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Abstract

We present a systematic theoretical framework that interprets masked diffusion
models (MDMs) as solutions to energy minimization problems in discrete optimal
transport. Specifically, we prove that three distinct energy formulations—kinetic,
conditional kinetic, and geodesic energy—are mathematically equivalent under the
structure of MDMs, and that MDMs minimize all three when the mask schedule
satisfies a closed-form optimality condition. This unification not only clarifies
the theoretical foundations of MDMs, but also motivates practical improvements
in sampling. By parameterizing interpolation schedules via Beta distributions,
we reduce the schedule design space to a tractable 2D search, enabling efficient
post-training tuning without model modification. Experiments on synthetic and
real-world benchmarks demonstrate that our energy-inspired schedules outperform
hand-crafted baselines, particularly in low-step sampling settings.

1 Introduction

Masked diffusion models (MDMs) [4, 8, 34, 44, 36, 38] have emerged as a powerful class of generative
models for discrete data. By reversing a stochastic masking process, MDMs iteratively generate
sequences through a series of unmasking steps, guided by learned denoising functions. This simple
yet flexible architecture has shown promising empirical performance across text generation [43],
protein generation [39, 40], and image generation [15, 23, 47].

Despite their empirical success, the underlying principles that govern the sampling efficiency of
MDMs—particularly in few-step regimes—remain poorly understood. Existing works typically
adopt manually designed mask schedules (e.g., linear or sine) without theoretical justification. In
contrast, in continuous domains [27, 22, 25] and discrete flow matching [37], recent work has drawn
deep connections between diffusion models and optimal transport, motivating questions such as:
Can MDMs be similarly understood through a similar lens? Can we characterize optimal sampling
schedules in a principled way? How do these schedules relate to the geometry of the underlying
probability space?

This paper answers these questions by establishing a theoretical framework that interprets MDMs as
minimizing energy functionals over discrete probability flows (DPFs). We prove that three natural
formulations of transport cost—kinetic energy, conditional kinetic energy, and geodesic energy—are
equivalent under the structure of MDMs. More importantly, we show that MDMs minimize these
energies when the mask schedule αt is coupled to a geometric interpolation schedule (also the weight
function in the energeis) γt via a simple closed-form relation: α⋆

t = sin2(π2 γt). This result unifies
∗Correspondence to Chongxuan Li.
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seemingly disparate formulations and reveals that MDMs not only follow geodesics on the probability
simplex, but also implicitly optimize sampling rate matrices despite its structural constraints.

Building on this insight, we propose an efficient parameterization of schedule functions via the
cumulative distribution function (CDF) of Beta distributions. This reparameterization reduces
the high-dimensional schedule design problem to a 2-dimensional scalar search, enabling task-
adaptive tuning with minimal overhead. We validate our theory through extensive experiments on
both synthetic and large-scale real-world benchmarks, including language, code, and mathematical
reasoning tasks. Our results demonstrate that energy-inspired schedules outperform commonly used
manually designed schedules in few-step sampling settings for certain tasks.

In summary, our contributions are:

• We establish a theoretical framework that interprets MDM as optimal transport processes,
and prove the equivalence of three distinct energy formulations.

• We derive a closed-form condition for energy-optimal mask schedules, showing that MDMs
minimize sampling cost under this condition.

• We introduce a Beta-CDF parameterization that enables efficient and task-adaptive schedule
tuning in a 2-dimensional space.

• We empirically validate our theory across synthetic and real-world benchmarks, demonstrat-
ing consistent improvements in few-step sampling performance.

2 Background

2.1 Discrete Probability Flows and Masked Diffusion Models

Discrete Probability Flows (DPFs). DPFs [16, 14, 32] define continuous-time transformations over
structured distributions in finite state spaces. In text generation tasks, a state z = (z1, ..., zn) ∈ Dn

typically denotes a token sequence of fixed length n drawn from a vocabulary D of size d. Formally,
DPFs introduce a family of parameterized distributions (pt(z))t∈[0,1] that interpolate between a
tractable base distribution p0(z) (e.g., a uniform distribution) and a target distribution p1(z).

A DPF is governed by a time-dependent transition rate matrix (Qt)t∈[0,1],2 which specifies transition
probabilities between states. However, the reverse implication does not hold: different rate matrices
can induce the same DPF [32]. We will omit the range of the time index t ∈ [0, 1] for brevity.

Masked Diffusion Models (MDMs). MDMs [4, 8] represent a subclass of DPFs built upon absorbing
Markov chains. These models capture two temporal processes: a masking process (operating
backward in time, t = 1→ 0) and its reverse, the unmasking process (t = 0→ 1) as follows.

Masking process:
←−
Qt(x, z) =

{
σt z ← x

0 otherwise
(z ̸= x), (1)

Unmasking process: Qt(z, x) =
←−
Qt(x, z)

pt(x)

pt(z)
=

{
σt

pt(x)
pt(z)

z → x

0 otherwise
(x ̸= z), (2)

where transitions in the masking process involve single-token masking operations: from x to z
where a token is replaced by a special mask token [M], i.e., z = (z1, ..., zi = [M], ..., zn) ← x =
(z1, ..., xi ̸= [M], ..., zn). The unmasking process reverses this transition.

This absorbing structure yields a closed-form conditional probability flow, realized as independent
per-token interpolation between the data and mask states:

pt|1(x
i|x1) = αtδ[M](x

i) + (1− αt)δxi
1
(xi), (3)

where the mask schedule αt ∈ [0, 1] is a smooth, strictly increasing function satisfying α0 = 0 and
α1 = 1. It determines the progression of masking over time. The schedule relates to the rate σt via:

αt = exp

(
−
∫ 1

t

σs ds

)
, (4)

2We adopt the MDM terminology rather than the “velocity functions” used in the flow matching literature.
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as shown in existing work [44, 38]. Existing methods model the likelihood ratio pt(x)
pt(z)

in Eq. (2)—also
known as the concrete score [19, 26] or its equivalent formulations [38, 36, 44]—and optimize
evidence lower bounds (ELBO) of the log-likelihood [4]. In particular, the ELBO is invariant to the
choice of αt [12, 38, 36] by change of variables. We provide proofs for Eq. (4) in Appendix C.1 and
the invariance of ELBO in Appendix C.2 for completeness.

2.2 Kinetic and Conditional Kinetic Energy

Kinetic energy [2, 13, 27, 37] provides a principled framework for quantifying the transport cost of
probability flows, forming an optimization objective that yield improved sampling trajectories.

Definition 2.1 (Weighted kinetic energy). Given a weight function γt and a DPF pt governed by
rate matrix Qt, the weighted kinetic energy is defined as

Ek(pt, Qt; γt) = Et,pt(z)

∑
x:x̸=z

1

γ̇tpt(x)
Qt(z, x)

2, (5)

where γ̇t denotes the temporal derivative of γt.

The function γt is a smooth, strictly increasing schedule satisfying the boundary conditions γ0 = 0
and γ1 = 1. Different choices of γt implement various temporal weighting schemes for the DPF. This
generalizes the unweighted kinetic energy [37], where γt = t, and facilitates our theoretical analysis.

The quadratic dependence on the transition rates Qt(z, x) in Eq. (5) mirrors the classical velocity-
squared form of kinetic energy. As Qt controls sampling behavior, minimizing Ek seeks minimal-cost
sampling paths between distributions [24, 22, 25], a central goal in efficient generative modeling and
few-step sampling [2, 13, 27].

However, direct computation of Ek is generally intractable, owing to the absence of closed-form
solutions for pt in most practical cases. To address this, we introduce a conditional surrogate.

