces are never less than those of Retrace, because

t∏
k=1

λmin(1, ρk) ≤
t∏

k=1

min(λ, ρk)

≤ λt−j
t∏

k=t−j+1

ρk, ∀ j ∈ {0, 1, . . . , t}.

Since the inequality is true for all j, it is not possible for
Retrace’s traces to exceed any of the arguments to the min
function in Eq. (13). We have achieved exactly what we
wanted earlier: a method that falls somewhere between
Retrace and IS in regard to trace cutting. This does not auto-
matically mean that RBIS will outperform Retrace, though,
since preserving the magnitude of the trace βt too much
can lead to high variance. However, we do expect RBIS to
perform well in decision-making problems in which a few
critical actions largely determine the long-term outcome
of an episode. In such scenarios, the agent’s bottleneck to
learning is its ability to assign meaningful credit to these
critical actions over a potentially long time horizon.

In order to test this empirically, we construct an environ-
ment called the Bifurcated Gridworld (see Figure 2). This
5× 5 deterministic gridworld has walls arranged such that
two unequal-length paths from the start (S) to the goal (G)
are available. The agent may move up, down, left, or right;
taking any of these actions in the goal yields a reward of
+1 and terminates the episode. The problem is discounted
(γ = 0.9) to encourage the agent to learn the shorter path.
Importantly, the action taken at the bifurcation (B) solely
determines which path the agent follows, and quickly as-
signing credit to this state is paramount to learning the task.

We compare RBIS against Retrace, Truncated IS, and
Recursive Retrace when learning this task from off-policy

7

Trajectory-Aware Eligibility Traces

data. Both behavior and target policies were ϵ-greedy with
respect to the value function Q. The target policy used
ϵ = 0.1. The behavior policy used a piecewise schedule:
ϵ = 1 for the first 5 episodes and then ϵ = 0.2 afterwards.
The agents learned from online TD updates with eligibility
traces (see Appendix D for pseudocode). The policies
were updated only at the end of each episode, and then
the discounted return obtained by a near-greedy policy
(ϵ = 0.05) was evaluated. The area under the curve (AUC)
of each resulting learning curve was calculated, with the
highest AUC achieved over a grid search of stepsizes being
plotted for each λ-value in Figure 2. We averaged the
results over 1,000 independent trials and indicate the 95%
confidence interval by the shaded regions. In Appendix E,
we repeated the experiment for three more gridworld
topologies; the obtained results are qualitatively similar to
Figure 2. Our experiment code is available online.1

We make several observations regarding the results in Fig-
ure 2. First, the peak performance obtained by RBIS is
significantly higher than that of the other three methods.
This is notable because both Truncated IS and Recursive
Retrace are also trajectory aware, indicating that different
implementations of trajectory awareness are beneficial to
varying degrees. In particular, the preservation of long-term
eligibilities is not sufficient on its own to guarantee strong
performance in general, as it appears that when and how
much the traces are cut are important considerations as well.
The role of λ as a decay hyperparameter is evidently criti-
cal for all methods to achieve their maximum performance,
since λ = 1 never leads to the fastest learning. In fact,
λ→ 1 is especially catastrophic for Truncated IS, which we
believe is related to the divergence issue identified in Sec-
tion 5.3. Finally, Retrace degrades less for larger λ, likely
because it cuts traces more. It would be interesting to de-
velop a trajectory-aware method that obtains the robustness
of RBIS but also accounts for larger λ-values.

7. Conclusion
In this work, we extended theory for per-decision eligibility
traces to trajectory-aware traces. This extension allows
us to consider a broader family of algorithms, with more
flexibility in obtaining off-policy corrections. Specifically,
we introduced theM operator as a generalization of theR
operator, and a sufficient condition to ensure convergence
under M. Using our general result, we established the
first convergence guarantee for an existing trajectory-aware
method, Recursive Retrace, in the control setting. We also
showed that Truncated IS may violate our condition and
provided a counterexample showing that it can diverge.

1https://github.com/brett-daley/
trajectory-aware-etraces

S B

G

Retrace

Truncated IS

RBIS

Recursive
Retrace

Figure 2. The Bifurcated Gridworld environment. The choice
made at B greatly impacts the discounted return ultimately earned.
We plot the AUC obtained by four off-policy methods across the
λ-spectrum. The dashed horizontal lines mark the highest AUC
achieved by each method.

We also proposed a new trajectory-aware method, RBIS,
that demonstrates one instance of how trajectory awareness
can be utilized for faster learning in off-policy control tasks.
RBIS is able to outperform the other trajectory-aware meth-
ods that we tested in the Bifurcated Gridworld, suggesting
that it possesses at least one unique property that is bene-
ficial for long-term, off-policy credit assignment. It would
be interesting to search for additional beneficial properties
in future work, in order to better characterize off-policy
methods that reliably lead to efficient and stable learning in
challenging reinforcement learning environments.

