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Abstract

This paper focuses on pragmatic load flexibility
measures for building electricity consumers that
might not be able to modulate their load contin-
uously, and instead act through short-term and
sporadic load shift and shed, e.g., by shedding
load a few times a year. Through a data-driven
simulation of load modulation measures, we find
that there are high-value time periods which ac-
count for a disproportionate amount of emissions,
and consequently, even sporadic voluntary load
shift and shed can achieve reductions in CO2 emis-
sions associated with electricity consumption. We
quantify the emissions reductions for different
load flexibility scenarios and discuss the practical
implications associated with implementing spo-
radic and targeted load management measures in
response to marginal emissions signals.

1. Introduction
The majority of greenhouse gas emissions caused by human
activity are linked to the consumption of energy. The build-
ings sector is a significant part of this—energy consumption
in residential and commercial buildings accounts for ∼17%
of greenhouse gas emissions worldwide (Ritchie, 2020).
Methods to reduce building emissions include electrifying
end-uses such as heating, installing local clean generation
such as solar, and using storage backup to increase self-
consumption of onsite clean energy generation. Another
way of reducing emissions is to reduce energy consumption
overall, for example, through energy efficiency measures.
Yet another method is to modulate consumption specifically
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in the periods when the emissions impact is the highest. This
is the method that we will focus on.

Load modulation, i.e., the practice of electricity consumers
changing their energy consumption in response to grid sig-
nals, is a valuable resource to accommodate the inherent
variability of solar and wind generation and to preferentially
use low emissions energy generation. Load modulation can
entail load shift, where load is reduced at one time and in-
creased at another; or load shed, where energy consumption
is reduced during a time period without a subsequent load
increase in some other time period. Any load modulation
is a deviation from consumers’ desired electricity consump-
tion level and will result in some disutility. For loads which
cannot be automated for reasons such as cost, infrastructure
requirement, or privacy, implementing recurring load modu-
lation can be difficult. However, if load modulation is not
too frequent, it can be implemented manually. As evidenced
in California’s emergency call for demand response in Fall
2022 (St. John, 2022), there are many flexible loads which
do not participate in recurring demand response markets,
but are available for one-off load shifts and sheds.

Most work has centered around the machine learning, con-
trol, and optimization problems associated with utilizing
grid signals to constantly modulate building electricity con-
sumption at the household or device level (Bovornkeeratiroj
et al., 2023; Lu et al., 2019; Wang et al., 2020; Wen et al.,
2015). In addition to traditional building loads, prior studies
have focused on loads such as electric vehicles (Bovornkeer-
atiroj et al., 2023; Daniels et al., 2022), batteries (Bovorn-
keeratiroj et al., 2023; Jha et al., 2020), and data centers
(Bostandoost et al., 2024; Sukprasert et al., 2024). The
authors of (Carmichael et al., 2021) provide a high-level
evaluation of demand flexibility’s role in emissions reduc-
tion, considering a wide array of decarbonization scenarios,
grid operating conditions, and emissions signals used for
control. To the best of our knowledge, no other work has
analyzed the impact of sporadic load modulation on emis-
sions. Sporadic manual load modulation offers a pragmatic
control approach for loads that are not highly networked or
”smart.” Furthermore, the sporadic nature of our approach re-
duces disutility associated with more frequent or continuous
interventions.
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This paper’s contributions are as follows:

1. We propose load shift and shed optimization formu-
lations that rely on the marginal emissions rate as a
control signal.

2. Through a data-driven simulation, we calculate poten-
tial emissions reductions for a variety of customers and
load flexibility scenarios using targeted (i.e., short du-
ration) and sporadic (i.e., infrequent) load modulation.

3. We discuss the practical implications and future re-
search directions for implementing targeted and spo-
radic load modulation.

