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Abstract

Federated Learning (FL) marks a transformative approach to distributed model training
by combining locally optimized models from various clients into a unified global model.
While FL preserves data privacy by eliminating centralized storage, it encounters signifi-
cant challenges such as performance degradation, slower convergence, and reduced robust-
ness of the global model due to the heterogeneity in client data distributions. Among
the various forms of data heterogeneity, label skew emerges as a particularly formidable
and prevalent issue, especially in domains such as image classification. To address these
challenges, we begin with comprehensive experiments to pinpoint the underlying issues in
the FL training process. Based on our findings, we then introduce an innovative dual-
strategy approach designed to effectively resolve these issues. First, we introduce an adap-
tive loss function for client-side training, meticulously crafted to preserve previously ac-
quired knowledge while maintaining an optimal equilibrium between local optimization
and global model coherence. Secondly, we develop a dynamic aggregation strategy for
aggregating client models at the server. This approach adapts to each client’s unique
learning patterns, effectively addressing the challenges of diverse data across the network.
Our comprehensive evaluation, conducted across three diverse real-world datasets, cou-
pled with theoretical convergence guarantees, demonstrates the superior efficacy of our
method compared to several established state-of-the-art approaches. The code can be found
at https://anonymous.4open.science/r/FedDUAL-88AB/README.md.

1 Introduction

Federated learning (FL) has revolutionized collaborative model training by enabling multiple clients to
contribute to a global model without compromising the privacy of their local data (McMahan et al., 2017).
This decentralized strategy avoids the need for sending data to a central server, thus maintaining data
privacy. As the digital landscape evolves, with an increasing number of distributed data sources emerging
from mobile devices, healthcare institutions, and Internet of Things (IoT) networks, FL has emerged as a
pivotal solution for training sophisticated deep networks across geographically dispersed and heterogeneous
environments (Bonawitz et al., 2016), Sahoo et al. (2024b), (Hu et al., 2024). However, a significant practical
obstacle encountered during federated training is data heterogeneity in the form of skewness in labels and
quantity of the data across various clients (Kairouz et al., 2021), (Li et al., 2020). Diverse user behaviors
can lead to significant heterogeneity in the local data of different clients, leading to non-independent and
identically distributed (non-IID) data. This variability can introduce biases in model training, leading to
unstable convergence and potentially degrading the model’s performance or making it counterproductive (Li
et al., 2022), (Zhao et al., 2018). While FedAvg (McMahan et al., 2017) is effective and widely used, it often
falls short in accuracy and convergence with static aggregation methods. These methods combine model
updates from different clients in a fixed manner, failing to adapt to heterogeneous data distributions and
client drift, as discussed in (Karimireddy et al., 2020).
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Previous studies have addressed the issue of client drift by implementing penalties for deviations between
client and server models (Li et al., 2020), (Li et al., 2021a), employing variance reduction techniques during
client updates (Karimireddy et al., 2020), (Acar et al., 2021), or utilizing novel aggregation methods on the
server side (Chen et al., 2023), (Chowdhury & Halder, 2024).

1.1 Motivation

Figure 1: Visualization of the loss surface
for the global model trained on the FM-
NIST dataset using the FedAvg algorithm:
(a) depicts the loss landscape when trained
on IID data, while (b) illustrates the land-
scape for non-IID data distribution.

Prior studies by Yashwanth et al. (2024), Hu et al. (2024) have
demonstrated that in non-IID scenarios, federated models tend
to converge to ’sharp minima’, resulting in significant perfor-
mance degradation and compromised generalizability. In this
study, we investigate the root causes of this phenomenon and
propose a novel solution to mitigate its effects. Our study
begins with a detailed analysis of loss landscapes for FedAvg-
trained models across IID and non-IID data distributions. Fig-
ure 1 visually depicts the loss landscapes of two models on
the FMNIST dataset with systematic parameter perturbations.
The model trained on IID data exhibits a notably smoother
and wider valley in its loss landscape, suggesting greater ro-
bustness and better generalization. In contrast, the model
trained on non-IID manifests sharper peaks and narrower val-
leys, indicating higher sensitivity to parameter variations and
potential overfitting. These visualizations offer strong evidence
that in the presence of non-IID data, the FedAvg algorithm
achieves suboptimal generalization. Motivated by this obser-
vation, we investigate the underlying mechanisms by analyzing
gradient norms to identify which parts of the neural network are
most affected by data heterogeneity. Our findings, presented
in Fig. 2, 6 reveal a notable pattern: in non-IID scenarios, the
gradient norms of the final layers, including the classification
layer, exhibit significant amplification compared to their IID
counterparts. Such amplification leads to model instability,
impedes convergence, and ultimately compromises the gener-
alizability of the federated model. Our investigation suggests
that effective federated training in non-IID environments ne-
cessitates targeted adjustments during server-side aggregation,
particularly for these highly affected layers, to achieve perfor-
mance comparable to IID settings.

This prompts one critical question: Can static aggregation
methods effectively address severe non-IID data distributions
across clients while maintaining higher convergence, perfor-
mance, and generalizability in federated models? The answer
is decidedly negative. Static aggregation methods inherently
struggle with the dynamic heterogeneity present in federated networks, where adjusting parameters based
on client distributions and performance in each communication round is crucial. Although incorporating
predetermined parameters into the aggregation process may provide some partial mitigation, these methods
fail to address the complex challenges posed by non-IID data distributions. A more dynamic and nuanced
approach is necessary to effectively manage these multifaceted issues. To address this challenge, we apply
dynamic aggregation to the model’s final layers, where gradient norms fluctuate significantly in non-IID
scenarios, while using traditional aggregation (FedAvg) for the lower layers. For dynamic aggregation, we
leverage the concept of Wasserstein Barycenter (Agueh & Carlier, 2011), derived from optimal transport
theory, to integrate client-specific learning behaviors in these affected layers. By minimizing discrepancies
from non-IID data, the Wasserstein Barycenter helps to align gradients from diverse clients, offering precise
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model updates. This approach ensures fair aggregation, adapts to data heterogeneity, reduces bias, and
enhances robustness, ultimately leading to more stable model convergence and improved generalization.

Figure 2: Comparison of gradient norms between models trained on IID and non-IID datasets using the
FedAvg algorithm on the FMNIST dataset.

In addition to the server-side dynamic aggregation, we introduce an adaptive loss function for local training
on the client side. This function allows clients to effectively explore the minima on their local datasets
while preventing overfitting, thereby enhancing local optimization. Simultaneously, it preserves the global
knowledge of the federated model, ensuring that the benefits from all participating clients are integrated.
By incorporating a regularization parameter, β, the local loss function dynamically balances the trade-offs
between local and global objectives. The contributions of this paper are as follows:

• We introduce FedDUAL, an innovative dual-strategy approach designed to effectively develop a
robust and generalized federated model in highly heterogeneous data environments.

• We introduce an adaptive loss function for client-side training to balance the trade-offs between local
and global objectives.

• Instead of straightforward server-side averaging, we propose a dynamic aggregation technique that
uses Wasserstein Barycenter to reduce the effects of non-IID data by integrating the learning behav-
iors of participating clients.

• We conducted extensive experiments on three real-world datasets, demonstrating significant perfor-
mance improvements over state-of-the-art methods and offering theoretical convergence guarantees
for both convex and non-convex scenarios.

