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Abstract

Many neural networks, especially over-parameterized ones, suffer from poor calibration and
overconfidence. To address this, |[Jordahn & Olmos| (2024) recently proposed a Two-Stage
Training (TST) procedure that decouples the training of feature extraction and classification
layers. In this study, we replicate their findings and extend their work through a series of
ablation studies. We reproduce their main results and find that most of them replicate, with
slight deviation for CIFAR100. Additionally, we extend the author’s results by exploring the
impact of different model architectures, Monte Carlo (MC) sample sizes, and classification
head designs. We further compare the method with focal loss - an implicit regularization
technique known to improve calibration - and investigate whether calibration can be im-
proved further by combining the two methods. We find that calibration can be improved
even further by using focal loss in the first training stage of two-stage training. Our exper-
iments validate the claims made by [Jordahn & Olmos| (2024)), and show the transferability
of the two-stage training to different architectures.

1 Introduction

Calibration is crucial for trustworthy machine learning, especially in safety-critical fields like medicine and
self-driving cars, where understanding a model’s uncertainty is key to assessing decision reliability. Neural
networks, particularly over-parameterized ones, tend to be poorly calibrated and have an overconfidence bias.
Efforts to improve calibration include post-hoc methods and modifications to training procedures (Wang),
2023)).

In Decoupling Feature Extraction and Classification Layers for Calibrated Neural Networks, [Jordahn & OI-
mos| (2024) propose Two-Stage Training (TST) and Variational Two-Stage Training (V-TST), for calibration
of Deep Neural Networks (DNNs). The methods decouple the training of the feature extraction and classifi-
cation layers. At first, all layers are trained jointly from scratch and in the second stage of training, the last
layer is re-initialized and re-trained from scratch while the weights of the feature extraction layers are kept
frozen.

We conducted several experiments to analyze the performance of TST and V-TST under different configu-
rations, and extend their method further by combining it with focal loss - both its constant and adaptive
variant. Our main contributions are:

o Reproducing the main results (first two rows of Tables 1 and 2 of |Jordahn & Olmos) (2024)).

e Reproducing two of their ablation studies, namely applying their method to an under-parameterized
CNN and a fine-tuned ViT (Tables 3 and 6 of |Jordahn & Olmos| (2024)).

e Conducting three ablation studies to investigate the dependence on model architecture, the sample
size of a Monte Carlo (MC) estimation used in the second-stage of training and the architecture of
the classification head.

o Further extending the original paper by comparing and combining the method with focal loss (Lin
et al |2017)), another implicit regularization technique.
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2 Related Work

The calibration of networks can be improved both post-hoc after training but also by changing the training
procedure. groups the different calibration techniques in four different categories: post-hoc
calibration, regularization methods, uncertainty estimation, and composition methods. A widely used post-
hoc calibration technique is Temperature Scaling (TS) (Guo et al) [2017) which is computationally efficient
and simple and has been extended by other people (Wang, 2023).

In contrast to using post-hoc methods, there also exist many techniques focusing on training well-calibrated
models, among which implicit regularization techniques are most relevant for this study. They include
techniques such as data augmentation (Thulasidasan et al,, 2020) and the use of different loss functions
Hebbalaguppe et al., [2022; [Shamsi et al. 2023). An example of such an implicit technique is Focal Loss

Lin et al., 2017), defined as

FL(pt) = —(1 — pt)"log (p:) (1)

Focal loss is a modification of cross-entropy loss designed to address class imbalance. It introduces a weighting
factor, (1 — p;)7, where p; is the predicted probability of the true class. This factor down-weights the loss
of well-classified examples (p; ~ 1) and amplifies the influence of hard examples (p; ~ 0), making training
more effective. The focusing parameter v > 0 determines the degree of this effect. Focal loss has been shown
to be an upper bound on the regularized KL-divergence and improves calibration of networks independent
of their architecture (see Mukhoti et al.| (2020) for a more elaborate discussion on why focal loss improves
calibration).

3 Methods

[Jordahn & Olmos| (2024) propose a novel two-stage training procedure for improved calibration of DNNs
in classification tasks. Typically, the training of feature extraction layers and classification layers occurs
jointly. Their findings indicate that training these layers separately in a two-stage fashion can improve model
calibration. They argue that freezing the feature extraction layers limits the model’s flexibility, preventing
the classifier from artificially increasing label likelihood. In their paper, they present two variations of the
two-stage training method: TST and V-TST.

3.1 TST

In TST, a model with initial parameters {3, ¢}, denoting the parameters of the feature extraction layers and
classification layers respectively, is trained from scratch using cross-entropy loss (Jordahn & Olmos| 2024).
The parameters of the feature extraction layers 3 are then frozen and the classification layers are re-initialized
and re-trained from scratch using the same dataset Dyyain (see Fig. Further calibration improvements can
be obtained by adjusting the dimensionality Z of the last hidden layer z of the classification layers, as the
calibration performance varies with different choices of Z.
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) First training stage: feature extraction and (b) Second training stage: feature extraction layers are

cla551ﬁcat10n layers are trained jointly from scratch. frozen and classification layers are re-initialized and

trained from scratch.

Figure 1: Illustration of training procedure for TST and V-TST. Blue indicates the layers are being trained
while gray indicates frozen layers.
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3.2 V-TST

V-TST poses additional regularization on z. For the second stage, the parameters of the fully connected
(FC) layers are optimized using the evidence lower-bound (ELBO):

log p(y) > ELBOy,, = Ey(za)log[p(y|2)] — Drr(q(z]x)||p(2)). (2)

They assume a standard normal Gaussian prior p(z) = N(0,I) and an approximate posterior of the form
q(z|x) = N(ugo(x),08,0(x)). The predicted output label of the model is given by p(y|z) = Cat(m,(2z)). To
approximate and sample from ¢(z|z), they apply the reparameterization trick z = pg g(x)+0s,9(x) © € with
€ ~ N(0,I). This allows the expectation of p(y|z) to be determined by MC sampling using m samples, as
described in Kingma & Welling| (2022)).