Definition 2.2 (Weighted conditional kinetic energy). Let pt|1 denote a conditional flow governed by
the conditional rate matrix Qt|1, which satisfies the marginal consistency condition:

Qt(z, x) =
∑
x1

Qt|1(z, x|x1) p1|t(x1|z). (6)

The weighted conditional kinetic energy with weight function γt is defined as

Ec(pt|1, Qt|1; γt) = Et,p1(x1),pt|1(z|x1)

∑
x:x̸=z

1

γ̇tpt|1(x|x1)
Qt|1(z, x|x1)

2. (7)

Definition 2.2 extends Definition 2.1 to the conditional setting, in line with analogous energy
formulations in the continuous domain [27]. While the two energies differ in general, they are
equivalent under the MDM framework (see Sec. 3.1).

2.3 MDM as Geodesic Curve

To understand the relationship between MDM and kinetic energy from a geometric perspective, we
draw on the geodesic interpretation [42]. This view emerges from a key geometric embedding: for
each token, the conditional distribution pt|1 = (p1t|1, ..., p

D
t|1) ∈ ∆D−1 can be mapped isometrically

onto the unit sphere via square-root parameterization:

yt = (
√

p1t|1, ...,
√
pDt|1) ∈ SD−1 = {y :

∑
i

(yi)2 = 1}. (8)

Through this embedding, [42] proved geometrically that the per-token MDM conditional flow Eq. (3)
corresponds to geodesic motion on SD−1—that is, movement along the great circle connecting
the masked initial state y0 and the target distribution y1. The interpolation schedule γt (a smooth
increasing function satisfying γ0 = 0, γ1 = 1) governs the temporal progression, and its derivative
γ̇t represents instantaneous velocity. We retain the γt notation from Definition 2.1, as it also serves
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Theorem 3.1 Theorem 3.2
ℰ𝑘𝑘 ℰ𝑐𝑐 ℰ𝑔𝑔

Energy equivalence 
Section 3.1

Theorem 3.6 Lemma 3.5

MDMs are energy minimizers under Condition 3.4

Theorem 3.6Energy minimization 
Section 3.2

Figure 1: Illustration of the theoretical results of this paper.

as the weight function for energy minimization as detailed in Sec. 3. A more comprehensive and
intuitive introduction to the geodesic curve and its relationship with MDM is provided in Appendix B.

This geometric framework unifies MDM sampling dynamics with energy minimization principles,
since geodesics simultaneously minimize both path length and energy functionals [1]. To formalize
this link, we define the weighted geodesic energy, which MDMs minimize under suitable scheduling.
Definition 2.3 (Weighted geodesic energy). Given a weight function γt and a conditional flow pt|1
governed by a conditional rate matrix Qt|1, the weighted geodesic energy is defined as:

Eg(pt|1; γt) =
n∑

i=1

Et,p1(x1),pt|1(zi|x1)
4

γ̇tpt|1(zi|x1)
ẏt|1(z

i|x1)
2, (9)

where yt|1(z
i|x1) :=

√
pt|1(zi|x1) is derived from the embedding in Eq. (8).

The term ẏ2 in Eg again reflects the velocity-squared form of kinetic energy, capturing geometric
transport costs. Although Eg lacks explicit dependence on a rate matrix, we demonstrate in Sec. 3.1
that it is equivalent to both Ek and Ec under MDM structure.

Finally, since mask schedule αt determines both the rate matrix and the probability flow in MDM, we
reparameterize the energy functionals as Ek(αt, γt), Ec(αt, γt), and Eg(αt, γt) for the rest of paper.

3 Main Results

3.1 Equivalence of Energies in MDMs

We first formally establish that the three energy functionals defined in Sec. 2—the kinetic energy Ek,
the conditional kinetic energy Ec, and the geodesic energy Eg—are mathematically equivalent under
the MDM framework. This equivalence is captured by the following theorems.
Theorem 3.1 (Kinetic-conditional equivalence in MDMs). For any weight function γt and MDM
with mask schedule αt, the marginal and conditional kinetic energies are proportional:

Ek(αt, γt) = C1Ec(αt, γt), (10)

where C1 is a scalar depending only on the sequence length n and vocabulary size d. As a result, the
two objectives share the same minimizers:

argmin
αt

Ek(αt, γt) = argmin
αt

Ec(αt, γt). (11)

As discussed in Sec. 2, while Ek and Ec share a similar structure, their inherent differences between
marginal and conditional formulations typically lead to divergent values. However, our proof in
Appendix D.1 reveals that by decomposing the concrete score in the rate matrix of MDM (see Eq. (2))
into temporal components and clean-data conditional probabilities [44] and leveraging the inherent
simple closed-form of MDM’s conditional rate matrix (characterized in Appendix C.3), equivalence
between Ek and Ec are established, even in high-dimensional regimes.

Remarkbly, Theorem 3.1 establishes Ec as a theoretically sound surrogate for Ek in MDMs. Crucially,
while Ek suffers from intractability due to the absence of closed-form pt(z), Ec remains compu-
tationally tractable in MDMs since both the conditional flow and rate matrix admit closed-form
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expressions. Furthermore, unlike Eg , Ec decomposes along sequence dimensions (see Appendix C.4),
enabling per-token analysis and creating a natural bridge to Eg – an energy inherently defined through
per-token conditional probability flows. This connection leads to our following theorem.
Theorem 3.2 (Conditional-geodesic equivalence in MDMs). For any weight function γt and MDM
with mask schedule αt, the conditional and geodesic energies are proportional:

Ec(αt, γt) = C2Eg(αt, γt), (12)

where C2 is a scalar depending only on the sequence length n. This implies that they share the same
minimizers:

argmin
αt

Ec(αt, γt) = argmin
αt

Eg(αt, γt). (13)

Our proof in Appendix D.2 reveals that this equivalence originates from the token-wise decomposition
of Ec (see Appendix C.4) – a property inherently enabled by MDM’s per-token structure of pt|1 and
Qt|1. This extends the DFM framework [37] beyond its original one-dimensional geodesic-kinetic
energy correspondence. Moreover, more flexible γt choices are considered in our settings while
energy functionals in [37] use a fixed weight function γt = t. Therefore, our Theorem 3.2 establishes
interpretations applicable to real-world text generation with adaptive weighting schemes.

The insight that the sampling-oriented kinetic energy and the geometrically-motivated geodesic
energy constitute two equivalent viewpoints suggests MDMs may simultaneously achieve optimality
in both probability flow and rate matrix characteristics despite its structural constraints, which we
formally prove in Sec. 3.2. To exemplify these equivalences, we consider the single-token case
(n = 1) in Example 3.3, where all three energy functionals collapse to an identical closed-form
expression. See Appendix D.3 for the proof.
Example 3.3. When n = 1, the kinetic, conditional kinetic, and geodesic energies all reduce to:

E(αt, γt) =

∫ 1

0

1

γ̇t
· α̇2

t

αt(1− αt)
dt. (14)

3.2 MDMs with the Optimal Mask Schedule Are Energy Minimizers

Building on the energy equivalence established in Sec. 3.1, we now turn to the core optimiza-
tion question: Can an appropriately chosen MDM schedule simultaneously minimize the primary
objective—kinetic energy Ek—or, by equivalence, all three energy functionals?

To resolve this question, we initiate our analysis from the geodesic perspective. As discussed in Sec. 2,
αt governs the unmasking process in MDMs, while γt parametrizes the corresponding continuous
interpolation along geodesic curves [42] and also serves as the weight function in the geodesic energy.
This schedule duality—αt for discrete dynamics, γt for geometric flow—naturally necessitates an
optimal parametric relationship between them, as formalized in the following condition.
Condition 3.4 (Optimal scheduling condition). We say that the optimal scheduling condition between
the mask schedule α⋆

t and the interpolation schedule γt is satisfied when

α⋆
t = sin2

(π
2
γt

)
. (15)

The monotonic bijection in the condition, namely f : [0, 1]→ [0, 1], x 7→ sin2
(
π
2x
)
, creates an

one-to-one schedule correspondence between αt and γt.