This work focused on convergence in expectation; a natu-
ral next step is to extend this result to the stochastic algo-
rithms used in practice. Previous results for TD learning
rely primarily on the properties of the expected update, with
additional conditions on the noise in the update and appro-
priately annealed stepsizes (see Bertsekas & Tsitsiklis, 1996,
Section 4.3). Similar analysis should be applicable, given
that we know the expected update withM is a contraction
mapping when Condition 5.1 is met.

An important next step is extending these methods and re-
sults to function approximation. Incorporating these traces
into deep reinforcement learning methods that rely on expe-
rience replay (Lin, 1992) should be straightforward. Multi-
step returns can be computed offline in the replay memory,
and then randomly sampled in minibatches to train the neu-
ral network. Using a TD learning update, though, can suf-
fer from convergence issues under function approximation
and off-policy learning; this has been previously resolved
by developing gradient-based updates (Sutton et al., 2009;
Touati et al., 2018). An important next step is to develop a
gradient-based trajectory-aware algorithm. The contraction
properties of the operator still impact the quality of the solu-
tion, as has been shown to be the case for other off-policy
approaches (Patterson et al., 2022). The insights in this
work, therefore, may provide insights on how to get quality
solutions with gradient-based approaches.

8

https://github.com/brett-daley/trajectory-aware-etraces
https://github.com/brett-daley/trajectory-aware-etraces

Trajectory-Aware Eligibility Traces

References
Barto, A. G., Sutton, R. S., and Anderson, C. W. Neuronlike

adaptive elements that can solve difficult learning control
problems. IEEE Transactions on Systems, Man, and Cyber-
netics, pp. 834–846, 1983.

Bellman, R. Dynamic programming. Science, 153(3731):
34–37, 1966.

Bertsekas, D. P. and Tsitsiklis, J. N. Neuro-Dynamic Program-
ming. Athena Scientific, 1996.

Daley, B. and Amato, C. Reconciling λ-returns with experi-
ence replay. In Advances in Neural Information Processing
Systems, pp. 1133–1142, 2019.

Harutyunyan, A., Bellemare, M. G., Stepleton, T., and Munos,
R. Q(λ) with off-policy corrections. In International Confer-
ence on Algorithmic Learning Theory, pp. 305–320, 2016.

Ionides, E. L. Truncated importance sampling. Journal of Com-
putational and Graphical Statistics, 17(2):295–311, 2008.

Kahn, H. and Harris, T. E. Estimation of particle transmission
by random sampling. National Bureau of Standards: Applied
Mathematics Series, 12:27–30, 1951.

Kearns, M. J. and Singh, S. P. Bias-variance error bounds for
temporal difference updates. In Conference on Learning
Theory, pp. 142–147, 2000.

Kozuno, T., Tang, Y., Rowland, M., Munos, R., Kapturowski,
S., Dabney, W., Valko, M., and Abel, D. Revisiting Peng’s
Q(λ) for modern reinforcement learning. arXiv:2103.00107,
2021.

Lin, L.-J. Self-improving reactive agents based on reinforce-
ment learning, planning and reaching. Machine Learning, 8:
293–321, 1992.

Mahmood, A. R., Yu, H., and Sutton, R. S. Multi-step
off-policy learning without importance sampling ratios.
arXiv:1702.03006, 2017.

Munos, R., Stepleton, T., Harutyunyan, A., and Bellemare,
M. G. Safe and efficient off-policy reinforcement learning. In
Advances in Neural Information Processing Systems, 2016.

Patterson, A., White, A., and White, M. A generalized pro-
jected Bellman error for off-policy value estimation in rein-
forcement learning. Journal of Machine Learning Research,
2022.

Peng, J. and Williams, R. J. Incremental multi-step Q-Learning.
Machine Learning, 22:226–232, 1996.

Precup, D., Sutton, R. S., and Singh, S. Eligibility traces for
off-policy policy evaluation. In International Conference on
Machine Learning, pp. 759–766, 2000.

Rowland, M., Dabney, W., and Munos, R. Adaptive trade-
offs in off-policy learning. In International Conference on
Artificial Intelligence and Statistics, pp. 34–44, 2020.

Rummery, G. A. and Niranjan, M. On-line Q-Learning us-
ing connectionist systems. Technical report, Cambridge
University, 1994.

Singh, S. P. and Sutton, R. S. Reinforcement learning with
replacing eligibility traces. Machine Learning, 22:123–158,
1996.