3.3 Reproducing results

Using the code provided by the authors, we trained a WRN-28-10 architecture from scratch to reproduce
the main results. We used the proposed methods TST and V-TST on the CIFAR10 and CIFAR100 datasets
and included the evaluation on the shifted and out-of-distribution (OOD) data. We also reproduced two of
the ablation studies in the original paper. The first ablation study evaluates the performance of two-stage
training on an under-parameterized CNN architecture. Secondly, we performed the ablation study regarding
two-stage training for pre-trained models using ViT-B/16 (Dosovitskiy et al., |2021) on Tiny ImageNet (Le
& Yang), 2015)).

3.4 Our extensions

In addition to reproducing the orginal results, we introduced a number of extensions to further investigate
the performance of TST and V-TST. First, we examined the effectiveness of two-stage training with two ad-
ditional CNN network architectures of comparable size to WRN-28-10 (36.5 million parameters) (Zagoruyko
& Komodakis), 2017)): ResNet-50 (He et al., [2015)) and EfficientNet-B5 (Tan & Lel 2020) comprising of 25.6
million and 30.4 million parameters, respectively.

Next, we investigated different MLP configurations in the TST and V-TST setting, and examined the effect
of varying the number of Monte Carlo samples used in the second stage of V-TST. While the original paper
used a three-layer MLP for the classification layer, we experimented with replacing it with a four-layer MLP
and a single-layer MLP, the latter being equivalent to re-initializing the final fully connected (FC) layer.
Additionally, we explored whether increasing the number of MC samples in the second stage with V-TST
from m = 1 (original proposed approach) to m = 5 could improve model calibration.

Lastly, as suggested in |Jordahn & Olmos| (2024), we investigated whether combining two-stage training with
focal loss can lead to further enhancement in calibration performance.

4 Data

We used the same image datasets and preprocessing as the original paper, namely CIFAR10, CIFAR100
and Tiny ImageNet to train the models, and SVHN (OOD data) as well as CIFAR10-C and CIFAR100-C
(shift data) to evaluate them. We randomly split the validation set of Tiny ImageNet into two halves to
obtain validation and test sets, as the test set of the dataset is unlabeled. More details about the datasets
and preprocessing steps can be found in Appendix [A] For the ablation studies and the extensions, we used
CIFARI10.

5 Experiments and Findings

Across all experiments, we evaluated the model performance using the metrics of the original paper, the
expected calibration error (ECE) and the maximum calibration error (MCE) (Naeini et al. 2015, computed
in percentage with 10 bins, on the regular and corrupted test sets. Additionally, we measured negative
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log-likelihood (NLL) on both the training set and the test set, and included metrics AUROC for the shifted
datasets and false-positive rate at 95% (FPR95) for the OOD datasets.

In all experiments, the models were trained using the Adam optimizer with learning rate 10~ and cross-
entropy (CE) loss to align with the original paper, except in the extensions where we used focal loss. In
the first stage, the models were trained from scratch for 600 epochs with seed 1 unless otherwise specified.
Throughout the paper, we refer to models after the first stage of training as base models. The TST and
V-TST was done over 10 seeds (0-9) using 40 epochs and by re-initializing the final FC layer with a three-
layer MLP head having dimensions [output, 3Z], [3Z, Z] and [Z, #classes], where the output corresponds
to the dimension of the model architecture’s output before the classifier. A single NVIDIA T4 16GB GPU
was used for all experiments.

5.1 Replication of Main Results

The replication of the main results is reported in Tables []] and [2 For TST and V-TST, we used the same
latent dimensions Z as the original paper. The CIFAR10 results closely align with those reported in|Jordahn
& Olmosg| (2024). The numbers are generally slightly worse for almost all metrics but lie within a close
range to those found in the original paper. We believe that these slight differences can be attributed to the
randomness involved in training the base model, leading to different base models to start from. While the
authors specify running TST and V-TST over seeds 0-9, they do not specify the seed used for training the
base model.

For CIFAR100, the results we obtained differ from those reported by |[Jordahn & Olmos (2024) in several
aspects. First, we observed discrepancies in the baseline WRN models, which we trained for two different
random seeds. Despite this, we were unable to replicate comparable results for either seed. Our baseline
models demonstrated lower accuracy, but exhibited better calibration, as indicated by lower ECE and MCE
values. For example, |[Jordahn & Olmos| (2024) obtained a MCE of 82.02 for the baseline model, whereas
our corresponding value was 27.52. Similar to the findings in |Jordahn & Olmos| (2024), we observed im-
provements in both calibration and accuracy when applying TST and V-TST, although the magnitude of
these improvements differed. For instance, V-TST (m = 10) improved the ECE by 47.1%, whereas the
original paper reported a 73.0% improvement. A similar trend was observed for TST. However, in contrast
to Jordahn & Olmos| (2024)), our results showed greater improvements in accuracy and NLL when applying
two-stage training. Finally, our experiments indicate that TST and V-TST do not outperform temperature
scaling for CIFAR100.

We noticed that our base models for CIFAR100 achieved the lowest validation loss and were obtained in the
early epochs, 18 and 16, even though the training accuracy reached around 100% and the validation accuracy
kept improving to similar levels reported in the original paper. Similar results may have been obtainable by
exploring more seeds or saving the model with the highest validation accuracy rather than the model with
the lowest validation loss.

Consistent with |Jordahn & Olmos| (2024), we showed that V-TST and TST improve ECE and MCE across
both datasets (see Tab. . Under distribution shifts, we similarly found that TST and V-TST significantly
improve the calibration of the WRN and outperform temperature scaling for CIFAR10. However, unlike
the original paper, our results indicate that TST generally performs slightly better than base models in
OOD tasks. Additionally, we found that in the case of CIFAR100, TST and V-TST significantly improve the
accuracy of a model that has overfitted and that temperature scaling achieves better calibration performance
for the model.