While this relationship was geometrically established in [42], demonstrating the relationship between
the interpolation schedule of the geodesic curve and the mask schedule of MDM that generates
the curve, its profound implications for energy minimization remain uncharacterized – a gap our
subsequent lemma addresses.
Lemma 3.5 (Geodesic energy minimization). Under Condition 3.4, the schedule α⋆

t minimizes the
geodesic energy.

Our proof in Appendix D.4 demonstrates through energy-theoretic analysis that Condition 3.4 not
only guarantees generation of minimal-length geodesic paths (thereby providing a proof for existing
geometric conclusions [42] in an alternative perspective) but also formally establishes the attainment
of minimal geodesic energy. These results enrich our understanding of MDM optimality. One may
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Figure 2: Distinct weight functions γt shape different energy landscapes and consequently yield different
optimal mask schedules α⋆

t . Axes represent the beta-parameterization of αt (see Sec. 3.3). Color intensity
indicates energy values from Eq. (14). Red stars mark the theoretical minima under the optimal schedule
condition.

further be curious about the practical implications: does discretizing the continuous trajectory into a
finite-step sampling process affect the attainment of optimality? We address this in Appendix D.5,
demonstrating that the discretized trajectory remains optimal in a well-defined sense. Therefore, our
subsequent discussion will continue to focus on the theoretical continuous case.

This energy minimization perspective provides a crucial theoretical bridge connecting MDMs’
geometric properties with their sampling dynamics. Combining Lemma 3.5 with our equivalence
theorems in Sec. 3.1, we extend the minimization result to Ek and Ec – energy functionals of primary
practical interest due to their direct connection to MDM sampling efficiency, arriving at the following
central result under identical optimal scheduling conditions.
Theorem 3.6 (Kinetic energy minimization). Under Condition 3.4, the MDM schedule α⋆

t simultane-
ously minimizes all three energy functionals.

Theorem 3.6 does not trivially follow from Lemma 3.5, as Ek and Ec require simultaneous optimization
of probability flows and rate matrices – a fundamental departure from Eg’s exclusive dependence on
the probability flow. Our proof in Appendix D.6 crucially relies on the fact that although the mask
schedule αt governs pt and Qt jointly in MDMs, introducing parametric constraints, the Markov
structure of MDM still intrinsically co-optimizes the probability flow and the rate matrix. This
resolves a long-standing conceptual paradox in discrete diffusion: MDM’s simple coupled framework
in fact preserves optimal transport properties through its intrinsic design of Markovian transitions.

Furthermore, Theorem 3.6 establishes that Condition 3.4 not only dictates optimal probability paths
but also governs optimal sampling rates. This theoretical insight directly motivated our energy-
inspired schedule tuning method in Sec. 3.3, where we select α⋆

t that minimizes energies given
fixed γt. To empirically validate how distinct weight functions γt shape different energy landscapes
and consequently yield unique optimal mask schedules, we revisit the single-token case (n = 1)
in Example 3.3. Fig. 2 quantitatively demonstrates this relationship by visualizing how varying γt
induces corresponding α⋆

t schedules that minimize the energy functional defined in Eq. (14).

3.3 Energy-Inspired Fast Samplers

Our energy minimization perspective introduced in Sec. 3.2 shows the importance of the weight
function γt. Especially, the term (γ̇t)

−1 in the energy functionals (See Definition 2.1, 2.2 and 2.3)
plays a central role: it downweights regions of rapid temporal change in γt, effectively focusing
optimization on slower regions. Different choices of γt thus encode different emphases in the
diffusion process—for instance, whether to spend more computational budget early (coarse structure)
or late (fine detail) in the unmasking trajectory. This observation suggests that task-specific tuning
of γt may yield performance improvements, as different tasks may benefit from different temporal
allocations.
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Figure 3: Beta-parameterized interpolation schedules and corresponding mask schedules. The left panel
demonstrates beta-parameterized interpolation schedule morphologies, while the right panel displays correspond-
ing optimal α⋆

t schedules derived via Condition 3.4.

Moreover, since MDM training objectives are invariant to the choice of schedule αt (as discussed
in Sec. 2.1), schedule optimization can be performed post hoc—after model training—without
requiring re-training. This enables lightweight adaptation of pretrained models to new distributions
or generation objectives by simply modifying the sampling schedule.

However, direct optimization over the space of all possible schedules remains intractable due to its
infinite-dimensional nature. Existing approaches therefore rely on a small set of manually designed
schedules, such as linear (αt = t) [8, 26, 4], sine (αt = sin

(
π
2 t
)
) [36], or squared sine schedules

(αt = sin2
(
π
2 t
)
) [17]. To bridge the gap between theoretical flexibility and practical feasibility, we

propose parameterizing γt as the cumulative distribution function (CDF) of a beta distribution with
two parameters (a, b):

γt = CDFB(a,b)(t), (16)

which, via the condition in Eq. (15), yields a corresponding αt schedule. This parametric framework
generates diverse schedule topologies including convexity and inflection points through just two
parameters (see Fig. 3) and it is motivated by a simple observation formalized in the following
proposition, proved in Appendix D.7.
Proposition 3.7. Linear and squared sine schedules correspond to specific beta parameterizations:

αt = t ⇔ γt = CDFB(0.5,0.5)(t), (17)

αt = sin2
(π
2
t
)
⇔ γt = t = CDFB(1,1)(t). (18)

We begin with a toy model in Fig. 4 to illustrate how tuning beta parameters (a, b) affects sampling
quality under low-step regimes, showing that different target distributions prefer different schedules,
highlighting the need for task-specific adaptation. In Section 4, we further demonstrate that, certain
beta schedules can outperform standard hand-crafted schedules, especially when the number of
sampling steps is limited, on real benchmarks.

4 Experiments

In this section, we demonstrate that our energy-inspired task-specific tuning method introduced in
Sec. 3.3 can be used to accelerate MDM sampling in practical applications such as mathematical
reasoning and code generation. Crucially, the invariance of training loss of MDMs to the choice of
mask schedules (see Section 2.1) allows us to efficiently optimize the mask schedule for specific
downstream tasks without the computational burden of end-to-end model retraining. For details on
how to identify a task-favorable schedule by tuning the beta parameters, please refer to Appendix E.1.

We evaluate our method using LLaDA 8B [43], an open-source MDM that achieves performance
comparable to modern large language models such as LLaMA3 [31]. We select six representative
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Figure 4: Toy experiments illustrating how different target distributions prefer different schedules. Each
panel visualizes the effect of beta parameter tuning on sampling quality under limited step budgets by showing a
target distribution and two distributions sampled by different schedules. More details of this experiment are
provided in Appendix E.6.

tasks: MBPP [7], HumanEval [9], BBH [28], GSM8K [10], Hendrycks Math [11] and Minerva
Math [18]. These benchmarks comprehensively assess the model’s capabilities in general reason-
ing, mathematical problem solving, and code generation. Please refer to Appendix E.2 for more
experimental details.

Fig. 5 systematically evaluates sampling performance across diverse reasoning benchmarks under
varying step budgets. Our analysis reveals that on code generation tasks (MBPP and HumanEval),
beta-parameterized schedules match the generation quality of the linear baseline with 2× step
reduction. For the Hendrycks Math mathematical reasoning task, our method achieves performance
parity with the linear schedule using 4× fewer steps. There are also benchmarks on which beta-
parameterized schedules exhibit comparable yet not better performance, such as BBH [28] and
GSM8K [10], and we provide the results on these two benchmarks in Appendix. E.3.

On benchmarks where beta-parameterized schedules demonstrate profound empirical advantages
over manual baselines, we observe a systematic preference for convex interpolation schedules. As
analyzed in Sec. 3.3, this empirical bias suggests that for certain tasks such as code generation,
allocating computational resources to optimize early-stage sampling dynamics (coarse structure
formation) may yield greater quality gains compared to fine-grained refinement phases. Further
discussions on the task-specific schedule preferences are presented in Appendix E.4.

