
Learning Factorized Diffusion Policies for
Conditional Action Diffusion

Omkar Patil1, Eric Rosen , and Nakul Gopalan2

1,2SCAI, Arizona State University

Abstract—Diffusion models have emerged as a promising
choice for learning robot skills from demonstrations. How-
ever, they face three problems: diffusion models are not
sample-efficient, data is expensive to collect in robotics,
and the space of tasks is combinatorially large. The
established way of learning diffusion policies has little
room to accommodate solutions for the aforementioned
challenges, in addition to scaling the model size and paired
observation-action data. In this work, we propose a novel
method for training diffusion models termed ‘Composable
Diffusion Guidance’ CoDiG to compositionally learn dif-
fusion policies for robot skills with respect to different
observation modalities, such as proprioception, vision and
tactile. CoDiG provides more flexibility to deal with such
observational modalities, leading to sample-efficiency gains
over 20% in applicable tasks. CoDiG opens up more
avenues for research on foundation models as it ameliorates
the requirement of scaling all the observational modalities
together during data collection.

I. INTRODUCTION

Diffusion models have emerged as a promising choice
for learning robot skills from demonstrations [4]. How-
ever, diffusion models are not sample efficient and re-
quire the collection of large amounts of demonstration
data. Unfortunately, data collection in robotics is not easy
due to the coupling of various modalities such as robot
actions, vision, tactile, text etc. Previous work [4] has
used diffusion models to learn the conditional distribu-
tion of action with respect to visual, proprioceptive, and
other observations. However, this forces the collection
of paired action, visual, tactile, and other modality data
as demonstrations, which can be restrictive and difficult
to scale. Instead, we propose a novel method CoDiG
‘Composable Diffusion Guidance’ utilizing Bayes’ the-
orem to split the distribution of the robot actions condi-
tioned on different observation modalities. For instance,
the existing way to train visuomotor diffusion policies
is to learn a conditional distribution of actions with
respect to the visual and proprioceptive observations.
Instead, CoDiG learns a diffusion ‘motion-model’ on
the action distribution of skills and a visual-‘guidance
model’, that when composed with the motion-model
results in generation of the action conditioned on the
visual observations.

opatil3@asu.edu

Critically, CoDiG enables the training of models con-
ditioned on an additional observational modality with
respect to the rest, so that data collection efforts can
be concentrated on the cheaper modality. CoDiG does
not require manual adjustment of compositional weights
such as Wang et al. [25]. Our preliminary experiments on
learning visuomotor policies for selected tasks show that
CoDiG is highly sample efficient and robust to visual
changes in the environment, where current diffusion
policies drastically fail. Our contributions are as follows.

• We present a novel framework for training diffusion
models on robot demonstration data called CoDiG,
abbreviated for ‘Composable Diffusion Guidance’.
CoDiG decouples the observational modalities, en-
abling residual learning of an additional modality
with respect to the rest.

• Our results show that visuomotor CoDiG performs
favorably with respect to the conventional diffusion
models on Adroit hand manipulation environments
[10] and several RLBench [14] tasks. Further ex-
perimentation is required to validate the efficacy
and robustness of CoDiG for long horizon tasks and
precise manipulation.

• Existing diffusion policies drastically fail with small
variations in the visual scene from the training
data distribution. Visuomotor CoDiG is relatively
robust to visual adaptation and responds stronger
to additional demonstrations collected in the new
visual scene.

II. METHODOLOGY

A. Theoretical Results

Assume that we have robot demonstrations D =
{(x,y)i} where i = 1..N , consisting of actions x
and different observation modalities yk such as camera
images, task description and proprioception data. We are
interested in learning p(x|y) from the data, such that
given a task description, current camera images, state
of the robot and other observations, we can sample an
action x with a high likelihood in the demonstration data
distribution.

Most treatments of diffusion models have considered
distributions of a single entity such as images [13,
16, 20]. This formulation has been directly adopted
by the robotics community [4] leading to the popular
optimization objective shown in Equation 1.

Lt(θ) = Eq(x0,y)N (ϵ0;0,I)
[
[||ϵ0 − ϵ̂θ(xt,y, t)||22]

]
(1)

xt−1 ∼ N
(
xt;

1
√
αt

(
xt −

1− αt√
1− ᾱt

ϵ̂θ(xt,y, t)

)
,
√
1− αtI

)
(2)

Here, the network ϵθ is also parametrized with y for the
conditional prediction of the noise added to the action
x. Once the network ϵ̂θ(xt,y, t) is trained, ancestral
sampling shown in Equation 2 can be used to sample
actions given the observations y. However, while prior
work assumes that ϵθ learns the score of the conditional
distribution p(x|y), there is no formal proof provided
for the same. Hence, we present our first result, where
we show that a conditional diffusion process as defined
by [5] does indeed result in the loss of Equation 1 [4]
being a maximizer of the evidence lower bound (ELBO)
of the log-likelihood of the conditional data distribution
log q(x|y).
Theorem II.1. The diffusion loss function Lt(θ) as
defined in Equation 1, in expectation over the time-steps
1 ≤ t ≤ T , is equivalent to maximizing the ELBO
of the log-likelihood of the conditional data distribu-
tion log q(x|y), under a conditional Markovian noising
process q̂(xt|xt−1) and the reverse transition kernel as
q̂(xt−1|xt,y).

The proof for Theorem II.1 can be found in the Appendix
B-A. We now proceed to our main result. We would
like to decouple different observational modalities yk,
1 ≤ k ≤ M , so that we can prioritize their collection
based on cost. Assume that we have trained a diffusion
policy with k observational modalities and we collect
N additional demonstrations with the (k + 1)th modal-
ity in conjunction with the existing k. The score of
the new conditional distribution p(x|y1:k,yk+1), where
y1:k ≡ y1, ..,yk, can be written using Bayes’s theorem
along the lines of Equation 18 at diffusion time-step t
as follows:

∇xt
log p(xt|y1:k,yk+1;θ,ϕ) (3)

= ∇xt
log p(yk+1|xt,y

1:k;ϕ) +∇xt
log p(xt|y1:k;θ) (4)

Here ∇xt log p(xt|y1:k;θ) is the score of the model
trained on the original k observational modalities, while
∇xt

log p(yk+1|xt,y
1:k;ϕ) corresponds to the score

of the classifier for the modality yk+1. The method
proposed by classifier guided-diffusion [5] to explicitly
train a classifier p(yk+1|xt,y

1:k) on the noisy samples
of xt and y1:k does not apply due to continuous and
high-dimensional observation modalities such as images,
rather than simple classes such as cats or dogs.

The central idea of this work is to instead di-
rectly parametrize the gradient of the classifier
∇xt log p(y

k+1|xt,y
1:k;ϕ) using a neural network,

which we refer to as the guidance model πg , rather than
to learn a classifier and then obtain its gradients. To learn
the guidance model, we minimize the Fisher divergence
between the guidance model and the true score of the
classifier.

