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Abstract

Federated Learning (FL) marks a transformative approach to distributed model training by
combining locally optimized models from various clients into a unified global model. While
FL preserves data privacy by eliminating centralized storage, it encounters significant chal-
lenges such as performance degradation, slower convergence, and reduced robustness of the
global model due to the heterogeneity in client data distributions. Among the various forms
of data heterogeneity, label skew emerges as a particularly formidable and prevalent issue,
especially in domains such as image classification. To address these challenges, we begin
with comprehensive experiments to pinpoint the underlying issues in the FL training pro-
cess, such as gradient instability and the emergence of sharp minima in the global model,
both of which contribute to performance inconsistencies. Based on our findings, we in-
troduce an innovative dual-strategy approach designed to effectively resolve these issues.
First, we introduce an adaptive loss function for client-side training, meticulously crafted to
preserve previously acquired knowledge while maintaining an optimal equilibrium between
local optimization and global model coherence. Secondly, we develop a dynamic aggregation
strategy for aggregating client models at the server. This approach adapts to each client’s
unique learning patterns, effectively addressing the challenges of diverse data across the
network. Our comprehensive evaluation, conducted across three diverse real-world datasets,
coupled with theoretical convergence guarantees, demonstrates the superior efficacy of our
method compared to several established state-of-the-art approaches. The code can be found
at |https://anonymous.4open.science/r/FedDUAL-88AB/README.md.

1 Introduction

Federated learning (FL) has revolutionized collaborative model training by enabling multiple clients to
contribute to a global model without compromising the privacy of their local data (McMahan et al.l 2017)).
This decentralized strategy avoids the need for sending data to a central server, thus maintaining data
privacy. As the digital landscape evolves, with an increasing number of distributed data sources emerging
from mobile devices, healthcare institutions, and Internet of Things (IoT) networks, FL has emerged as a
pivotal solution for training sophisticated deep networks across geographically dispersed and heterogeneous
environments (Bonawitz et al., 2016, |Sahoo et al.| (2024b), (Hu et al.l[2024)). However, a significant practical
obstacle encountered during federated training is data heterogeneity in the form of skewness in labels and
quantity of the data across various clients (Kairouz et al. [2021)), (Li et al., 2020). Diverse user behaviors
can lead to significant heterogeneity in the local data of different clients, leading to non-independent and
identically distributed (non-IID) data. This variability can introduce biases in model training, leading to
unstable convergence and potentially degrading the model’s performance or making it counterproductive (Li
et al} [2022), (Zhao et al., 2018). While FedAvg (McMahan et al [2017) is effective and widely used, it often
falls short in accuracy and convergence with static aggregation methods. These methods combine model
updates from different clients in a fixed manner, failing to adapt to heterogeneous data distributions and
client drift, as discussed in (Karimireddy et al.l 2020]).
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Previous studies have addressed the issue of client drift by implementing penalties for deviations between
client and server models (Li et al., [2020), (Li et al.| 2021a)), employing variance reduction techniques during
client updates (Karimireddy et all [2020)), (Acar et al.| [2021)), or utilizing novel aggregation methods on the

server side (Chen et al 2023)), (Chowdhury & Halder] 2024]).

1.1 Motivation

Prior studies by [Yashwanth et al.| (2024), Hu et al.| (2024) have
demonstrated that in non-IID scenarios, federated models tend
to converge to ’sharp minima’, resulting in significant perfor-
mance degradation and compromised generalizability. In this
study, we investigate the root causes of this phenomenon and
propose a novel solution to mitigate its effects. Our study
begins with a detailed analysis of loss landscapes for Fed Avg-
trained models across IID and non-IID data distributions. Fig-
ure [I] visually depicts the loss landscapes of two models on
the FMNIST dataset with systematic parameter perturbations.
The model trained on ITD data exhibits a notably smoother and
wider valley in its loss landscape, suggesting greater robust-
ness and better generalization. In contrast, the model trained
on non-IID manifests sharper peaks and narrower valleys, indi-
cating higher sensitivity to parameter variations and potential
overfitting. These visualizations offer strong evidence that in
the presence of non-IID data, the FedAvg algorithm achieves
suboptimal generalization. Motivated by this observation, we
investigate the underlying mechanisms by analyzing gradient
norms to identify which parts of the neural network are most af-
fected by data heterogeneity. Our findings, presented in Fig. 2]
reveal a notable pattern: in non-IID scenarios, the gradient
norms of the final layers, including the classification layer, ex-
hibit significant amplification compared to their IID counter-
parts. Such amplification leads to model instability, impedes
convergence, and ultimately compromises the generalizability
of the federated model. Our investigation suggests that ef-
fective federated training in non-IID environments necessitates
targeted adjustments during server-side aggregation, particu-
larly for these highly affected layers, to achieve performance
comparable to IID settings.

This prompts one critical question: Can static aggregation
methods effectively address severe non-IID data distributions
across clients while maintaining higher convergence, perfor-
mance, and generalizability in federated models? The answer
is decidedly negative. Static aggregation methods inherently

Figure 1: Visualization of the loss surface
for the global model trained on the FM-
NIST dataset using the FedAvg algorithm:
(a) depicts the loss landscape when trained
on IID data, while (b) illustrates the land-
scape for non-1ID data distribution.

struggle with the dynamic heterogeneity present in federated networks, where adjusting parameters based
on client distributions and performance in each communication round is crucial. Although incorporating
predetermined parameters into the aggregation process may provide some partial mitigation, these methods
fail to address the complex challenges posed by non-1ID data distributions. A more dynamic and nuanced
approach is necessary to effectively manage these multifaceted issues. To address this challenge, we apply
dynamic aggregation to the model’s final layers, where gradient norms fluctuate significantly in non-IID
scenarios, while using traditional aggregation (FedAvg) for the lower layers. For dynamic aggregation, we

leverage the concept of Wasserstein Barycenter (Agueh & Carlier| 2011)), derived from optimal transport

theory, to integrate client-specific learning behaviors in these affected layers. By minimizing discrepancies
from non-IID data, the Wasserstein Barycenter helps to align gradients from diverse clients, offering precise
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model updates. This approach ensures fair aggregation, adapts to data heterogeneity, reduces bias, and
enhances robustness, ultimately leading to more stable model convergence and improved generalization.
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Figure 2: Comparison of gradient norms between models trained on IID and non-IID datasets using the
FedAvg algorithm. (a) FMNIST dataset using LeNet model. (b) CIFAR10 dataset using VGG16 model.

In addition to the server-side dynamic aggregation, we introduce an adaptive loss function for local training
on the client side. This function allows clients to effectively explore the minima on their local datasets
while preventing overfitting, thereby enhancing local optimization. Simultaneously, it preserves the global
knowledge of the federated model, ensuring that the benefits from all participating clients are integrated.
By incorporating a regularization parameter, 3, the local loss function dynamically balances the trade-offs
between local and global objectives. The contributions of this paper are as follows:

e We introduce FedDUAL, an innovative dual-strategy approach designed to effectively develop a
robust and generalized federated model in highly heterogeneous data environments.

e We introduce an adaptive loss function for client-side training to balance the trade-offs between local
and global objectives.

o Instead of straightforward server-side averaging, we propose a dynamic aggregation technique that
uses Wasserstein Barycenter to reduce the effects of non-11D data by integrating the learning behav-
iors of participating clients.

o We conducted extensive experiments on three real-world datasets, demonstrating significant perfor-
mance improvements over state-of-the-art methods and offering theoretical convergence guarantees
for both convex and non-convex scenarios.

2 Related Work

The landscape of FL research has been significantly shaped by efforts to address data heterogeneity chal-
lenges, yielding a diverse array of innovative solutions. These approaches can be divided into three primary
categories: (1) client drift mitigation strategies, which refine local client objectives to foster better align-
ment with the global model (Li et al., 2021a), (Karimireddy et al., 2020), (Acar et al. |2021), (Luo et all
[2021), (Li et al., 2023)) (2) aggregation scheme optimization, aimed at enhancing server-side fusion of model
updates (Hsu et al 2019), (Lin et al.l [2020), (Wang et al.,|2020b), (Wang et al.,[2020a)) and (3) personalized
FL, which tailors models to individual clients (Fallah et al., 2020), (Sattler et al., [2020]), (Bui et all, [2019).
Our research primarily focuses on two interconnected aspects of FL: mitigating client drift and optimizing
server-side aggregation, and we will discuss the same in the literature review.