5.1.1 Replication of CNN ablation study

To reproduce Table 3, we implemented a simple CNN, following the architecture detailed in the Appendix
of the original paper. After training the base model, we applied TST and V-TST and matched the latent
dimension with their results. Consistent with |Jordahn & Olmos| (2024), we found that two-stage training on
an under-parameterized model worsens ECE but improves MCE, while TST can improve both as shown in
Table[3] The lower proportion of frozen to trainable parameters in the second stage of an under-parameterized
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Table 1: Replication of test metrics on in-distribution data test-sets. For V-TST, m = 1 and m = 10
indicate using 1 and 10 samples in the MC approximation, respectively. Temp. WRN is the temperature-
scaled WRN. For CIFAR10, we used Z = 128 for V-TST (m = 10) and TST, and Z = 32 for V-TST (m = 1).
For CIFARI100, Z = 512 was used for V-TST (m = 10) and TST, and Z = 128 for V-TST (m = 1). Bold

indicates the best-performing model.

Dataset Model Accuracy ECE MCE Train NLL Test NLL
V-TST, m =10 92.4440.02 1.38+0.100 21.26+6.44 0.0655+0.0004 0.25794+0.0017
V-TST, m =1 90.9+£0.03 1.784+0.148 24.80+8.981 0.1116+0.0012 0.3732+0.0041
CIFAR10 TST 92.55+0.01 3.34+0.016 24.68+3.883  0.0532+0.0002 0.2516+0.0007
Temp. WRN 92.52 4.70 25.2 0.0616 0.3024
WRN 92.52 6.06 36.28 0.1031 0.5124
V-TST, m =10 64.32+0.09 9.924+0.288 21.74+1.349  0.5008+0.0082 1.4159+0.0034
V-TST, m =1 62.35 £ 0.07 10.71 £ 0.318 20.48 + 0.780 0.6064 £ 0.0049 1.5634 £ 0.0045
CIFAR100 TST 61.82+0.16 10.32+0.560 20.55+2.404 0.6448+0.0098 1.5212+0.0067
Temp. WRN 52.31 2.72 6.42 1.2029 1.8358
WRN 52.31 17.38 27.52 1.1451 2.0083
WRN - 2nd seed 51.54 14.72 27.03 1.2923 2.0009
Table 2: Replication of evaluation metrics on shifted data and OOD data.
Dataset Model SHIFT ECE SHIFT MCE OOD AUROC OOD FPR95
V-TST, m =10 9.41+0.3 20.33£0.66 0.851£0.003 0.70240.002
V-TST, m =1 12.53+0.29 20.19+0.56 0.76640.003 0.77840.003
CIFAR10 TST 13.09+0.04 29.32+0.10 0.88340.001 0.688+0.003
Temp. WRN 16.44 37.93 0.885 0.698
WRN 20.06 45.62 0.874 0.708
V-TST, m =10 20.30 £ 0.42 32.39 £ 0.66 0.727 £ 0.002 0.817 £+ 0.002
V-TST, m =1 21.15 £ 0.40 34.01 £ 0.60 0.717 £ 0.002 0.828 £ 0.002
CIFAR100 TST 21.13 £ 0.76 30.82 £ 1.13 0.692 + 0.002 0.846 + 0.004
Temp. WRN 11.09 20.46 0.677 0.878
WRN 28.15 43.18 0.658 0.885
WRN - 2nd seed 26.10 39.61 0.655 0.858

model increases flexibility, possibly explaining the ineffectiveness of two-stage training. Additionally, we
observed that for TST, the authors report improved ECE with Z = 32, the only latent dimension where
ECE improved. With Z = 128, we found the ECE to be worse than the base model.

5.1.2 Replication of ViT ablation study

The other ablation study concerned applying the two-stage training after fine-tuning a pre-trained ViT.
Implementation details are described in Appendix [B] Again, our results were generally consistent with their
findings. It can be seen from Table [3| that using V-TST can improve the ECE and MCE while TST worsens
both ECE and MCE. They stress the good regularization properties of V-TST and also conclude that training
feature extraction layers and classification layers together from scratch is important for the two-stage training
to be effective.

5.2 Ablation Study: Dependence on Network Architecture

We adapted the architectures of ResNet-50 and EfficientNet-B5 to fit the smaller image size of 32 x 32 of
CIFARI10, for details we refer to Appendix [B] The architectures were trained from scratch and then we
applied TST and V-TST.

Both TST and V-TST improved calibration for ResNet-50 and EfficientNet-B5 (see Tab[5). The best-
performing model for ResNet-50 was obtained with V-TST (m = 10), which aligns with the results for
WRN-28-10. V-TST (m = 10) improved ECE and MCE by 88.14% and 62.17%, respectively. This model also
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Table 3: Replication of test metrics for ablation studies on in-distribution data test-sets using a simple CNN
on CIFAR10. We used Z = 512 for V-TST with m = 10, Z = 128 for V-TST with m = 1, and Z = 32 for
TST.

Model Accuracy ECE MCE
V-TST, m =10 71.2540.04 1.82+0.07 8.85+1.42
V-TST, m=1 67.85+0.07 1.25+0.08 6.55+1.17
TST, Z =128 71.03+£0.04 1.11+0.05  18.6440.49
TST 70.55+0.05 0.73+0.05 14.80£1.98
CNN 70.83 0.80 19.46

Table 4: Replication of test metrics for ablation studies on in-distribution data test-sets while fine-tuning a
ViT on Tiny ImageNet. We used Z = 128 for V-TST and TST.

Model Accuracy ECE MCE
V-TST, m =10 84.36+0.04 3.35+0.07  12.46+0.81
V-TST, m =1 83.64+0.08 1.56+0.08 11.13+1.17
TST 83.98+0.05 6.11+0.11 22.03£2.03
FT ViT-B/16 83.38 3.33 13.60

reached the highest accuracy of 89.80%. For EfficientNet-B5, the best calibration is obtained for temperature
scaling, which improved ECE and MCE by 90.74% and 92.50%, respectively. The best-performing two-stage
procedure for EfficientNet-B5 was V-TST (m = 1), for which ECE and MCE was improved by 40.93% and
81.42%.

Calibration was also improved when using TST and V-TST on shifted data. For ResNet-50, the best
performance is obtained for V-TST (m = 10), while temperature scaling outperforms two-stage training for
EfficientNet-B5. Similar to the paper, a decrease in performance occurred for the OOD data for ResNet-50
when using two-stage training. The contrary was observed for EfficientNet-B5.