DF (pϕ(ỹ
k+1|xt, ỹ

1:k)||pα,τ (ỹk+1|xt, ỹ
1:k)) = Epα,τ (xt,ỹ1:k+1)[

1

2
||∇xt

log pϕ(ỹ
k+1|xt, ỹ

1:k)− ∇xt
log pα,τ (ỹ

k+1|xt, ỹ
1:k)||22

]
(5)

Here, observation modalities y1:k+1 can be noised with
a Gaussian kernel N (ỹ;y, τ2I) of variance τ2 that
is small enough such that pτ (ỹ

i) ≈ p(yi). Robot
action x is noised with the diffusion transition kernel
of N (xt;

√
αtx, (1 − αt)I). However, Equation 5 is

difficult to use in it’s current form as estimation of the
true score is difficult for large datasets. Chao et al. [3]
derive the denoising likelihood score matching (DLSM)
objective for conditional distributions, which forms the
basis of our next result.
Theorem II.2. Denoising score matching for the guid-
ance model πg: ∇xt

log pϕ(ỹ
k+1|xt, ỹ

1:k), as expressed
in Equation 5 is equal up to a constant to the following
loss:

Lt
DLSM (ϕ) = Epα,τ (x,xt,y1:k+1,ỹ1:k+1)

[
1

2
||∇xt

log pϕ(ỹ
k+1|xt, ỹ

1:k)

+ ∇xt
log pθ(xt|ỹ1:k)−∇xt

log pα(xt|x)||22
]

(6)

For diffusion models, we take the forward transition
kernel as pα(xt|x) = N (xt;

√
αtx, (1 − αt)I). We

noise the observations y1:k+1 with a Gaussian kernel
N (ỹ;y, τ2I) of variance τ2 that is small enough such
that pτ (ỹi) ≈ p(yi).

The proof for Theorem II.2 is a conditional variant of
the one derived by [3], and is presented in Appendix
B-B. Equation 6 can now be used in practice to learn
the guidance model. Simplifying ∇xt log pα(xt|x) to
−ϵ0/

√
1− ᾱt, where ϵ0 ∼ N (0, I), we obtain:

LDLSM (ϕ) = Epτ (x,y1:k+1,ỹ1:k+1)Eϵ0∼N (0,I)

[
1

2
||ϵ̂ϕ(ỹk+1,xt, ỹ

1:k)

+ ϵθ(xt, ỹ
1:k)− ϵ0||22

]
(7)

Here, ϵθ is frozen and known from prior training with
observational modalities y1:k, while ϵϕ is learned in ex-
pectation over data collected in conjugation with modal-
ity yk+1. Equation 7 is very similar to the diffusion
loss Equation 1, except the model is expected to learn
a residual of the noise added to the action sample xt

taken as the input. Once, ϵϕ is learned, actions can be

Fig. 1. The simple architecture adds the noise predictions from the two
models at each denoising time-step. The motion model is frozen while
training the guidance model, which takes an additional observational
modality as vision.

sampled from the conditional distribution p(x|y1:k+1)
using ancestral sampling and Equation 4:

xt−1 ∼ N
(
xt;

1
√
αt

(
xt −

1− αt√
1− ᾱt

ϵ(xt,y
1:k+1, t)

)
,
√
1− αtI

)
(8)

ϵ(xt,y
1:k+1, t) = ϵ̂ϕ(xt,y

1:k+1, t) + ϵ̂θ(xt,y
1:k, t) (9)

Note that the score of the prior distribution
ϵ̂θ(xt,y

1:k, t) or ∇xt
log p(xt|y1:k;θ) can further

be decomposed with respect to observational modalities
as shown above. However, data collection for subsequent
modalities yk+1 must be done in conjunction with
existing ones y1:k.

B. Visual CoDiG with Motion-model

We now provide a concrete implementation of the
method proposed in Section II-A. Existing diffusion
models trained as visuo-motor polices learn the score
for the conditional distribution p(x|yr,yc), where yr

corresponds to the proprioceptive observations and yc

correspond to the visual observations from cameras. We
propose to decouple these observational modalities, and
instead learn the scores for a ‘motion-model’ p(x|yr)
and a vision ‘guidance-model’ p(yc|x,yr). The equa-
tions of diffusion loss for the motion model 1 and the
guidance model 7 can be written as follows, and is
showcased in Figure 1.

LMM (θ) = Eq(x0,yr)N (ϵ0;0,I)
[
[||ϵ0 − ϵ̂θ(xt,y

r, t)||22]
]

(10)

LG(ϕ) = Epτ (x,yr,yc,ỹr,ỹc)Eϵ0∼N (0,I)

[
1

2
||ϵ0 − ϵ̂ϕ(ỹ

c,xt, ỹ
r, t)

− ϵθ(xt, ỹ
r, t)||22

]
(11)

Instead of having two learned components in Equation
11, we can simplify the learning as follows.

LG(ϕ) = Epτ (x,yr,yc,ỹr,ỹc)Eϵ0∼N (0,I)

[
1

2
||ϵ0 − ϵ̂γ(ỹ

c,xt, ỹ
r, t)||22

]
ϵ̂γ(ϕ,xt, ỹ

r, t) = ϵθ(xt, ỹ
r, t) (12)

Fig. 2. The improved architecture CoDiG, inspired from Controlnet,
where the instead of adding the model outputs at the end, we add
interrim block outputs from DiT. We pass the visual embeddings into
the transformer and condition them on the noisy action using adaLn.

We implement this model using a ControlNet [26] in-
spired architecture, as shown in Figure 2. Unlike the
simple architecture shown in Figure 1, this variant adds
the outputs of each DiT block before passing the sum to
the consequent block in the motion model. To prevent
harmful updates at the start of training, a zero-initialized
layer is applied to the guidance model outputs, similar
to ControlNet. Moreover, our architecture benefits from
attention being applied to the image embeddings. which
are in-turn conditioned on the noisy actions in the
guidance model.

Note that we expect this approach to have a distinct
advantage for visuomotor skills that are heavily de-
pendent on proprioception, as we learn a residual for
vision. We hypothesize that the existing way to train
visuomotor policies using diffusion models do not learn
the right dependencies when presented with all the ob-
servational modalities together, leading to lower sample-
efficiency.

III. RESULTS

A. Environments and Baselines

Since we propose an alternative to the existing way of
training diffusion models, our baseline is a model that
takes in all the observations and predicts the robot action,
learning the conditional distribution. We choose DiT-
small (∼90M) [17] as our model architecture, which is
kept the same for both the baseline and CoDiG. For
comparison, we also include UNet [18] implemented by
[4] as a part of the baselines. We also include POCO
[25], where we compose a motion policy and pre-learned
visuomotor policy using a compositional weight of 0.2,
as suggested in the paper. Finally, we also showcase the
results for classifier-free guidance proposed by Ho and
Salimans [11], where we switch out the vision condition
with a probability of 0.1. Further details on the baselines,
experiments, and the environments used are provided in
Appendix C.