McMahan et al.| (2017)) introduced FL as an extension of local Stochastic Gradient Descent (SGD) (Stich
2019)), enabling increased local gradient updates on client devices before server synchronization and signif-
icantly reducing communication costs in identically distributed data settings. However, the method faces
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considerable obstacles when dealing with non-IID scenarios. Since then, various methods have emerged to
address the challenge of data heterogeneity in FL (Li et al., 2019)), (Yang et al.,|2021)), (Lin et al.,|2018]), (Hsu
et al., 2019)). FedProx (Li et al.,|2020) incorporates a proximal regularization term to the optimization func-
tion to reduce model drift and addresses client stragglers. However, this term can also lead to local updates
being biased towards the previous global model, which may result in misalignment between local and global
optima. Building on previous work, |Acar et al. (2021) introduced a dynamic regularization term to align
local updates more closely with global model parameters, effectively reducing client drift caused by local
model overfitting. [Sun et al.| (2023)) further advanced the field with a momentum-based algorithm that ac-
celerates convergence by combining global gradient descent with a locally adaptive optimizer. Similarly,
several studies use variance reduction techniques, such as SCAFFOLD (Karimireddy et al.,2020). However,
this approach often results in higher communication costs due to the transmission of additional control vari-
ates (Halgamuge et al., [2009). FedPVR (Li et al.l |2023)) addresses these limitations by reassessing Fed Avg’s
performance on deep neural networks, uncovering substantial diversity in the final classification layers. By
proposing a targeted variance reduction strategy focused solely on these final layers, FedPVR outperforms
several benchmarks. MOON (Li et al.| 2021a) introduces an innovative model-contrastive framework leverag-
ing a contrastive loss to align local client representations with the global model, effectively mitigating client
drift, and enhancing convergence, particularly in challenging non-IID environments. |[Luo et al.| (2021) intro-
duced CCVR (Classifier Calibration and Variance Reduction), which employs a classifier regularization and
calibration method to enhance federated learning performance. CCVR’s approach involves fine-tuning the
classifier using virtual representations sampled from an approximated Gaussian mixture model. |Shi et al.
(2023) introduced a novel differentially private federated learning (DPFL) algorithm that integrates the
Sharpness-Aware Minimization (SAM) optimizer to enhance stability and robustness against weight pertur-
bations. By generating flatter loss landscapes and reducing the impact of differential privacy (DP) noise,
it mitigates performance degradation and achieves state-of-the-art results, supported by theoretical analysis
and rigorous privacy guarantees. Fani et al.| (2024) proposed FED3R, leveraging Ridge Regression on pre-
trained features to tackle non-IID data challenges, effectively mitigating client drift, enhancing convergence,
and optimizing efficiency in cross-device settings.

Another line of research targets optimizing server-side aggregation in FL. For instance, [Hsu et al.| (2019)
investigated the impact of non-IID data on visual classification by creating datasets with diverse distributions
and found that increased data heterogeneity negatively affected performance, leading them to propose server
momentum as a potential solution. FedNova (Wang et al.| [2020bf) addressed the problem of objective
inconsistency due to client heterogeneity in federated optimization by introducing a normalized averaging
technique, which resolves this inconsistency and ensures rapid error convergence. Addressing the limitations
of traditional parameter averaging methods, [Lin et al. (2020) introduced ensemble distillation for model
fusion. This approach allows for the flexible aggregation of heterogeneous client models by training a central
classifier on unlabeled data, using the outputs from the client models as guidance. FedMRL (Sahoo et al.
2024a)) introduced a novel framework by using a loss function that promotes fairness among clients and
employed a multi-agent reinforcement learning for personalized proximal terms , and a self-organizing map
to dynamically adjust server-side weights during aggregation.

3 Definitions
In this subsection, we summarize the key mathematical definitions used in the paper to ensure clarity.

Kullback-Leibler (KL) Divergence. The KL divergence measures how one probability distribution
diverges from a second reference distribution. For two distributions P and @ over the same probability
space, it is defined as:

P(i)
Qi)

Diu(P1|Q) =} P(i)log (1)

Wasserstein Distance. The Wasserstein distance (also known as the Earth Mover’s Distance) measures
the optimal cost of transporting mass to transform one probability distribution into another. For two
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distributions p and v, the p-Wasserstein distance is defined as:

Wyt = (Lt [ ater dv(x,w)l/p, )

YEL (k,v)

where I'(u, v) denotes the set of all couplings with marginals ¢ and v, and d(-,-) is a ground metric. We
leverage the Wasserstein distance and its barycenter to aggregate client models in a manner that accounts
for data heterogeneity.

Wasserstein Barycenter. Given distributions {u 1 | and weights {\}/ |, the Wasserstein barycenter
i is defined as the distribution minimizing the weighted sum of Wasserstein distances:

K
= argmyinZ)\kWp(uk,l/). (3)
k=1

This barycenter allows us to aggregate the last-layer representations of client models more effectively than
simple averaging, improving robustness to non-I1D data.

4 Methods and Materials

We consider a practical FL scenario with non-IID data distribution among K independent clients, each
with local training data Dg(z,y), where (z,y) denoting the data points. We initialize the global model
weights 69 and share it to the participating clients. The clients download the weighs from the server and
train it using their local dataset Dy(x,y). The updated model parameters 0}, from each client k for rth
communication round are uploaded to the server to aggregate into a global model #2. Our objective is to
develop a robust global model by collaboratively training local models across clients, even under varying
heterogeneous conditions. To formalize, we define the optimal global model 6* as follows:

. ; _ 1
0" = argHmmF(G), F(0) := Ek fx(0), (4)
where fi(0) is defined in Eq.

fe(0) = Btz yy~D, [(fo(2), y)], (5)

where 6 represents the global model parameters, fy(z) is the model’s prediction, and ¢ is the loss function.

4.0.1 Client Side Update.

At the beginning of each round ¢, the server randomly selects a subset S; C K of clients to participate in the
federated training process and subsequently shares the current global model 69 to these participating clients.
Each client updates its local model by initializing with the global model parameters (6} = 9;) and then
updates its local model by minimizing the local objective function. For local training, we have developed
an adaptive objective function that balances local loss with the divergence between local and global models.
The extent of this divergence is quantified using the Kullback-Leibler (KL) divergence (Csiszar, [1975)), which
effectively compares the probability distributions of the local model weights p*(w) with the global model
weights ¢(w). The KL divergence is mathematically defined in Eq. m To obtain the probability distributions
of the local and global model weights, we first flatten the weights and then apply the softmax function. This
process yields the desired probability distributions (p), as specified in Eq. [6]

_ exp(flatten weights)
b= > exp(flatten weights)

(6)
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D (¥ llg) = - (w) log (Z;fzj)) ) !

where pf and ¢; are the probabilities associated with the i*"* component of the weight vectors. The local model
must excel on local data while maintaining alignment with the global model to enhance overall generalization.
This balance between minimizing local loss and aligning with the global model is defined as local adaptive
function fi, () in Eq.

Fr(0) = (1= B) = fi(0) + B * DxL(p"[|q), (8)

where f.(0) is cross-entropy loss for k' client and j3 is a regularization parameter and should be adaptive
to account for the performance discrepancy between the local and global models. When the local model
substantially outperforms the global model, 5 should increase to enforce greater alignment. Conversely, if
the models perform similarly, 5 should decrease, allowing the local model to focus more on local optimization.
The definition of 3 is given in Eq. [0}

B= U(A{cocal - Algclobal) (9)

k

where o is the sigmoid function, AF | represents the local model accuracy, and Agioba

| is the global model
accuracy for client k. We calculated the global model’s accuracy .A’g“lobal for client k by evaluating it on the
training data of client k& prior to performing local updates in the current round. Incorporating the adaptive
parameter S in Eq. |8 the adaptive loss function for client & is represented in Eq.

k k k k
‘cadaptive - (1 - (U(Alocal - Aglobal)) * ‘Clocal

. . (10)

+0(Aloear — Aglobal) * Dxw(p"[|g)
After defining the adaptive loss function for each client, we optimize the local model parameters using
stochastic gradient descent (SGD). The gradient update for the local model weights wy based on the adaptive
loss function is given in Eq. [T}

w/tc+1 = ’LUZ - nvﬂ)’cgdaptivc(wfﬂ)v (11)
where 7 is the local learning rate. Expanding the gradient term Vwﬁ,’jdaptive(w,i), we obtain Eq.

vﬂ)‘clsdaptive(wi) = (1 - (O—(A{Cocal - Aglobal))vmﬁfocal(wz) + O—(A{Cocal - Aglobal)vaKL (pkHQ) (12)

The KL divergence term, o(AF ., — Aglobal)vaKL (p*|1q) in Eq. acts as a regularizer to keep the local
model gradients aligned with the global model gradients, thereby preserving model coherence despite non-
IID data. The adaptive coefficient 5 (Eq. E[) is dynamically computed as a function of the performance gap
(AF . — Aglobal). When the global model outperforms the local one, 8 tends toward 0 (via the sigmoid
function), thus increasing the weight on the local loss term (1 — 3) and enabling the client to focus more
on its local data. Conversely, when the local model performs better than the global, 8 increases toward
1, strengthening the KL term to preserve global knowledge rather than blindly aligning the models. The
rationale is that superior local accuracy often reflects overfitting to non-IID client data. A higher ( in
such cases regularizes the local model by constraining it to remain close to the global parameter manifold,
improving overall generalization. Conversely, when the global model generalizes better, a smaller § allows the
client to emphasize local learning. For example, a client trained only on classes 0-4 may achieve high local
accuracy but would poorly generalize to unseen classes 5-9. The higher § and associated KL regularization

preserve the global model’s multi-class knowledge, thereby preventing catastrophic forgetting.