The similarity in the results between WRN and ResNet may be due to their architectural resemblance,
as WRN employs standard residual blocks with increased width and reduced depth compared to ResNet
(Zagoruyko & Komodakis), [2017)). In contrast, EfficientNet differs more from WRN, by using features like
compound scaling (Tan & Le, [2020). These architectural differences may explain why the results achieved
with WRN did not transfer in the same way to EfficientNet. For further improvements in the results for
EfficientNet when using TST and V-TST, different latent dimensions could be explored.

Table 5: Dependence on TST and V-TST on network architecture. The latent dimensions used for TST,
V-TST (m = 1), and V-TST (m = 10) were the same as those used for WRN-28-10, namely Z = 128, Z = 32
and Z = 128, respectively.

Model Accuracy ECE MCE SHIFT ECE SHIFT MCE OOD AUROC OOD FPR95
V-TST, m =10 89.80 £ 0.03 0.95 + 0.081 13.15 + 2.07 6.36 & 0.24 11.17 + 0.38 0.776 £ 0.004 0.810 £ 0.003
V-TST, m =1 86.77 = 0.09 1.60 £ 0.075  30.52 +6.829  10.95 £ 0.40 15.40 & 0.63 0.719 £ 0.001 0.852 £ 0.002
TST 89.77 £ 0.02 419 £ 0.016 1825 £ 1.670  13.38 £ 0.06 25.94 £ 0.10 0.845 £ 0.001 0.753 £+ 0.004
Temp. ResNet-50 89.74 5.82 22.09 16.83 33.82 0.861 0.744
ResNet-50 89.74 8.01 34.75 21.58 44.94 0.852 0.762
V-TST, m =10 76.93 £ 0.04 4.97 £ 0.267  16.40 £1.926  13.90 £ 0.34 20.73 £ 0.55 0.683 £ 0.001 0.905 £ 0.001
V-TST, m =1 74.87 £ 0.08 4.85+0.270  14.99 £ 1.615  14.54 £ 0.26 19.91 & 0.36 0.663 £ 0.001 0.906 £ 0.002
TST 77.10 £ 0.04 7.20 £0.225 43.68 £ 8.575  16.54 £ 0.30 25.43 £ 0.47 0.689 £+ 0.001 0.909 £ 0.001
Temp. EfficientNet-B5  76.48 0.76 6.05 8.95 12.80 0.681 0.920
EfficientNet-B5 76.48 8.21 80.68 18.58 28.35 0.678 0.917
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5.3 Ablation Study: Second Stage Network Architecture

To examine the impact of MLP head size used in the second stage of training for TST and V-TST, we
conducted experiments by varying the original three-layer MLP head to a single-layer and a four-layer MLP,
while keeping the latent dimensions consistent with the replication experiments in section [5.1] across all
setups. For further details, we refer to Appendix

The results in Table [6] and Table [7] show that TST and V-TST with a four-layer MLP improved ECE and
MCE with and without distribution shifts. Our obtained results are close to the ones for a three layer MLP
but slightly worse. For TST, the lower train NLL and higher test NLL show signs of more overfitting in
the four-layer configuration. We believe that the additional layer without optimizing the dimension of Z
introduces too many trainable parameters. We also noticed that the models converged faster with four layers.
Furthermore, the results of TST using a four-layered MLP but with a decreased latent dimension of Z = 10
show comparable results to the ones with a three layer MLP and latent dimension of Z = 128, highlighting
the potential importance of balancing number of layers in the MLP and the latent dimension.

In the single-layer configuration, the TST results show that re-training the final FC layer improves the MCE
by 49.37% and all the shift and OOD metrics, still outperforming temperature scaling in most metrics. This
shows that simply re-training the FC layer can effectively enhance model calibration and robustness under
distribution shifts. However, the single-layer MLP performs worse than the multi-layered ones in terms
of ECE and MCE scores for in distribution data, likely due to the reduced capacity to capture complex
calibration patterns.

Table 6: Test metrics on in-distribution data for the effect of the size of the MLP in the second stage of
training. The value [ indicates the number of layers in the MLP head of TST and V-TST. We used Z = 128
as latent dimension unless stated otherwise.

Model Accuracy ECE MCE Train NLL Test NLL

V-TST, [ =4, m=10 92.50+0.02 1.95+0.141 26.08+5.912 0.0733£0.0006 0.2823£0.0029
V-TST, =4, m=1 91.65+0.05 1.714+0.029  27.9448.612 0.122740.0011 0.397140.0026

TST, =14 92.524+0.02  3.5040.280 23.36£2.717 0.054740.0002 0.258840.0010
TST, l=4,7Z =10 91.64+0.11 2.45+0.150  14.7440.997 0.070240.0021 0.305240.0091
TST,l=1 92.524+0.02  6.69+1.203 18.37£2.763  0.0526+0.00001 0.2408+0.0016

Table 7: Shift and OOD test metrics for the effect of the size of the MLP in the second stage of training.
The value [ indicates the number of layers in the MLP head of TST and V-TST. We used Z = 128 as latent
dimension unless stated otherwise.

Model SHIFT ECE SHIFT MCE OOD AUROC OOD FPR95
V-TST, =4, m=10 11.86+0.39 28.16+0.99 0.802+0.007 0.695+0.003
V-TST, =4, m=1 12.47£0.29 17.07+£0.47 0.71£0.004 0.773+0.004
TST,l=4 13.45+0.04 30.2540.09 0.875%0.002 0.7274+0.013
TST,l=4,Z=10 11.69+0.43 24.54+0.90 0.883+0.001 0.688+0.003
TST, =1 11.46+0.27 25.35+0.65 0.884+0.001 0.682+0.002

5.4 Ablation Study: V-TST Dependence on Number of Samples in Training

We also investigated whether increasing the number of samples during V-TST affects the model performance.
Specifically, we re-trained the base WRN for CIFAR10 using V-TST with n = 5 samples and compared it
to the original setup with n = 1. As shown in Table [8] using n = 5 results in slightly better MCE and
OOD metrics, while overall calibration performance remains comparable or slightly worse. In contrast to
our expectations, increasing the number of samples drawn during training did not prove to be beneficial for
improving the calibration. However, we suspect that further exploration with different values would provide
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deeper insights to draw better conclusions. We also noticed that the variability in most of the evaluation
metrics reduces with n = 5.