TABLE I
PERFORMANCE RESULTS ACROSS DIFFERENT RLBENCH TASKS FOR 10, 50 AND 100 DEMONSTRATIONS.

Task Number of Demonstrations DiT UNet DiT-cfg POCO CoDiG

Mean Std Mean Std Mean Std Mean Std Mean Std

OpenBox
10 21.0 ± 2.0 7.5 ± 0.7 20.3 ± 4.0 27.7 ± 4.9 59.0 ± 4.0
50 86.0 ± 1.7 86.0 ± 1.0 86.0 ± 2.6 87.3 ± 0.6 90.0 ± 2.6

100 98.3 ± 1.5 93.0 ± 1.0 92.3 ± 2.5 98.3 ± 1.5 91.3 ± 4.5

CloseBox
10 25.7 ± 5.9 30.0 ± 6.2 19.7 ± 4.7 29.7 ± 3.5 71.7 ± 6.8
50 79.7 ± 1.2 70.0 ± 3.6 75.0 ± 3.5 79.7 ± 1.2 87.7 ± 3.1

100 85.7 ± 1.5 83.7 ± 3.8 88.7 ± 1.5 88.3 ± 1.5 88.3 ± 2.9

OpenDoor
10 24.7 ± 4.2 7.7 ± 1.5 12.7 ± 1.5 13.0 ± 4.4 42.0 ± 5.2
50 44.0 ± 1.7 11.3 ± 3.5 22.3 ± 9.3 38.0 ± 5.0 54.7 ± 5.0

100 44.7 ± 4.2 23.3 ± 3.5 60.0 ± 0.0 42.0 ± 2.6 65.0 ± 2.6

CloseDoor
10 2.0 ± 1.0 3.0 ± 1.0 0.0 ± 0.0 4.3 ± 0.6 9.0 ± 1.7
50 0.0 ± 0.0 7.3 ± 1.5 1.7 ± 0.6 1.7 ± 0.6 6.7 ± 3.5

100 2.7 ± 1.5 8.0 ± 0.0 5.0 ± 0.0 5.0 ± 2.6 9.0 ± 1.0

Basketball in Hoop
10 1.7 ± 1.5 2.7 ± 1.5 1.7 ± 1.2 2.0 ± 1.0 10.7 ± 2.5
50 18.0 ± 3.5 17.0 ± 1.0 13.7 ± 5.5 20.7 ± 4.2 47.3 ± 3.2

100 38.7 ± 4.2 34.3 ± 4.2 46.0 ± 4.0 42.7 ± 4.0 63.3 ± 3.8

B. Learning Visuomotor Policies

The results for RLBench are shown in Table I. CoDiG
generally outperforms all baselines in the presented
tasks across different number of demonstrations. CoDiG
achieves 20% higher performance on average with 10
demonstrations, and 10% higher performance on average
with 100 demonstrations. CoDiG is very sample efficient
with low number of demonstrations as the model learns
the motion of the task and then learns a residual on the
visual observations. On the Adroit dataset, CoDiG does
better by 3% on average, and the results can be found
in Appendix D.

C. Robustness to Visual Changes

We introduce modifications in tasks from RLBench to
test how learned models adapt to distribution shifts
in the visual observations. We introduce two types of
modifications- change in the color of the object being
manipulated, and addition of visual distractors. Further,
we also collect 5 additional demonstrations in the new
modified environment to understand how models benefit
from few-shot training on the out-of-distribution data.
The results are shown in Table II. CoDiG is more robust
to changes in the visual scene of the tasks, while the
conventionally trained diffusion models fail miserably.
Note that, CoDiG is not limited to the performance of
the motion-model in zero-shot setting, which is 17%, 4%
and 19% for OpenBox, BasketballInHoop and OpenDoor
respectively, with 100 demonstrations. Further, CoDiG
also responds better to additional demonstrations in the
modified environment. This is expected, as we only
update the guidance model with the additional demon-
strations, in-effect, only updating the conditional distri-
bution of the visual observation modality p(yc|x, yr),

rather than updating the conditional action distribution
p(x|yr, yc).

Task Number of Demonstrations DiT DiT GMod

OpenBox

100 demos original 98.3 ± 1.5 91.3 ± 4.5
zero-shot blue box 43.3 ± 2.5 46.7± 1.5
5 demos blue box 34.7 ± 3.5 76.7 ± 0.6

zero-shot distractors 1.7 ± 2.1 16.7± 2.1
5 demos distractors 42.3 ± 4.0 53.3 ± 2.3

Basketball in Hoop

100 demos original 38.7 ± 4.2 63.3 ± 3.8
zero-shot blue ball 29.0 ± 8.7 63.0 ± 1.0
5 demos blue ball 13.0 ± 0.0 45.0 ± 2.6

zero-shot distractors 0.7 ± 1.2 56.3 ± 3.2
5 demos distractors 2.7 ± 1.2 39.7 ± 4.9

Open Door

100 demos original 44.7 ± 4.2 65.0 ± 2.6
zero-shot blue door 0.0 ± 0.0 14.3 ± 3.1
5 demos blue door 17.7 ± 3.1 52.0 ± 7.2
zero-shot red door 0.3 ± 0.6 30.7 ± 2.5
5 demos red door 20.0 ± 5.2 53.7 ± 3.8

TABLE II
PERFORMANCE COMPARISON ACROSS TASKS WITH VISUAL

ADAPTATIONS FOR DIT AND CODIG.

IV. CONCLUSION

We present a novel compositional method to train
diffusion models by decoupling different observational
modalities such as proprioception, vision and tactile.
Our factorized approach yields a loss function that is
simple to use, while also presenting a more intuitive
modeling paradigm. We also showcase CoDiG, an archi-
tectural implementation that makes the factorized train-
ing simpler and more efficient. We find that visuomotor
CoDiG performs strongly over its baselines for tasks
with a narrow distribution of robot motion. We also
show that CoDiG is more robust to distribution shift in
its visual observations than current diffusion policies.
Several limitations exist, such as the choice to split
the observation conditionals must be undertaken based
on the task at hand. More experiments are needed to
validate the efficacy, robustness and scaling properties
of CoDiG.

REFERENCES

[1] Brian DO Anderson. Reverse-time diffusion
equation models. Stochastic Processes and their
Applications, 12(3):313–326, 1982.

[2] Christophe Andrieu, Nando De Freitas, Arnaud
Doucet, and Michael I Jordan. An introduction to
mcmc for machine learning. Machine learning, 50:
5–43, 2003.