2 Related Work

The landscape of FL research has been significantly shaped by efforts to address data heterogeneity chal-
lenges, yielding a diverse array of innovative solutions. These approaches can be divided into three primary
categories: (1) client drift mitigation strategies, which refine local client objectives to foster better align-
ment with the global model (Li et al., 2021a), (Karimireddy et al., 2020), (Acar et al., 2021), (Luo et al.,
2021), (Li et al., 2023) (2) aggregation scheme optimization, aimed at enhancing server-side fusion of model
updates (Hsu et al., 2019), (Lin et al., 2020), (Wang et al., 2020b), (Wang et al., 2020a) and (3) personalized
FL, which tailors models to individual clients (Fallah et al., 2020), (Sattler et al., 2020), (Bui et al., 2019).
Our research primarily focuses on two interconnected aspects of FL: mitigating client drift and optimizing
server-side aggregation, and we will discuss the same in the literature review.
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McMahan et al. (2017) introduced FL as an extension of local Stochastic Gradient Descent (SGD) (Stich,
2019), enabling increased local gradient updates on client devices before server synchronization and signif-
icantly reducing communication costs in identically distributed data settings. However, the method faces
considerable obstacles when dealing with non-IID scenarios. Since then, various methods have emerged to
address the challenge of data heterogeneity in FL (Li et al., 2019), (Yang et al., 2021), (Lin et al., 2018), (Hsu
et al., 2019). FedProx (Li et al., 2020) incorporates a proximal regularization term to the optimization func-
tion to reduce model drift and addresses client stragglers. However, this term can also lead to local updates
being biased towards the previous global model, which may result in misalignment between local and global
optima. Building on previous work, Acar et al. (2021) introduced a dynamic regularization term to align
local updates more closely with global model parameters, effectively reducing client drift caused by local
model overfitting. Sun et al. (2023) further advanced the field with a momentum-based algorithm that ac-
celerates convergence by combining global gradient descent with a locally adaptive optimizer. Similarly,
several studies use variance reduction techniques, such as SCAFFOLD (Karimireddy et al., 2020). However,
this approach often results in higher communication costs due to the transmission of additional control vari-
ates (Halgamuge et al., 2009). FedPVR (Li et al., 2023) addresses these limitations by reassessing FedAvg’s
performance on deep neural networks, uncovering substantial diversity in the final classification layers. By
proposing a targeted variance reduction strategy focused solely on these final layers, FedPVR outperforms
several benchmarks. MOON (Li et al., 2021a) introduces an innovative model-contrastive framework leverag-
ing a contrastive loss to align local client representations with the global model, effectively mitigating client
drift, and enhancing convergence, particularly in challenging non-IID environments. Luo et al. (2021) intro-
duced CCVR (Classifier Calibration and Variance Reduction), which employs a classifier regularization and
calibration method to enhance federated learning performance. CCVR’s approach involves fine-tuning the
classifier using virtual representations sampled from an approximated Gaussian mixture model. Shi et al.
(2023) introduced a novel differentially private federated learning (DPFL) algorithm that integrates the
Sharpness-Aware Minimization (SAM) optimizer to enhance stability and robustness against weight pertur-
bations. By generating flatter loss landscapes and reducing the impact of differential privacy (DP) noise,
it mitigates performance degradation and achieves state-of-the-art results, supported by theoretical analysis
and rigorous privacy guarantees. Fanì et al. (2024) proposed FED3R, leveraging Ridge Regression on pre-
trained features to tackle non-IID data challenges, effectively mitigating client drift, enhancing convergence,
and optimizing efficiency in cross-device settings.

Another line of research targets optimizing server-side aggregation in FL. For instance, Hsu et al. (2019)
investigated the impact of non-IID data on visual classification by creating datasets with diverse distributions
and found that increased data heterogeneity negatively affected performance, leading them to propose server
momentum as a potential solution. FedNova (Wang et al., 2020b) addressed the problem of objective
inconsistency due to client heterogeneity in federated optimization by introducing a normalized averaging
technique, which resolves this inconsistency and ensures rapid error convergence. Addressing the limitations
of traditional parameter averaging methods, Lin et al. (2020) introduced ensemble distillation for model
fusion. This approach allows for the flexible aggregation of heterogeneous client models by training a central
classifier on unlabeled data, using the outputs from the client models as guidance. FedMRL (Sahoo et al.,
2024a) introduced a novel framework by using a loss function that promotes fairness among clients and
employed a multi-agent reinforcement learning for personalized proximal terms , and a self-organizing map
to dynamically adjust server-side weights during aggregation.

3 Methods and Materials

We consider a practical FL scenario with non-IID data distribution among K independent clients, each
with local training data Dk(x, y), where (x, y) denoting the data points. We initialize the global model
weights θg

r and share it to the participating clients. The clients download the weighs from the server and
train it using their local dataset Dk(x, y). The updated model parameters θr

k from each client k for rth

communication round are uploaded to the server to aggregate into a global model θg
r . Our objective is to

develop a robust global model by collaboratively training local models across clients, even under varying
heterogeneous conditions. To formalize, we define the optimal global model θ∗ as follows:
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θ∗ = min
θ

F (θ) = 1
K

K∑
k=1

fk(θ) (1)

where fk(θ) is defined in Eq. 2.

fk(θ) = E(x,y)∼Dk
[ℓ(fθ(x), y)] (2)

where θ represents the global model parameters, fθ(x) is the model’s prediction, and ℓ is the loss function.

3.0.1 Client Side Update.

At the beginning of each round t, the server randomly selects a subset St ⊂ K of clients to participate in the
federated training process and subsequently shares the current global model θg

r to these participating clients.
Each client updates its local model by initializing with the global model parameters (θr

k = θr
g) and then

updates its local model by minimizing the local objective function. For local training, we have developed
an adaptive objective function that balances local loss with the divergence between local and global models.
The extent of this divergence is quantified using the Kullback-Leibler (KL) divergence (Csiszár, 1975), which
effectively compares the probability distributions of the local model weights pk(w) with the global model
weights q(w). The KL divergence is mathematically defined in Eq. 4. To obtain the probability distributions
of the local and global model weights, we first flatten the weights and then apply the softmax function. This
process yields the desired probability distributions (p), as specified in Eq. 3.

p = exp(flatten weights)∑
exp(flatten weights) (3)

DKL(pk∥q) =
∑

i

pk
i (w) log

(
pk

i (w)
qi(w)

)
(4)

where pk
i and qi are the probabilities associated with the ith component of the weight vectors. The local model

must excel on local data while maintaining alignment with the global model to enhance overall generalization.
This balance between minimizing local loss and aligning with the global model is defined as local adaptive
function f̃k(θ) in Eq. 5.

f̃k(θ) = (1− β) ∗ fk(θ) + β ∗DKL(pk∥q), (5)

where fk(θ) is cross-entropy loss for kth client and β is a regularization parameter and should be adaptive
to account for the performance discrepancy between the local and global models. When the local model
substantially outperforms the global model, β should increase to enforce greater alignment. Conversely, if
the models perform similarly, β should decrease, allowing the local model to focus more on local optimization.
The definition of β is given in Eq. 6.

β = σ(Ak
local −Ak

global) (6)

where σ is the sigmoid function, Ak
local represents the local model accuracy, and Ak

global is the global model
accuracy for client k. We calculated the global model’s accuracy Ak

global for client k by evaluating it on the
training data of client k prior to performing local updates in the current round. Incorporating the adaptive
parameter β in Eq. 5, the adaptive loss function for client k is represented in Eq. 7.

Lk
adaptive = (1− (σ(Ak

local −Ak
global)) ∗ Lk

local

+σ(Ak
local −Aglobal) ∗DKL(pk∥q)

(7)
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After defining the adaptive loss function for each client, we optimize the local model parameters using
stochastic gradient descent (SGD). The gradient update for the local model weights wk based on the adaptive
loss function is given in Eq. 8.

wt+1
k = wt

k − η∇wLk
adaptive(wt

k), (8)

where η is the local learning rate. Expanding the gradient term ∇wLk
adaptive(wt

k), we obtain Eq. 9:

∇wLk
adaptive(wt

k) = (1− (σ(Ak
local −Ak

global))∇wLk
local(wt

k) + σ(Ak
local −Aglobal)∇wDKL(pk∥q). (9)

The KL divergence term, σ(Ak
local − Ak

global)∇wDKL(pk∥q) in Eq. 9, acts as a regularizer to keep the local
model gradients aligned with the global model gradients, thereby preserving model coherence despite non-IID
data. By dynamically adjusting the regularization parameter β based on the performance difference between
local and global models, the adaptive loss function enhances the alignment of local models with the global
model, thereby improving generalization and performance in non-IID scenarios. When local performance is
less compared to global, the regularization term β amplifies the focus on local optimization (first term in
Eq. 5), enabling better-performing clients (that aligns well with the global model) to explore local optima
more effectively. Conversely, if the global model performs worse, this term shifts the emphasis towards
aligning with the global model (second term in Eq. 5), thereby supporting clients that are struggling by
incorporating global knowledge.

3.0.2 Server Side Update.

After obtaining the weights from the participating clients at round t, the server calculates the Wasserstein
Barycenter to effectively aggregate the weights of the last layers of the client models. Computing exact
Wasserstein Barycenter can be computationally expensive, so we have approximated it using the Sinkhorn-
Knopp (Knight, 2008) algorithm for efficient computation. We consider the local model weights as distribu-
tions and assign equal importance to each client in the computation of the Wasserstein Barycenter (µ̄). This
barycenter represents the distribution that minimizes the sum of Wasserstein distances to the individual
client gradient distributions, as formally defined in Eq. 10.

µ̂ = arg min
ν

K∑
k=1

λkW (µk, ν) (10)

where λk are weights corresponding to the importance or reliability of the client k. The Wasserstein distance
W (µk, µj) between two gradient distributions µk and µj of clients j and k is defined in Eq. 11.

W (µk, µj) =
(

inf
γ∈Γ(µk,µj)

∫
X ×X

d(x, y)p dγ(x, y)
)1/p

(11)

where Γ(µk, µj) denotes the set of all couplings (or joint distributions) γ on X × X with marginals µk and
µj respectively, and d(x, y) is the distance between points x and y in the metric space X . After that, we use
Sinkhorn-Knopp algorithm to calculate the Wasserstein Barycenter.