Sutton, R. S. Temporal Credit Assignment in Reinforcement
Learning. PhD thesis, University of Massachusetts Amherst,
1984.

Sutton, R. S. Learning to predict by the methods of temporal
differences. Machine Learning, 3(1):9–44, 1988.

Sutton, R. S. and Barto, A. G. Reinforcement Learning: An
Introduction. MIT Press, 1st edition, 1998.

Sutton, R. S., Maei, H. R., Precup, D., Bhatnagar, S., Silver,
D., Szepesvári, C., and Wiewiora, E. Fast gradient-descent
methods for temporal-difference learning with linear func-
tion approximation. In International Conference on Machine
Learning, pp. 993–1000, 2009.

Touati, A., Bacon, P.-L., Precup, D., and Vincent, P. Convergent
Tree Backup and Retrace with function approximation. In
International Conference on Machine Learning, pp. 4955–
4964, 2018.

Uchibe, E. and Doya, K. Competitive-cooperative-concurrent
reinforcement learning with importance sampling. In Inter-
national Conference on Simulation of Adaptive Behavior:
From Animals and Animats, pp. 287–296, 2004.

Wang, Z., Bapst, V., Heess, N., Mnih, V., Munos, R.,
Kavukcuoglu, K., and de Freitas, N. Sample efficient actor-
critic with experience replay. In International Conference
on Learning Representations, 2017.

Watkins, C. J. C. H. Learning from Delayed Rewards. PhD
thesis, King’s College, Cambridge, 1989.

Wawrzyński, P. Real-time reinforcement learning by sequential
actor-critics and experience replay. Neural Networks, 22
(10):1484–1497, 2009.

Wawrzyński, P. and Pacut, A. Truncated importance sampling
for reinforcement learning with experience replay. Interna-
tional Multiconference on Computer Science and Informa-
tion Technology, pp. 305–315, 2007.

Yu, H., Mahmood, A. R., and Sutton, R. S. On generalized Bell-
man equations and temporal-difference learning. Journal of
Machine Learning Research, 19(1):1864–1912, 2018.

9

Trajectory-Aware Eligibility Traces

A.M Operator Details
In Section 5, we defined a linear operator Bt, where

(BtX)(s, a) = Eµ

[
βtX(St, At)

∣∣ (S0, A0) = (s, a)
]
, (6)

such that the expected-value version of ourM operator,

(MQ)(s, a) = Q(s, a) + Eµ

[∞∑
t=0

γtβtδ
π
t

∣∣∣∣∣ (S0, A0) = (s, a)

]
(4)

= Q(s, a) +

∞∑
t=0

γtEµ

[
βtδ

π
t

∣∣ (S0, A0) = (s, a)
]
, (5)

is element-wise equivalent to the vector version,

MQ = Q+

∞∑
t=0

γtBt(TπQ−Q). (7)

We claimed that each element of Bt must have the form

Bt((s, a), (s
′, a′)) = Pr

µ
((St, At) = (s′, a′) | (S0, A0) = (s, a))× Eµ

[
βt

∣∣ (S0, A0) = (s, a), (St, At) = (s′, a′)
]
, (8)

with (s, a) as the row index and (s′, a′) as the column index. This is because multiplying this matrix Bt with a vector X
results in the same operation as the weighted expected value in Eq. (5):∑

s′,a′

Bt((s, a), (s
′, a′))X(s′, a′) = Eµ

[
Eµ

[
βt

∣∣ (S0, A0) = (s, a), (St, At)
]
·X(St, At)

∣∣∣∣∣ (S0, A0) = (s, a)

]

= Eµ

[
Eµ

[
βtX(St, At)

∣∣ (S0, A0) = (s, a), (St, At)
] ∣∣∣∣ (S0, A0) = (s, a)

]
= Eµ

[
βtX(St, At)

∣∣ (S0, A0) = (s, a)
]
. (14)

So, when X is the expected TD error TπQ−Q, Eq. (7) becomes Eq. (5) exactly.