[3] Chen-Hao Chao, Wei-Fang Sun, Bo-Wun Cheng,
Yi-Chen Lo, Chia-Che Chang, Yu-Lun Liu, Yu-
Lin Chang, Chia-Ping Chen, and Chun-Yi Lee.
Denoising likelihood score matching for condi-
tional score-based data generation, 2022. URL
https://arxiv.org/abs/2203.14206.

[4] Cheng Chi, Zhenjia Xu, Siyuan Feng, Eric
Cousineau, Yilun Du, Benjamin Burchfiel, Russ
Tedrake, and Shuran Song. Diffusion policy: Vi-
suomotor policy learning via action diffusion. The
International Journal of Robotics Research, page
02783649241273668, 2023.

[5] Prafulla Dhariwal and Alex Nichol. Diffusion
models beat gans on image synthesis, 2021. URL
https://arxiv.org/abs/2105.05233.

[6] Prafulla Dhariwal and Alexander Nichol. Diffusion
models beat gans on image synthesis. Advances
in neural information processing systems, 34:8780–
8794, 2021.

[7] Carl Doersch. Tutorial on variational autoencoders.
arXiv preprint arXiv:1606.05908, 2016.

[8] Yilun Du, Conor Durkan, Robin Strudel, Joshua B.
Tenenbaum, Sander Dieleman, Rob Fergus, Jascha
Sohl-Dickstein, Arnaud Doucet, and Will Grath-
wohl. Reduce, reuse, recycle: Compositional gen-
eration with energy-based diffusion models and
mcmc, 2023.

[9] Bradley Efron. Tweedie’s formula and selec-
tion bias. Journal of the American Statistical
Association, 106(496):1602–1614, 2011.

[10] Justin Fu, Aviral Kumar, Ofir Nachum, George
Tucker, and Sergey Levine. D4rl: Datasets for deep
data-driven reinforcement learning, 2020.

[11] Jonathan Ho and Tim Salimans. Classifier-free dif-
fusion guidance. arXiv preprint arXiv:2207.12598,
2022.

[12] Jonathan Ho and Tim Salimans. Classifier-free
diffusion guidance, 2022. URL https://arxiv.org/
abs/2207.12598.

[13] Jonathan Ho, Ajay Jain, and Pieter Abbeel. De-
noising diffusion probabilistic models, 2020. URL
https://arxiv.org/abs/2006.11239.

[14] Stephen James, Zicong Ma, David Rovick Arrojo,
and Andrew J. Davison. Rlbench: The robot learn-
ing benchmark & learning environment. CoRR,

abs/1909.12271, 2019. URL http://arxiv.org/abs/
1909.12271.

[15] Diederik P. Kingma and Jimmy Ba. Adam: A
method for stochastic optimization, 2017. URL
https://arxiv.org/abs/1412.6980.

[16] Calvin Luo. Understanding diffusion models: A
unified perspective, 2022. URL https://arxiv.org/
abs/2208.11970.

[17] William Peebles and Saining Xie. Scalable dif-
fusion models with transformers, 2023. URL
https://arxiv.org/abs/2212.09748.

[18] Olaf Ronneberger, Philipp Fischer, and Thomas
Brox. U-net: Convolutional networks for
biomedical image segmentation. In Medical
image computing and computer-assisted
intervention–MICCAI 2015: 18th international
conference, Munich, Germany, October 5-9, 2015,
proceedings, part III 18, pages 234–241. Springer,
2015.

[19] Jascha Sohl-Dickstein, Eric A. Weiss, Niru Mah-
eswaranathan, and Surya Ganguli. Deep unsuper-
vised learning using nonequilibrium thermodynam-
ics, 2015.

[20] Jiaming Song, Chenlin Meng, and Stefano Ermon.
Denoising diffusion implicit models, 2022. URL
https://arxiv.org/abs/2010.02502.

[21] Yang Song and Stefano Ermon. Generative model-
ing by estimating gradients of the data distribution,
2020.

[22] Yang Song and Diederik P. Kingma. How to train
your energy-based models, 2021.

[23] Yang Song, Jascha Sohl-Dickstein, Diederik P
Kingma, Abhishek Kumar, Stefano Ermon, and
Ben Poole. Score-based generative modeling
through stochastic differential equations. arXiv
preprint arXiv:2011.13456, 2020.

[24] Pascal Vincent. A connection between score
matching and denoising autoencoders. Neural
computation, 23(7):1661–1674, 2011.

[25] Lirui Wang, Jialiang Zhao, Yilun Du, Edward H
Adelson, and Russ Tedrake. Poco: Policy compo-
sition from and for heterogeneous robot learning.
arXiv preprint arXiv:2402.02511, 2024.

[26] Lvmin Zhang, Anyi Rao, and Maneesh Agrawala.
Adding conditional control to text-to-image diffu-
sion models, 2023. URL https://arxiv.org/abs/2302.
05543.

https://arxiv.org/abs/2203.14206
https://arxiv.org/abs/2105.05233
https://arxiv.org/abs/2207.12598
https://arxiv.org/abs/2207.12598
https://arxiv.org/abs/2006.11239
http://arxiv.org/abs/1909.12271
http://arxiv.org/abs/1909.12271
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/2208.11970
https://arxiv.org/abs/2208.11970
https://arxiv.org/abs/2212.09748
https://arxiv.org/abs/2010.02502
https://arxiv.org/abs/2302.05543
https://arxiv.org/abs/2302.05543

APPENDIX A
BACKGROUND

A. Diffusion Models

Gaussian diffusion models [19] learn the reverse dif-
fusion kernel pθ(xt−1|xt) for a fixed forward kernel
that adds Gaussian noise at each step q(xt|xt−1) =
N (xt;

√
αtxt−1, (1−αt)I), such that q(xT) ≈ N (0, I).

Here, t <= T represents the diffusion time-step and
αt the noise schedule. To generate trajectories from the
learned data distribution pθ(x0), we sample at time step
T from N (0, I) and apply the reverse diffusion kernel
pθ(xt−1|xt) at each time step. For training the model,
maximization of the evidence lower bound derived from
the log-likelihood of the data distribution log q(x0)
yields the commonly used loss function in Equation 13
[13].

Lt(θ) = Eq(x0)N (ϵ0;0,I)
[
λt[||ϵ0 − ϵ̂θ(xt, t)||22]

]
(13)

Here, λt, a function of αt is the weighting parameter
for different time-steps, usually taken as 1. We train
our model to predict the noise ϵ0 added to the data
sample x0 to generate the noisy sample xt taken as
input to the network. The Tweedie formula [9] can
be used to show that ϵ0, and consequently ϵθ are
proportional to the score of the diffused data distribution
q(xt) =

∫
q(xt|x0)q(x0)dx0 [16].