This barycenter is computed iteratively, starting by calculating a scaling factor γ using Eq. 12, followed by
Eq. 13.

γ = exp
(
−W(p̄, pi)

ϵ

)
(12)

p̄new =
∑

i λiγpi∑
i λiγi

(13)
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where p̄ is the current estimate of the barycenter, pi refers to the ith client’s gradient distribution, ϵ is a small
positive constant, and the iterations continue until convergence. After few iterations, we get the Wasserstein
barycenter that is used to update the global model weights. We update the the global model weights for
the last layers by substracting them from the calculated Wasserstein barycenter for effectively aggregating
the updates from the last layers. The algorithm of proposed method FedDUAL is given in the Algorithm
1. The proof of the convergence for both convex and non-convex settings for the proposed method can be
found in Section A of the Appendix.

Algorithm 1 FedDUAL
1: Input: Number of clients K, Number of communication rounds T , and Global model G.
2: Output: Trained global model G∗.
3: Define a mask e ∈ {0, 1}d, where ej = 1 for the last few layers and 0 for the rest layers.
4: Let Snaive = {j : ej = 0} and Sdynamic = {j : ej = 1}.
5: Initialize global model weights θg

6: for t = 1 to T do
7: Sample a subset of clients St ⊆ {1, . . . , K}
8: Initialize lists: local model weights W ← [], gradients ∆← []
9: for each client k ∈ St do

10: Initialize local model Mk with global weights θg.
11: Train Mk on local dataset Dk using adaptive loss function defined in Eq. 7.
12: W ←W ∪ {θk} ▷ Store local model weights θk

13: Compute gradients ∇k for Mk

14: ∆← ∆ ∪ {∇k} ▷ Store gradients ∇k

15: end for
16: for j ∈ {1, . . . , d} do
17: if ej = 1 then ▷ Layer belongs to Sdynamic

18: Extract last layers’ gradients {∇k[j]} from ∆
19: Compute Wasserstein Barycenter of last layer j gradients ∇̄j

20: Update global model’s last layer j weights θg[j]← θg[j]− ∇̄j

21: else ▷ Layer belongs to Snaive

22: Perform Federated Averaging for layer j:
23: θg[j]← 1

|St|
∑

k∈St
θk[j]

24: end if
25: end for
26: end for
27: G∗ ← θg ▷ Final trained global model

Table 1: Top-1 accuracy (%) on CIFAR10, CIFAR100, and FMNIST datasets. The values in bold represent
the highest accuracy achieved. ’*’ denotes algorithms that failed to achieve convergence.

CIFAR10 CIFAR100 FMNIST
FedAvg 46.68 ± 0.25 26.88 ± 0.18 81.70 ± 0.20
FedProx 47.58 ± 0.30 26.89 ± 0.22 80.54 ± 0.28
FedNova 48.44 ± 0.35 * *
FedBN * 26.88 ± 0.19 81.36 ± 0.23
FedDyn 43.97 ± 0.40 18.27 ± 0.32 71.86 ± 0.45
MOON 46.57 ± 0.28 28.50 ± 0.25 80.09 ± 0.27
SCAFFOLD * * *
FedPVR 42.26 ± 0.42 23.78 ± 0.31 80.32 ± 0.33
Proposed 48.70 ± 0.20 29.15 ± 0.24 81.99 ± 0.21
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Figure 3: Learning curves comparing the proposed method with baselines across various datasets: (a)
CIFAR-10, (b) CIFAR-100, and (c) FMNIST.

Figure 4: Number of FL rounds required to reach the target accuracy for the proposed method and other
baselines on different datasets: (a) CIFAR-10, (b) CIFAR-100, and (c) FMNIST.

4 Experimental Results

4.1 Experimental Setup

To assess the effectiveness of the proposed FedDUAL approach, we conducted extensive experiments
using three widely recognized classification benchmarks: CIFAR10 (Krizhevsky et al., 2009), CI-
FAR100 (Krizhevsky, 2009), and FMNIST (Xiao et al., 2017). To simulate real-world non-IID data dis-
tributions, we employed a client-wise partitioning strategy based on the Dirichlet distribution (Hsu et al.,
2019). This distribution is governed by a concentration parameter α, which controls the degree of data
heterogeneity among clients. Lower α values result in more skewed data distributions, closely mimicking
uneven data partitions. In all experiments, we set α = 0.01 to simulate severe data heterogeneity, closely
approximating real-world conditions. Throughout the communication rounds, each client retains a fixed lo-
cal data partition. To evaluate the global model’s classification performance, we use a separate test dataset
maintained at the server, which remains unseen during training. For our experiments, we used LeNet (LeCun
et al., 1998) for FMNIST dataset and a pre-trained VGG16 (Simonyan & Zisserman, 2015) for CIFAR-10
and CIFAR-100 dataset, following the methodology outlined in (Hu et al., 2024). We applied the proposed
dynamic aggregation mechanism only to the last two layers of these models. Our setup involved 100 clients,
with 10% randomly sampled per communication round, and a batch size of 32. Each client performed three
local epochs of model updates. We have computed each result three times with different seed values and
reported the mean value with standard deviation. To determine the optimal client learning rate for each
experiment, we conducted a grid search over 0.05, 0.01, 0.2, 0.3. For the baseline FedProx, we tested proximal
values of 0.001, 0.1, 0.4, 0.7 to find the optimal setting, and for FedNova, we evaluated proximal SGD values
from 0.001, 0.003, 0.05, 0.1, following the recommendations in Li et al. (2024). Across all experiments, we
used the Adam optimizer for consistency. We have run each algorithm three times and reported the average
outcome. The experimental setup utilized an NVIDIA Quadro RTX 4000 GPU boasting 40GB of memory.
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The implementation was crafted using Python 1, leveraging the TensorFlow framework 2 utilizing Windows
11.

4.2 Comparison with the State-of-the-art Methods

4.2.1 Baseline.

We evaluate the proposed FedDUAL method against eight notable state-of-the-art (SOTA) FL baselines,
including FedAvg (McMahan et al., 2017), FedProx (Li et al., 2020), FedNova (Wang et al., 2020b), SCAF-
FOLD (Karimireddy et al., 2020), FedBN (Li et al., 2021b), FedDyn (Acar et al., 2021), MOON (Li et al.,
2021a) and FedPVR (Li et al., 2023).

4.2.2 Comparison of Accuracy.

The results, detailed in Table 1, reveal that many recent FL methods often fall short compared to the
standard FedAvg baseline. In contrast, our proposed method consistently achieves SOTA performance,
surpassing FedAvg along with other baselines across all evaluated scenarios. Furthermore, our approach
exhibits remarkable adaptability across diverse datasets. Unlike some algorithms that excel on specific
datasets but falter on others, the proposed FedDUAL consistently outperforms baselines across a wide range
of data environments. This improvement suggests that our method addresses fundamental challenges in
FL, potentially offering a more generalizable solution to the issues posed by data heterogeneity in federated
settings. We also observed that FedNova, FedBN, and Scaffold did not perform effectively in our experimental
setup.

4.2.3 Comparison of Convergence.

Figure 3 compares the learning curves of our method with baselines, while Fig. 11 in the Appendix includes
the corresponding curves with error bars. Across all datasets, our method consistently converges faster and
achieves higher final accuracy. Although the number of communication rounds varies by dataset, performance
generally saturates by the final round. Notably, our method not only attains a more robust final model
but also displays markedly faster convergence across all datasets examined. This effectiveness is further
highlighted in Fig. 4, where it consistently reaches target accuracy with far fewer communication rounds
compared to baseline approaches.

4.3 Validation of the Motivation

To substantiate our claim that the proposed method yields models in flatter loss landscapes compared to
FedAvg, we conducted a comparative analysis. Using VGG-16 models trained on the FMNIST dataset under
non-IID conditions (α = 0.01), we visualized their respective loss landscapes following the approach outlined
in Li et al. (2018). Figure 7 in the Appendix depicts these landscapes, with each model centrally located
within its respective terrain. The visualization reveals that our proposed method situates the model in a
notably flatter region compared to FedAvg. This finding supports our assertion that our approach guides
federated training towards more stable and generalizable solutions, characterized by flatter loss landscapes.
The performance improvement of the proposed models stems from two key innovations: a Wasserstein
Barycenter-based aggregation for final layer gradients, mitigating client drift in heterogeneous data envi-
ronments, and an adaptive loss function balancing local optimization with global consistency during client
training. This synergistic approach preserves global knowledge while promoting client-specific optimization,
addressing fundamental FL challenges.