Note that we employed KL divergence on the softmax of the parameters to capture distributional alignment
between local and global models rather than direct numerical differences. By transforming flattened pa-
rameters into probability distributions through softmax, we interpret model weights as expressing relative
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importance rather than absolute magnitude. KL divergence thus quantifies how the structural configuration
of model parameters diverges between clients and the server. Compared to alternatives, logit-based distances
capture only output-level similarity and overlook the underlying parameter drift that degrades generalization.
Layer-wise representation distances would require computing activations on a reference dataset, introducing
computational overhead and ambiguity regarding data selection in heterogeneous settings. Similarly, the
L2 parameter distance (as in FedProx) reflects magnitude differences but not distributional structure which
is an essential factor for understanding model behavior. Empirically, we find KL divergence advantageous
because its asymmetry aligns with the local to global adaptation objective and its bounded nature ensures
stable gradients during optimization.

4.0.2 Server Side Update.

After obtaining the weights from the participating clients at round ¢, the server calculates the Wasserstein
Barycenter to effectively aggregate the weights of the last layers of the client models. Computing exact
Wasserstein Barycenter can be computationally expensive, so we have approximated it using the Sinkhorn-
Knopp algorithm for efficient computation. We consider the local model weights as distribu-
tions and assign equal importance to each client in the computation of the Wasserstein Barycenter (). This
barycenter represents the distribution that minimizes the sum of Wasserstein distances to the individual
client gradient distributions, as formally defined in Eq.

K

i — argmin 3 AV (e, ) (13)
k=1

where \j are weights corresponding to the importance or reliability of the client k. The Wasserstein distance
W (g, prj) between two gradient distributions ju;, and p; of clients j and k is defined in Eq.

W(umuj):( inf /Xxxd(wvy)pdv(x,y)y/p (14)

YEL (b pa5)

where I'(px, £;) denotes the set of all couplings (or joint distributions) v on X x X’ with marginals p; and
; respectively, and d(z,y) is the distance between points  and y in the metric space X. After that, we use
Sinkhorn-Knopp algorithm to calculate the Wasserstein Barycenter.

This barycenter is computed iteratively, starting by calculating a scaling factor ~ using Eq. followed by
Eq.

7 = exp (—W) (15)

_ . Zz AiYpi

Pnew = =~ 16
Zi )\i%‘ ( )

where p is the current estimate of the barycenter, p; refers to the i*" client’s gradient distribution, € is

a small positive constant, and the iterations continue until convergence. After few iterations, we get the
Wasserstein barycenter that is used to update the global model weights. We update the the global model
weights for the last layers by substracting them from the calculated Wasserstein barycenter for effectively
aggregating the updates from the last layers. Our gradient analysis (Fig. [2) indicates that non-IID data
disproportionately amplifies gradient norms in the final layers, leading to heightened instability compared
to IID conditions. Traditional averaging methods aggregate client updates in Euclidean space without
accounting for the underlying distributional differences across clients. The Wasserstein Barycenter addresses
this limitation by operating in the space of probability distributions, finding the optimal aggregation point
that minimizes distributional discrepancies (Wasserstein distances) to all client updates. This geometry-
aware approach provides more robust aggregation by explicitly accounting for heterogeneous client learning
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behaviors, reducing the bias and instability caused by non-IID data. The algorithm of proposed method
FedDUAL is given in the Algorithm The proof of the convergence for both convex and non-convex
settings for the proposed method can be found in Section [A] of the Appendix.

Algorithm 1 FedDUAL

1: Input: Number of clients K, Number of communication rounds T', and Global model G.
2: Output: Trained global model G*.

3: Define a mask e € {0,1}%, where e; = 1 for the last few layers and 0 for the rest layers.
4: Let Spaive = {j : €j = 0} and Saynamic = {Jj : ¢; = 1}.

5: Initialize global model weights 69

6: fort=1toT do

7 Sample a subset of clients S; C {1,..., K}

8 Initialize lists: local model weights W « [, gradients A < []

9 for each client k € S; do

10: Initialize local model M}, with global weights 69.

11: Train My, on local dataset Dy using adaptive loss function defined in Eq.

12: W — WU {6k} > Store local model weights 6y,
13: Compute gradients Vy for My

14: A+~ AU{Vy} > Store gradients Vy,
15: end for

16: for j€{1,...,d} do

17: if e; =1 then > Layer belongs to Sqynamic
18: Extract last layers’ gradients {V[j]} from A

19: Compute Wasserstein Barycenter of last layer j gradients ?j

20: Update global model’s last layer j weights §9[j] < 69[j] — @j

21: else > Layer belongs to Snaive
22: Perform Federated Averaging for layer j:

23, 0] ¢ & Yres, Ouli]

24: end if

25: end for

26: end for

27: G* +— 09 > Final trained global model

Table 1: Top-1 accuracy (%) on CIFAR10, CIFAR100, and FMNIST datasets. The values in bold represent
the highest accuracy achieved. "*’ denotes algorithms that failed to achieve convergence.

CIFARI10 CIFAR100 FMNIST

FedAvg 46.68 £+ 0.25 26.88 + 0.18 81.70 £+ 0.20
FedProx 47.58 + 0.30 26.89 + 0.22 80.54 + 0.28
FedNova 48.44 + 0.35 * *

FedBN * 26.88 + 0.19 81.36 + 0.23
FedDyn 43.97 + 0.40 18.27 + 0.32 71.86 + 0.45
MOON 46.57 £+ 0.28 28.50 £+ 0.25 80.09 £+ 0.27
SCAFFOLD * * *

FedPVR 42.26 £ 0.42 23.78 £ 0.31 80.32 + 0.33

Proposed

48.70 £ 0.20 29.15 + 0.24 81.99 + 0.21
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Figure 3: Learning curves comparing the proposed method with baselines across various datasets: (a)
CIFAR-10, (b) CIFAR-100, and (c) FMNIST.
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Figure 4: Number of FL rounds required to reach the target accuracy for the proposed method and other
baselines on different datasets: (a) CIFAR-10, (b) CIFAR-100, and (c¢) FMNIST.

5 Experimental Results

5.1 Experimental Setup

To assess the effectiveness of the proposed FedDUAL approach, we conducted extensive experiments
using three widely recognized classification benchmarks: CIFAR10 (Krizhevsky et all [2009), CI-
FAR100 (Krizhevskyl, 2009)), and FMNIST (Xiao et al., |2017). To simulate real-world non-IID data dis-
tributions, we employed a client-wise partitioning strategy based on the Dirichlet distribution
. This distribution is governed by a concentration parameter «, which controls the degree of data
heterogeneity among clients. Lower o values result in more skewed data distributions, closely mimicking
uneven data partitions. In all experiments, we set @ = 0.01 to simulate severe data heterogeneity, closely
approximating real-world conditions. Throughout the communication rounds, each client retains a fixed lo-
cal data partition. To evaluate the global model’s classification performance, we use a separate test dataset
maintained at the server, which remains unseen during training. For our experiments, we used LeNet
for FMNIST dataset and a pre-trained VGG16 (Simonyan & Zisserman) [2015) for CIFAR-10
and CIFAR-100 dataset, following the methodology outlined in (Hu et al.,2024). We applied the proposed
dynamic aggregation mechanism only to the last two layers of these models. Our setup involved 100 clients,
with 10% randomly sampled per communication round, and a batch size of 32. Each client performed three
local epochs of model updates. We have computed each result three times with different seed values and
reported the mean value with standard deviation. To determine the optimal client learning rate for each
experiment, we conducted a grid search over 0.05,0.01,0.2,0.3. For the baseline FedProx, we tested proximal
values of 0.001, 0.1, 0.4, 0.7 to find the optimal setting, and for FedNova, we evaluated proximal SGD values
from 0.001, 0.003, 0.05, 0.1, following the recommendations in . Across all experiments, we
used the Adam optimizer for consistency. We have run each algorithm three times and reported the average
outcome. The experimental setup utilized an NVIDIA Quadro RTX 4000 GPU boasting 40GB of memory.
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The implementation was crafted using Python EL leveraging the TensorFlow framework E| utilizing Windows
11.

5.2 Comparison with the State-of-the-art Methods
5.2.1 Baseline.

We evaluate the proposed FedDUAL method against eight notable state-of-the-art (SOTA) FL baselines,
including FedAvg (McMahan et al.| [2017)), FedProx (Li et al., 2020), FedNova (Wang et al., |2020b), SCAF-
FOLD (Karimireddy et al., [2020)), FedBN (Li et al., 2021b)), FedDyn (Acar et al., |2021), MOON (Li et al.,
2021a) and FedPVR (Li et al., [2023).

5.2.2 Comparison of Accuracy.

The results, detailed in Table [T} reveal that many recent FL methods often fall short compared to the
standard FedAvg baseline. In contrast, our proposed method consistently achieves SOTA performance,
surpassing FedAvg along with other baselines across all evaluated scenarios. Furthermore, our approach
exhibits remarkable adaptability across diverse datasets. Unlike some algorithms that excel on specific
datasets but falter on others, the proposed FedDUAL consistently outperforms baselines across a wide range
of data environments. This improvement suggests that our method addresses fundamental challenges in
FL, potentially offering a more generalizable solution to the issues posed by data heterogeneity in federated
settings. We also observed that FedNova, FedBN, and Scaffold did not perform effectively in our experimental
setup.