M is a contraction mapping whenever βt ≤ βt−1ρt for all t (Condition 5.1), which Theorem 5.2 establishes. As we discussed
in Section 5.3, violating this condition can sometimes causeM to no longer contract, even with on-policy updates. We can see
one plausible reason for this by refactoring the definition ofM. Let qt := Q(St, At) and vt :=

∑
a′∈A π(a′|St)Q(St, a

′),
so δπt = Rt + γvt+1 − qt. Further, assume the following expectations are conditioned on (S0, A0) = (s, a). Eq. (4) is
equivalent to

(MQ)(s, a) = q0 + Eµ

[∞∑
t=0

γtβt(Rt + γvt+1 − qt)

]

= q0 + Eµ

[∞∑
t=0

γtβtRt +

∞∑
t=1

γtβt−1vt −
∞∑
t=0

γtβtqt

]

= Eµ

[∞∑
t=0

γtβtRt +

∞∑
t=1

γtβt−1vt −
∞∑
t=1

γtβtqt

]

= Eµ

[∞∑
t=0

γtβtRt

]
+ Eµ

[∞∑
t=1

γt(βt−1vt − βtqt)

]

= Eµ

[∞∑
t=0

γtβtRt

]
+ Eµ

[∞∑
t=1

γt(βt−1ρt − βt)qt

]
, (15)

and we discussed in Section 5.3 that these two terms represent a biased return estimate and an infinite sum of weighted
value-function bootstraps, respectively. In particular, this can be problematic if βt > βt−1ρt because the corresponding
bootstrap’s weight becomes negative, causing it to get subtracted from the return estimate.

10

Trajectory-Aware Eligibility Traces

B. Additional Proofs
B.1. Proof of Lemma B.1

Lemma B.1. Qπ is a fixed point ofM; the difference betweenMQ and Qπ is given by

MQ−Qπ = Z(Q−Qπ), (16)

where Z :=
∑∞

t=1 γ
t(Bt−1Pπ −Bt).

Proof. It is evident from Eq. (7) that Qπ is a fixed point ofM because TπQ
π −Qπ = 0, and soMQπ = Qπ . Therefore,

MQ−Qπ =MQ−MQπ

= Q+

∞∑
t=0

γtBt(TπQ−Q)−Qπ −
∞∑
t=0

γtBt(TπQ
π −Qπ)

= Q−Qπ +

∞∑
t=0

γtBt(TπQ− TπQ
π)−

∞∑
t=0

γtBt(Q−Qπ)

=

∞∑
t=0

γtBt(TπQ− TπQ
π)−

∞∑
t=1

γtBt(Q−Qπ)

=

∞∑
t=0

γt+1BtPπ(Q−Qπ)−
∞∑
t=1

γtBt(Q−Qπ)

=

(∞∑
t=0

γt+1BtPπ −
∞∑
t=1

γtBt

)
(Q−Qπ)

=

(∞∑
t=1

γt(Bt−1Pπ −Bt)

)
(Q−Qπ)

= Z(Q−Qπ),

which is the desired result.

B.2. Proof of Lemma B.2

Lemma B.2. If Condition 5.1 holds, then Z has nonnegative elements and its row sums obey Z1 ≤ γ.

Proof. Define the linear operator Dt := Bt−1Pπ −Bt and notice that Z =
∑∞

t=1 γ
tDt. We will show that Dt comprises

only nonnegative elements, and therefore so does Z. For any X ∈ Rn, observe that

(DtX)(s, a) = Eµ

[
βt−1

∑
St∈S

∑
At∈A

P (St|Ft−1)π(At|St)X(St, At)

∣∣∣∣∣ (S0, A0) = (s, a)

]
− Eµ

[
βtX(St, At)

∣∣ (S0, A0) = (s, a)
]

= Eµ

[
βt−1

∑
St∈S

∑
At∈A

P (St|Ft−1)π(At|St)X(St, At)

∣∣∣∣∣ (S0, A0) = (s, a)

]

− Eµ

[∑
St∈S

∑
At∈A

P (St|Ft−1)µ(At|St)βtX(St, At)

∣∣∣∣∣ (S0, A0) = (s, a)

]

= Eµ

[∑
St∈S

P (St|Ft−1)
∑
At∈A

(
π(At|St)βt−1 − µ(At|St)βt

)
X(St, At)

∣∣∣∣∣ (S0, A0) = (s, a)

]
. (17)

Since we assumed that βt ≤ βt−1ρt in Condition 5.1, we have π(At|St)βt−1−µ(At|St)βt ≥ 0, which implies that Dt ≥ 0.
Furthermore, this holds for all t ≥ 1, so Z ≥ 0 follows immediately.

11

Trajectory-Aware Eligibility Traces

To complete the proof, we show that the row sums of Z are bounded by γ. Recall that Pπ1 = 1. Hence,

Z1 =

∞∑
t=1

γt(Bt−1Pπ −Bt)1

=

∞∑
t=1

γt(Bt−11−Bt1)

=

∞∑
t=0

γt+1Bt1−
∞∑
t=1

γtBt1

= γ1+

∞∑
t=1

γt+1Bt1−
∞∑
t=1

γtBt1

= γ1− (1− γ)

∞∑
t=1

γtBt1

≤ γ1, (18)

because Bt ≥ 0, ∀ t ≥ 1.