While more rigorous characterization of task-schedule correspondences remains open, constituting
critical directions for future research, the schedule invariance property facilitates computationally
efficient schedule exploration without model retraining. Practitioners can thus perform task-specific
schedule tuning through our framework, requiring no additional training infrastructure.

Raw data of our experiments corresponding to Fig. 5 are presented in Appendix E.3, and we provide
additional samples in Appendix E.5 to offer a more comprehensive understanding.

5 Related Work

Mask Diffusion Models. MDMs [4, 8, 34, 44, 36, 38] have established themselves as a prominent
class of generative models for discrete data. While substantial progress has been made in under-
standing MDM training dynamics through theoretically equivalent objective formulations [12, 38,
36, 44] and parameterization strategies [8, 14, 21, 20, 19], the sampling process remains relatively
underexplored. Existing efforts primarily concentrate on developing advanced discrete sampling
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Figure 5: Performance evaluation of energy-optimized schedules on LLaDA 8B [43]. Each panel corresponds
to a distinct benchmark. The x-axis displays sampling steps on a logarithmic scale, while the y-axis quantifies
task performance, where higher values denote superior generation quality. Results on benchmarks where
beta-parameterized schedules exhibit comparable yet not better performance are provided in Appendix. E.3.

algorithms, including Tweedie τ -sampling [3, 6, 26], k-Gillespie methods [48], and higher-order
solvers [45], along with discretizing time step optimization techniques [35] and distillation-based
acceleration [33, 46]. Notably, the critical mask schedules governing sampling trajectories have
not received systematic investigation. Current implementations [8, 26, 4, 17, 36] typically employ
manually designed schedules (predominantly linear), even in state-of-the-art MDM-based large lan-
guage models [43]. This underscores the necessity for principled task-adaptive schedule optimization,
which constitutes our primary contribution.

Energy and Geodesic Perspective. The connection between kinetic energy minimization [2, 13]
and efficient sampling via optimal transport trajectories [24, 22, 25, 29] has been well-established
in continuous settings. However, existing literature predominantly examines continuous diffusion
processes, limiting direct applicability to discrete domains. Recent geometric analyses [42] reveal
intrinsic links between MDM probability paths and geodesic curves under specific interpolation
schedules, motivating our exploration of geodesic perspective as a bridge between MDMs and kinetic
principles. However, the energy perspective—which plays a vital role in our optimal transport
framework—is absent in [42], thus preventing it from establishing the optimality of Condition 3.4
in the context of sampling efficiency. The most relevant work [37] introduces energy perspectives
to Discrete Flow Matching (DFM), a distinct discrete probability flow (DPF) variant. Crucially,
their framework decouples probability flow and rate matrix optimization - an approach incompatible
with MDMs where αt jointly governs both components. Despite this architectural constraint, we
demonstrate through Theorem 3.6 that MDMs inherently achieve optimal rate selection by leveraging
a key lemma from [37] (see Appendix D.6). Our introduced γt interpolation schedule also provides
novel theoretical insights by establishing that every mask schedule optimizes a corresponding energy
functional, thereby justifying task-specific schedule tuning - a capability absent in [37] where
formulations reduce to the γt = t special case. Furthermore, the training loss invariance to mask
schedules represents a unique MDM property distinguishing it from DFM and conventional DPF
frameworks, enabling exclusive post-training schedule optimization within our MDM paradigm.
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6 Conclusion

We present a theoretical framework that establishes MDMs as optimal transport processes mini-
mizing three distinct energy formulations, demonstrating that MDMs inherently achieve minimal
sampling cost through energy-optimal mask schedules. Building upon this theoretical foundation, we
develop a Beta-CDF parameterization scheme that facilitates efficient task-adaptive schedule opti-
mization. Comprehensive empirical validation across synthetic and real-world benchmarks confirms
our framework’s effectiveness, showing consistent performance gains in few-step sampling scenarios.

Limitation. While our method enables practical task-specific schedule optimization, the intrinsic
relationship between high-dimensional real-world tasks and their optimal schedules remains not
fully understood - a fundamental challenge requiring further investigation. This limitation highlights
promising directions for future research in interpretable schedule-task correlation analysis.

Broader Impact. Our schedule tuning framework could benefit real-world applications by reducing
computational costs. Conversely, the acceleration capability may lower synthetic content generation
barriers, potentially exacerbating misinformation risks.
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1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The contributions and scope of the paper are well summarized in the abstract
and the introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of our work in Section 6.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: Assumptions are provided in our theorems, and complete proofs are provided
in the appendices.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We include the detailed experimental settings in Appendix E.2 and Ap-
pendix E.6 to ensure the reproducibility of our experimental results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: All the datasets and models used in this paper are open-sourced and our
experimental details are provided in Section 4 and Appendix E.2.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide the complete experimental settings in Section 4 and Appendix E.2.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The standard deviation results are displayed in Appendix E.3.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The details are in Appendix E.2.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The authors have reviewed and followed the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discuss the broader impacts of our paper in Section 6.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper does not pose such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have cited the original owners of assets used in the paper properly.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: This paper does not release new assets. Our evaluations are based on existing
data.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: We have described in detail in Section 4 and Section E.2 how we use LLMs to
evaluate metrics.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

19

https://neurips.cc/Conferences/2025/LLM


Contents

1 Introduction 1

2 Background 2
2.1 Discrete Probability Flows and Masked Diffusion Models . . . . . . . . . . 2
2.2 Kinetic and Conditional Kinetic Energy . . . . . . . . . . . . . . . . . . . 3
2.3 MDM as Geodesic Curve . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3 Main Results 4
3.1 Equivalence of Energies in MDMs . . . . . . . . . . . . . . . . . . . . . . 4
3.2 MDMs with the Optimal Mask Schedule Are Energy Minimizers . . . . . . 5
3.3 Energy-Inspired Fast Samplers . . . . . . . . . . . . . . . . . . . . . . . . 6

4 Experiments 7

5 Related Work 8

6 Conclusion 10

Appendix A Detailed Notations and Definitions 21

Appendix B An Intuitive Explanation of Geodesics 21

Appendix C Proof of Auxillary Lemmas 22
C.1 Derivation of the Relationship between αt and σt in MDM . . . . . . . . . 22
C.2 Proof of the Invariance of Training Loss to the Mask Schedule . . . . . . . 23
C.3 Derivation of Conditional Rate Matrix of MDM . . . . . . . . . . . . . . . 23
C.4 Decomposition of Conditional Kinetic Energy along Sequence Dimension . 24

Appendix D Proof of Main Results 25
D.1 Proof of Theorem 3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
D.2 Proof of Theorem 3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
D.3 Proof of Example 3.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
D.4 Proof of Lemma 3.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
D.5 Optimality in the Discretized Case . . . . . . . . . . . . . . . . . . . . . . 29
D.6 Proof of Theorem 3.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
D.7 Proof of Proposition 3.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Appendix E Experimental Details 32
E.1 Details of Beta Parameter Tuning . . . . . . . . . . . . . . . . . . . . . . . 32
E.2 Standard Benchmarks and Evaluation Settings . . . . . . . . . . . . . . . . 33
E.3 Additional Results and Raw Data . . . . . . . . . . . . . . . . . . . . . . . 33
E.4 Further Discussions on Task-specific Schedule Preferences . . . . . . . . . 33
E.5 Additional Samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
E.6 Details of Toy Sampling Experiment in Fig. 4 . . . . . . . . . . . . . . . . 36

20



Appendix A Detailed Notations and Definitions

• n: the sequence length.
• x, z: a n-dimensional vector representing states in a model.
• D: the vocabulary with size |D| = d.
• xi, zi ∈ D: the i-th token of data x, z.
• m(z): the number of mask tokens in z.
• (pt(z))t∈[0,1]: the DPF that connects a simple distribution p0(z) and a data distribution
p1(z) = q(z).