Table 8: Evaluation metrics on in-distribution, shifted data, and OOD data for the effect of the number of
samples used in the second stage of training with V-TST. We used Z = 128 as latent dimension.

Model Accuracy ECE MCE SHIFT ECE SHIFT MCE OOD AUROC OOD FPR95
V-TST,n=5,m=10 92.45+0.02 1.53+0.081 13.90+1.979 9.65+0.21 20.55+0.48 0.852+0.002 0.697+0.002
V-TST,n=5,m=1  91.04£0.06 1.62+0.103 18.8946.873 12.57+0.22 20.08+0.39 0.76240.004 0.77940.004

5.5 Extending the paper: Focal Loss

We compared the performance of two-stage training with focal loss, another implicit calibration method,
and investigated if the performance of two-stage training can be improved by combining it with focal loss in
several ways. We experimented with three configurations: using focal loss in both training stages, the first
training stage only or the second training stage only. We also experimented with two different versions of
focal loss: using a constant value for v (FL) or an adaptive, sample-dependent schedule (FLA) as described
in Mukhoti et al|(2020). In accordance with Mukhoti et al.| (2020), we used v = 3 for the constant loss and
a sample-dependent scheme that uses v = 3 for p, € [0.2,1] and v = 5 p, € [0,0.2), where p, denotes the
probability of the network to predict the correct label y.

Focal loss base models First, we observed that a base model trained on constant focal loss (FL-B) or
adaptive focal loss (FLA-B) is more calibrated on in-distribution and shifted data than a base model trained
using cross-entropy loss (CE-B), demonstrating the expected calibration benefits of focal loss. However,
V-TST with m = 10 and CE loss (V10-CE2) outperforms base models trained using focal loss (FL-B and
FLA-B) in terms of both ECE and MCE scores as well as accuracy.

Focal loss in two-stage training When combining the two methods we noticed several key observations.
Firstly, using focal loss as training objective for both stages in two-stage training significantly worsens the
ECE score compared to the base models trained with focal loss (FL-B, FLA-B). The MCE score is also
worsened when using adaptive focal loss compared to FLA-B, while it generally improves for constant focal
loss. Comparing two-stage training performed using CE loss to focal loss in both stages, we noticed a similar
trend. Two-stage training models using focal loss have higher ECE scores compared to corresponding models
trained using CE loss (see Tab. E[) No clear trend can be seen for the MCE score. Hence, fully combining
two-stage training with focal loss does generally not lead to improved calibration compared to a base model
trained with focal loss or two stage training using CE loss.

Focal loss base and cross-entropy in second-stage Using focal loss in the second stage on top of a
focal loss base model worsened the calibration overall. Therefore, we tested whether combining a better-
calibrated base model (compared to a base model trained with CE loss, see Tab. E[) with a second stage
that uses CE loss would enhance calibration performance. We found that this combination (V10-FLA-CE,
V1-FLA-CE, FLA-CE) consistently improved both ECE and MCE significantly compared to the focal loss
base models (FL-B, FLA-B) and the corresponding CE baseline models (V10-CE2, V1-CE2, CE2) while
maintaining a similar accuracy. For instance, including FLA in the first stage for TST (FLA-CE) improved
ECE and MCE by 37.1% and 27.4%, respectively (see Tab. E[) Results for using FL-B as a base model and
performing second stage training with CE were similar to those using FLA-B as base model and are thus
reported in the Appendix [C]

Cross-entropy loss base and focal loss in second-stage For completeness, we also tested how using
constant focal loss in the second stage on top of a CE base model would perform (V10-CE-FL, V1-CE-FL,
CE-FL) and found a similar behavior to using constant focal loss or adaptive focal loss in both stages of
training (V10-FL2, V1-FL2, FL2, V10-FLA2, V1-FLA2, FLA2). Both ECE and MCE scores were higher
than those obtained for CE-only two-stage training. Therefore, using focal loss in the second stage (regardless
of whether focal loss or CE was used in the first stage) generally performs badly on in-distribution data.
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Focal loss performance on shifted data Incorporating focal loss in two-stage training in any form leads
to significantly lower ECE and MCE for shifted data compared to focal loss base models and two-stage CE
models (see Tab. [10). The only exceptions to this are the V-TST models that used adaptive focal loss in
the first stage and CE loss in the second stage (V10-FLA-CE, V1-FLA-CE) but even these perform similarly
well compared to V-TST models that only use CE loss (V10-CE2, V1-CE2). Another interesting observation
was that models trained in a two-stage fashion with focal loss in both or one of the stages perform better
on shifted data than in-distribution data. The exception for this trend were models trained with adaptive
focal loss in the first stage and CE loss in the second stage (V10-FLA-CE, V1-FLA-CE, FLA-CE). This is
a rather surprising finding as the WRN-28-10 trained with CE loss (V10-CE2, V1-CE2, CE2) was better
calibrated for in-distribution than shifted data for both CIFAR10 and CIFAR100 (see Tab. [1)).

A possible explanation for the better performance on shifted data is that focal loss emphasizes hard exam-
ples during training (Lin et alJ, [2017)), leading to better calibration on challenging shifted data but poorer
calibration on easier in-distribution data. Additionally, focal loss with a fixed v has different dynamics than
the CE loss. Initially, models trained with focal loss show higher weight norms than those trained with CE
loss. However, this trend reverse after furhter training so that the weight norms of the focal loss model
become lower, which can be explained by the regularizing effect the focal loss has on the network weights
(Mukhoti et al., 2020)).

Focal loss performance on OOD data For the OOD data, we find two interesting results. First, TST
generally performs best both in terms of AUROC and FPR95, regardless of the loss function combination
(even the CE baseline model (CE-B) has the lowest FPR95 score for the TST). This shows the superiority
of TST on OOD data. In contrast, V-TST (m = 1) performed worst in all configurations for both AUROC
and FPR95. Second, among the TST models, using adaptive focal loss in both stages of training (FLA2)
reaches the highest AUROC and lowest FPR95 rate overall, outperforming both the CE baseline and the
other focal loss combinations. Thirdly, the combination of adaptive focal loss in the first stage and CE loss
in the second stage (V10-FLA-CE, V1-FLA-CE, FLA-CE) mostly worsens the performance (both AUROC
and FPR95) compared to using the adaptive focal loss in the first and second stages of training (V10-FLA2,
V1-FLA2, FLA2) or the CE baseline (CE-B).