5 Ablation Study

In our ablation study, we performed all experiments on the FMNIST dataset with α = 0.01. The study
comprised four types of experiments: (1) performance analysis of the individual modules, (2) assessment of

1https://www.python.org/
2https://www.tensorflow.org/
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Table 2: Ablation study results for the proposed FedDUAL method on the FMNIST dataset.

Adaptive Loss Dynamic Aggregation Accuracy (%)
✓ ✗ 80.70 ± 0.22
✗ ✓ 80.91 ± 0.25
✓ ✓ 81.99 ± 0.18

the impact of dynamic aggregation across different neural network layers, (3) hyperparameter analysis, and
(4) evaluation of various levels of data heterogeneity.

5.0.1 Performance Analysis of Individual Modules

To assess the effectiveness of the proposed adaptive loss and dynamic aggregation techniques, we conducted
three ablation experiments across FMNIST, CIFAR-10, and CIFAR-100. The results for FMNIST are shown
in Table 2, while those for CIFAR-10 and CIFAR-100 are reported in Table 3 and Table 4, respectively. In the
first experiment, we employed only the adaptive loss alongside standard server-side aggregation. Notably,
this configuration underperforms FedAvg across all datasets, indicating that adaptive loss alone cannot
effectively address data heterogeneity—likely due to its limited capacity to improve generalization despite
fostering local-global alignment. The second experiment implemented our dynamic aggregation technique at
the server, while retaining the conventional cross-entropy loss function locally. Finally, the third experiment
combined both proposed methods: the adaptive loss function and the dynamic aggregation technique. As
evidenced by Table 2, the integration of both proposed approaches in the third experiment yielded the
highest accuracy, highlighting the impact of our dual strategy on model performance. The learning curves
for these experiments using FMNIST dataset are illustrated in Fig. 8 of the Appendix.

Table 3: Ablation study results for the proposed FedDUAL method on CIFAR10 dataset.

Adaptive Loss Dynamic Aggregation Accuracy (%)
✓ ✗ 41.05 ± 0.12
✗ ✓ 46.50 ± 0.15
✓ ✓ 48.70 ± 0.20

Table 4: Ablation study results for the proposed FedDUAL method on CIFAR100 dataset.

Adaptive Loss Dynamic Aggregation Accuracy (%)
✓ ✗ 25.05 ± 0.11
✗ ✓ 27.01 ± 0.17
✓ ✓ 29.15 ± 0.24

5.0.2 Impact of Dynamic Aggregation on Different Network Layers

To substantiate our decision to apply dynamic aggregation technique selectively to last layers, we examined
its impact across various layers of the neural network. Our earlier findings highlighted that data heterogene-
ity primarily affects last layers of the network. Figure 5 illustrates that random utilization of the dynamic
aggregation to all layers diminishes performance. Conversely, targeted implementation on layers proximal
to the classifier yielded optimal accuracy and convergence. These outcomes validate our hypothesis and
demonstrate the method’s efficacy in mitigating heterogeneity-induced issues. By focusing our dynamic
aggregation technique on the most susceptible layers, we directly address the core challenge of data hetero-
geneity in federated training, resulting in enhanced model performance and faster convergence.

5.0.3 Hyperparameter Analysis

10
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Figure 5: Illustration of the Dynamic aggregation
method applied across various layers of the neural net-
work.

In the proposed architecture, there are two key hy-
perparameters to consider: the scaling factor (γ)
and the number of iterations used to compute the
Wasserstein Barycenter. The proposed FedDUAL
approach utilizes dynamic server-side aggregation
by applying the Wasserstein Barycenter concept to
combine the weights of the final layers from local
models. This iterative process involves a small posi-
tive constant (ϵ) to determine the scaling factor (γ).
To optimize performance, we conducted two sets of
experiments on the FMNIST dataset with α = 0.01,
each exploring a range of values for these crucial
hyperparameters. The hyperparameter ϵ influences
the sensitivity of the barycenter calculation to varia-
tions in Wasserstein distance. A smaller ϵ makes the
barycenter more responsive to differences in Wasser-
stein distance, while a larger ϵ diminishes this sen-
sitivity. This impacts how the barycenter integrates
each distribution according to its distance from the
current estimate. During the iterative update of the
barycenter, ϵ affects the scaling factor γ applied to
each distribution. An excessively small ϵ can result
in slow or potentially non-existent convergence due
to minimal scaling factor, whereas a too-large ϵ may cause oversmoothing, reducing the barycenter’s effec-
tiveness in accurately representing the distributions. For this setting we have fixed the number of iterations
to compute Wasserstein Barycenter as 150. Figure 9 in the Appendix shows test accuracy across different ϵ
values, indicating that larger ϵ can degrade performance or hinder convergence. Figure 10 in the Appendix
presents the corresponding learning curves for these settings. The number of iterations in the Wasserstein
Barycenter function is another critical hyperparameter that affects both the accuracy and efficiency of the
barycenter computation. Generally, more iterations enhance convergence and accuracy, ensuring that the
barycenter more closely approximates the optimal value. However, increasing the number of iterations also
prolongs computation time, necessitating a balance between accuracy and efficiency. Finding the optimal
number of iterations involves a trade-off: too few iterations may result in suboptimal outcomes, while too
many can yield diminishing returns in accuracy. To achieve the best performance, begin with a reasonable
default value, monitor convergence by observing changes in the barycenter, and adjust iteratively based
on empirical results and available computational resources. For this setting, we fixed the epsilon value as
0.0001, which yields the highest results in previous experiment. Figure 12 illustrates the test accuracy for
different values of iterations to calculate Wasserstein Barycenter, suggesting that larger iterations may ad-
versely affect performance. Figure 13 presents the corresponding learning curves for these settings. From
both experiments, we observe that the highest performance is achieved with ϵ = 0.00001 and 150 iterations.
Therefore, to optimize performance, it is advisable to set ϵ to a smaller value while keeping the number of
iterations between 100 and 150.

5.0.4 Experiment on Different Level of Data Heterogeneity

Figure 14 illustrates the accuracy of the proposed method and various baselines across different levels of
data heterogeneity on the FMNIST dataset. In this context, heterogeneity is quantified by α, with lower
values indicating greater data heterogeneity. The results show that as α decreases, the test accuracy for all
models increases, because data heterogeneity among clients is decreased. Remarkably, the proposed method
consistently achieves the highest test accuracy and exhibits the slowest performance decline compared to
other algorithms, demonstrating superior performance of the proposed method on varying degrees of non-IID
data partitioning. The learning curve is presented in Fig. 15.

11



Under review as submission to TMLR

6 Limitation and Future Work

While the proposed FedDUAL framework achieves superior performance and faster convergence under severe
data heterogeneity, where several state-of-the-art methods such as FedNova, FedBN, and SCAFFOLD fail to
converge, it introduces higher computational cost at the server due to the iterative calculation of the Wasser-
stein Barycenter. On the client side, FedDUAL remains lightweight and is also more communication-efficient
than methods like SCAFFOLD and FedPVR, as it only requires transmitting model updates without addi-
tional control variates. Although this extra computational overhead is limited to the server, which typically
has sufficient resources, future research will focus on reducing the computational burden of the Wasser-
stein Barycenter calculation by developing more efficient algorithms, aiming to maintain or even improve
the performance of the proposed framework. Moreover, FedDUAL is inherently compatible with standard
privacy-preserving techniques. In particular, its adaptive loss and dynamic aggregation can be seamlessly
integrated with Differential Privacy by adding noise to client updates prior to aggregation, without modi-
fying the core design. Investigating this integration with formal privacy guarantees remains an important
direction for future research.

7 Conclusion

This research presents a novel approach to address the challenges posed by data heterogeneity among clients
in the federated approach. We systematically analyze the factors contributing to federated model perfor-
mance degradation under severe data heterogeneity and propose an architecture incorporating dual-strategy
innovations. First, we implement an adaptive loss function for client-side training. Second, we create a
dynamic aggregation strategy for server side aggregation, tailored to client-specific learning behaviors. The
proposed FedDUAL effectively overcomes the challenges of heterogeneous data, outperforming eight SOTA
baselines. It demonstrates faster convergence and consistently improved performance, making it an excellent
solution for large-scale FL applications in real-world scenarios. Our approach’s flexibility paves the way for
research into hybrid federated learning models that adapt to changing client environments and data. Future
studies will focus on integrating personalized learning paths to enhance model adaptability and efficiency
across various datasets.
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Appendix

A Convergence Proof

Before presenting the main convergence theorems, we establish assumptions and several key lemmas.

Assumptions

1. L-Smoothness: Each local loss function fk(θ) is L-smooth:

∥∇fk(θ)−∇fk(θ′)∥ ≤ L∥θ − θ′∥, ∀θ, θ′ ∈ W,∀k (14)

2. Unbiased Stochastic Gradients: For any client k and parameter θ, the stochastic gradient is unbiased:

Eξ∼Dk
[∇ℓ(θ; ξ)] = ∇fk(θ). (15)

3. Bounded Variance: The variance of stochastic gradients is bounded:

Eξ∼Dk

[
∥∇ℓ(θ; ξ)−∇fk(θ)∥2]

≤ σ2, ∀θ, k (16)

where σ2 = maxk σ2
k.