−1√
1− ᾱt

ϵ̂θ(xt, t) ≈
−1√
1− ᾱt

ϵ0 = ∇xlog q(xt) (14)

B. Energy Based Models (EBMs)

EBMs are a class of probabilistic models of the form
pθ(x) =

efθ(x)

Z where Z(θ) =
∫
efθ(x)dx is the normal-

izing constant. Denoising score matching (DSM) [24]
used to train EBMs [22] minimizes the Fisher divergence
between the model pθ(x) and the Gaussian-smoothed
data distribution q(x̃) =

∫
q(x)N (x̃;x, σ2

t I)dx at vari-
ous noise scales σt.

Jσt
(θ) = Eq(x,x̃)

[
1

2
||∇x̃log q(x̃|x)−∇x̃log pθ(x̃)||22

]
(15)

This circumvents the normalizing constant by evaluat-
ing the gradient of the log-probability of the model
∇xpθ(x̃) = ∇xfθ(x̃) at different noise scales. Equa-
tion 15 simplifies to the following when q(x|x̃) =
N (x̃;x, σ2

t I) [24]:

Jσt(θ) = Eq(x)N (ϵ;0,I)

[
|| ϵ
σt

+∇xfθ(x+ σtϵ)||22
]

(16)

Once trained, MCMC methods such as Langevin [2] can
be used to sample from EBMs since they only depend
on the score of the data distribution. This approach is
also known in the literature as score-based modeling
[21].

C. Sampling from the Policy

Song et al. [23] show that score-based and denoising
diffusion models can be considered as discretizations of
a family of stochastic differential equations (SDE) that
slowly add noise to the data distribution. For the genera-
tion process, the time-reversal of this SDE was given by
Anderson [1] dx =

[
f(x, t)− g(t)2∇x log qt(x)

]
dt +

g(t)dw̄, where w̄ is a standard Wiener process for
reverse time, g(t) is the scalar diffusion coefficient, and
f(·, t) is the drift coefficient. Some manifestations of
the reverse SDE equation are ancestral sampling [23]
proposed by Ho et al. [13], shown in Equation 17, and
Langevin dynamics [2].

xt−1 ∼ N
(
xt;

1
√
αt

[xt + (1− αt)∇xt log q(xt)] ,
√
1− αtI

)
(17)

Equation 15 is then used to obtain an estimate of the
score of the perturbed data distribution ∇x log qt(x),
where the transition kernel q(x̃|x) varies between ap-
proaches. Diffusion models use a forward transition
kernel of N (xt;

√
ᾱtxt−1, (1− ᾱt)I), yielding the same

loss as Equation 13, while score-based model typically
use N (xt;xt−1, σ

2
t I), where αt and σt are respective

noise scales.

D. Classifier Guided Diffusion

Classifier guided diffusion [5] has received considerable
attention due to its ability to reuse existing diffusion
models to sample images conforming to specific classes.
To sample from a class y, Equation 18 as a result of
Bayes’ theorem allows us to decompose the conditional
score at time-step t into the gradient of the classifier and
the unconditional score.

∇xt
log p(xt|y;θ,ϕ) = ∇xt

log p(y|xt;ϕ) +∇xt
log p(xt;θ)

(18)
Classifier guided-diffusion requires a classifier trained on
noisy samples to get accurate estimate of the gradients
∇xt

log p(y|xt;ϕ). Sampling from the class y can then
be achieved for diffusion models by substituting a re-
weighted version of Equation 18 for ∇xt

log q(xt) in
the ancestral sampling Equation 17.

APPENDIX B
METHODOLOGY

A. Proof for Theorem II.1

Theorem B.1. The diffusion loss function Lt(θ) as defined in Equation 1, in expectation over the time-steps 1 ≤
t ≤ T , is equivalent to maximizing the ELBO of the log-likelihood of the conditional data distribution log q(x|y),
under a conditional Markovian noising process q̂(xt|xt−1) and the reverse transition kernel as q̂(xt−1|xt,y).

Here, we derive the diffusion loss function for the conditional distribution p(x|y) instead of only p(x). A parallel
derivation for conditional variational auto-encoders can be found in Doersch [7]. Following Dhariwal and Nichol
[6], we start with a conditional Markovian noising forward process q̂ similar to q(xt|xt−1) = N (xt;

√
αtxt−1, (1−

αt)I), and define the following:

q̂(x0) := q(x0) (19)
q̂(xt+1|xt,y) := q(xt+1|xt) (20)

q̂(x1:T |x0,y) :=
T∏

t=1

q̂(xt|xt−1,y) (21)

We now reproduce some results that will be used later in the derivation of diffusion loss for conditional distributions.
Dhariwal and Nichol [6] also show that

q̂(y|xt,xt+1) = q̂(xt+1|xt,y)
q̂(y|xt)

q̂(xt+1|xt)
(22)

= q̂(xt+1|xt)
q̂(y|xt)

q̂(xt+1|xt)
(23)

= q̂(y|xt) (24)

Moreover, the unconditional reverse transition kernels can be shown to be equal using Bayes theorem, given
Equations 19 and 20: q̂(xt|xt+1) = q(xt|xt+1). Dhariwal and Nichol [6] use the result from Equation 24 to
show the following for conditional reverse transition kernels.

q̂(xt|xt+1,y) =
q̂(xt,xt+1,y)

q̂(xt+1,y)
(25)

=
q̂(xt,xt+1,y)

q̂(y|xt+1)q̂(xt+1)
(26)

=
q̂(xt|xt+1)q̂(y|xt,xt+1)q̂(xt+1)

q̂(y|xt+1)q̂(xt+1)
(27)

=
q̂(xt|xt+1)q̂(y|xt,xt+1)

q̂(y|xt+1)
(28)

=
q(xt|xt+1)q̂(y|xt)

q̂(y|xt+1)
(29)

Further, we can show the following using Equations 20 and 21 and the Markovian noising process. It states that
the joint distribution of the noised samples conditioned on y and x0 are the same for both q̂ and q.

q̂(x1:T |x0,y) =
T∏

t=1

q̂(xt|xt−1,y) (30)

=
T∏

t=1

q(xt|xt−1) (31)

= q(x1:T |x0) (32)

We adapt the derivation of diffusion loss from Luo [16] to work with conditional distributions by maximizing the
log-likelihood of the conditional data distribution log p(x|y) leading to evidence lower bound (ELBO).

log p(x|y) = log

∫
p(x0:T |y)dx1:T (33)

= log

∫
p(x0:T |y)q̂(x1:T |x0,y)

q̂(x1:T |x0,y)
dx1:T (34)

= logEq̂(x1:T |x0,y)

[
p(x0:T |y)

q̂(x1:T |x0,y)

]
(35)

≥ Eq̂(x1:T |x0,y)

[
log

p(x0:T |y)
q̂(x1:T |x0,y)

]
(36)

The ELBO can be further simplified as follows

log p(x|y) ≥ Eq̂(x1:T |x0,y)

[
log

p(x0:T |y)
q̂(x1:T |x0,y)

]
(37)

= Eq̂(x1:T |x0,y)