B.3. Proof of Theorem 5.3

Theorem 5.3. Consider a sequence of target policies (πi)i≥0 and a sequence of arbitrary behavior policies (µi)i≥0. Let
Q0 be an arbitrary vector in Rn and define the sequence Qi+1 :=MiQi, whereMi is the operator defined by Eq. (10).
Assume that (πi)i≥0 is greedy in the limit, and let ϵi ≥ 0 be the smallest constant such that Tπi

Qi ≥ TQi − ϵi∥Qi∥1. If
Condition 5.1 holds for all i, then

∥MiQi −Q∗∥ ≤ γ∥Qi −Q∗∥+ ϵi
1− γ

∥Qi∥, (11)

and, consequently, lim
i→∞

Qi = Q∗.

Proof. We first derive the following upper bound:

Tπi
Qi − TQ∗ = γPπi

Qi − γmax
π

PπQ
∗ ≤ γPπi

(Qi −Q∗). (19)

From Eq. (10) and because Ci has nonnegative entries, we can deduce that

MiQi −Q∗ = (I − Ci)(Qi −Q∗) + Ci(TπiQi −Q∗) (20)
= (I − Ci)(Qi −Q∗) + Ci(TπiQi − TQ∗)

≤ (I − Ci)(Qi −Q∗) + γCiPπi(Qi −Q∗)

= Zi(Qi −Q∗), (21)

where Zi := I − Ci(I − γPπi
). Notice that Zi is analogous to the matrix Z in Eq. (9) because, for policies πi and µi,

I − Ci(I − γPπi
) = I +

∞∑
t=0

γtBt(γPπi
− I)

= I +

∞∑
t=0

γt+1BtPπi −
∞∑
t=0

γtBt

=

∞∑
t=1

γtBt−1Pπi −
∞∑
t=1

γtBt

=

∞∑
t=1

γt(Bt−1Pπi
−Bt). (22)

12

Trajectory-Aware Eligibility Traces

Next, we derive the following lower bound:

TQi − TQ∗ ≥ Tπ∗Qi − TQ∗ = γPπ∗(Qi −Q∗). (23)

Additionally, for each policy πi, there exists some ϵi ≥ 0 such that TπiQi ≥ TQi − ϵi∥Qi∥1 (recall that we defined ϵi to be
as small as possible). Starting again from Eq. (20), and noting that the elements of Ci are nonnegative, we obtain

MiQi −Q∗ ≥ (I − Ci)(Qi −Q∗) + Ci(TQi −Q∗)− ϵi∥Qi∥Ci1

= (I − Ci)(Qi −Q∗) + Ci(TQi − TQ∗)− ϵi∥Qi∥Ci1

≥ (I − Ci)(Qi −Q∗) + γCiPπ∗(Qi −Q∗)− ϵi∥Qi∥Ci1

= Z∗
i (Qi −Q∗)− ϵi∥Qi∥Ci1, (24)

where we have defined Z∗
i := I − Ci(I − γPπ∗). By Lemma B.2, since we assumed Condition 5.1 holds, both Zi and Z∗

i

have nonnegative elements and their row sums are bounded by γ. Therefore, whenMiQi −Q∗ ≥ 0, Eq. (21) implies

∥MiQi −Q∗∥ ≤ γ∥Qi −Q∗∥, (25)

because element-wise inequality for nonnegative matrices implies the inequality holds also for their norms. When
MiQi −Q∗ ≤ 0, we must use Eq. (24) and multiply both sides by −1 to get nonnegative matrices, giving

∥MiQi −Q∗∥ ≤ γ∥Qi −Q∗∥+ ϵi∥Qi∥∥Ci∥

≤ γ∥Qi −Q∗∥+ ϵi
1− γ

∥Qi∥, (26)

because ∥Ci∥ ≤
∑∞

t=0 γ
t∥Pπi

∥t = (1− γ)−1. Since Eq. (26) is looser than Eq. (25), its bound holds in the worst case. It
remains to show that this bound implies convergence to Q∗. Observe that

γ∥Qi −Q∗∥+ ϵi
1− γ

∥Qi∥ ≤ γ∥Qi −Q∗∥+ ϵi
1− γ

(∥Qi −Q∗∥+ ∥Q∗∥)

=

(
γ +

ϵi
1− γ

)
∥Qi −Q∗∥+ ϵi

1− γ
∥Q∗∥. (27)

Our assumption of greedy-in-the-limit policies tells us that ϵi → 0 as i→∞; thus, there must exist some iteration i∗ such
that ϵi ≤ 1

2 (1− γ)2, ∀ i ≥ i∗. Therefore, for i ≥ i∗,

∥MiQi −Q∗∥ ≤ 1 + γ

2
∥Qi −Q∗∥+ ϵi

1− γ
∥Q∗∥. (28)

If γ < 1, then 1
2 (1 + γ) < 1, and since ∥Q∗∥ is finite, we conclude that ∥Qi −Q∗∥ → 0 as i→∞.