• pt|1(z|x1): the conditional probability flow conditioned on the data.

• p1|t(x1|z): the posterior distribution conditioned on time t.
• αt: The mask schedule function.
• Qt: The transition rate matrix of the unmasking process of MDM at time t.
• Qt|1: The conditional rate matrix of the unmasking process of MDM at time t.

•
←−
Qt: The transition rate matrix of the masking process of MDM at time t.

• σt: The transition rate that uniquely determines
←−
Qt in MDM settings.

• γt: The interpolation schedule function of the geodesic curve on the high-dimensional sphere.
Also the weight function we choose in three energy functionals for energy minimization.

• B(a, b): Beta distribution with parameters a and b.
• CDF: cumulative distribution function

Appendix B An Intuitive Explanation of Geodesics

This appendix provides an intuitive introduction to geodesics and exponential maps to clarify the
geometric interpretation of MDM in [42]. Readers seeking formal mathematical definitions of these
differential geometry concepts may refer to [5] for complete technical specifications.

Manifolds and Tangent Spaces. A manifold is a smooth high-dimensional surface, such as a
D-dimensional sphere SD−1. In our scenario, the embedding Eq. (8) maps the per-token conditional
probability flow Eq. (3) onto SD−1, as shown in Sec. 2.3. On every point y0 on the manifold, there
exists a tangent space Ty0

containing all vectors starting from y0 and tangent to the manifold.

Exponential Map and Geodesics. The exponential map is denoted as expy0
(v), which maps a

tangent vector v ∈ Ty0
to a point y1 on the manifold. Geometrically, this represents moving from y0

along the "direction" of v at constant speed until reaching y1. This movement follows a geodesic
path, which is both the "shortest path" and the "straight path" between two points on a manifold,
generalizing straight lines in Euclidean space. For example, great circles are geodesics on spheres.

Inverse Exponential Map and Parameterized Geodesic Trajectory: The inverse exponential map
is denoted as exp−1

y0
(y1), which maps a manifold point y1 back to a tangent vector v ∈ Ty0 . This

vector encodes both direction and distance from y0 to y1. Therefore, given start/end points y0 and y1
on the manifold, a geodesic trajectory parameterized by γt (strictly increasing with γ0 = 0, γ1 = 1)
can be expressed as:

exp−1
y0

(yt) = γt · exp−1
y0

(y1), t ∈ [0, 1] (19)
This formulation implies:

• exp−1
y0

(y1) is the tangent vector encoding the direction and scale that generates the geodesic
curve from y0 to y1.

• γt is the interpolation schedule and γt = t means constant-speed motion along the geodesic.

Recent theoretical advances [42] reveal that MDM’s conditional probability flow in Eq. (3) forms
exactly the geodesic curve in spherical geometry (see Fig. 6). The interpolation schedule γt is
uniquely determined by the mask schedule αt as γt = 2

π arcsin
√
αt, which is equivalent with

Condition 3.4.
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Figure 6: The per-token conditional probability flow in MDM generates exactly the geodesic curve.

Appendix C Proof of Auxillary Lemmas

In this section, we provide complete proofs for the auxiliary lemmas referenced in the main text for
completeness.

C.1 Derivation of the Relationship between αt and σt in MDM

Lemma C.1. The mask schedule αt relates to the rate σt via expression

αt = exp

(
−
∫ 1

t

σsds

)
. (20)

Proof. From the definition of mask schedule in Eq. (3), it suffices to prove

P(xi
t = xi

1|x1) = exp

(
−
∫ 1

t

σsds

)
. (21)

Consider infinitesimal time intervals (t, t−∆t] where each token experiences masking probability
σt∆t+ o(∆t). The preservation probability therefore satisfies the following product bounds:

⌊(1−t)/∆t⌋+1∏
k=0

(1− σ(1−k∆t)∆t+ o(∆t)) ≤ P(xi
t = xi

1|x1) (22)

≤
⌊(1−t)/∆t⌋∏

k=0

(1− σ(1−k∆t)∆t+ o(∆t)). (23)

Analyzing the upper bound through logarithmic transformation, we get
⌊(1−t)/∆t⌋∏

k=0

(1− σ(1−k∆t)∆t+ o(∆t)) = exp

⌊(1−t)/∆t⌋∑
k=0

log(1− σ1−k∆t∆t+ o(∆t))

 (24)

= exp

⌊(1−t)/∆t⌋∑
k=0

(−σ1−k∆t∆t+ o(∆t))

 (25)

(1)→ exp(−
∫ 1−t

0

σ1−udu) (26)

(2)
= exp

(
−
∫ 1

t

σsds

)
, (27)
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where in (1) follows from Riemann sum convergence as ∆t → 0 and (2) applies the variable
substitution s = 1− u to align integration limits.

The lower bound converges identically through analogous arguments. This completes the proof.

C.2 Proof of the Invariance of Training Loss to the Mask Schedule

Different equivalence expressions of the training loss of MDM has been proved invariant to the choice
of αt in multiple works [12, 38, 36]. We adapt a proof from [36] by examining the negative evidence
lower bound (NELBO) through token-level denoising components:

LNELBO = Ep1(x1),pt|1(z|x1)

∫ 1

0

−α̇t

1− αt
log⟨xθ(zt, t), x1⟩dt (28)

= Ep1(x1),pt|1(z|x1)

∫ 1

0

−α̇t

1− αt

n∑
i=1

log⟨xi
θ(z

1:n, t), xi
1⟩dt. (29)

Despite the apparent dependence on αt in its parametric form, the loss exhibits fundamental invariance
as formalized below.
Proposition C.2 (Schedule Invariance, Proof Adapted from [36]). LNELBO is invariant to αt’s
functional form, depending only on its boundary values α0 = 0, α1 = 1.

Proof. The invariance emerges through variable substitution via the chain rule. Let γ ≡ log(1− αt),
then

LNELBO = Ep1(x1),pt|1(z|x1)

∫ t=1

t=0

−α′
t

1− αt
log⟨xθ(zt, t), x⟩dt (30)

(1)
= Ep1(x1),pt|1(z|x1)

∫ t=1

t=0

log⟨xθ(zt, t), x⟩d[f(t)] (31)

(2)
= Ep1(x1),pt|1(z|x1)

∫ γ=−∞

γ=0

log⟨xθ(zf−1(γ), f
−1(γ)), x⟩dγ (32)

(3)
= −Ep1(x1),pt|1(z|x1)

∫ γ=0

γ=−∞
log⟨x̃θ(z̃γ , γ), x⟩dγ (33)

Here (1) applies the substitution f(t) = log(1 − αt). (2) applies change of variable γ ≡ f(t). In
(3) we let z̃γ ≡ zf−1(γ), x̃θ(z̃γ , γ) ≡ xθ(z̃γ , f

−1(γ)). The final expression contains no explicit
dependence on αt’s trajectory between its fixed endpoints, thereby establishing the claimed invariance.

C.3 Derivation of Conditional Rate Matrix of MDM

Although explicit sampling through Qt|1(z, x|x1) remains unnecessary in MDM, establishing closed-
form representations proves valuable for theoretical characterization.
Lemma C.3 (Conditional Rate of MDM). The following conditional rate matrix generates MDM’s
unmasking process:

Qt(z, x|x1) =

{←−
Qt(x, z)

pt|1(x|x1)

pt|1(z|x1)
p1|t(x1|z) > 0

0 otherwise
=


σtαt

1−αt
z → x⇒ x1

−
∑

x̸=z Qt(z, x|x1) x = z

0 otherwise
.