Table 9: Test metrics and evaluation metrics on in-distribution data for the effect of including Focal Loss
(FL) and Adaptive Focal Loss (FLA) in the training procedure. The first loss before + sign indicates the
loss used for training the base model prior to TST and V-TST. We used a latent dimension of Z = 128.

Model Loss Model Name Accuracy ECE MCE Train NLL Test NLL
V-TST, m=10 3FL V10-FL2 91.77+0.03 11.72+0.148 20.944+0.934 0.2016+0.0018 0.369440.0016
V-TST,m=1 3FL V1-FL2 87.714+0.11 11.08+0.482 24.35+1.850 0.3128+0.0069 0.5185+0.0054
TST 3 FL FL2 91.75+0.03 5.90+0.384 29.24+8.359 0.12614+0.0043 0.2796+0.0034
Temp. WRN 3 FL FL-TS 91.78 1.89 10.25 0.0880 0.2524
WRN 3 FL FL-B 91.78 1.57 27.45 0.0688 0.2604
V-TST, m =10 5-3 FLA V10-FLA2 92.02+0.03 11.8240.151 23.31£1.625 0.1964+0.0016 0.369240.0012
V-TST, m=1 5-3 FLA V1-FLA2 87.731+0.08 12.08+0.327 23.75+0.839 0.3181+0.0044 0.5259+0.0031
TST 5-3 FLA FLA2 92.061+0.04 5.96+0.340 27.731+6.487 0.119940.0035 0.2735%0.0030
Temp. WRN 5-3 FLA FLA-TS 92.14 1.42 81.25 0.077 0.242
WRN 5-3 FLA FLA-B 92.14 1.97 22.83 0.0602 0.2539
V-TST, m =10 CE + 3 FL V10-CE-FL 92.40+0.02 9.84+0.235 26.9246.064 0.1659+0.0022 0.33164-0.0020
V-TST,m=1 CE + 3FL V1-CE-FL 89.2610.08 10.65+£0.403  25.35+2.224 0.2667+0.0037 0.4703+0.0034
TST CE + 3 FL CE-FL 92.54 + 0.02 3.21 + 0.255 27.50 &+ 4.491 0.0822 + 0.0021 0.2483 + 0.0024
V-TST, m =10 53 FLA +CE V10-FLA-CE 92.04+0.01 0.80+0.045 20.33+1.981 0.077540.0004 0.2861+0.0008
V-TST,m=1 53FLA+ CE VI-FLA-CE 90.11 + 0.04 1.52 £ 0.129 2042 + 6.653  0.1351 £ 0.0012 0.4101 + 0.0038
TST 5-3 FLA + CE FLA-CE 92.134+0.03 2.104+0.032 14.92+2.292  0.0595+0.0001 0.2529+0.0004
V-TST, m=10 CE V10-CE2 92.44+0.02 1.38+0.100 21.26+6.44 0.0655+0.0004 0.2579+0.0017
V-TST,m=1 CE V1-CE2 90.9+0.03 1.784+0.148 24.80+8.981 0.1116+0.0012 0.37324+0.0041
TST CE CE2 92.55+0.01 3.344+0.016 24.68+3.883 0.0532+0.0002 0.2516+0.0007
Temp. WRN CE CE-TS 92.52 4.7 25.2 0.0616 0.3024
WRN CE CE-B 92.52 6.06 36.28 0.1031 0.5124
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Table 10: Evaluation metrics on shifted and OOD data for the effect of including Focal Loss (FL) and
Adaptive Focal Loss (FLA) in the training procedure. The first loss before + sign indicates the loss used for
training the base model prior to TST and V-TST. We used a latent dimension of Z = 128.

Model Loss Name Shift ECE Shift MCE OOD AUROC OOD FPRY95
V-TST, m =10 3FL V10-FL2 3.92+0.39 6.074+0.42 0.799+0.004 0.768+0.003
V-TST, m=1 3 FL V1-FL2 2.96%0.15 4.97+0.31 0.701+0.002 0.850+£0.003
TST 3 FL FL2 2.44+0.10 4.751+0.29 0.876+0.001 0.672+0.004
Temp. WRN 3 FL FL-TS 6.28 11.89 0.875 0.701
WRN 3 FL FL-B 11.93 22.21 0.866 0.740
V-TST, m =10 5-3 FLA V10-FLA2 4.13+0.36 6.7940.42 0.828+0.004 0.714+0.004
V-TST, m=1 53 FLA V1-FLA2 2.50£0.15 4.284+0.29 0.735+0.003 0.827+0.005
TST 5-3 FLA FLA2 2.75%0.06 5.53£0.22 0.887+0.001 0.625+0.004
Temp. WRN 5-3 FLA FLA-TS 7.06 13.36 0.88 0.65
WRN 5-3 FLA FLA-B 12.74 24.30 0.88 0.69
V-TST, m=10 CE + 3 FL V10-CE-FL 3.92+0.39 6.074+0.42 0.799+0.004 0.768+0.003
V-TST, m=1 CE+ 3FL V1-CE-FL 2.25+0.27 4.20+0.51 0.745+0.004 0.810+£0.005
TST CE + 3 FL CE-FL 2.4440.10 4.75+0.29 0.876+0.001 0.672+0.004
V-TST, m=10 5-3FLA 4+ CE VI10-FLA-CE 10.01+0.16 19.66+0.37 0.825+0.002 0.727+0.003
V-TST, m=1 53FLA+ CE VI-FLA-CE 12.65+ 0.32 19.19 + 0.56 0.762+0.002 0.790+0.003
TST 5-3 FLA + CE FLA-CE 11.75+0.07 23.36%0.16 0.877+0.001 0.676+0.002
V-TST, m=10 CE V10-CE2 9.414+0.3 20.3340.66 0.851+0.003 0.702+£0.002
V-TST, m=1 CE V1-CE2 12.53+0.29 20.19+0.56 0.766+0.003 0.778+0.003
TST CE CE2 13.09+0.04 29.3240.10 0.883+0.001 0.688+0.003
Temp. WRN CE CE-TS 16.44 37.93 0.885 0.698
WRN CE CE-B 20.06 45.62 0.874 0.708