2. Problem Formulation
2.1. Load Shift

Let λ denote the time series of marginal emissions intensi-
ties (in lbs. CO2/kWh), and let d represent the consumer’s
load curve (in kWh). The consumer minimizes total emis-
sions by choosing d:

min
d

T∑
t=1

λ(t)d(t). (1)

The consumer’s uncontrolled (i.e., utility-maximizing) load
profile is denoted by d̂. To protect utility, we constrain
how much d may deviate from d̂, based on three flexibility
parameters:

• γ: fraction of load at timestep t̂ that may be shifted;

• ∆: length, in hours, of the window over which shifted
load may be redistributed;

• ν: kick-back ratio which determines the additional
energy that must be consumed because due to the shift.

We assume the consumer curtails load at a single timestep t̂.
This load is redistributed to other timesteps within a window
of size 2∆ centered at t̂. In our simulation, t̂ is chosen
such that the window [t̂ −∆, t̂ + ∆] has the widest range
of marginal emissions possible.

The curtailment occurs only at t̂, where energy consumption
is reduced by a factor of (1 − γ). For some loads (e.g.
heating), this curtailed energy must be compensated for
by increased consumption in neighboring timesteps. This
redistributed energy is scaled by the kick-back factor ν.

The resulting constraints are:

d(t) ≥ d̂(t), ∀ t 6= t̂, (2)

d(t̂) = (1− γ)d̂(t̂), (3)∑
[t=t̂−∆,t̂+∆]\{t̂}

d(t)− d̂(t)

1 + ν|t− t̂|
= γd̂(t̂). (4)

2.2. Load Shed

We model a consumer capable of shedding a proportion γ
of their load over a time window of length ∆. Let t̂ denote
the start of the load shed window.

We select t̂ by solving:

t̂ = arg max
i

i+∆∑
t=i

λ(t). (5)

The consumer then reduces load within the interval [t̂, t̂+∆]
by a factor of (1− γ):

d(t) =

{
(1− γ)d̂(t), if t ∈ [t̂, t̂+ ∆]

d̂(t), otherwise.
(6)

3. Numerical Study
3.1. Data

3.1.1. ENERGY CONSUMPTION

We use NREL’s ComStock and ResStock datasets (Frick
et al., 2019), which model commercial and residential en-
ergy use disaggregated by end use based on detailed building
simulations. Specifically, we use the county-level aggre-
gated time series for medium and large commercial cus-
tomers in Alameda County, CA simulated using meteoro-
logical data from 2018, available at 15-minute resolution.

3.1.2. MARGINAL EMISSIONS INTENSITY

We use a dataset of estimated marginal emissions inten-
sity from WattTime (WattTime, 2022) to obtain historical
marginal operating emissions rates (MOERs) for the North-
ern California grid. This data is available at 5-minute inter-
vals, but we downsample to 15-minute intervals to match
the granularity of the energy consumption dataset.

3.2. Simulation Results

We simulate the load shift and shed formulations from Sec-
tion 2 for the four largest load categories in ComStock and
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Figure 1. The left panel of each subplot shows the cumulative effect of load modulation for a 2-hour flexibility assumption when taking
actions in the order of magnitude of emissions reduction. The right panel shows the amount of CO2 savings from taking the 30 actions
with the highest propensity to reduce emissions across different assumptions of ∆.

ResStock.1 We focus our analysis on Alameda County in
California, USA. Additional simulation details are described
in Appendix A.

Since each intervention causes some disutility to electricity
consumers, loads with a good propensity for load modula-
tion will have a Pareto distribution, where taking action for
a small proportion of the days of the year will capture most
of the possible CO2 savings. Figure 1 shows this property.
This property is most prominent in residential heating and
cooling—nearly 80% of emissions savings can be achieved
by taking a single load modulation action on 20% of the
days of the year.