4. Bounded Gradients: There exists G > 0 such that:

∥∇fk(θ)∥ ≤ G, ∀θ ∈ W,∀k (17)

5. KL Divergence Properties: The KL divergence term and dynamic weighting satisfy:

∥∇DKL(pk(θ)∥q(θ))∥ ≤ GKL, ∀θ, k (18)

∥∇βk(θ)∥ ≤ Lβ , ∀θ, k (19)
0 ≤ βk(θ) ≤ βmax < 1, ∀θ, k (20)

6. Wasserstein Barycenter Approximation: For the final layers aggregated using Wasserstein Barycen-
ters, the approximation error εWB is bounded as follows:

∥∇WB
t −∇exact

t ∥ ≤ εWB (21)

where ∇exact
t represents the exact gradient aggregation.

A.1 Key Lemmas:

Lemma 1: Smoothness of Modified Loss function:

Under Assumptions 1 and 5, the modified loss function f̃k(θ) is L̃-smooth with

L̃ = L + Lβ(G + GKL) + βmaxGKLLβ + LβGf , (22)

where Gf = maxk supθ ∥fk(θ)∥ and GKL = maxk supθ ∥DKL(pk(θ)∥q(θ))∥.

Proof. Let θ, θ′ ∈ W. The complete gradient of the modified loss function is:

∇f̃k(θ) = ∂

∂θ
[(1− βk(θ))fk(θ) + βk(θ)DKL(pk(θ)|q(θ))]

= −∇βk(θ) · fk(θ) + (1− βk(θ))∇fk(θ)
+∇βk(θ) ·DKL(pk(θ)|q(θ)) + βk(θ)∇DKL(pk(θ)|q(θ))

(23)
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Similarly for θ′:

∇f̃k(θ′) = −∇βk(θ′) · fk(θ′) + (1− βk(θ′))∇fk(θ′)
+∇βk(θ′) ·DKL(pk(θ′)∥q(θ′)) + βk(θ′)∇DKL(pk(θ′)∥q(θ′)) (24)

Calculating the gradient difference results in Eq. 25:

∇f̃k(θ)−∇f̃k(θ′)
= − [∇βk(θ) · fk(θ)−∇βk(θ′) · fk(θ′)]

+ [(1− βk(θ))∇fk(θ)− (1− βk(θ′))∇fk(θ′)]
+ [∇βk(θ) ·DKL(pk(θ)|q(θ))−∇βk(θ′) ·DKL(pk(θ′)|q(θ′))]
+ [βk(θ)∇DKL(pk(θ)|q(θ))− βk(θ′)∇DKL(pk(θ′)|q(θ′))] .

(25)

We bound each term separately using the triangle inequality:

Term 1: −[∇βk(θ) · fk(θ)−∇βk(θ′) · fk(θ′)]

Adding and subtracting ∇βk(θ) · fk(θ′):

∥∇βk(θ) · fk(θ)−∇βk(θ′) · fk(θ′)∥
≤ ∥∇βk(θ) · (fk(θ)− fk(θ′))∥+ ∥(∇βk(θ)−∇βk(θ′)) · fk(θ′)∥
≤ ∥∇βk(θ)∥ · ∥fk(θ)− fk(θ′)∥+ ∥∇βk(θ)−∇βk(θ′)∥ · ∥fk(θ′)∥
≤ Lβ · L∥θ − θ′∥+ Lβ∥θ − θ′∥ ·Gf

= Lβ(L + Gf )∥θ − θ′∥

(26)

Term 2: [(1− βk(θ))∇fk(θ)− (1− βk(θ′))∇fk(θ′)]

Adding and subtracting (1− βk(θ))∇fk(θ′):

∥(1− βk(θ))∇fk(θ)− (1− βk(θ′))∇fk(θ′)∥
≤ ∥(1− βk(θ))(∇fk(θ)−∇fk(θ′))∥+ ∥(βk(θ′)− βk(θ))∇fk(θ′)∥
≤ (1− βk(θ))L∥θ − θ′∥+ |βk(θ′)− βk(θ)| ·G
≤ L∥θ − θ′∥+ Lβ∥θ − θ′∥ ·G
= (L + LβG)∥θ − θ′∥

(27)

Term 3: [∇βk(θ) ·DKL(pk(θ)∥q(θ))−∇βk(θ′) ·DKL(pk(θ′)∥q(θ′))]

Following similar decomposition:
∥∇βk(θ) ·DKL(pk(θ)∥q(θ))−∇βk(θ′) ·DKL(pk(θ′)∥q(θ′))∥
≤ LβGKLLβ∥θ − θ′∥+ LβGKL∥θ − θ′∥
= LβGKL(Lβ + 1)∥θ − θ′∥

(28)

Term 4: [βk(θ)∇DKL(pk(θ)∥q(θ))− βk(θ′)∇DKL(pk(θ′)∥q(θ′))]

∥βk(θ)∇DKL(pk(θ)∥q(θ))− βk(θ′)∇DKL(pk(θ′)∥q(θ′))∥
≤ ∥βk(θ)(∇DKL(pk(θ)∥q(θ))−∇DKL(pk(θ′)∥q(θ′)))∥

+ ∥(βk(θ)− βk(θ′))∇DKL(pk(θ′)∥q(θ′))∥
≤ βmaxGKLLβ∥θ − θ′∥+ LβGKL∥θ − θ′∥
= LβGKL(βmax + 1)∥θ − θ′∥

(29)
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Final bound: Combining all terms:

∥∇f̃k(θ)−∇f̃k(θ′)∥ ≤ [Lβ(L + Gf ) + (L + LβG) (30)
+ LβGKL(Lβ + 1) + LβGKL(βmax + 1)]∥θ − θ′∥.

For a conservative and simplified bound, we can write:

L̃ = L + Lβ(G + GKL + Gf ) + L2
βGKL + βmaxLβGKL (31)

Or more compactly, assuming Gf ≤ G and using conservative bounds:

L̃ = L + Lβ(G + GKL) + βmaxGKLLβ + LβGf (32)

Therefore, f̃k(θ) is L̃-smooth.

Lemma 2: Bounded Variance of Modified Gradients: Under Assumptions 2, 3, and 5, the variance
of stochastic gradients for the modified loss is bounded:

E
[
∥∇f̃k(θ; ξ)−∇f̃k(θ)∥2]

≤ σ2 (33)

Proof. We begin by analyzing the variance of the stochastic gradient of the modified loss function f̃k(θ).
Recall that the per-sample stochastic gradient is defined as:

∇f̃k(θ; ξ) = (1− βk(θ))∇ℓ(θ; ξ) + βk(θ)∇DKL(pk(θ) ∥ q(θ)),

whereas the full-batch gradient is:

∇f̃k(θ) = (1− βk(θ))∇fk(θ) + βk(θ)∇DKL(pk(θ) ∥ q(θ)).

Subtracting the two, we obtain:

∇f̃k(θ; ξ)−∇f̃k(θ) = (1− βk(θ)) (∇ℓ(θ; ξ)−∇fk(θ)) .

Here, the KL divergence term cancels out since it is deterministic and does not depend on the stochastic
sample ξ. Taking the squared norm and expectation over the stochasticity of ξ, we have:

Eξ

[∥∥∇f̃k(θ; ξ)−∇f̃k(θ)
∥∥2]

= (1− βk(θ))2 · Eξ

[
∥∇ℓ(θ; ξ)−∇fk(θ)∥2

]
≤ Eξ

[
∥∇ℓ(θ; ξ)−∇fk(θ)∥2

]
(since (1− βk(θ))2 ≤ 1)

≤ σ2
k ≤ σ2,

where we have used Assumption 3 to upper bound the variance of the stochastic gradients by σ2.

Lemma 3: Local Update Analysis: Let θk
t be the local model on client k after E local updates initialized

from the global model θt. Then, under Assumptions 1–5, the expected squared deviation from the global
model after local training satisfies:

E
[
∥θk

t − θt + ηE∇f̃k(θt)∥2]
≤ η2E2L̃2

2

E−1∑
e=0

E
[
∥θk,e

t − θt∥2
]

+ η2Eσ̃2, (34)

where θk,e
t denotes the local model on client k after e local steps, L̃ is the smoothness constant of f̃k (Lemma

1, and σ̃2 is the bounded variance of the modified stochastic gradient (Lemma 2).

Proof. We begin by expressing the full local model update as a telescoping sum over E local steps:

θk
t = θt − η

E−1∑
e=0
∇f̃k(θk,e

t ; ξe),
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where ξe denotes the data sample used in the e-th local step.