Reliability diagrams Figure [2[shows the ECE plots for the base and V-TST models trained with CE loss
and the 5-3 focal loss in both stages. Starting from an uncalibrated WRN model trained with CE loss in
(CE-B), V-TST in the second stage leads to an improved calibration (V10-CE2). |2¢|shows that the base
WRN that was trained with adaptive focal loss (FLA-B) is already better calibrated than the base WRN
model trained with CE (CE-B) in The second training stage with adaptive focal loss makes the model
underconfident in its predictions but also evens out the overconfidence it showed for images that were around
35% certain. For adaptive focal loss on the shifted dataset (2d), both the base WRN (FLA-B) and V-TST
(V1-FLA-B) models perform worse than on in-distribution data, with a decrease in accuracy. However, for
the V-TST model (V1-FLA-B), this results in its confidence aligning more closely with its accuracy, whereas
the base model becomes overconfident.

6 Conclusion

In this paper, we aimed to reproduce the main results from [Jordahn & Olmos| (2024)). We confirmed their
findings that decoupling the training of feature and classification layers improves the calibration of a WRN-
28-10 model on CIFAR10 and CIFAR100, with slightly varying effects on CIFAR100. Additionally, we
successfully reproduced two of their ablation studies — the CNN ablation study and the ViT fine-tuning
ablation study. To further explore two-stage training, we conducted additional ablation studies, examining
its performance on different model architectures, the impact of the second-stage network architecture, and
the effect of varying the number of MC samples used during second-stage training. We found that the
effects of improved calibration of two-stage training transfer to other similar model architectures, namely
ResNet50 and EfficientNet-B5. For the second stage architecture, we observed the importance of balancing
the number of layers in the MLP with the latent dimension Z used. We found that using more MC samples
during training did not affect the calibration performance of the models positively.

Finally, we followed the suggestion of|Jordahn & Olmos|(2024]) to combine their method with other calibration
methods and investigated whether using it together with focal loss could further improve calibration. Overall,
we found that the focal loss base models (FL-B, FLA-B) are better calibrated than the CE base models (CE-
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Figure 2: ECE plots for models with CE and focal loss. (a) In-distribution ECE plot of a V-TST trained
model (Z =128, m = 10, V10-CE2) and the base WRN trained on CIFAR10 with CE loss (CE-B). (b) Same
models with CE loss evaluated on shifted data CIFAR10-C. (c) In-distribution ECE plot of a V-TST trained
model (Z = 32, m = 1, VI-FLA-B) and the base WRN trained on CIFAR10 with focal loss (FLA-B). (d)
Same models with focal loss evaluated on shifted data CIFAR10-C.

B), as expected. However, using a second stage training with focal loss on top of the focal loss base models
(V10-FL2, V1-FL2, FL2 or V10-FLA2, V1-FLA2, FLA2) performs worse than the focal loss base models
alone (FL-B, FLA-B) and the baseline CE two-stage training models (V10-CE2, V1-CE2, CE2). In contrast,
using CE loss on top of the focal loss base model (V10-FLA-CE, V1-FLA-CE, FLA-CE) in the second
training stage outperforms both the focal loss base models (FL-B, FLA-B) and the baseline CE two-stage
training model (V10-CE2, V1-CE2, CE2, CE-TS, CE-B). This was true regardless of whether adaptive or
constant focal loss was used. Interestingly, for shifted data, this pattern is partly reversed. Including focal
loss in either the first, the second or both stages improved both ECE and MCE compared to the CE baseline
model (CE-B). Models using focal loss were almost always better calibrated than the CE two-stage training
models (V10-CE2, V1-CE2, CE2). Especially the models that used focal loss in the second stage (regardless
of whether they also used it in the first stage) performed significantly better on shifted data than the
corresponding two-stage training CE model. The combination that had performed best on in-distribution
data, namely using a CE loss on top of the focal loss base model (V10-FLA-CE, V1-FLA-CE, FLA-CE)
performed worst on shifted data compared to the other models that integrate focal loss, reaching similar
or higher ECE and MCE values than the corresponding CE baseline models. Thus, we find the interesting
pattern that using focal loss in the first stage of training is beneficial for in-distribution data whereas for the
shifted data using focal loss in the second or both stages outperforms the CE baseline. Given our obtained
results, the best results on in-distribution data can be achieved when training a model with focal loss in the
first stage and using CE in the second stage in a V-TST fashion (V10-FLA-CE, V1-FLA-CE). For OOD
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data we noticed that for all models TST reaches the highest calibration while V-TST (m = 1) results in the
lowest calibration.

7 Future Work

Future extensions should investigate possible explanations as to why using focal loss for both stages of
training decreased model calibration compared to the focal loss base model. One possible next step could
be to apply early stopping based on ECE (as has been tested by Mukhoti et al.|(2020])) during the second
stage of training to avoid an over-regularization of the weights. It should also be tested whether the focal
loss results we obtained are transferable to other model architectures apart from WRN-28-10. Another idea
would be to experiment further with the latent dimension like trying higher latent dimensions for the MLP
in the second stage as we only used either Z = 128 or Z = 32. It would also be interesting to see if a similar
result pattern would be obtained for other datasets with more classes like CIFAR100.

Additionally, we would be interested to see further work investigating how the TST and V-TST perform
when combined with other implicit regularization techniques such as OKO (Muttenthaler et al., [2023|) which
had also been suggested in|Jordahn & Olmos| (2024)). They claimed that their method is not an alternative to
other techniques but rather complements them, however, our results show that combining TST and V-TST
with other calibration techniques is not always straightforward but requires careful experimental design.
Similarly, it could be explored how calibration is affected by using either more or less data augmentation
than has been used by |[Jordahn & Olmos| (2024)) and us.