(34)
Here z → x denotes single-token unmasking transitions defined in Sec.2.1 and x⇒ x1 denotes that
x1 can be generated from x through one or several steps of unmasking.

Applying Bayes’ theorem establishes the posterior relationship:

p1|t(x1|z) =
pt|1(z|x1)p1(x1)

pt(z)
, (35)
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we know that the positivity condition p1|t(x1|z) > 0 consequently requires pt|1(z|x1) > 0 and
z ⇒ x1, ensuring the rate matrix’s well-posedness.

Proof. To verify that Qt(z, x|x1) generates MDM’s demasking dynamics, we confirm the consistency
condition in Eq. (6) holds. We verify this through the following derivation:∑

x1

Qt(z, x|x1)p1|t(x1|z) =
∑
x1

Qt(z, x|x1)
pt|1(z|x1)p1(x1)

pt(z)
(36)

=
∑
x1

←−
Qt(x, z)

pt|1(x|x1)

pt|1(z|x1)

pt|1(z|x1)p1(x1)

pt(z)
(37)

=
∑
x1

←−
Qt(x, z)

pt|1(x|x1)p1(x1)

pt(z)
(38)

=
←−
Qt(x, z)

pt(x)

pt(z)
= Qt(z, x). (39)

We subsequently derive its closed-form of Qt(z, x|x1). If x ⇏ x1, then pt|1(x|x1) = 0, yielding
Qt(z, x|x1) = 0. If z → x⇒ x1, on the other hand, we have

Qt(z, x|x1) =
←−
Qt(x, z)

pt|1(x
i|xi

1)

pt|1(zi|xi
1)

= σt
αt

1− αt
,

(40)

thus completing the proof.

C.4 Decomposition of Conditional Kinetic Energy along Sequence Dimension

In this section, we show that under many DPF frameworks such as MDMs, the conditional kinetic
energy can be decomposed along sequence dimension as following:

Ec(pt|1, Qt|1; γt) = Et,p1(x1),pt|1(z|x1)

∑
x:x̸=z

1

γ̇tpt|1(x|x1)
Qt|1(z, x|x1)

2 (41)

= Et,p1(x1)

∑
z,x:x̸=z

pt|1(z|x1)

γ̇tpt|1(x|x1)
Qt|1(z, x|x1)

2 (42)

(1)
= Et,p1(x1)

n∑
i=1

C
∑

zi,xi:xi ̸=zi

pt|1(z
i|x1)

γ̇tpt|1(xi|x1)
Qt|1(z

i, xi|x1)
2 (43)

=

n∑
i=1

CEt,p1(x1),pt|1(zi|x1)

∑
xi:xi ̸=zi

1

γ̇tpt|1(xi|x1)
Qt|1(z

i, xi|x1)
2 (44)

The pivotal decomposition in (1) leverages two structural properties: (i) The conditional probability
flow (Eq. (3)) exhibits token-wise independence, and (ii) The conditional rate matrix (Lemma C.3)
nullifies transitions altering multiple tokens simultaneously. These enable reduction of full-sequence
transitions to single-token operations, with remaining n−1 tokens contributing constant combinatorial
factors. This structural property persists across various DPF implementations including MDM and
Discrete Flow Matching [32, 37], validating the conditional kinetic energy as theoretically sound
surrogate objective. Notably, standard kinetic energy E lacks such decomposition due to pt(z)’s
dependence on cross-token correlations.

For MDM’s binary mask dynamics (xi
1 vs. [MASK]), the combinatorial constant becomes C = 2n−1:

Ec(αt, γt) = 2n−1 ·
n∑

i=1

Et,p1(x1),pt|1(zi|x1)

∑
xi:xi ̸=zi

1

γ̇tpt|1(xi|x1)
Qt|1(z

i, xi|x1)
2. (45)
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This decomposition permits notational relaxation where Ec analysis considers tokens z, x ∈ D
independently of sequence context, a slight abuse off notation adopted in Appendix D.2’s equivalence
proof.

Appendix D Proof of Main Results

D.1 Proof of Theorem 3.1

Theorem 3.1 (Kinetic-conditional equivalence in MDMs). For any weight function γt and MDM
with mask schedule αt, the marginal and conditional kinetic energies are proportional:

Ek(αt, γt) = C1Ec(αt, γt), (46)

where C1 is a scalar depending only on the sequence length n and vocabulary size d. As a result, the
two objectives share the same minimizers:

argmin
αt

Ek(αt, γt) = argmin
αt

Ec(αt, γt). (47)

Our argument leverages a foundational decomposition from [44] regarding concrete score representa-
tions:

Lemma D.2. for z = (z1, ..., zi = [M], ...zn), x = (z1, ..., xi ̸= [M], ...zn), we have

pt(x)

pt(z)
=

αt

1− αt
p1(x

i|zUM ), (48)

where zUM is the vector consists of all unmasked tokens of z.

We now prove the main theorem:

Proof. Let m(z) quantify the masked positions in z, assumed w.l.o.g. to occupy initial sequence
positions. The key summation decomposes as:

∑
x:z→x

pt(x)

pt(z)
=

m(z)∑
i=1

∑
x:z→x

xi ̸=zi=[M]

pt(x)

pt(z)
(49)

=

m(z)∑
i=1

∑
xi ̸=[M]

αt

1− αt
p0(x

i|zUM ) (50)

=

m(z)∑
i=1

αt

1− αt

∑
xi ̸=[M]

p0(x
i|zUM ) (51)

= m(z)
αt

1− αt
. (52)
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Substituting the rate matrix from Eq. (2), we therefore deduce

Ek = Et,pt(z)

∑
x:z→x

1

pt(x)γ̇t

(
σt

pt(x)

pt(z)

)2

(53)

= Et

∑
z

∑
x:z→x

pt(z)

pt(x)γ̇t
σ2
t

p2t (x)

p2t (z)
(54)

= Et

∑
z

∑
x:z→x

σ2
t

γ̇t

pt(x)

pt(z)
(55)

(1)
= Et

∑
z

m(z)
αt

1− αt

σ2
t

γ̇t
(56)

=

(∑
z

m(z)

)
Et

αt

1− αt

σ2
t

γ̇t
(57)

≜ Ck · Et
αt

1− αt

σ2
t

γ̇t
. (58)

Here we define Ck =
∑

z m(z). On the other hand, the conditional kinetic energy can also be break
down as

Ec = Et,p1(x1),pt|1(z|x1)

∑
x:z→x

1

pt|1(x|x1)γ̇t

(
σt

pt|1(x|x1)

pt|1(z|x1)

)2

(59)

= Et,p1(x1)

∑
z,x:z→x⇒x1

σ2
t

γ̇t

pt|1(x|x1)

pt|1(z|x1)
(60)

= Et,p1(x1)

∑
z,x:z→x⇒x1

αt

1− αt

σ2
t

γ̇t
(61)

=

(∑
x1

∑
z,x:z→x⇒x1

p1(x1)

)
Et

αt

1− αt

σ2
t

γ̇t
(62)

= n2n−1

(∑
x1

p1(x1)

)
Et

αt

1− αt

σ2
t

γ̇t
(63)

= n2n−1Et
αt

1− αt

σ2
t

γ̇t
(64)

≜ Cc · Et
αt

1− αt

σ2
t

γ̇t
. (65)

This expression of Ec is equivalent to the decomposition in Appendix C.4 by plugging in the explicit
form of Qt|1. The proportionality constant C1 = Ck/Cc emerges from comparing both expressions,
with Ck, Cc depending solely on architectural parameters n and |D| = d. The minimizer equivalence
follows directly from the strict positivity of scaling constants.