C. Examples of Divergence
C.1. Counterexample 5.7: Off-Policy Truncated IS

Our definitions of π and µ give us

Pπ =

[
p 1− p
p 1− p

]
, Pµ =

1

2

[
1 1
1 1

]
. (29)

Recall that we assumed λ = 1. We define the following constant, using the definition of βt for Truncated IS:

β
(1)
t := E

[
βt

∣∣ (St, At) = (s, a1)
]

=
∑
Ft

Prµ(Ft | (St, At) = (s, a1)) ·min

(
1,

Prπ(Ft)

Prµ(Ft)

)
=
∑
Ft−1

Prµ(Ft−1)min

(
1,

Prπ(Ft−1) · p
Prµ(Ft−1) · 12

)
(30)

13

Trajectory-Aware Eligibility Traces

=
∑
Ft−1

min (Prµ(Ft−1), 2p · Prπ(Ft−1))

=
∑
Ft−1

min

(
1

2t−1
, 2p · Prπ(Ft−1)

)
. (31)

Eq. (30) is justified because the conditional probability of a trajectory ending in action a1 is just the probability of Ft−1

under µ, due to the 1-state (memoryless) MDP. We can simplify β
(1)
t further by using the binomial theorem to calculate

Prπ(Ft−1) = pk(1− p)t−1−k, where k ∈ [0, t− 1] is the number of times a1 is taken in Ft−1. There are
(
t−1
k

)
trajectories

with this same probability. Therefore,

β
(1)
t =

∑
Ft−1

min

(
1

2t−1
, 2p · Prπ(Ft−1)

)
=

t−1∑
k=0

(
t− 1

k

)
min

(
1

2t−1
, 2p · pk(1− p)t−1−k

)
. (32)

Likewise, we can compute β
(2)
t by swapping p and 1− p above. Let ⊙ denote element-wise multiplication. Using the fact

that P t
µ = Pµ, ∀ t ≥ 1, it follows that

Bt = P t
µ ⊙

[
β
(1)
t β

(2)
t

β
(1)
t β

(2)
t

]
=

1

2

[
β
(1)
t β

(2)
t

β
(1)
t β

(2)
t

]
. (33)

Using a computer program to calculate Z, assuming that p = 0.6 and γ = 0.94, we obtain

Z =

∞∑
t=1

γt(Bt−1Pπ −Bt) ≈
[
0.704 −0.436
0.704 −0.436

]
. (34)

Therefore, ∥Z∥ ≈ 1.14, which is not a contraction, and the norm continues to increase for p > 0.6 or γ > 0.94.

C.2. Counterexample 5.8: On-Policy Binary Traces

The policy π is uniform random, so we have

Pπ =
1

2

[
1 1
1 1

]
. (35)

Let ⊙ denote element-wise multiplication. Because βt = 1 only when the trajectory Ft terminates in (s, a1) and βt = 0
otherwise, and since P t

π = Pπ , ∀ t ≥ 1, we also have

Bt = P t
π ⊙

[
1 0
1 0

]
=

1

2

[
1 0
1 0

]
. (36)

Using a computer program to calculate Z, assuming that γ = 2
3 , we obtain

Z =

∞∑
t=1

γt(Bt−1Pπ −Bt) =
1

3

[
−1 2
−1 2

]
. (37)

Therefore, ∥Z∥ = 1, which is not a contraction, and the norm continues to increase for γ > 2
3 .

D. Implementation of Trajectory-Aware Eligibility Traces
The implementation of trajectory-aware methods is closely related to that of backward-view TD(λ) in the tabular setting
(see, e.g., Sutton & Barto, 1998, Chapter 7.3). On each timestep, an environment interaction is conducted according to the
behavior policy µ. Then, the eligibilities for previously visited state-action pairs are modified, the eligibility for the current
state-action pair is incremented, and the current TD error is applied to all state-action pairs in proportion to their eligibilities.
The only difference in the trajectory-aware case is that the eligibilities are not modified by simply multiplying a constant
decay factor γλ.