[
log

p(xT |y)
∏T

t=1 pθ(xt−1|xt,y)∏T
t=1 q̂(xt|xt−1,y)

]
(38)

= Eq̂(x1:T |x0,y)

[
log

p(xT |y)pθ(x0|x1,y)
∏T

t=2 pθ(xt−1|xt,y)

q̂(x1|x0,y)
∏T

t=2 q̂(xt|xt−1,y)

]
(39)

= Eq̂(x1:T |x0,y)

[
log

p(xT |y)pθ(x0|x1,y)
∏T

t=2 pθ(xt−1|xt,y)

q̂(x1|x0,y)
∏T

t=2 q̂(xt|xt−1,x0,y)

]
(40)

= Eq̂(x1:T |x0,y)

[
log

p(xT |y)pθ(x0|x1,y)

q̂(x1|x0,y)
+ log

T∏
t=2

pθ(xt−1|xt,y)

q̂(xt|xt−1,x0,y)

]
(41)

= Eq̂(x1:T |x0,y)

log p(xT |y)pθ(x0|x1,y)

q̂(x1|x0,y)
+ log

T∏
t=2

pθ(xt−1|xt,y)
q̂(xt−1|xt,x0,y)q̂(xt|x0,y)

q̂(xt−1|x0,y)

 (42)

= Eq̂(x1:T |x0,y)

log p(xT |y)pθ(x0|x1,y)

q̂(x1|x0,y)
+ log

T∏
t=2

pθ(xt−1|xt,y)
q̂(xt−1|xt,x0,y)q̂(xt|x0,y)

q̂(xt−1|x0,y)

 (43)

= Eq̂(x1:T |x0,y)

[
log

p(xT |y)pθ(x0|x1,y)

q̂(x1|x0,y)
+ log

q̂(x1|x0,y)

q̂(xT |x0,y)
+ log

T∏
t=2

pθ(xt−1|xt,y)

q̂(xt−1|xt,x0,y)

]
(44)

= Eq̂(x1:T |x0,y)

[
log

p(xT |y)pθ(x0|x1,y)

q̂(xT |x0,y)
+

T∑
t=2

log
pθ(xt−1|xt,y)

q̂(xt−1|xt,x0,y)

]
(45)

= Eq̂(x1:T |x0,y) [log pθ(x0|x1,y)] + Eq̂(x1:T |x0,y)

[
log

p(xT |y)
q̂(xT |x0,y)

]
+

T∑
t=2

Eq̂(x1:T |x0,y)

[
log

pθ(xt−1|xt,y)

q̂(xt−1|xt,x0,y)

]
(46)

= Eq̂(x1|x0,y) [log pθ(x0|x1,y)] + Eq̂(xT |x0,y)

[
log

p(xT |y)
q̂(xT |x0,y)

]
+

T∑
t=2

Eq̂(xt,xt−1|x0,y)

[
log

pθ(xt−1|xt,y)

q̂(xt−1|xt,x0,y)

]
(47)

= Eq̂(x1|x0,y) [log pθ(x0|x1,y)]︸ ︷︷ ︸
reconstruction term

−DKL(q̂(xT |x0,y) ∥ p(xT |y))︸ ︷︷ ︸
prior matching term

−
T∑

t=2

Eq̂(xt|x0,y) [DKL(q̂(xt−1|xt,x0,y) ∥ pθ(xt−1|xt,y))]︸ ︷︷ ︸
denoising matching term

(48)

The prior matching term does not contain any trainable parameters. We further simplify the denoising matching
term using Equation 29 further conditioned on x0.

−
T∑

t=2

Eq̂(xt|x0,y) [DKL(q̂(xt−1|xt,x0,y) ∥ pθ(xt−1|xt,y))] (49)

= −
T∑

t=2

Eq̂(xt|x0,y)

[
Eq̂(xt−1|xt,x0,y) [log q̂(xt−1|xt,x0,y)− log pθ(xt−1|xt,y)]

]
(50)

= −
T∑

t=2

Eq̂(xt|x0,y)

[
Eq̂(xt−1|xt,x0,y)

[
log q̂(xt−1|xt,x0) + log

q̂(y|xt−1,x0)

q̂(y|xt,x0)
− log pθ(xt−1|xt,y)

]]
(51)

= −
T∑

t=2

Eq̂(xt|x0,y) [DKL(q̂(xt−1|xt,x0) ∥ pθ(xt−1|xt,y))]−
T∑

t=2

Eq̂(xt|x0,y)

[
Eq̂(xt−1|xt,x0,y)

[
log

q̂(y|xt−1,x0)

q̂(y|xt,x0)

]]
(52)

Using the result of Equation 52, Equation 48 can be rewritten as

Eq̂(x1|x0,y) [log pθ(x0|x1,y)]−DKL(q̂(xT |x0,y) ∥ p(xT |y))−
T∑

t=2

Eq̂(xt|x0,y) [DKL(q̂(xt−1|xt,x0,y) ∥ pθ(xt−1|xt,y))] (53)

=Eq̂(x1|x0,y) [log pθ(x0|x1,y)]︸ ︷︷ ︸
reconstruction term

−DKL(q̂(xT |x0,y) ∥ p(xT |y))︸ ︷︷ ︸
prior matching term

−
T∑

t=2

Eq̂(xt|x0,y) [DKL(q̂(xt−1|xt,x0) ∥ pθ(xt−1|xt,y))]︸ ︷︷ ︸
denoising matching term

(54)

−
T∑

t=2

Eq̂(xt|x0,y)

[
Eq̂(xt−1|xt,x0,y)

[
log

q̂(y|xt−1,x0)

q̂(y|xt,x0)

]]
︸ ︷︷ ︸

label consistency term

The expression derived from the ELBO for conditional distribution introduces an additional term for label
consistency. This minimizes the difference in the likelihood of the labels between consecutive denoising steps.
However, since it does not have trainable parameters along with the prior matching term, we will ignore it. Moreover,
it is easy to see from Luo [16]that the reconstruction term and the denoising matching term when developed further
lead to the diffusion loss of Equation 1, with the additional parametrization of the model with y. Note that the
expectation is calculated over the same distributions, since q̂(x1:T |x0,y) = q(x1:T |x0), as shown in Equation
32.

B. Proof for theorem II.2

Theorem B.2. Denoising score matching for the guidance model πg: ∇xt log pϕ(ỹ
k+1|xt, ỹ

1:k), as expressed in
Equation 5 is equal up to a constant to the following loss:

LDLSM (ϕ) = Epα,τ (x,xt,y1:k+1,ỹ1:k+1)

[
1

2
||∇xt

log pϕ(ỹ
k+1|xt, ỹ

1:k) + ∇xt
log pθ(xt|ỹ1:k)−∇xt

log pα(xt|x)||22
]

(55)

For diffusion models, we take the forward transition kernel as pα(xt|x) = N (xt;
√
αtx, (1 − αt)I). We noise

the observations y1:k+1 with a Gaussian kernel N (ỹ;y, τ2I) of variance τ2 that is small enough such that
pτ (ỹ

i) ≈ p(yi).