4. Discussion
Our work explores a specific hypothesis: consumers can
achieve significant emissions reductions even with sporadic
load modulation. This widens the scope of impact for
marginal emissions signals by inducing additional customer

1Code available at https://github.com/utkarshapets/load-shift-
emissions.

categories to engage in load modulation, as opposed to the
EV, battery, and data center customer categories which have
been the primary user of emissions intensity data. By specif-
ically targeting sporadic modulation, we offer a pragmatic
pathway to decrease disutility and unlock emissions reduc-
tion potential in building loads that may not be amenable to
such continuous interventions. There are several practical
considerations to keep in mind while implementing load
modulation mechanisms.

The Effect of Forecast Quality on Emissions Savings

In order to maximize the impact of a few, infrequent inter-
ventions, it is important to have robust forecasting and sig-
naling technology to implement load modulation. Accurate
and timely forecasts are essential, particularly if marginal
emissions rates vary rapidly over the course of a day, since a
mistimed shift action could actually end up increasing emis-
sions. Similarly, electricity customers must have access to
the live marginal emissions status of the power grid, so that
they can optimize their energy consumption at finer time
scales. While some market operators such as (PJM, 2022)
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publish marginal emissions data, most of these analyses are
post-hoc. Non-market entities such as (WattTime, 2022)
and (Electricity Maps, 2025) can fill this role in the future.
However, the relationship between marginal emissions fore-
cast quality and load modulation efficacy remains an open
question.

Location Matters

The emissions intensity is determined by the energy mix
of the grid, and each power grid has a different generation
source composition. Even within a power network, line
constraints may impact the marginal generator, introducing
the idea of a locational marginal emissions intensity. This
is a potential future extension of our work.

The Energy Mix of the Future Looks Different

The grid of the future will have a larger share of renewables,
and the power grid in California could be a good proxy
for this. The authors of (Agwan et al., 2023) evaluate the
marginal emissions rate as a signal for load management
and find that WattTime MOERs in Northern California often
exhibit substantial intra-day variation. This suggests that
shifting load within a day has a high potential for reducing
emissions.

Machine Learning for Sporadic Load Modulation

Methodologies from machine learning will be useful for
developing targeted load modulation mechanisms. For ex-
ample, marginal emissions forecasts used to identify optimal
intervention periods such as (WattTime, 2022) are grounded
in machine learning. AI-driven optimization approaches
such as reinforcement learning, hold potential for develop-
ing adaptive and personalized sporadic load shift strategies
that learn optimal intervention periods and actions, effec-
tively responding to grid conditions (e.g. emissions and
price signals) and user preferences.
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A. Simulation Details
We base our simulation off of ComStock and ResStock’s load curves derived from the 2018 meterological year, along with
Wattime’s 2018 MOER values for the CAISO-North region. Table 1 shows the flexibility assumptions used in the simulation.
We base our flexibility assumptions on those presented in (Alstone et al., 2017), with slight modifications. In particular,
we use (Alstone et al., 2017)’s load flexibility framework that models direct load control (i.e., manual intervention rather
than continuous control). Categories represent individual load curves modeled in the ComStock and ResStock datasets.
Furthermore, borrowing from (Alstone et al., 2017), we penalize heating cooling, and water heating with a 5% energy
penalty per hour of shift. That is, we set ν = 0.05. For all other loads, we set ν = 0.

Building Type Category γ | ∆ = 0.25 γ | ∆ = 1 γ | ∆ = 2 γ | ∆ = 4
Commercial Interior Equipment 0.35 0.35 0.35 0.35
Commercial Fans 0.60 0.50 0.45 0.35
Commercial Cooling 0.60 0.50 0.45 0.35
Commercial Water Systems 0.84 0.84 0.84 0.84
Residential Heating 0.60 0.40 0.40 0.35
Residential Cooling 0.60 0.40 0.40 0.35
Residential Hot Water 0.95 0.95 0.80 0.40
Residential Pool Pump 0.79 0.70 0.70 0.70

Table 1. γ, the proportion of load that can be modulated, for different values of ∆, the size of the modulation window, for selected
commercial and residential load categories.
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