14

Trajectory-Aware Eligibility Traces

Arbitrary, trajectory-dependent traces β(Ft), as studied in our theoretical results, can be complicated to implement. This
stems from the fact that the timestep t in theM operator is defined relative to when the updated state-action pair was
taken. In other words, each state-action pair (Sk, Ak) “disagrees” on the start of the current trajectory, generating its update
from the unique sub-trajectory (Sk, Ak), . . . , (St, At). Implementing coefficients of this form would be possible using the
general update

Q(Sk, Ak)← Q(Sk, Ak) + αγt−kβ((Sk, Ak), . . . , (St, At))δ
π
t , (38)

where α ∈ (0, 1] is the stepsize, but this would require repeatedly slicing the list of visited state-action pairs
(S0, A0), . . . , (St, At). While this is certainly feasible, it does not easily accommodate vectorization or parallelization.

Fortunately, this level of generality is rarely needed in practice, and specific optimizations can be made depending on the
functional form of β. For example, Truncated IS defines β to be a pure function of the IS estimate Πt, which is useful
because per-decision eligibility traces can be used to efficiently generate the IS estimates for every state-action pair visited
during the episode. We demonstrate how this can be done in pseudocode (see Algorithm 1).

Recursive methods like Recursive Retrace and RBIS, where βt explicitly depends on βt−1, require only two minor
changes compared to Algorithm 1 for their implementations. These changes, which we highlight in blue for RBIS in
Algorithm 2, correspond to the fact that the dynamic array Y is now used to store the previous trace βt−1 rather than the
previous IS estimate Πt−1 at each timestep. The computational requirements for the methods remain nearly identical. The
implementation for Recursive Retrace easily follows by changing line 10 of Algorithm 2 to

Y (k)← λmin(1, Y (k) · ρt). (39)

E. Additional Experiment Details and Results
We conducted a grid search to find the best stepsize α for every λ-value for the four off-policy methods we evaluated
in the Bifurcated Gridworld (Section 6). Using a training set of 1,000 trials, we searched over λ ∈ {0, 0.1, . . . , 1} and
α ∈ {0.1, 0.3, 0.5, 0.7, 0.9}, for a total of 55 hyperparameter combinations. At the start of each trial, the initial value
function Q was sampled from a zero-mean Gaussian distribution with standard deviation σ = 0.01. We trained each agent
for 3,000 timesteps, allowing extra time to complete the final episode. We then generated learning curves by plotting the
100-episode moving average of these returns as a function of the number of timesteps and calculated their AUCs. In Table 1,
we report the stepsize α that led to the highest average AUC for each λ-value. Then, using a separate test set of 1,000 trials
to avoid bias in the search results, these α-values were used to generate the learning curves in Figure 3. The AUCs for these
learning curves were finally used in the creation of the λ-sweep plot (Figure 2).

In Figure 4, we repeated this procedure for three additional, more complex gridworld topologies. Like the Bifurcated
Gridworld, these environments feature one or more bifurcations that make fast credit assignment imperative, as well as
additional challenges such as multiple goal cells. As before, the agent starts in S and receives +1 reward for taking any
action in a goal, terminating the episode. The results are qualitatively similar to Figure 2; RBIS outperforms the other three
methods by a significant margin over the left-hand portion of the λ-spectrum, and performs similarly to Retrace as λ→ 1.

Table 1. The best stepsizes found by our grid search in the Bifurcated Gridworld.

λ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Retrace 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.7 0.7 0.5
Truncated IS 0.9 0.9 0.9 0.9 0.9 0.9 0.7 0.5 0.5 0.5 0.3

Recursive Retrace 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.7 0.5 0.5
RBIS 0.9 0.9 0.9 0.9 0.9 0.7 0.7 0.7 0.7 0.7 0.5

15

Trajectory-Aware Eligibility Traces

0 500 1000 1500 2000 2500 3000
Timesteps

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Di
sc

ou
nt

ed
 R

et
ur

n
Bifurcated Gridworld (= 0)

Retrace
Truncated IS
Recursive Retrace
RBIS

0 500 1000 1500 2000 2500 3000
Timesteps

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Di
sc

ou
nt

ed
 R

et
ur

n

Bifurcated Gridworld (= 0.1)

Retrace
Truncated IS
Recursive Retrace
RBIS

0 500 1000 1500 2000 2500 3000
Timesteps

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Di
sc

ou
nt

ed
 R

et
ur

n

Bifurcated Gridworld (= 0.2)

Retrace
Truncated IS
Recursive Retrace
RBIS

0 500 1000 1500 2000 2500 3000
Timesteps

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Di
sc

ou
nt

ed
 R

et
ur

n

Bifurcated Gridworld (= 0.3)

Retrace
Truncated IS
Recursive Retrace
RBIS

0 500 1000 1500 2000 2500 3000
Timesteps

0.0

0.1

0.2

0.3

0.4

0.5

0.6
Di

sc
ou

nt
ed

 R
et

ur
n

Bifurcated Gridworld (= 0.4)