Rewriting this update in terms of the true gradient at the initial point θt, we add and subtract ∇f̃k(θt):

θk
t − θt = −η

E−1∑
e=0
∇f̃k(θk,e

t ; ξe) = −ηE∇f̃k(θt)− η

E−1∑
e=0

(
∇f̃k(θk,e

t ; ξe)−∇f̃k(θt)
)

.

Rearranging terms gives:

θk
t − θt + ηE∇f̃k(θt) = −η

E−1∑
e=0

(
∇f̃k(θk,e

t ; ξe)−∇f̃k(θt)
)

.

Taking the norm squared and expectation:

E
[∥∥θk

t − θt + ηE∇f̃k(θt)
∥∥2]

= η2 E

∥∥∥∥∥
E−1∑
e=0

(
∇f̃k(θk,e

t ; ξe)−∇f̃k(θt)
)∥∥∥∥∥

2 .

Applying Jensen’s inequality (or the inequality ∥
∑

ae∥2 ≤ E
∑
∥ae∥2):

≤ η2E

E−1∑
e=0

E
[∥∥∥∇f̃k(θk,e

t ; ξe)−∇f̃k(θt)
∥∥∥2

]
.

Now decompose the difference inside each term:

E
[∥∥∥∇f̃k(θk,e

t ; ξe)−∇f̃k(θt)
∥∥∥2

]
≤ 2E

[∥∥∥∇f̃k(θk,e
t ; ξe)−∇f̃k(θk,e

t )
∥∥∥2

]
+ 2E

[∥∥∥∇f̃k(θk,e
t )−∇f̃k(θt)

∥∥∥2
]

.

From Lemma 2, the variance of the stochastic gradient is bounded:

E
[∥∥∥∇f̃k(θk,e

t ; ξe)−∇f̃k(θk,e
t )

∥∥∥2
]
≤ σ̃2.

From Lemma 1, the gradient of f̃k is L̃-Lipschitz:∥∥∥∇f̃k(θk,e
t )−∇f̃k(θt)

∥∥∥2
≤ L̃2

∥∥∥θk,e
t − θt

∥∥∥2
.

Combining the two bounds:

E
[∥∥∥∇f̃k(θk,e

t ; ξe)−∇f̃k(θt)
∥∥∥2

]
≤ 2σ̃2 + 2L̃2E

[∥∥∥θk,e
t − θt

∥∥∥2
]

.

Substituting back:

E
[∥∥θk

t − θt + ηE∇f̃k(θt)
∥∥2]
≤ η2E

E−1∑
e=0

(
2σ̃2 + 2L̃2E

[∥∥∥θk,e
t − θt

∥∥∥2
])

.

Grouping constants:

= 2η2Eσ̃2 + 2η2L̃2
E−1∑
e=0

E
[∥∥∥θk,e

t − θt

∥∥∥2
]

.

Finally, simplifying constants and using 1
2 factor for future algebraic convenience:

≤ η2E2L̃2

2

E−1∑
e=0

E
[∥∥∥θk,e

t − θt

∥∥∥2
]

+ η2Eσ̃2.
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Theorem 1 (Convex Convergence)

Suppose Assumptions 1–6 hold and F̃ (θ) is convex. Let θ∗ = arg minθ∈W F̃ (θ), and set the learning rate as
η ≤ 1

4L̃E
.

Then, FedDUAL guarantees the following convergence bound:

E[F̃ (θ̄T )− F̃ (θ∗)] ≤ 2∥θ0 − θ∗∥2

ηT
+ ηL̃Eσ̃2

K
+ ηL̃E2G2 + εW BG

where θ̄T = 1
T

∑T −1
t=0 θt and σ̃2 is as defined in Lemma 2.

B Proof

Since F̃ (θ) is L̃-smooth and convex, we can write the fundamental smoothness inequality:

F̃ (θt+1) ≤ F̃ (θt) + ⟨∇F̃ (θt), θt+1 − θt⟩+ L̃

2 ∥θt+1 − θt∥2 (35)

This is the standard smoothness inequality. For any L̃-smooth function f , we have f(y) ≤ f(x)+⟨∇f(x), y−
x⟩+ L̃

2 ∥y − x∥2.

The FedDUAL update consists of two phases:

(For early layers): Standard aggregation

θearly
t+1 = θearly

t − η

K

K∑
k=1

E−1∑
e=0
∇f̃k(θk,e

t ; ξk,e) (36)

(For final layers): Wasserstein Barycenter aggregation

θfinal
t+1 = WB({θk,E

t [j]}K
k=1) + δW B (37)

where ∥δW B∥ ≤ εW B is the Wasserstein approximation error.

The total update can be written as

θt+1 − θt = − η

K

K∑
k=1

E−1∑
e=0
∇f̃k(θk,e

t ; ξk,e) + δtotal, (38)

where ∥δtotal∥ ≤ εW B . By substituting Eq. 38 into the inner product term defined in Eq. 35, we derive
Eq. 39.

⟨∇F̃ (θt), θt+1 − θt⟩

=
〈
∇F̃ (θt),−

η

K

K∑
k=1

E−1∑
e=0
∇f̃k(θk,e

t ; ξk,e) + δtotal

〉

= − η

K

K∑
k=1

E−1∑
e=0
⟨∇F̃ (θt),∇f̃k(θk,e

t ; ξk,e)⟩+ ⟨∇F̃ (θt), δtotal⟩

(39)

For the error term, we apply the Cauchy–Schwarz inequality to obtain:

|⟨∇F̃ (θt), δtotal⟩| ≤ ∥∇F̃ (θt)∥∥δtotal∥ ≤ GεW B . (40)
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Here, we use Assumption 4, which states that |∇F̃ (θt)| ≤ G. We add and subtract ∇f̃k(θt) from the first
term of Eq. 39 and obtain Eq. 41:

⟨∇F̃ (θt),∇f̃k(θk,e
t ; ξk,e)⟩

= ⟨∇F̃ (θt),∇f̃k(θt)⟩+ ⟨∇F̃ (θt),∇f̃k(θk,e
t ; ξk,e)−∇f̃k(θt)⟩

(41)

The first term of right hand side of Eq. 41 gives us:

1
K

K∑
k=1
⟨∇F̃ (θt),∇f̃k(θt)⟩ = ⟨∇F̃ (θt),

1
K

K∑
k=1
∇f̃k(θt)⟩ = ∥∇F̃ (θt)∥2 (42)

By definition, ∇F̃ (θt) = 1
K

∑K
k=1

nk

n ∇f̃k(θt), and assuming uniform data distribution, this simplifies to
1
K

∑K
k=1∇f̃k(θt).

For the second term, we decompose:

∇f̃k(θk,e
t ; ξk,e)−∇f̃k(θt)

= [∇f̃k(θk,e
t ; ξk,e)−∇f̃k(θk,e

t )] + [∇f̃k(θk,e
t )−∇f̃k(θt)].

(43)

Taking expectation and applying the Cauchy–Schwarz inequality, we obtain:

E[|⟨∇F̃ (θt),∇f̃k(θk,e
t ; ξk,e)−∇f̃k(θt)⟩|]

≤ E[∥∇F̃ (θt)∥∥∇f̃k(θk,e
t ; ξk,e)−∇f̃k(θk,e

t )∥]

+ E[∥∇F̃ (θt)∥∥∇f̃k(θk,e
t )−∇f̃k(θt)∥]

(44)

Using Young’s inequality with parameter α > 0:

ab ≤ a2

2α
+ αb2

2 (45)

Applying Eq. 45 into first term in Eq. 44, we obtain:

E[∥∇F̃ (θt)∥∥∇f̃k(θk,e
t ; ξk,e)−∇f̃k(θk,e

t )∥]

≤ E[∥∇F̃ (θt)∥2]
2α

+ α

2E[∥∇f̃k(θk,e
t ; ξk,e)−∇f̃k(θk,e

t )∥2]

≤ E[∥∇F̃ (θt)∥2]
2α

+ ασ̃2

2 .

(46)

Here we have used Lemma 2 which bounds the variance of stochastic gradients by σ̃2.

Similarly, we can write for the second term in Eq. 44:

E[∥∇F̃ (θt)∥∥∇f̃k(θk,e
t )−∇f̃k(θt)∥]

≤ E[∥∇F̃ (θt)∥2]
2α

+ αL̃2

2 E[∥θk,e
t − θt∥2].

(47)

We use the L̃-smoothness of f̃k from Lemma 1. By selectively combining the terms from Eq. 40, Eq. 41,
Eq. 42, and Eq. 47, and substituting them into Eq. 39, we obtain Eq. 48. The choice of α = 1

2 in Young’s
inequality is a standard optimization choice that balances the two terms in the bound. When applying
Young’s inequality ab ≤ a2

2α + αb2

2 , setting α = 1
2 gives equal weight to both the gradient norm term and the

variance terms, which minimizes the overall bound and leads to the subsequent steps.
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E[⟨∇F̃ (θt), θt+1 − θt⟩]

≤ −ηE[∥∇F̃ (θt)∥2] + η

K

K∑
k=1

E−1∑
e=0

[
E[∥∇F̃ (θt)∥2]

2α
+ ασ̃2

2 + αL̃2

2 E[∥θk,e
t − θt∥2]

]
+ GεW B .