5.2.3 Comparison of Convergence.

Figure [3] compares the learning curves of our method with baselines, while Fig. [10]in the Appendix includes
the corresponding curves with error bars. Across all datasets, our method consistently converges faster and
achieves higher final accuracy. Although the number of communication rounds varies by dataset, performance
generally saturates by the final round. Notably, our method not only attains a more robust final model
but also displays markedly faster convergence across all datasets examined. This effectiveness is further
highlighted in Fig. [4] where it consistently reaches target accuracy with far fewer communication rounds
compared to baseline approaches. However, the proposed method incurs a higher computation cost due to
Wasserstein barycenter based aggregation at the server side. We have provided a thorough computational
complexity analysis and runtime analysis in the Section [C|and the Section [D]of the appendix respectively.

5.3 Validation of the Motivation

To substantiate our claim that the proposed method yields models in flatter loss landscapes compared to
FedAvg, we conducted a comparative analysis. Using VGG-16 models trained on the FMNIST dataset under
non-IID conditions (« = 0.01), we visualized their respective loss landscapes following the approach outlined
in |Li et al.| (2018). Figure |§| in the Appendix depicts these landscapes, with each model centrally located
within its respective terrain. The visualization reveals that our proposed method situates the model in a
notably flatter region compared to FedAvg. This finding supports our assertion that our approach guides
federated training towards more stable and generalizable solutions, characterized by flatter loss landscapes.
The performance improvement of the proposed models stems from two key innovations: a Wasserstein
Barycenter-based aggregation for final layer gradients, mitigating client drift in heterogeneous data envi-
ronments, and an adaptive loss function balancing local optimization with global consistency during client
training. This synergistic approach preserves global knowledge while promoting client-specific optimization,
addressing fundamental FL challenges.

Thttps://www.python.org/
2https://www.tensorflow.org/
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6 Ablation Study

In our ablation study, we performed all experiments on the FMNIST dataset with o = 0.01. The study
comprised four types of experiments: (1) performance analysis of the individual modules, (2) assessment of
the impact of dynamic aggregation across different neural network layers, (3) hyperparameter analysis, and
(4) evaluation of various levels of data heterogeneity.

6.0.1 Performance Analysis of Individual Modules

To assess the effectiveness of the proposed adaptive loss and dynamic aggregation techniques, we conducted
three ablation experiments across FMNIST, CIFAR-10, and CIFAR-100. The results for FMNIST are
shown in Table In the first experiment, we employed only the adaptive loss alongside standard server-
side aggregation. Notably, this configuration underperforms FedAvg across all datasets, indicating that
adaptive loss alone cannot effectively address data heterogeneity—Ilikely due to its limited capacity to improve
generalization despite fostering local-global alignment. The second experiment implemented our dynamic
aggregation technique at the server, while retaining the conventional cross-entropy loss function locally.
Finally, the third experiment combined both proposed methods: the adaptive loss function and the dynamic
aggregation technique. As evidenced by Table |2 the integration of both proposed approaches in the third
experiment yielded the highest accuracy, highlighting the impact of our dual strategy on model performance.
The learning curves for these experiments using FMNIST dataset are illustrated in Fig. [7] of the Appendix.

Table 2: Ablation study of FedDUAL across different datasets.

Adaptive Loss Dynamic Agg. Dataset Acc. (%)
v X 80.70 4+ 0.22
X v FMNIST 80.91 + 0.25
v v 81.99 + 0.18
v X 41.05 £ 0.12
X v CIFAR10 46.50 £+ 0.15
v v 48.70 + 0.20
v X 25.05 + 0.11
X v CIFAR100 27.01 + 0.17
v v 29.15 + 0.24

6.0.2 Impact of Dynamic Aggregation on Different Network Layers

To substantiate our decision to apply dynamic aggregation technique selectively to last layers, we examined
its impact across various layers of the neural network. Our earlier findings highlighted that data heterogene-
ity primarily affects last layers of the network. Figure [f] illustrates that random utilization of the dynamic
aggregation to all layers diminishes performance. Conversely, targeted implementation on layers proximal
to the classifier yielded optimal accuracy and convergence. These outcomes validate our hypothesis and
demonstrate the method’s efficacy in mitigating heterogeneity-induced issues. By focusing our dynamic
aggregation technique on the most susceptible layers, we directly address the core challenge of data hetero-
geneity in federated training, resulting in enhanced model performance and faster convergence.

6.0.3 Hyperparameter Analysis

In the proposed architecture, there are two key hyperparameters to consider: the scaling factor () and the
number of iterations used to compute the Wasserstein Barycenter. The proposed FedDUAL approach utilizes
dynamic server-side aggregation by applying the Wasserstein Barycenter concept to combine the weights of
the final layers from local models. This iterative process involves a small positive constant (e) to determine
the scaling factor (v). To optimize performance, we conducted two sets of experiments on the FMNIST
dataset with o = 0.01, each exploring a range of values for these crucial hyperparameters. The hyperparam-
eter € influences the sensitivity of the barycenter calculation to variations in Wasserstein distance. A smaller
€ makes the barycenter more responsive to differences in Wasserstein distance, while a larger € diminishes this
sensitivity. This impacts how the barycenter integrates each distribution according to its distance from the
current estimate. During the iterative update of the barycenter, € affects the scaling factor v applied to each
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distribution. An excessively small € can result in slow or potentially non-existent convergence due to mini-
mal scaling factor, whereas a too-large € may cause oversmoothing, reducing the barycenter’s effectiveness in
accurately representing the distributions. For this setting we have fixed the number of iterations to compute
Wasserstein Barycenter as 150. Figure [8] in the Appendix shows test accuracy across different e values,
indicating that larger e can degrade performance or hinder convergence. Figure [J]in the Appendix presents
the corresponding learning curves for these settings. The number of iterations in the Wasserstein Barycenter
function is another critical hyperparameter that affects both the accuracy and efficiency of the barycenter
computation. Generally, more iterations enhance convergence and accuracy, ensuring that the barycenter
more closely approximates the optimal value. However, increasing the number of iterations also prolongs
computation time, necessitating a balance between accuracy and efficiency. Finding the optimal number of
iterations involves a trade-off: too few iterations may result in suboptimal outcomes, while too many can
yield diminishing returns in accuracy. To achieve the best performance, begin with a reasonable default value,
monitor convergence by observing changes in the barycenter, and adjust iteratively based on empirical results
and available computational resources. For this setting, we fixed the epsilon value as 0.0001, which yields
the highest results in previous experiment. Figure[IT]illustrates the test accuracy for different values of itera-
tions to calculate Wasserstein Barycenter, suggesting that larger iterations may adversely affect performance.
Figure [12] presents the corresponding learning curves for these settings. From both experiments, we observe
that the highest performance is achieved with e = 0.00001 and 150 iterations. Therefore, to optimize perfor-
mance, it is advisable to set € to a smaller value while keeping the number of iterations between 100 and 150.

6.0.4 Experiment
on Different Level of Data Heterogeneity

Figure illustrates the accuracy of the proposed
method and various baselines across different levels
of data heterogeneity on the FMNIST dataset. In
this context, heterogeneity is quantified by «, with
lower values indicating greater data heterogeneity.
The results show that as o decreases, the test accu-
racy for all models increases, because data hetero-

Test Accuracy

geneity among clients is decreased. Remarkably, the 01 o
proposed method consistently achieves the highest oo A yiniosied PR
test accuracy and exhibits the slowest performance 0 100 200 300 a00 500

FL rounds

decline compared to other algorithms, demonstrat-
ing superior performance of the proposed method on
varying degrees of non-IID data partitioning. The
learning curve is presented in Fig.

Figure 5: Illustration of the Dynamic aggregation
method applied across various layers of the neural net-
work.

7 Conclusion

This research presents a novel approach to address

the challenges posed by data heterogeneity among

clients in the federated approach. We systematically

analyze the factors contributing to federated model performance degradation under severe data heterogene-
ity and propose an architecture incorporating dual-strategy innovations. First, we implement an adaptive
loss function for client-side training. Second, we create a dynamic aggregation strategy for server side ag-
gregation, tailored to client-specific learning behaviors. The proposed FedDUAL effectively overcomes the
challenges of heterogeneous data, outperforming eight SOTA baselines. It demonstrates faster convergence
and consistently improved performance, making it an excellent solution for large-scale FL applications in real-
world scenarios. Our approach’s flexibility paves the way for research into hybrid federated learning models
that adapt to changing client environments and data. Future studies will focus on integrating personalized
learning paths to enhance model adaptability and efficiency across various datasets.
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Appendix
A Convergence Proof
Before presenting the main convergence theorems, we establish assumptions and several key lemmas.