Retrace
Truncated IS
Recursive Retrace
RBIS

0 500 1000 1500 2000 2500 3000
Timesteps

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Di
sc

ou
nt

ed
 R

et
ur

n

Bifurcated Gridworld (= 0.5)

Retrace
Truncated IS
Recursive Retrace
RBIS

0 500 1000 1500 2000 2500 3000
Timesteps

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Di
sc

ou
nt

ed
 R

et
ur

n

Bifurcated Gridworld (= 0.6)

Retrace
Truncated IS
Recursive Retrace
RBIS

0 500 1000 1500 2000 2500 3000
Timesteps

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Di
sc

ou
nt

ed
 R

et
ur

n

Bifurcated Gridworld (= 0.7)

Retrace
Truncated IS
Recursive Retrace
RBIS

0 500 1000 1500 2000 2500 3000
Timesteps

0.0

0.1

0.2

0.3

0.4

0.5

0.6
Di

sc
ou

nt
ed

 R
et

ur
n

Bifurcated Gridworld (= 0.8)

Retrace
Truncated IS
Recursive Retrace
RBIS

0 500 1000 1500 2000 2500 3000
Timesteps

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Di
sc

ou
nt

ed
 R

et
ur

n

Bifurcated Gridworld (= 0.9)

Retrace
Truncated IS
Recursive Retrace
RBIS

0 500 1000 1500 2000 2500 3000
Timesteps

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Di
sc

ou
nt

ed
 R

et
ur

n

Bifurcated Gridworld (= 1)

Retrace
Truncated IS
Recursive Retrace
RBIS

Figure 3. Learning curves for the λ-values we tested in the Bifurcated Gridworld environment. The dashed black line indicates the
optimal discounted return for this problem.

16

Trajectory-Aware Eligibility Traces

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.01250

1300

1350

1400

1450

1500

Ar
ea

 U
nd

er
 th

e
Cu

rv
e

S

G

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.01250

1300

1350

1400

1450

1500

Ar
ea

 U
nd

er
 th

e
Cu

rv
e

Retrace
Truncated IS
Recursive Retrace
RBIS

S

G

G

G

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.01150

1200

1250

1300

1350

1400

1450

Ar
ea

 U
nd

er
 th

e
Cu

rv
e

Retrace
Truncated IS
Recursive Retrace
RBIS

S

G

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0800

850

900

950

1000

Ar
ea

 U
nd

er
 th

e
Cu

rv
e

Retrace
Truncated IS
Recursive Retrace
RBIS

Figure 4. λ-sweeps conducted on three additional gridworld topologies. The experiment procedure was identical to that used in the
creation of Figure 2.

17

Trajectory-Aware Eligibility Traces

Algorithm 1 Truncated Importance Sampling
1: Input: value function Q, stepsize α ∈ (0, 1]

2: for each episode do
3: Reset environment and observe state S0

4: Reset dynamic array Y

5: repeat {for t = 0, 1, 2, . . . }
6: Take action At ∼ µ(·|St), receive reward Rt, and observe next state St+1

7: ρt =
π(At|St)
µ(At|St)

8: δt =

Rt −Q(St, At) if St+1 is terminal

Rt −Q(St, At) + γ
∑

a′∈A π(a′|St+1)Q(St+1, a
′) else

9: for k = 0, . . . , t− 1 do
10: Y (k)← Y (k) · ρt
11: end for
12: Y (t)← 1

13: for k = 0, . . . , t do
14: z ← (γλ)t−k min(1, Y (k))

15: Q(Sk, Ak)← Q(Sk, Ak) + αzδt

16: end for
17: until St+1 is terminal
18: end for

Algorithm 2 Recency-Bounded Importance Sampling (RBIS)
1: Input: value function Q, stepsize α ∈ (0, 1]

2: for each episode do
3: Reset environment and observe state S0

4: Reset dynamic array Y

5: repeat {for t = 0, 1, 2, . . . }
6: Take action At ∼ µ(·|St), receive reward Rt, and observe next state St+1

7: ρt =
π(At|St)
µ(At|St)

8: δt =

Rt −Q(St, At) if St+1 is terminal

Rt −Q(St, At) + γ
∑

a′∈A π(a′|St+1)Q(St+1, a
′) else

9: for k = 0, . . . , t− 1 do
10: Y (k)← min(λt−k, Y (k) · ρt)
11: end for
12: Y (t)← 1

13: for k = 0, . . . , t do
14: z ← γt−kY (k)

15: Q(Sk, Ak)← Q(Sk, Ak) + αzδt

16: end for
17: until St+1 is terminal
18: end for

18