(48)

Substituting α = 1
2 , we obtain:

≤ −ηE[∥∇F̃ (θt)∥2] + ηE

K

K∑
k=1

[
E[∥∇F̃ (θt)∥2] + σ̃2

4 + L̃2

4

E−1∑
e=0

E[∥θk,e
t − θt∥2]

]
+ GεW B . (49)

Simplifying Eq. 49, we obtain Eq. 50:

≤ −η

2E[∥∇F̃ (θt)∥2] + ηL̃2E

4K

K∑
k=1

E−1∑
e=0

E[∥θk,e
t − θt∥2] + ηEσ̃2

4 + GεW B . (50)

Again we starting from Eq. 38:

θt+1 − θt = −η · 1
K

K∑
k=1

E−1∑
e=0
∇f̃k(θt

k,e; ξk,e) + δtotal

where ∥δtotal∥ ≤ εW B is the Wasserstein Barycenter approximation error.

Taking Norm Squared, we get below:

∥θt+1 − θt∥2 =

∥∥∥∥∥−η · 1
K

K∑
k=1

E−1∑
e=0
∇f̃k(θt

k,e; ξk,e) + δtotal

∥∥∥∥∥
2

Now we apply the below inequality:

∥a + b∥2 ≤ 2∥a∥2 + 2∥b∥2

So, we get below:

∥θt+1 − θt∥2 ≤ 2

∥∥∥∥∥η · 1
K

K∑
k=1

E−1∑
e=0
∇f̃k(θt

k,e; ξk,e)

∥∥∥∥∥
2

+ 2∥δtotal∥2

Now we take Expectation of the above inequality:

E
[
∥θt+1 − θt∥2]

≤ 2E

∥∥∥∥∥η · 1
K

K∑
k=1

E−1∑
e=0
∇f̃k(θt

k,e; ξk,e)

∥∥∥∥∥
2 + 2ε2

W B

Using Jensen’s inequality and bounded gradients, we obtain Eq. 51:

≤ 2η2E

∥∥∥∥∥ 1
K

K∑
k=1

E−1∑
e=0
∇f̃k(θk,e

t ; ξk,e)

∥∥∥∥∥
2 + 2ε2

W B

≤ 2η2E2G2 + 2ε2
W B

(51)
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From Lemma 3, we can derive the following.

E[∥θk,e
t − θt∥2] ≤ η2e2σ̃2

2 + η2e2L̃2G2

2 . (52)

Summing over all local steps yields:

1
K

K∑
k=1

E−1∑
e=0

E[∥θk,e
t − θt∥2] ≤ η2σ̃2

2K

E−1∑
e=0

e2 + η2L̃2G2

2K

E−1∑
e=0

e2

≤ η2E2σ̃2

2K
+ η2E2L̃2G2

2K
.

(53)

We use
∑E−1

e=0 e2 ≤ E3/3 ≤ E2 for practical purposes. Substituting Eq. 53 into Eq. 50, we get Eq. 54:

E[F̃ (θt+1)] ≤ E[F̃ (θt)]−
η

2E[∥∇F̃ (θt)∥2] + ηL̃2E

4K

(
η2E2σ̃2

2K
+ η2E2L̃2G2

2K

)
+ ηEσ̃2

4

+ L̃

2 (2η2E2G2 + 2ε2
W B) + GεW B .

(54)

Simplifying the higher-order terms and keeping dominant terms:

E[F̃ (θt+1)] ≤ E[F̃ (θt)]−
η

2E[∥∇F̃ (θt)∥2] + ηL̃Eσ̃2

K
+ ηL̃E2G2 + εW BG. (55)

From the definition of convex functions, we have:

⟨∇F̃ (θt), θt − θ∗⟩ ≥ F̃ (θt)− F̃ (θ∗) (56)

Applying the Cauchy–Schwarz inequality along with 2ab ≤ a2 + b2, we obtain:

∥∇F̃ (θt)∥2 ≥ 2(F̃ (θt)− F̃ (θ∗))⟨∇F̃ (θt), θt − θ∗⟩
∥θt − θ∗∥2 (57)

Subtracting F̃ (θ∗) from both sides of Eq. 55, we obtain:

E[F̃ (θt+1)]− F̃ (θ∗) ≤ E[F̃ (θt)]− F̃ (θ∗)− η

2E[∥∇F̃ (θt)∥2] + C, (58)

where C = ηL̃Eσ̃2

K + ηL̃E2G2 + εW BG.

For convex functions, we leverage the inequality:

E[∥∇F̃ (θt)∥2] ≥ 2(E[F̃ (θt)]− F̃ (θ∗))
η

. (59)

This yields the recursive bound:

E[F̃ (θt+1)]− F̃ (θ∗) ≤ 1
2(E[F̃ (θt)]− F̃ (θ∗)) + C. (60)

Unrolling the recurrence gives:

E[F̃ (θT )]− F̃ (θ∗) ≤
(

1
2

)T

(F̃ (θ0)− F̃ (θ∗)) + 2C. (61)
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Using Jensen’s inequality for the averaged iterate θ̄T = 1
T

∑T −1
t=0 θt:

E[F̃ (θ̄T )]− F̃ (θ∗) ≤ 1
T

T −1∑
t=0

(E[F̃ (θt)]− F̃ (θ∗))

≤ 2∥θ0 − θ∗∥2

ηT
+ ηL̃Eσ̃2

K
+ ηL̃E2G2 + εW BG

(62)

Putting η = 1
4L̃E

in above equation and simplifying yields:

E[F̃ (θ̄T )− F̃ (θ∗)] ≤ 8L̃E∥θ0 − θ∗∥2

T
+ σ̃2

4K
+ EG2

4 + ϵW BG (63)

E[F̃ (θ̄T )− F̃ (θ∗)] = O
(

1
T

)
+ constant (64)

B.1 Non-Convex Convergence Analysis

Theorem 2: Given that Assumptions 1–6 are satisfied and F̃ (θ) is non-convex, setting the learning rate
η ≤ 1

4L̃E
ensures that FedDUAL achieves the following convergence guarantee:

1
T

T −1∑
t=0

E[∥∇F̃ (θt)∥2] ≤ 2(F̃ (θ0)− F̃ (θ∗))
ηT

+ ηL̃Eσ̃2

K
+ ηL̃E2G2 + εW BG

η
, (65)

where θ∗ is any global minimum of F̃ (θ) and σ̃2 is as defined in Lemma 2.

Proof: From the L̃-smoothness of F̃ (θ) (established in Lemma 1), we have:

F̃ (θt+1) ≤ F̃ (θt) + ⟨∇F̃ (θt), θt+1 − θt⟩+ L̃

2 ∥θt+1 − θt∥2. (66)

The FedDUAL update rule is defined as follows, as presented in Eq. 38:

θt+1 − θt = − η

K

K∑
k=1

E−1∑
e=0
∇f̃k(θk,e

t ; ξk,e) + δtotal, (67)

where ∥δtotal∥ ≤ εW B represents the Wasserstein Barycenter approximation error.

Substituting Eq. 67 into the inner product in Eq. 66, we get Eq. 68.