Assumptions

1. L-Smoothness: Each local loss function fy(#) is L-smooth:

IV fie(0) = VI(0)]| < L6 = 0'll, V6,6 € W,V (17)

2. Unbiased Stochastic Gradients: For any client £ and parameter 6, the stochastic gradient is unbiased:
B¢, [VU(0; )] = V fi(6). (18)

3. Bounded Variance: The variance of stochastic gradients is bounded:

Eewn, [[VA6:€) = VA O] < 02, V8, k (19)

2

where o = maxy, 0,%.

4. Bounded Gradients: There exists G > 0 such that:

5. KL Divergence Properties: The KL divergence term and dynamic weighting satisfy:

IV Dk (pr(0)]la(0)]| < GkL, V0, k (21)
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IVBe(O)] < Lg, 8,k
0 < B(0) < Pmax <1, VO,k

6. Wasserstein Barycenter Approximation: For the final layers aggregated using Wasserstein Barycen-

ters, the approximation error ewpg is bounded as follows:
‘WB exact
(V5 = Vit < ews

where V&2t represents the exact gradient aggregation.

A.1 Key Lemmas:

Lemma 1: Smoothness of Modified Loss function:

Under Assumptions 1 and 5, the modified loss function fi(0) is L-smooth with

E =L+ Lﬂ(G + GKL) + 6maxGKLLB + L;BGf7

where Gy = maxy, supy || fx(0)|| and Gkr, = maxy, supy || Dk (px(60)]1¢(0))]].
Proof. Let 6,0’ € W. The complete gradient of the modified loss function is:
0
LG 79 L1 = Br(0)).fu(9) + Bu(8) DKL(pr (9)l4(0))]

= —VBk(0) - fx(0) + (1 — Br(9))V fr(0)
+ VBk(0) - DxvL(pr(0)]9(0)) + Br(8)V Dxw(pr(0)|(0))

Similarly for 6’

V(@) = =VBi(0) - fiu(®) + (1 — Br(0")V f1(0')
+ VBi(0") - Dxr.(pr(0'))19(0")) + Br(6")V Dxw(px(6)]1q(6"))

Calculating the gradient difference results in Eq.

VIk(0) - ka(el)
—[VBk(0) - fx(0) — VBk(0") - f1(0")]
+[(1 Br(0))V fr(0) — (1 — ( ))Vf( ]
+ [VB(0) - Dxr.(p(0)]9(0)) — VBi(6') - Dxr(pr(6)]a(6))]
+ [81(0)V Dxr(pr(9)]q(0)) — ( ")V Dkw(pr(6)q(8"))] -

We bound each term separately using the triangle inequality:

Term 1: —[VS3,(0) - fx(0) — VBr(0) - fr(0")]
Adding and subtracting V3 () - fr(6'):

IVB1(0) - fx(0) — VBr(6') - fr(6)]]

<|VB(O) - (fr(0) = fe(@) + [(VB(0) — VB(8)) - fr.(8)]]
< IVBROI - 1fx(8) = fi(@) + [V Br(0) = VBR()] - || fx(&)]]
< Lg-L||0—0'|| + Lgll0 - 0| - Gy

=Lg(L+Gy)llo —¢'||
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Term 2: [(1— 3,(0))Vfx(0) — (1 — Br(6")V f(6")]

Adding and subtracting (1 — 8% (6))V fx(0'):

|(1 = Br(0))V f1.(0) — (1 — Br(0)V (")l
(1 = Br(0)(V £1(0) = V(@)D + [[(Br(0") — Br(0)V fr (6"l
(1= Br(0))L|10 — ' + 8 (0") — Br(0)] - G
L6 -0+ Lpllo - 0'||- G
= (L+LgG)|0 -0

<
<
<

Term 3: [V3i(0) - Dxr(pr(6)]1g(0)) — VBx(6") - Dxr(px(6")]]¢(6"))]

Following similar decomposition:

IV Bx(0) - Dk (pr(0)[1q(0)) — V(") - Dxr(pr(0")]lq(6")) ]l
< LgGxrLgll0 — 0| + LpGxw||0 — 0| (31)
= LgGxr(Ls +1)[|0 — &'

Term 4: [31(0)V Dkw(px(0)[1q(0)) — Br(0")V Dxr(pr(0")[lq(6"))]

8% (0)V Dk (pk(0)19(0)) — Br(0")V Dxw(px (6")[|g(60))
< 18 (0)(V Dxr(pr(9)[|9(0)) — V Dk (pr(6")[1¢(6)))]
+ 11(Br(0) — Br(0"))V Dxcw (px (6")[19(6"))]] (32)
< BmaxGrrLsll0 — 0’| + LsGxr [0 — 6|
= LyGkL(Bmax + 1[0 — ¢'|

Final bound: Combining all terms:

IV Fx(0) = V(0 < [Lp(L + Gy) + (L + LpG) (33)
+ LgGxL(Lp + 1) + LyGL(Bmax + 1)][|0 — 6.

For a conservative and simplified bound, we can write:

L=L+Lg(G+ Gxr + Gy) + LEGKL + BmaxLsGkL

Or more compactly, assuming Gy < G and using conservative bounds:

L=1L + Lﬂ(G + GKL) + /BmaxGKLL,B + Lng (35)
Therefore, fi(0) is L-smooth.

Lemma 2: Bounded Variance of Modified Gradients: Under Assumptions 2, 3, and 5, the variance
of stochastic gradients for the modified loss is bounded:

E [[IVfx(6;€) = VIu(0)]?] < o” (36)

Proof. We begin by analyzing the variance of the stochastic gradient of the modified loss function f(6).
Recall that the per-sample stochastic gradient is defined as:

Vfe(0;€) = (1 — Bu(0))VE(0;€) + Br(0)VDkwL(pr(0) || ¢(6)),
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whereas the full-batch gradient is:
V() = (1= Br(0))V fx(0) + Br(0)V Dcr.(pr (0) || 4(6))-
Subtracting the two, we obtain:

Vi(0;€) — VFe(0) = (1 — Br(8)) (VL(O;€) — V £.(0)) .

Here, the KL divergence term cancels out since it is deterministic and does not depend on the stochastic
sample £. Taking the squared norm and expectation over the stochasticity of £, we have:

Ee |||V fi(0:6) = V(0 H} (1= Bu(0))? - B¢ [ V4003 €) = V fu(6)
[wa &) = VAOIF] (since (1-8(8)* < 1)

<o

|/\
b m

where we have used Assumption 3 to upper bound the variance of the stochastic gradients by 2.

Lemma 3: Local Update Analysis: Let 6 be the local model on client & after E local updates initialized
from the global model #;. Then, under Assumptions 1-5, the expected squared deviation from the global
model after local training satisfies:

~ 2p2f2 E-1 . )
E (16} - 00+ nEVFO0IF) < T SR [I68 - 002 + n2Es, (37)
e=0

where Hf ** denotes the local model on client k after e local steps, L is the smoothness constant of fj, (Lemma
1, and &2 is the bounded variance of the modified stochastic gradient (Lemma 2).

Proof. We begin by expressing the full local model update as a telescoping sum over FE local steps:

E—-1
0f =6 —n > V(0% E),

e=0
where £, denotes the data sample used in the e-th local step.

Rewriting this update in terms of the true gradient at the initial point 6;, we add and subtract V fk(ﬁt):
B-1 3
0F —0r=—n Y VIu(0; &) = —nEV fx(6r) =1 Z (VF0ri6) = Vin01)
e=0

Rearranging terms gives:

E—-1

0 = 0+ nEV Ji(0) = =1 Y (VIu(0F16) = Vi(0))) -

e=

Taking the norm squared and expectation:

E-1 2

(V0F6) = V(o)

e=0

B[[j6f - 6.+ nEVf(0)|] =n

Applying Jensen’s inequality (or the inequality || Y ac||? < EY [lac|?):
E—-1 B N 2
ey E[|victeie) - viw)].
e=0
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Now decompose the difference inside each term:

3 k s 2 3 k 3 k
B |[vieic) - Vi | <28 |[Vicetes) - vk

|
+2Emvﬁwﬁﬂ—vﬁwaW]

From Lemma 2, the variance of the stochastic gradient is bounded:

EMvﬁwPﬁa—vﬁwF>

2
] <g°
From Lemma 1, the gradient of fj, is L-Lipschitz:
r3 k.e r3 2 72 k.e 2
|V uor) = Vo] < 2 o — 0|
Combining the two bounds:

B ||[VAere) - Vi) o 0,

2 -
} <252 +2L°RE {

1

Substituting back:

E—-1
E|[6F - 0: +nEV 0’| <n*E Y <252 L 9iE [Haf,e _o,
e=0

1)

Grouping constants:

oFe g,

E—-1
=2°E5” +2°L* Y E [
e=0

1

Finally, simplifying constants and using % factor for future algebraic convenience:

2272 BE-1
n*E°L
< 3 EE[

e=0

oFc g,

2
] + n*E&°.

Theorem 1 (Convex Convergence)

Suppose Assumptions 1-6 hold and F(6) is convex. Let 6* = arg mingey F(6), and set the learning rate as
1

NS iiE

Then, FedDUAL guarantees the following convergence bound:

2016, — 6*||2 LEG?
60— 61

BIF(Fr) - F(#)] < 22 -

+ 17I~/E2G2 +ewnG
where 07 = % ZtT;()l 0, and 62 is as defined in Lemma 2.