D.2 Proof of Theorem 3.2

Theorem 3.2 (Conditional-geodesic equivalence in MDMs). For any weight function γt and MDM
with mask schedule αt, the conditional and geodesic energies are proportional:

Ec(αt, γt) = C2Eg(αt, γt), (66)

where C2 is a scalar depending only on the sequence length n. This implies that they share the same
minimizers:

argmin
αt

Ec(αt, γt) = argmin
αt

Eg(αt, γt). (67)
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Proof. The geodesic energy is inherently defined using the token-wise independent conditional flows
in Eq. (3), therefore it admits straightforward decomposition along sequence dimensions. In MDM
case where all tokens follows the same mask schedule αt, we further have

Eg(pt|1; γt) =
n∑

i=1

Et,p1(x1),pt|1(zi|x1)
4

γ̇tpt|1(zi|x1)
ẏt|1(z

i|x1)
2 (68)

= n · Et,p1(x1),pt|1(zi|x1)
4

γ̇tpt|1(zi|x1)
ẏt|1(z

i|x1)
2 (69)

≜ Cg · Et,p1(x1),pt|1(zi|x1)
4

γ̇tpt|1(zi|x1)
ẏt|1(z

i|x1)
2 (70)

On the other hand, through dimensional decomposition established in Appendix C.4, the conditional
energy admits:

Ec(pt|1, Qt|1; γt) = 2n−1 ·
n∑

i=1

Et,p1(x1),pt|1(zi|x1)

∑
xi:xi ̸=zi

1

γ̇tpt|1(xi|x1)
Qt|1(z

i, xi|x1)
2 (71)

= Cc · Et,p1(x1),pt|1(zi|x1)

∑
xi:xi ̸=zi

1

γ̇tpt|1(xi|x1)
Qt|1(z

i, xi|x1)
2, (72)

Where we define Cc = n2n−1 as in Appendix D.1. Therefore, The equivalence proof reduces to
n = 1 analysis through notational relaxation, treating z, x ∈ D as individual tokens.

Leveraging the rate matrix expression from Lemma C.3, we have

Ec(pt|1, Qt|1; γt) = Et,p1(x1)
1

γ̇t

∑
z,x:z→x⇒x1

pt|1(z|x1)

pt|1(x|x1)
Qt|1(z, x|x1)

2 (73)

= Et,p1(x1)
1

γ̇t

∑
z=[M],x=x1

pt|1(z|x1)

pt|1(x|x1)

(
σtαt

1− αt

)2

(74)

= Et,p1(x1)
1

γ̇t

∑
z=[M],x=x1

1− αt

αt

(
σtαt

1− αt

)2

(75)

= Et,p1(x1)
1

γ̇t

σ2
tαt

1− αt
, (76)

which is equivalent to the expression in Appendix D.1 by letting n = 1. Applying the relationship
α̇t = αtσt deduced from Eq. (4), we get α̇t = αtσt, therefore we further have

Ec(pt|1, Qt|1; γt) = Et,p1(x1)
1

γ̇t

α̇2
t

αt(1− αt)
. (77)

On the other hand, applying Eq. (3), Eg in n = 1 case can be expressed as

Eg(pt|1; γt) = Et,p1(x1)
4

γ̇t

∑
z

(
d

dt

√
pt|1(z|x1)

)2

(78)

= Et,p1(x1)
1

γ̇t

∑
z

ṗt(z|x1)
2

pt|1(z|x1)
(79)

= Et,p1(x1)
1

γ̇t

∑
z

[α̇t(δx1
(z)− δm(z))]

2

αtδx1(z) + (1− αt)δm(z)
(80)

= Et,p1(x1)
1

γ̇t

∑
z=x1

α̇2
t

αt
+
∑

z=[M]

α̇2
t

(1− αt)

 (81)

= Et,p1(x1)
1

γ̇t

(
α̇2
t

αt
+

α̇2
t

(1− αt)

)
. (82)
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Since
α̇2
t

αt(1− αt)
=

α̇2
t

αt
+

α̇2
t

(1− αt)
, (83)

the functional equivalence in scalar case is established, extended to n-dimensions through the
dimensional scaling factor C2 = Cc/Cg = 2n−1. The minimizer equivalence follows from strict
positivity of scaling relations.

D.3 Proof of Example 3.3

Example 3.3. When n = 1, the kinetic, conditional kinetic, and geodesic energies all reduce to:

E(αt, γt) =

∫ 1

0

1

γ̇t
· α̇2

t

αt(1− αt)
dt. (84)

Proof. In the n = 1 case, we have

Ck =
∑
z

m(z) = m(([M])) = 1; (85)

Cc = n2n−1 = 1; (86)
Cg = n = 1. (87)

Therefore, we have C1 = C2 = 1 and the three energy functions share the same form Eq. (14).

D.4 Proof of Lemma 3.5

Lemma 3.5. Under Condition 3.4, the schedule α⋆
t minimizes the geodesic energy.

Since the geodesic energy (Definition 2.3) is defined by summing the token-wise conditional proba-
bility flow, we only need to focus on the one-dimensional case. Therefore, we abuse notation slightly
by regarding z ∈ D:

Eg(pt|1; γt) = Et,p1(x1),pt|1(z|x1)
4

γ̇tpt|1(z|x1)
ẏt|1(z|x1)

2 (88)

= Et,p1(x1)

∑
z

4

γ̇t
ẏt|1(z|x1)

2 (89)

= Et,p1(x1)
4

γ̇t
||yt|1||2. (90)

Here yt|1 denotes the d-dimensional embedding vector induced by the embedding Eq. (8). Therefore,
the minimizing problem becomes:

argmin
y(t)

∫ 1

0

||ẏ(t)||2

γ̇(t)
dt (91)

s.t. ||y(t)|| = 1, ∀t. (92)

For baseline case γt = t, we construct the augmented functional with Lagrange multiplier λ(t):

L[y] =
∫ 1

0

(
||ẏ(t)||2 + λ(t)(||y(t)||2 − 1)

)
dt. (93)

The Euler-Lagrange formalism yields:

∂L
∂y
− d

dt

∂L
∂ẏ

= 0, (94)

from which we derive the critical differential relationship:

ÿ = λy. (95)
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from ||y||2 = 1 we have yÿ + ||ẏ||2 = 0, therefore we have

−||ẏ||2 = yÿ = λ||y||2 = λ. (96)

Plugging this expression of λ into Eq. (95), we get

ÿ = −||ẏ||2y, (97)

which corresponds to the uniform circular motion with its acceleration pointing towards the center of
the sphere. Therefore, the route follows the great circle connecting y0 and y1. In MDM case where
y0 = δ[M] and y1 represents clean data without mask token, we have y0 · y1 = 0. Therefore, the angle
between y0 and y1 is π/2 and the curve shares the following simple form:

y(t) = y0 cos(
π

2
t) + y1 sin(

π

2
t). (98)

Now we generalize to arbitrary γt schedules through temporal reparameterization:

argmin
y(t)

∫ 1

0

||ẏ(t)||2

γ̇(t)
dt = arg min

y(γ(t))

∫ 1

0

||ẏ(γ(t))||2

γ̇(t)
dt (99)

= arg min
y(γ(t))

∫ 1

0

||dy
dγ
||2γ̇tdt (100)

= argmin
y(γ)

∫ 1

0

||dy
dγ
||2dγ (101)

Therefore in ordinary γt cases, the optimized route is the geodesic curve rescheduled by interpolation
schedule γt:

y(t) = y0 cos(
π

2
γt) + y1 sin(

π

2
γt). (102)

By squaring both sides of Eq. (102), we further recover MDM’s conditional probability flow:

pt|1(t)
(1)
= p0 cos

2(
π

2
γt) + p1 sin

2(
π

2
γt) (103)

= α⋆
t p1 + (1− α⋆

t )p0, (104)

where (1) leverages orthogonality p0 · p1 = 0. Therefore, we proved that MDM with schedule
schedule α⋆

t generates the minimal-length curve as well as minimal-energy conditional probability
path, validating and generalizing the conclusion in [42] from a energy perspective.