⟨∇F̃ (θt), θt+1 − θt⟩ = − η

K

K∑
k=1

E−1∑
e=0
⟨∇F̃ (θt),∇f̃k(θk,e

t ; ξk,e)⟩+ ⟨∇F̃ (θt), δtotal⟩ (68)

Applying the Cauchy–Schwarz inequality to the error term in Eq. 68, we obtain the following.

|⟨∇F̃ (θt), δtotal⟩| ≤ ∥∇F̃ (θt)∥∥δtotal∥ ≤ GεW B . (69)

For each gradient term in Eq. 68, we add and subtract the term ∇f̃k(θt):

⟨∇F̃ (θt),∇f̃k(θk,e
t ; ξk,e)⟩ = ⟨∇F̃ (θt),∇f̃k(θt)⟩+ ⟨∇F̃ (θt),∇f̃k(θk,e

t ; ξk,e)−∇f̃k(θt)⟩ (70)
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The first term of Eq. 70 gives the following:

1
K

K∑
k=1
⟨∇F̃ (θt),∇f̃k(θt)⟩ = ∥∇F̃ (θt)∥2. (71)

For the second term in Eq. 70, we further decompose:

∇f̃k(θk,e
t ; ξk,e)−∇f̃k(θt) = [∇f̃k(θk,e

t ; ξk,e)−∇f̃k(θk,e
t )] + [∇f̃k(θk,e

t )−∇f̃k(θt)]. (72)

Taking expectations over the second term in Eq. 70 and applying Young’s inequality with parameter α, we
derive (omitting details identical to the convex setting):

E
[
|⟨∇F̃ (θt),∇f̃k(θk,e

t ; ξk,e)−∇f̃k(θt)⟩|
]
≤ E[∥∇F̃ (θt)∥2]

2α
+ α

2E[∥∇f̃k(θk,e
t ; ξk,e)−∇f̃k(θk,e

t )∥2]

+ αL̃2

2 E[∥θk,e
t − θt∥2]. (73)

Using Lemma 2 for the variance bound and setting α = 1
2 in Eq. 73, we obtain the following deviation bound:

E[|⟨∇F̃ (θt),∇f̃k(θk,e
t ; ξk,e)−∇f̃k(θt)⟩|] ≤ E[∥∇F̃ (θt)∥2] + σ̃2

4 + L̃2

4 E[∥θk,e
t − θt∥2]. (74)

By combining all the terms and substituting them into Eq. 68, we get the following bound:

E[⟨∇F̃ (θt), θt+1 − θt⟩] ≤ −ηE[∥∇F̃ (θt)∥2] + η

K

K∑
k=1

E−1∑
e=0

[
E[∥∇F̃ (θt)∥2] + σ̃2

4 + L̃2

4 E[∥θk,e
t − θt∥2]

]
+ GεW B . (75)

Simplifying Eq. 75, we arrive at:

E[⟨∇F̃ (θt), θt+1 − θt⟩] ≤ −η

2E[∥∇F̃ (θt)∥2] + ηL̃2E

4K

K∑
k=1

E−1∑
e=0

E[∥θk,e
t − θt∥2] + ηEσ̃2

4 + GεW B . (76)

From Lemma 3 and using the fact that
∑E−1

e=0 e2 ≤ E3/3 ≤ E2 for practical purposes, we obtain:

1
K

K∑
k=1

E−1∑
e=0

E[∥θk,e
t − θt∥2] ≤ η2E2σ̃2

2K
+ η2E2L̃2G2

2K
(77)

From Eq. 67, applying Jensen’s inequality yields:

E[∥θt+1 − θt∥2] ≤ 2E

∥∥∥∥∥ η

K

K∑
k=1

E−1∑
e=0
∇f̃k(θk,e

t ; ξk,e)

∥∥∥∥∥
2 + 2ε2

W B ≤ 2η2E2G2 + 2ε2
W B . (78)

By combining all the above terms and substituting them into the smoothness inequality in Eq. 66, we obtain:

E[F̃ (θt+1)] ≤ E[F̃ (θt)]−
η

2E[∥∇F̃ (θt)∥2] + ηL̃Eσ̃2

K
+ ηL̃E2G2 + L̃

2 (2η2E2G2 + 2ε2
W B) + GεW B . (79)
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Rearranging and using the learning rate condition η ≤ 1
4L̃E

in Eq. 79, we get:

η

2E[∥∇F̃ (θt)∥2] ≤ E[F̃ (θt)]− E[F̃ (θt+1)] + ηL̃Eσ̃2

K
+ ηL̃E2G2 + L̃ε2

W B + GεW B . (80)

Summing the above equation over t = 0, 1, . . . , T − 1 and dividing by ηT
2 :

1
T

T −1∑
t=0

E[∥∇F̃ (θt)∥2] ≤ 2(F̃ (θ0)− E[F̃ (θT )])
ηT

+ ηL̃Eσ̃2

K
+ ηL̃E2G2 + 2L̃ε2

W B

η
+ 2GεW B

η
. (81)

Since F̃ (θT ) ≥ F̃ (θ∗), and combining the error terms, we have:

1
T

T −1∑
t=0

E[∥∇F̃ (θt)∥2] ≤ 2(F̃ (θ0)− F̃ (θ∗))
ηT

+ ηL̃Eσ̃2

K
+ ηL̃E2G2 + εW BG

η
, (82)

where the term L̃ε2
W B has been absorbed into the dominant εW BG

η term for simplicity. To minimize the
right-hand side, we choose the learning rate η that balances the first and second terms:

η =

√
2

(
F̃ (θ0)− F̃ (θ∗)

)
L̃σ̃2T

.

Substituting this choice of η into the inequality gives:

1
T

T −1∑
t=0

E
[
∥∇F̃ (θt)∥2]

≤
2

(
F̃ (θ0)− F̃ (θ∗)

)√
2(F̃ (θ0)−F̃ (θ∗))

L̃σ̃2T
· T

+ L̃σ̃2 ·

√
2

(
F̃ (θ0)− F̃ (θ∗)

)
L̃σ̃2T

+ ϵWBG.

Simplifying both terms, we obtain:

1
T

T −1∑
t=0

E
[
∥∇F̃ (θt)∥2]

≤
2
√

2(F̃ (θ0)− F̃ (θ∗))L̃σ̃2
√

T
+

√
2(F̃ (θ0)− F̃ (θ∗))L̃σ̃2

√
T

+ ϵWBG

1
T

T −1∑
t=0

E
[
∥∇F̃ (θt)∥2]

≤
3
√

2(F̃ (θ0)− F̃ (θ∗))L̃σ̃2
√

T
+ ϵWBG.

Therefore, the convergence rate is:

1
T

T −1∑
t=0

E
[
∥∇F̃ (θt)∥2]

= O
(

1√
T

)
+ ϵWBG

B.2 Discussion on Convergence Bounds

Our theoretical analysis establishes convergence guarantees for both convex and non-convex settings:

• Convex Setting: Theorem 1 shows that FedDUAL achieves

E[F (θ̄T )− F (θ∗)] ≤ O
(

1
T

)
+ constant,

which matches the optimal rate for first-order methods under smoothness and convexity assump-
tions. This indicates that FedDUAL preserves convergence efficiency while incorporating dynamic
weighting and Wasserstein aggregation.
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• Non-Convex Setting: Theorem 2 proves that

1
T

T −1∑
t=0

E
[
∥∇F (θt)∥2]

≤ O
(

1√
T

)
+ ϵWBG,

consistent with the standard rate for non-convex optimization in federated learning. The additional
ϵWB term quantifies the effect of Wasserstein Barycenter approximation, ensuring that its impact
remains bounded.

Comparison with state of the art methods: Standard algorithms such as FedAvg (McMahan et al.,
2017) and FedProx (Li et al., 2020) achieve similar asymptotic rates (O(1/T ) for convex and O(1/

√
T ) for

non-convex), but suffer from significant degradation due to client drift under non-IID data. Specifically, Fe-
dAvg incurs heterogeneity-dependent terms of O(ζ2K2/T ) in non-convex settings, while FedProx improves
this to O(ζ2K/T ) through proximal regularization. Variance-reduced methods like SCAFFOLD (Karim-
ireddy et al., 2020) achieve superior bounds with heterogeneity terms of only O(ζ2/T ) (independent of local
steps K) and variance scaling as O(1/nKT ), but require maintaining control variates at each client. Our
bounds show that FedDUAL matches these theoretical rates while introducing Wasserstein aggregation and
adaptive loss weighting, providing robustness to heterogeneity without the additional memory and commu-
nication overhead of control variates where T denotes the number of global communication rounds, K is
the number of local SGD steps performed at each client between communications, n is the total number of
participating clients, ζ is the client drift parameter measuring data heterogeneity, n is the total clients, and
η is the learning rate.

Figure 6: Comparison of gradient norms between models trained on IID and non-IID datasets using the
FedAvg algorithm on the CIFAR10 dataset using VGG16 model.

26



Under review as submission to TMLR

Figure 7: Visualization of the loss surface for the global model trained on the FMNIST dataset with non-IID
data (α = 0.01): (a) shows the loss surface for the global model trained using FedAvg, while (b) depicts the
loss surface for the global model trained with the proposed method FedDUAL.

Figure 8: Learning curves of the individual modules and the proposed method.
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Figure 9: Performance of the proposed method with different epsilon values.

Figure 10: Learning curve of the proposed method with different epsilon values.
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Figure 11: Learning curves of the proposed method and baselines with error bars.

Figure 12: Performance across different number of Iterations for WB calculation.
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Figure 13: Learning curves for different number of Iterations for WB calculation.

Figure 14: Illustrates the accuracy of the proposed method and baselines across different levels of data
heterogeneity on the FMNIST dataset.
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Figure 15: Learning curve of the proposed method and other baselines on FMNIST dataset with data
heterogeneity level α=0.1.
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