B Proof

Since F'(6) is L-smooth and convex, we can write the fundamental smoothness inequality:
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N s . L
F(0r+1) < F(0e) + (VE(0r), Ora1 = 00) + 5 [10e41 — 0,1

This is the standard smoothness inequality. For any L-smooth function f, we have f(y)
2+ Llly — 2.

The FedDUAL update consists of two phases

(For early layers): Standard aggregation

sl

eearly

K
earl n k.e
i1 = O y—gz V(67 k)
k=1e

Il
o
—
w
o
~

(For final layers): Wasserstein Barycenter aggregation

613 = WB({6; [} i) + dws

(40)
where ||0w || < ewp is the Wasserstein approximation error
The total update can be written as
y L
Or11— 0 = = K ; 2 V fi( 9k s €k.e) + Ototal (41)

where [|dtotal]] < ewn. By substituting Eq. into the inner product term defined in Eq ﬂ we derive
Eq.

(VE(0;), 041 — 04)

-1

K
<VF(9t)7 _% Z Z ka(t?f’e; gk,e) + 6total>

k=1 e= (42)
E—-1

K
% Zl p VF at ka(ﬂk e’gk P)> + <VF(0t)75total>

For the error term, we apply the Cauchy—Schwarz inequality to obtain

[(VE (), Sota)| < IVE(O0) [ 18rotalll < Gew (43)
Here, we use Assumption 4, which states that |[VF(6;)| < G. We add and subtract Vfi,(6;) from the first
term of Eq. 2] and obtain Eq. [44}

(VE(0:), V (07 €xe))

- - ~ - N 44
= (VE(0,), Vr(0:)) + (VE(0,), V fu (0 €e) — V f(62)) )

The first term of right hand side of Eq. [44] gives us

K K
Z (VF(0), Vu(00)) = (VE(0), 2 > VFul0) = [VF@)I (45)
k=1 k=1
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By definition, VF(6,) = % Zszl %ka(ﬁt), and assuming uniform data distribution, this simplifies to
T Lot VIi(00)-
For the second term, we decompose:
Ve (08 Ere) — V i(Br)
= (Ve €)= VIo(0,)] + [V Ju(67) = VI (62)].

Taking expectation and applying the Cauchy—Schwarz inequality, we obtain:

E[(VE(0:),V [u (05 k) — VIu(0:))]
<E[|VE@) IV (0 €xe) — V(8] (47)

FE[|VE 0|1V F(05) = V i (6:)]]

Using Young’s inequality with parameter a > 0:

2 b2
b<;—+a7 (48)

Applying Eq. [4§| into first term in Eq. [{7} we obtain:

E[|VEO) NIV F (05 éxe) = VI (0]

N NE AURTWRAUST (19
< BUVFOOP | oo

Here we have used Lemma 2 which bounds the variance of stochastic gradients by 2.

Similarly, we can write for the second term in Eq. {7}

[IIVF(t‘)t)IIHka(@k’e) = V(60|

\ i2 (50)
< BUVFGOP] | ol e gy

We use the L-smoothness of f; from Lemma 1. By selectively combining the terms from Eq. Eq.
Eq. and Eq. and substituting them into Eq. we obtain Eq. The choice of a = % in Young’s
inequality is a standard optimization choice that balances the two terms in the bound. When applying
Young’s inequality ab < % + asz, setting a = % gives equal weight to both the gradient norm term and the

variance terms, which minimizes the overall bound and leads to the subsequent steps.

E[(VE(0;), 0041 — 01)]

K E-1
7 HVF (0,)]? } as? al® . 2 (51)
< Bl AP + 4 3 3 [PIVE O 4 o 1 2 gt — 21| + Gew,
k=1 e=0
Substituting o = %, we obtain:
nE & s s
k,e 2
< —nE[|VE(9,)]] f; IVE(9,)]%] T Z; (167 — 0[] | + Gew - (52)
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Simplifying Eq. we obtain Eq.

E-1

K ~
" nL2E e 2y, NEG?
< _§]E[||VF(9t %] e Z E[ll6;° = 0:117] + 1 + Gew .
k=1 e=0
Again we starting from Eq.
| K Bl
Opp1— 0 =—n- Z V fi( efk e) + Stotal
k:le:O
where ||dsotal]| < ew p is the Wasserstein Barycenter approximation error.
Taking Norm Squared, we get below:
K E- 2
1011 — 0% = H Z Z Y fi (0 ¢ €re) + Srota
k: e=0
Now we apply the below inequality:
lla+bl* < 2[|a]l* + 215
So, we get below:
| K Bl 2
141 = 0el* < 2|0~ 2= > D VIslOheie)| + 20l
k=1 e=0
Now we take Expectation of the above inequality
| K Bl 2
E (0041 = 0°) < 2B |- 22D > VO eiérel|| | +2evn
k=1 e=0

Using Jensen’s inequality and bounded gradients, we obtain Eq. 54

E-1 2

K
1 r3 e
< 2°E HKZ V(057 k)

k=1 e=0

+ 25%[/3

< 2772E2G2 WB

From Lemma 3, we can derive the following.

2,22 2,272,012
ke n°e°g n‘e’L°G
B[l — 0,2 < T 4 TG

Summing over all local steps yields:

1 K E-1 ) ) 2 2E 2 2L2G2E 1 2
S SR g < Z
k=1 e=0 e=0
27122 2127272
<’I7E0' +77ELG.
- 2K 2K
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We use Zf;ol e? < E®/3 < E? for practical purposes. Substituting Eq. [56into Eq. we get Eq.

E[F(9t+1)]S]E[F(Gt)]—gIE[HVF(Gt)||2]+ o (o + T a

77[~/2E (772E25'2 772E2I~/2G2) 77E5’2
(2’172E2G2 + 26%[13) + GewB.
Simplifying the higher-order terms and keeping dominant terms:

_ _ _ LEG? N
E[F(6141)) < E[F(6)] = JE[IVEF ()| + == + nLE*G? + w 5G.

From the definition of convex functions, we have:
(VF(0;),0, — 0%y > F(6;) — F(6%)

Applying the Cauchy-Schwarz inequality along with 2ab < a? + b?, we obtain:

2(F(0:) — F(09)(VE(0),0: — 607)
10 — 0%

IVE @) >

Subtracting F(*) from both sides of Eq. we obtain:

E[F(6+1)] - F(6") < E[F(6,)] - F(6") - JE[|VE(6,)]*) +C.

where C' = % + 77[~/E2G2 + ewBG.

For convex functions, we leverage the inequality:

E[|VF(6:)]I)

Vv

This yields the recursive bound:

E[F(0,41)] ~ F(6") < 5 (EIF(6,)] - F(6%)) + C.

N =

Unrolling the recurrence gives:

. . 1\T _ -
E[F(6r)] — F(6") < (2> (F(00) — F(6")) +2C.

Using Jensen’s inequality for the averaged iterate 67 = % tT:_Ol 0y

E[F(Gr)] - F(67)

IN

LS ®IF6)] - F6)
t=0

_ px||2 F =2
_ 2000 6°°  niEs
- nT K

+nLE*G? + ew G

Putting n = ; El 7 in above equation and simplifying yields:
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o SLE|6-0*|? &2 EG?
_ < w7 h oy 7
E[F(0r) — F(6%)] < = + %t

+ GWBG (66)

E[F(67) — F(6%)] = O (;) + constant (67)

B.1 Non-Convex Convergence Analysis

Theorem 2: Given that Assumptions 1-6 are satisfied and F (#) is non-convex, setting the learning rate
1
= ALE

. L 2AFPO) ~F(@)  0LES® | ooia  ewsG
[|IVF LE
- §:0: [IVE®)]?] 7 + e TLERG 4+ S (68)

where 6* is any global minimum of F(0) and &2 is as defined in Lemma 2.

Proof: From the L-smoothness of F(6) (established in Lemma 1), we have:
F(0r41) < F(00) + (VE(0:), 001 = 0r) + 5 101 = 6] (69)

The FedDUAL update rule is defined as follows, as presented in Eq.

K E—
Op i1 — 0, = ;kz_jz_j AT T T (70)

where ||0totai]| < ew s represents the Wasserstein Barycenter approximation error.