Chao et al. [3] in their insightful work show that the following two losses differ only by a constant.-

DF (pϕ(ỹ
k+1|xt)||pα,τ (ỹk+1|xt)) = Epα,τ (xt,ỹk+1)

[
1

2
||∇xt

log pϕ(ỹ
k+1|xt)−∇xt

log pα,τ (ỹ
k+1|xt)||22

]
(56)

LDLSM (ϕ) = Epα,τ (x,xt,yk+1,ỹk+1)

[
1

2
||∇xt log pϕ(ỹ

k+1|xt) + ∇xt log pθ(xt)−∇xt log pα(xt|x)||22
]

(57)

We extend their proof for multiple conditionals below. The Fisher divergence between the guidance model and the
true score of the classifier (Equation 5) can be further expanded as:

DF (pϕ(ỹ
k+1|xt, ỹ

1:k)||pα,τ (ỹk+1|xt, ỹ
1:k)) (58)

= Epα,τ (xt,ỹ1:k+1)

[
1

2
||∇xt

log pϕ(ỹ
k+1|xt, ỹ

1:k)−∇xt
log pα,τ (ỹ

k+1|xt, ỹ
1:k)||22

]
(59)

= Epα,τ (xt,ỹ1:k+1)

[
1

2
||∇xt

log pϕ(ỹ
k+1|xt, ỹ

1:k)||22
]
+ Epα,τ (xt,ỹ1:k+1)

[
1

2
||∇xt

log pα,τ (ỹ
k+1|xt, ỹ

1:k)||22
]

− Epα,τ (xt,ỹ1:k+1)

[
⟨∇xt log pϕ(ỹ

k+1|xt, ỹ
1:k),∇xt log pα,τ (ỹ

k+1|xt, ỹ
1:k)⟩

]
(60)

= Epα,τ (xt,ỹ1:k+1)

[
1

2
||∇xt log pϕ(ỹ

k+1|xt, ỹ
1:k)||22

]
+ Epα,τ (xt,ỹ1:k+1)

[
1

2
||∇xt log pα,τ (ỹ

k+1|xt, ỹ
1:k)||22

]
− Epα,τ (xt,ỹ1:k+1)

[
⟨∇xt log pϕ(ỹ

k+1|xt, ỹ
1:k),∇xt log pα,τ (xt|ỹ1:k, ỹk+1)−∇xt log pα,τ (xt|ỹ1:k)⟩

]
(61)

= Epα,τ (xt,ỹ1:k+1)

[
1

2
||∇xt

log pϕ(ỹ
k+1|xt, ỹ

1:k)||22
]
+ Epα,τ (xt,ỹ1:k+1)

[
1

2
||∇xt

log pα,τ (ỹ
k+1|xt, ỹ

1:k)||22
]

+ Epα,τ (xt,ỹ1:k+1)

[
⟨∇xt

log pϕ(ỹ
k+1|xt, ỹ

1:k),∇xt
log pα,τ (xt|ỹ1:k)⟩

]
−Epα,τ (xt,ỹ1:k+1)

[
⟨∇xt

log pϕ(ỹ
k+1|xt, ỹ

1:k),∇xt
log pα,τ (xt|ỹ1:k, ỹk+1)⟩

]︸ ︷︷ ︸
Term 1

(62)

Simplifying the Term 1 further:

− Epα,τ (xt,ỹ1:k+1)

[
⟨∇xt log pϕ(ỹ

k+1|xt, ỹ
1:k),∇xt log pα,τ (xt|ỹ1:k+1)⟩

]
= −

∫
xt

∫
ỹ1:k+1

pτ (ỹ
1:k+1)pα,τ (xt|ỹ1:k+1)⟨∇xt log pϕ(ỹ

k+1|xt, ỹ
1:k),

∇xtpα,τ (xt|ỹ1:k+1)

pα,τ (xt|ỹ1:k+1)
⟩dỹ1:k+1dxt

= −
∫
xt

∫
ỹ1:k+1

pτ (ỹ
1:k+1)⟨∇xt

log pϕ(ỹ
k+1|xt, ỹ

1:k),∇xt

∫
x0

p0,τ (x0|ỹ1:k+1)pα,τ (xt|x0, ỹ
1:k+1)dx0⟩dỹ1:k+1dxt

= −
∫
xt

∫
ỹ1:k+1

pτ (ỹ
1:k+1)⟨∇xt

log pϕ(ỹ
k+1|xt, ỹ

1:k),∇xt

∫
x0

∫
y1:k+1

p0,τ (x0|ỹ1:k+1)pα,τ (xt|x0, ỹ
1:k+1,y1:k+1)p(y

1:k+1|x0, ỹ
1:k+1)dy1:k+1dx0⟩dỹ1:k+1dxt

= −
∫
xt

∫
ỹ1:k+1

∫
x0

∫
y1:k+1

pτ (x0,xt,y
1:k+1, ỹ1:k+1)⟨∇xt

log pϕ(ỹ
k+1|xt, ỹ

1:k),∇xt
log pα,τ (xt|x0, ỹ

1:k+1,y1:k+1)⟩dy1:k+1dx0dỹ
1:k+1dxt

= −Epα,τ (x0,xt,y1:k+1,ỹ1:k+1)

[
⟨∇xt

log pϕ(ỹ
k+1|xt, ỹ

1:k),∇xt
log pα(xt|x0)⟩

]

Plugging this back into Equation 62, we get-

DF (pϕ(ỹ
k+1|xt, ỹ

1:k)||pα,τ (ỹk+1|xt, ỹ
1:k))

= Epα,τ (xt,ỹ1:k+1)

[
1

2
||∇xt log pϕ(ỹ

k+1|xt, ỹ
1:k)||22

]
+ Epα,τ (xt,ỹ1:k+1)

[
1

2
||∇xt log pα,τ (ỹ

k+1|xt, ỹ
1:k)||22

]
+ Epα,τ (xt,ỹ1:k+1)

[
⟨∇xt log pϕ(ỹ

k+1|xt, ỹ
1:k),∇xt log pα,τ (xt|ỹ1:k)⟩

]
− Epα,τ (x0,xt,y1:k+1,ỹ1:k+1)

[
⟨∇xt log pϕ(ỹ

k+1|xt, ỹ
1:k),∇xt log pα(xt|x0)⟩

]
(63)

Here, Epα,τ (xt,ỹ1:k+1)

[
1

2
||∇xt log pα,τ (ỹ

k+1|xt, ỹ
1:k)||22

]
is a constant. Further, adding the constant

Epα,τ (xt,ỹ1:k)

[
1

2
||∇xt

log pα,τ (xt|ỹ1:k)−∇xt
log pα(xt|x0)||22

]
to Equation 63, we get:

DF (pϕ(ỹ
k+1|xt, ỹ

1:k)||pα,τ (ỹk+1|xt, ỹ
1:k))

= Epα,τ (xt,ỹ1:k+1)

[
1

2
||∇xt

log pϕ(ỹ
k+1|xt, ỹ

1:k)||22
]
+ Epα,τ (xt,ỹ1:k+1)

[
⟨∇xt log pϕ(ỹ

k+1|xt, ỹ
1:k),∇xt log pα,τ (xt|ỹ1:k)⟩

]
+ C

− Epα,τ (x0,xt,y1:k+1,ỹ1:k+1)

[
⟨∇xt

log pϕ(ỹ
k+1|xt, ỹ

1:k),∇xt
log pα(xt|x0)⟩

]
+ Epα,τ (xt,ỹ1:k)

[
1

2
||∇xt

log pα,τ (xt|ỹ1:k)−∇xt
log pα(xt|x0)||22

]
(64)

= Epα,τ (x,xt,y1:k+1,ỹ1:k+1)

[
1

2
||∇xt log pϕ(ỹ

k+1|xt, ỹ
1:k) + ∇xt log pθ(xt|ỹ1:k)−∇xt log pα(xt|x)||22

]
+ C (65)

APPENDIX C
EXPERIMENTAL SETUP

A. Environments

We use 5 tasks from RLBench [14] and all the tasks from the dexterous hand-manipulation environment Adroit [10]
to evaluate our performance. RLBench has a wide variety of tasks and an inbuilt planner that enables collection
of demonstrations. We train visuomotor policies on RLBench with a 5 camera setup recording 96x96 RGB images
that use joint position as the action modality. The tasks considered in this paper are shown in Figure 3. Further we
also modify the visual scene of these tasks to evaluate the performance of models under visual distribution shift,
as shown in Figure 4.

The Adroit dataset focuses on high-dimensional dexterous manipulation tasks using a 24-degree-of-freedom
anthropomorphic hand. The dataset encompasses a suite of challenging manipulation tasks designed to test fine
motor control and complex hand-object interactions. The environment state is specified as a low-dimensional vector
tailored to each task.

Fig. 3. RLBench Tasks: OpenBox; CloseBox; BasketballInHoop; OpenDoor; CloseDoor

Fig. 4. Top row from left to right: OpenBox task with a blue lid; BasketballInHoop with a blue ball; OpenDoor with a blue door. Bottom
row frome left to right: OpenBox task with distractors; BasketballInHoop with distractors; OpenDoor with a red door.

B. Baselines

POCO [25] can be formulated for composing a motion and a vision guidance model as follows. We train the
motion and the vision guidance models separately prior to the compositional sampling proposed by Du et al. [8].
The motion model is only trained on proprioceptive observations, while the vision guidance model also uses the
vision observations. We set λ = 0.2 in Equation 66.

xt−1 ∼ N
(
xt;

1
√
αt

(
xt −

1− αt√
1− ᾱt

ϵ(xt,y
r,yc, t)

)
,
√
1− αtI

)
ϵ(xt,y

r,yc, t) = ϵ̂ϕ(xt,y
r,yc, t) + λ ∗ ϵ̂θ(xt,y

r, t) (66)

For Classifier-free guidance [12], we train a single model and switch out the vision modality with a probability of
0.1. We then sample according to the Equation 67, where we set λ1 = 1.1 and λ2 = 0.1.

xt−1 ∼ N
(
xt;

1
√
αt

(
xt −

1− αt√
1− ᾱt

ϵ(xt,y
r,yc, t)

)
,
√
1− αtI

)
ϵ(xt,y

r,yc, t) = λ1 ∗ ϵ̂θ(xt,y
r,yc, t) + λ2 ∗ ϵ̂θ(xt,y

r,ϕ, t) (67)

C. Training and Rollout

All models are trained for 2000 epochs for RLBench tasks and 3000 epochs for Adroit. We use Adam optimizer
[15] and a learning rate of 1e− 4, in accordance to Peebles and Xie [17]. All our results are reported as the mean
and standard deviation of the success rates over 100 rollouts for 3 different seeds (total of 300 rollouts) for 10,
50 and 100 demonstrations for each task. We rollout models for 300 and 475 timesteps for RLBench and Adroit
tasks, respectively. We report results for the number of rollouts with cumulative success signals greater than 1 and
25 for all Adroit tasks.

APPENDIX D
RESULTS: ADROIT

We show the results in the Adroit environments in Table III. Note that we modify the Hammer environment to
consider the distance between the nail and the board as greater than 0.2 to be successful, instead of 0.1. Here DiT
CMoD refers to an architectural ablation, which resembles ControlNet closely. Here, the noisy actions are passed
into the transformer and then conditioned upon the environment state using adaLn.

Task Criteria DiT UNet DiT-cfg DiT CMod CoDiG

Door Human Success achieved > 1 58.3 ± 6.7 67.3 ± 4.7 42.7 ± 5.5 60.3 ± 6.7 74.3 ± 3.1
Success achieved > 25 34.3 ± 2.5 30.7 ± 0.6 22.3 ± 7.5 17.7 ± 3.1 45.7 ± 5.8

Pen Human Success achieved > 1 58.3 ± 1.5 63.3 ± 3.5 67.7 ± 3.5 62.3 ± 5.9 62.3 ± 4.7
Success achieved > 25 53.3 ± 1.2 57.3 ± 2.5 62.3 ± 3.2 56.0 ± 4.4 56.0 ± 3.5

Hammer Human Success achieved > 1 54.0 ± 1.7 47.3 ± 6.0 40.7 ± 2.3 56.7 ± 4.6 51.7 ± 6.4
Success achieved > 25 52.7 ± 2.3 47.0 ± 6.0 39.0 ± 2.0 56.0 ± 5.2 50.7 ± 6.4

Relocate Human Success achieved > 1 63.0 ± 4.6 56.0 ± 7.2 1.3 ± 0.6 43.3 ± 4.0 63.0 ± 6.9
Success achieved > 25 60.0 ± 3.6 52.0 ± 7.0 0.3 ± 0.6 38.7 ± 4.6 58.7 ± 4.0

TABLE III
PERFORMANCE COMPARISON ACROSS ADROIT TASKS FOR DIFFERENT MODELS.

	Introduction
	Methodology
	Theoretical Results
	Visual CoDiG with Motion-model

	Results
	Environments and Baselines
	Learning Visuomotor Policies
	Robustness to Visual Changes

	Conclusion
	Appendix A: Background
	Diffusion Models
	Energy Based Models (EBMs)
	Sampling from the Policy
	Classifier Guided Diffusion

	Appendix B: Methodology
	Proof for Theorem II.1
	Proof for theorem II.2

	Appendix C: Experimental Setup
	Environments
	Baselines
	Training and Rollout

	Appendix D: Results: Adroit