8 Challenges and Limitations

During the replication study we encountered some challenges in replicating the results reported in |[Jordahn
& Olmos| (2024]) due to missing information and incomplete code, which required us to re-implement parts of
it and make assumptions about the training hyperparameters. For instance, details on the MLP design for
the CNN in TST and V-TST, choices for latent dimension, the seed used for training the base WRNs, and
information regarding the pre-trained model for ViT fine-tuning were not provided. Additionally, the model
structures reported in Tables 1 and 2 were not immediately apparent. Variations in the latent dimension Z
for each model could only be seen by inspecting and comparing all results in the Appendix in detail.

The theoretical justification for the proposed methods by Jordahn & Olmos|(2024) could have been discussed
in more detail. While the authors provide some intuition regarding why the decoupled learning of feature
and classification layers improves calibration, they offer limited reasoning for selecting the latent dimension.
Although they conduct multiple experiments with different Z, the reasoning behind the choice of latent
dimension is not fully explained, even though different values of Z lead to significant variation in the results.
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A Datasets

Table 11: Overview of used datasets and corresponding preprocessing steps.

Dataset # Images  # Classes Size Preprocessing Implementation
CIFARI10 60,000 10 32x32 | Normalization, Random Crop, Random Horizontal Flip PyTorch
CIFAR100 60,000 100 32x32 | Normalization, Random Crop, Random Horizontal Flip PyTorch
SVHN 600,000 10 32x32 Normalization PyTorch
CIFAR10-C 60,000 10 32x32 Corruption Added Downloaded ]
CIFAR100-C 60,000 100 32x32 Corruption Added Downloaded ]
Tiny ImageNet 100,000 200 64x64 Resize (224x224), Normalization GitHub Repori
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B Network architeture details

ViT architecture As the original study does not specify which weights or latent dimension they used,
we decided to use the weights of google/vit-base-patch16-224-in21k from the transformers package which
corresponds to the ViT-B/16 architecture and used the latent dimension Z = 128 for both V-TST and TST.
As Tiny ImageNet images are too small for the ViT, we had to resize them before using them as an input to
the model. We used the ViTForImageClassification and the ViTModel class from the transformer package
to include the ViT in the code base of the original paper.

ResNet-50 and EfficientNet-B5 architecture The architectures used for ResNet-50 and EfficientNet-
B5 have been adapted to the smaller input image size of the CIFAR10 dataset. For ResNet-50, the parameters
of the first convolutional layers have parameters: stride 1, padding 1, kernel size of 3 x 3. No max-pooling

is performed after the first convolution and global average pooling is performed over a smaller feature map
of 4 x 4.

For EfficientNet-B5, the first convolutional layer has a stride and padding of 1 and uses a kernel size of 3 x 3.
Similarly, the first down-sampling layer following the first convolutional layer is removed and the feature
map of the global average pooling is reduced to 2 x 2.

For both ResNet and EfficientNet the number of output classes is changed to 10.

MLP Head Modifications For the single-layer configuration, we simply re-initialized the final FC layer.
For the four-layer configuration, we extended the original three-layer MLP to have dimensions [output, 6Z],
[6Z, 3Z], [3Z, Z] and [Z, #classes].

C Additional Results

Table 12: Test metrics on in-distribution data for the effect of including Focal Loss (FL) and Adaptive Focal
Loss (FLA) in the training procedure. The first loss before + sign indicates the loss used for training the
base model prior to TST and V-TST.

Dataset Model Loss Accuracy ECE MCE Train NLL Test NLL

CIFAR10 V-TST, m=10 3FL+ CE 91.8840.02 0.77+0.054 20.60+2.488 0.0821+0.0006 0.2840+0.0011
V-TST,m=1 3FL+ CE 89.82+0.07 152+ 0.076 25.68 +£8.816 0.1405 + 0.0017 0.4124 + 0.0023
TST 3FL + CE 91.86+0.01 2.0340.020 18.48+3.253 0.0652+0.0002 0.2577+0.0005

D Main Results from the Authors

Table 13: Test metrics on in-distribution data test-sets from |[Jordahn & Olmos| (2024). For V-TST, m =1
and m = 10 indicate using 1 and 10 samples in the MC approximation, respectively. Temp. WRN is the
temperature scaled WRN. Bolded fonts indicate the best-performing model for given dataset.

Dataset Model Accuracy ECE MCE Train NLL Test NLL
V-TST, m =10 92.584+0.02 1.27+0.101  28.48+9.006 0.0671+0.0004  0.26174+0.0013
V-TST, m =1 91.09+0.06 1.524+0.144  14.77+ 1.781 0.1125+0.001 0.3732+0.0043

CIFAR10  TST 92.59+0.02 2.1840.353  14.89+2.249 0.0573+0.0002 0.2482+0.004
Temp. WRN 92.53 4.4 26.77 0.063 0.2965
WRN 92.53 5.88 35.84 0.1038 0.4944
V-TST, m =10 71.93+0.04 5.83+£0.143  14.03+0.59 0.078=+0.001 1.20240.0052
V-TST, m=1 69.18-+0.09 7.34+0.291 16.8540.694 0.1094+0.0009  1.431540.0104

CIFAR100 TST 71.26+0.06 7.07+0.084 16.7441.942 0.0887+0.0003  1.1331+0.002
Temp. WRN 71.55 15.24 33.21 0.0739 1.3708
WRN 71.56 21.74 82.08 0.1161 2.2588
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Table 14: Evaluation metrics on shifted data and OOD data from |[Jordahn & Olmos| (2024]).

Dataset Model Shift ECE Shift MCE OOD AUROC OOD FPR95
V-TST, m =10 10.41+0.22  22.924+0.57 0.821+£0.003 0.751+£0.002
V-TST, m=1 12.8940.3 21.01+0.58 0.722+0.005 0.82440.006

CIFAR10  TST 11.62+0.75 25.39+1.74 0.874+0.002 0.699+0.009
Temp. WRN 16.45 36.77 0.872 0.746
WRN 20.27 45.06 0.891 0.653
V-TST, m =10 14.3+0.23 26.96+0.46 0.791+£0.002 0.809+0.004
V-TST, m =1 16.8+0.4 30.72+0.63 0.783+£0.004 0.82240.006

CIFAR100 TST 17.44£0.08 28.51+0.14 0.823+0.002 0.764+0.006
Temp. WRN 29.58 47.67 0.778 0.816
WRN 40.47 60.38 0.785 0.892
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