Substituting Eq. [70] into the inner product in Eq. [69} we get Eq. [71]

K
(VF(6:), 0141 — 0:) = —% DD AVE(6:), VIr(67%65)) + (VE(61), Srota1) (71)
Applying the Cauchy—Schwarz inequality to the error term in Eq. [T} we obtain the following.
(VE(6:), Stotar)| < [VE(0)|[[6t0tat]| < Gew - (72)
For each gradient term in Eq. we add and subtract the term V fk (6:):
(VE(0,),V Je(0,":65) = (VE(0:),V fu(00) + (VE(0,), V [u(6,:65) = V fi(60)) (73)

The first term of Eq. [73] gives the following:

K
S VB0, Vi 60) = |VE @) (74)
k=1

For the second term in Eq. we further decompose:

V(0755 65) — V i (0:) = [V fe(05%65°) — Ve (05)] + [V f1(0,°) — V fiu(6)]. (75)
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Taking expectations over the second term in Eq. and applying Young’s inequality with parameter «, we
derive (omitting details identical to the convex setting):

E[(|IVF(0)]* | o
2c +

al? e
+ E R[5 — 6,7, (76)

E[KVE0), VJul0F565) = Vi(00)] < E[||V £r(6;:€5) = V(6]

Using Lemma 2 for the variance bound and setting o = % in Eq. we obtain the following deviation bound:

52 T2
BI[(VF (0. VAOF€) VRO < BIVA@IT + 5 + Do~ ()

By combining all the terms and substituting them into Eq. we get the following bound:

K E-1 ~9
I 77 o L k,e 2
B[V F(6:). 0 - 00] < ~iBIVFOOI]+ - 3 3 [BIVF@I + G + SEllo - o
k=1 e=0
+ GEWB. (78)
Simplifying Eq. we arrive at:
3 fep K E-l .
E[(VE(0,). 601 — 0] < —JE[IVE@)?)+ T5= 37 Y ElI6; - 6,7+ - (79)
4K k=1 e=0
From Lemma 3 and using the fact that Efz_ol e? < E3/3 < E? for practical purposes, we obtain:
K E-1 -
1 e 9 7’]2E25'2 7’]2E2L2G2
— E[||0;° — <
k=1 e=0
From Eq. [70} applying Jensen’s inequality yields:
K E-1 2
E[|[051 — 6,]|?] < 2E % SN VREEG )| | 42685 < 2PE2G? + 253 5. (81)
k=1 e=0

By combining all the above terms and substituting them into the smoothness inequality in Eq.[69] we obtain:

E[F(6:11)] < E[F(6,)] — ]E[||VF(9t)||] Eﬁ +nLE*G? + L(2n2E2G2+2s%VB)+GsWB. (82)

Rearranging and using the learning rate condition n < o5 L 7 in Eq. we get:

nLE&?

JEIIVE(6:)]] < E[F (6)] — E[F (641)] + +nLE>G? + Lely; + Gews. (83)

. . e . T
Summing the above equation over ¢ =0,1,...,T — 1 and dividing by -

1

— TZlE ||VF 9t ” (F(GO) - E[F(GT)]) ﬁiE&Z

LE?G?
e +

QIN’E%/VB + QGEWB
nT 7 n o

N
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Since F(f7) > F(0*), and combining the error terms, we have:
T—1 ~ ~ ~
1 ~ o _ 2(F(6p) — F(6%)) nLE&? = 9.9 ewsG
— < “WhHH
T S BV < 2RI BT i pree - ST (85)

t=0

where the term ie%v g has been absorbed into the dominant ewnC term for simplicity. To minimize the
right-hand side, we choose the learning rate n that balances the first and second terms:

. \/ 2 (F(60) ~ F(6°))
L&2T '

Substituting this choice of 7 into the inequality gives:

T—1 = = ~ =
1 - 2 (F(6y) — F(0* ~ 2 (F(6y) — F (6"
LS e vEe R < SE® D) g \/ (EC) = FE) | e
par 2P0 F0%) . Lo*T
L&2T
Simplifying both terms, we obtain:
T-1 n F(0%)) [&52 n F(0*)) 52
! 2\/2(F(80) — F(6°)L&>  \[2(F(0,) — F(6*)) Lo
7 Z E [ \VF )|1%] < \/ Nii + \/ + ewsG
T VT

1T1
=D E[IVE@0)]?] <
t=0

N

Therefore, the convergence rate is:

TT_ZO I9F@)IP] =0 (= ) + ewnc

B.2 Discussion on Convergence Bounds

Our theoretical analysis establishes convergence guarantees for both convex and non-convex settings:

e Convex Setting: Theorem 1 shows that FedDUAL achieves

E[F(f7) — F(0*)] < O (;) + constant,

which matches the optimal rate for first-order methods under smoothness and convexity assump-
tions. This indicates that FedDUAL preserves convergence efficiency while incorporating dynamic
weighting and Wasserstein aggregation.

e Non-Convex Setting: Theorem 2 proves that

1
VF 6:) — | + G,
Z [l )17 (ﬁ) €WB

=0

consistent with the standard rate for non-convex optimization in federated learning. The additional
ewp term quantifies the effect of Wasserstein Barycenter approximation, ensuring that its impact
remains bounded.
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Comparison with state of the art methods: Standard algorithms such as FedAvg (McMahan et al.
2017) and FedProx (Li et al., [2020) achieve similar asymptotic rates (O(1/T) for convex and O(1/v/T) for

non-convex), but suffer from significant degradation due to client drift under non-I1ID data. Specifically, Fe-
dAvg incurs heterogeneity-dependent terms of O(¢?K?/T) in non-convex settings, while FedProx improves
this to O(¢C2K/T) through proximal regularization. Variance-reduced methods like SCAFFOLD
lireddy et al., 2020)) achieve superior bounds with heterogeneity terms of only O(¢?/T) (independent of local
steps K) and variance scaling as O(1/nKT), but require maintaining control variates at each client. Our
bounds show that FedDUAL matches these theoretical rates while introducing Wasserstein aggregation and
adaptive loss weighting, providing robustness to heterogeneity without the additional memory and commu-
nication overhead of control variates where T' denotes the number of global communication rounds, K is
the number of local SGD steps performed at each client between communications, n is the total number of
participating clients, { is the client drift parameter measuring data heterogeneity, n is the total clients, and
1 is the learning rate.

C Computational Complexity Analysis

We present a formal complexity analysis comparing the proposed method with baseline approaches for a
single communication round involving K clients, a model of dimension d, and n denoting the number of
parameters in the final layer.

Client-Side Complexity

FedAvg: The computational complexity per communication round is O(F - B - d), where E denotes the
number of local epochs, B the batch size, and d the model dimension. This cost primarily arises from the
forward and backward passes performed during local training on each client.

FedProx: The per-round computational complexity is O(E - B - d + d), where the additional O(d) term
accounts for computing the proximal regularization term |0, — 6,|2.

SCAFFOLD: The per-round complexity is O(E - B - d + 2d), with the extra O(d) arising from storing and
updating control variates used to correct client drift.

FedDUAL (Proposed): The per-round complexity is O(E - B - d + d), where the O(d) term corresponds
to KL divergence computation comprising weight flattening, softmax operations, and divergence calculation,
all linear in d. Thus, FedDUAL maintains the same asymptotic complexity as FedProx.

Please note that Our adaptive loss adds negligible client-side overhead compared to local training cost (as
E-B-d>d).

Server-Side Complexity

FedAvg: The aggregation complexity per communication round is O(K - d), corresponding to the simple
averaging of model parameters across K clients. FedProx/FedNova: The aggregation step also has com-
plexity O(K - d), as weight normalization and scaling operations remain linear in the model dimension.
SCAFFOLD: The aggregation complexity is O(K - d), dominated by the averaging of client updates along
with control variate terms.

FedDUAL (Proposed): The aggregation complexity is O(K -d + I - K - n?), where O(K - d) accounts
for standard aggregation of lower-layer parameters and O(I - K - n?) arises from computing the Wasserstein
barycenter for the final layers. Here, I denotes the number of Sinkhorn iterations (typically 100-150), and
n represents the number of parameters in the last layers (n < d); for instance, in VGG-16, d ~ 138M
total parameters, where the last two fully connected layers contain n &~ 67.2M parameters (two layers of
40964096 each), constituting approximately 48.7% of the total parameters.

Observation: While n represents a substantial portion of the network, the Wasserstein aggregation complexity
O(I - K - n?) remains tractable when applied selectively. For our setup:

¢ VGG-16 on CIFAR-10: n = 67,240,000 (last two FC layers), I = 150, K = 10 (per round)

o Wasserstein aggregation: ~ 150 x 10 x (67,240,000)2 ~ 6.78 x 10'7 operations

27



Under review as submission to TMLR

« Standard aggregation: 10 x 138 x 105 ~ 1.38 x 10? operations

o Overhead ratio: ~ 4.9 x 108x for the affected layers
However, this computational overhead is incurred only during the aggregation phase on the server, not during
client-side training. Moreover, practical implementations use approximate Wasserstein distance computa-

tions (e.g., Sinkhorn iterations) which significantly reduce this theoretical complexity while maintaining the
benefits of permutation-invariant aggregation.

Amortized Analysis
Considering total time-to-convergence:
Ttotal =R X (Tclicnt + Tscrvcr) (86)

where R is the number of rounds, T¢jient is the per-round client training time, and Tyepver is the per-round
server aggregation time.

Since FedDUAL achieves convergence in ~40% fewer rounds (refer to Fig. [4]) while incurring ~35% server-side
overhead per round:

T e 06R X Tc ien 135 Tserver 035 Tserver
TFedAvg R x (Tclient + Tserver) Tclient + Tserver
In typical FL scenarios where client training dominates (Tciient >> Tserver), we have m ~ 0, yielding:
T
ZEedDUAL 0.6 x (1 + 0) = 0.6. (88)
TFedAvg

Thus, the 35% server overhead becomes negligible, and FedDUAL achieves approximately 40% reduction in
total wall-clock time due to faster convergence.

To empirically validate the assumption that Tirjient => Tserver, we measured the average time required for
a single client update and the total server update time per round. The results, summarized in Table [3]
corroborate the assumption, demonstrating that client-side updates dominate the overall computational cost
which further validate the general assumption made above.

Table 3: Wall clock time (in seconds) of the proposed method and the Fedavg algorithm for client and server
side update.

CIFAR-10 FMNIST
T client T server T client T _ server
FedAvg 17.71 0.44 2.14 0.05
Proposed 27.49 1.94 2.62 1.95

D Runtime Analysis

Table [4| presents the wall-clock training time (in hours) of the proposed method compared to several widely
used federated learning baselines on the CIFAR-10 and FMNIST datasets. This time is recorded for fixed
number of rounds for all the algorithms (80 rounds for CIFAR10 dataset and 180 rounds for FMNIST
dataset). As expected, the runtime varies across algorithms due to differences in their communication strate-
gies, local computation overhead, and auxiliary regularization terms. Among the baselines, FedAvg achieves
the lowest runtime, since it performs simple model averaging without any additional constraints or control
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variates. FedProx and FedBN incur a slight increase in runtime due to the introduction of proximal terms and
batch normalization handling at the client side, respectively. FedNova and SCAFFOLD exhibit moderately
higher runtimes, attributed to gradient normalization and control variate updates. MOON further increases
computational cost because of its contrastive representation alignment loss, while shows additional overhead
due to maintaining both personalized and shared components during optimization. FedDyn records the
highest runtime among the existing methods, as its dynamic regularization term requires per-round model
adjustment and additional global parameter updates. The proposed method, though computationally more
expensive than the baselines, remains efficient considering the performance benefits (Higher accuracy and
faster convergence) it achieves. Specifically, it requires 5.33 hours on CIFAR-10 and 3.01 holurs on FMNIST,
which is competitive with other advanced methods such as FedDyn and FedPVR, while providing superior
convergence and generalization performance. Overall, the proposed method achieves a favorable balance be-
tween computational cost and performance gain, validating its practicality in real-world federated learning
scenarios.

We additionally report the wall-clock time (in hours) required to reach target accuracies of 0.40 for CIFAR-
10 and 0.70 for FMNIST across all baselines and the proposed method, as summarized in Table The
results demonstrate that the proposed method consistently achieves the target accuracy in less time than
the baselines, thereby confirming that the faster convergence observed in rounds (see Fig. effectively
translates into faster overall wall-clock convergence.

Table 4: Wall clock performance (in hours) of the proposed method and the baselines. * shows the respective
method failed to converge.

CIFAR-10 FMNIST

FedAvg 2.66 1.75
FedProx 2.90 1.90
FedNova 3.10 *

FedBN * 1.80
FedDyn 4.89 2.91
MOON 3.80 2.40
SCAFFOLD * *

FedPVR 4.50 2.90
Proposed 5.33 3.01

Table 5: Wall-clock time to reach target accuracy (in hours). * indicates that the respective method failed
to converge.

CIFAR-10 FMNIST

FedAvg 0.76 1.46
FedProx 1.61 1.90
FedNova 1.24 *

FedBN * 1.80
FedDyn 4.89 2.91
MOON 1.27 1.47
SCAFFOLD * *

FedPVR 1.31 1.21
Proposed 0.67 1.02
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Figure 6: Visualization of the loss surface for the global model trained on the FMNIST dataset with non-1ID
data (a = 0.01): (a) shows the loss surface for the global model trained using FedAvg, while (b) depicts the
loss surface for the global model trained with the proposed method FedDUAL.

E Limitation and Future Work

While the proposed FedDUAL framework achieves superior performance and faster convergence under severe
data heterogeneity, where several state-of-the-art methods such as FedNova, FedBN, and SCAFFOLD fail to
converge, it introduces higher computational cost at the server due to the iterative calculation of the Wasser-
stein Barycenter. On the client side, FedDUAL remains lightweight and is also more communication-efficient
than methods like SCAFFOLD and FedPVR, as it only requires transmitting model updates without addi-
tional control variates. Although this extra computational overhead is limited to the server, which typically
has sufficient resources, future research will focus on reducing the computational burden of the Wasser-
stein Barycenter calculation by developing more efficient algorithms, aiming to maintain or even improve
the performance of the proposed framework. Moreover, FedDUAL is inherently compatible with standard
privacy-preserving techniques. In particular, its adaptive loss and dynamic aggregation can be seamlessly
integrated with Differential Privacy by adding noise to client updates prior to aggregation, without modi-
fying the core design. Investigating this integration with formal privacy guarantees remains an important
direction for future research.

30



Under review as submission to TMLR

0.9
0.8 A
>
© 0.7 -
>
(@]
(@}
<
§ 0.6 -
0.5 —— Adaptive Loss
——— Dynamic Aggregation
—— Proposed
0-4 1 T T T T T T T
0 50 100 150 200 250 300 350 400

FL rounds

Figure 7: Learning curves of the individual modules and the proposed method.

80 - iQ:l..99°ﬁ)

701 “l'72.59% ik71_97%

it66.33%

Test Accuracy (%)
B u )]
o o o

w
(=

20+

10 4

<

78104

10-5 10! 10° 10!
Epsilon value (log scale)

Figure 8: Performance of the proposed method with different epsilon values.

31



Under review as submission to TMLR

Test Accuracy

0,8 e
T 4 i
0.7 - 1T DRI
| . i i i
i i e HH s
BheT 1 Hi “1 JAde 22541 [t
> ! j
g i TR Hod '
- . 3 b . ‘ ' L
M RIS
< T l HH \. [ l ¢
g o 0 Lkl L ¢
B Iy i
7!
|
0.3 % 3 g
i
i g T
0.2 Jj p 1
! p g _—.o-: epsilon=1
il —%— epsilon=10
i —4- epsilon=0.5
0.1 —&- epsilon=0.00001 (Proposed).
(’) 100 200 300 4(’)0 500
FL rounds

Figure 9: Learning curve of the proposed method with different epsilon values.

030

>
Vo 3o
[ [
H 4
o 308
Yois v
5 5 o Methods
" 0 — FedAvg
Low e
- — FedProx
— FedNova * — FedBN
— FedDyn 005 {f — FedDyn
— Moon 7 o ~—— Moon
— FedPVR 000 —— FedPVR
01
— Proposed — Proposed
10 2 ) “ 50 60 0 8 0 10 2 ) @ 50 ) 0 2 20 ) ) 100 120 10 160
FL Rounds FL Rounds FL Rounds

(@

(0)

©

Figure 10: Learning curves of the proposed method and baselines with error bars.

32



Under review as submission to TMLR

Test Accuracy

Test Accuracy (%)

- t 4
1%999%

81 -

80

75 1

79 A

78 -

7%&?%

7{#?%

150

500

Iterations for WB calculation

1000

Figure 11: Performance across different number of Iterations for WB calculation.

0.85

0.80

0.75

o

S

°©
"

o
o
o

#iterations=500

—+- #iterations=1000
—k- #iterations=150 (Proposed)

0.60

y
gl
;
0.55 ;ll :
A
|

0.50 +

100

200
FL rounds

300

400

500

Figure 12: Learning curves for different number of Iterations for WB calculation.

33



Under review as submission to TMLR

90.
=001

- a=01

85.0

Test Accuracy
@ @
S I
= o

~
.
o

75.0

725

st > &
O g %)
(‘ebq ‘<°§
Methods

Figure 13: Illustrates the accuracy of the proposed method and baselines across different levels of data
heterogeneity on the FMNIST dataset.

0.88
0.86
0.84
>
1)
<
5
3 082
[z}
f Methods
§ 0.80 —— FedAvg
1 | "(— FedProx
A i U— FedBN
0.78 ‘ 1 | — FedDyn
i | | —— Moon
‘ = FedPVR
0.6 ‘ —— Proposed
0 200 800 1000

FL Rounds

Figure 14: Learning curve of the proposed method and other baselines on FMNIST dataset with data
heterogeneity level a=0.1.

34



	Introduction
	Motivation

	Related Work
	Definitions
	Methods and Materials
	Client Side Update.
	Server Side Update.


	Experimental Results
	Experimental Setup
	Comparison with the State-of-the-art Methods
	Baseline.
	Comparison of Accuracy.
	Comparison of Convergence.

	Validation of the Motivation

	Ablation Study
	Performance Analysis of Individual Modules
	Impact of Dynamic Aggregation on Different Network Layers
	Hyperparameter Analysis
	Experiment on Different Level of Data Heterogeneity


	Conclusion
	Convergence Proof
	Proof
	Non-Convex Convergence Analysis
	Discussion on Convergence Bounds

	Computational Complexity Analysis
	Runtime Analysis
	Limitation and Future Work