D.5 Optimality in the Discretized Case

Here we show that under Riemann discretization, MDM trajectories still minimizes a corresponding
discrete energy functional that converges to the continuous formulation as the number of steps
N →∞. Recall that in Appendix D.4 we proved that Eg can be equivalently expressed as:

Eg =

∫ 1

0

||ẏt||2

γ̇t
dt.

Therefore, we can discretize Eg as:

ENg =

N−1∑
n=0

||yn+1 − yn||2/(∆t)2

|γn+1 − γn|/∆t
∆t =

N−1∑
n=0

||yn+1 − yn||2

|γn+1 − γn|
,

where ∆t = 1/N. For simplicity, consider the special case where γt = t. Then we have |γn+1−γn| =
1
N . We now demonstrate that the N equidistant points along the geodesic still minimize this functional.
First, we note that the squared chord length on the unit sphere satisfies ||yn+1−yn||2 = 2(1−cos(θn)),
where θn denotes the angle between yn and yn+1. This transforms the minimization problem into
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finding N − 1 intermediate points along the great circle arc between y0 and y1 that minimize∑
n 2(1− cos(θn)).

From the properties of spherical geodesics, we know that placing all intermediate points along the
geodesic path enforces the constraint

∑
θn = π

2 . Given that 1 − cos(x) is convex over (0, π/2),
Jensen’s inequality establishes:

∑
n

2(1− cos(θn)) ≥ N · 2(1− cos(
π

2N
)),

with equality achieved when points are uniformly distributed along the geodesic. Any deviation
from the geodesic path would further increase the cumulative angular separation

∑
θn beyond

π
2 , consequently raising the total energy. This proof extends to arbitrary γt schedules through
proportional point distribution based on |γn+1 − γn|.

D.6 Proof of Theorem 3.6

Theorem 3.6 (Kinetic energy minimization). Under Condition 3.4, the MDM schedule α⋆
t simultane-

ously minimizes all three energy functionals.

Proof. Theorem 3.1, Theorem 3.2, and Lemma 3.5 collectively establish that α⋆
t optimizes the three

functionals over all mask schedules αt. This conclusion forms the theoretical foundation for our
data-driven schedule tuning framework presented in Section 3.3.

However, Ek and Ec are defined on both probability flows and rate matrices. Therefore, it remains to
be further proved that when the probability flow uniquely induced by αt is fixed, the conditional rate
matrix, which is also determined by αt, still minimizes the energy functionals, i.e.

Qt|1(α
⋆
t ) ∈ argmin

Qt|1
Ec(pt|1, Qt|1; γt), (105)

where Qt|1(α
⋆
t ) refer to conditional rate matrix in MDM case derived in Appendix C.3 under

Condition 3.4. We adapt the following key result from prior analysis [37]of the γt = t case:

Lemma D.7. The following conditional rate matrix minimize the conditional kinetic energy Ec when
the probability flow pt(x) and weight function γt = t is fixed, i.e.

argmin
Qt|1
Ec(pt|1, Qt|1; γt = t) = Q⋆

t|1(z, x|x1) =
α̇t

1− αt
(δx1

(x)− δz(x)), (106)

where the argmin is taken over any possible Qt|1 that generates the fixed probability flow.

Here αt is defined using the conditional probability flow under Discrete Flow Matching (DFM)
settings, resembling the MDM case (see Eq. (3)) by conditioning on both ends (t = 0 and t = 1)
of the flow. In the case when p0(z) = δ[M](z), it coincides with the mask schedule defined in our
work. The notation is also slightly abused by regarding z, x ∈ D justified by the decomposition of
conditional kinetic energy in Appendix C.4.

We now demonstrate a non-trivial result: MDM under Condition 3.4 inherently achieves optimal
conditional rate matrices for arbitrary γt, despite structural constraints.

First, consider γt = t where Appendix C.3 yields the conditional rate matrix. We demonstrate that
MDM achieves the optimal velocity specified by the RHS of Eq. (D.7). For n = 1, the conditional
rate matrix simplifies to:

Qt|1(z, x|x1) =


αtσt

1−αt
z = [M ], x = x1

− αtσt

1−αt
z = [M ], x = z

0 otherwise

(1)
=


α̇t

1−αt
z = [M ], x = x1

− α̇t

1−αt
z = [M ], x = z

0 otherwise
, (107)

where (1) follows from the identity α̇t = αtσt established in Eq. (4), thus completing the γt = t
case.
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For general γt, we reformulate the conditional kinetic energy using Definition 2.2:

Ec(Qt|1; γt) = Et
1

γ̇t

∑
z,x,x1∈A

f(z, x, x1)Qt|1(z, x|x1)(t)
2, (108)

where f and A are independent of Q. We first establish the following key lemma:

Lemma D.8. If

Q⋆(t) ∈ argmin
Qt|1

Et

∑
z,x,x1∈A

f(z, x, x1)Qt|1(t)
2, (109)

then we have

Q⋆(γt)γ̇t ∈ argmin
Qt|1

Et
1

γ̇t

∑
z,x,x1∈A

f(z, x, x1)Qt|1(t)
2, (110)

where the argmin is taken over any possible Qt|1 that generates the fixed probability flow.

Proof of the lemma follows via the substitution Ẇt = Qt|1(t). Let

W ⋆(t) ∈ arg min
W (t)

Et

∑
z,x,x1∈A

f(z, x, x1)Ẇ (t)2, (111)

then Ẇ ⋆(t) = Q⋆(t). Therefore, we have

argmin
Qt|1

Et
1

γ̇t

∑
z,x,x1∈A

f(z, x, x1)Qt|1(t)
2 (112)

=
d

dt

argmin
Wt

Et
1

γ̇t

∑
z,x,x1∈A

f(z, x, x1)Ẇ
2
t

 (113)

=
d

dt

arg min
Wγ(t)

Et
1

γ̇t

∑
z,x,x1∈A

f(z, x, x1)(
dWγ(t)

dt
)2

 (114)

=
d

dt

arg min
Wγ(t)

Etγ̇t
∑

z,x,x1∈A

f(z, x, x1)(
dWγ(t)/dt

dγ(t)/dt
)2

 (115)

=
d

dt

argmin
Wγ

Eγ

∑
z,x,x1∈A

f(z, x, x1)(
dWγ

dγ
)2

 (116)

∋ d

dt
[W ⋆(γ)] = Q⋆(γt)γ̇t, (117)

proving this lemma. Given MDM’s optimality under γt = t, i.e.

Q⋆(t) = Qt|1(α
⋆
t )

∣∣∣∣
γt=t

=
α̇t

1− αt

∣∣∣∣
γt=t

=
π sin(π2 t) cos(

π
2 t)

cos2(π2 t)
= π tan(

π

2
t), (118)

it remains to prove that the conditional rate matrix in MDM in general γt cases satisfies the LHS of
Eq. (110). Since we have

Qt|1(α
⋆
t ) =

α̇t

1− αt

∣∣∣∣
γt

=
π sin(π2 γt) cos(

π
2 γt)γ̇t

cos2(π2 γt)
= π tan(

π

2
γt)γ̇t, (119)

thus Qt|1(α
⋆
t ) = Q⋆(γt)γ̇t and MDM’s intrinsic optimization across arbitrary γt is obtained. Remark-

ably, this result transcends geodesic energy Eg (defined solely through pt|1), demonstrating MDM’s
dual optimization of both probability flows and sampling matrices despite structural constraints.
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D.7 Proof of Proposition 3.7

Proposition 3.7. Linear and squared cosine schedules correspond to specific beta parameterizations:

αt = t ⇔ γt = CDFB(0.5,0.5)(t), (120)

αt = sin2
(π
2
t
)
⇔ γt = t = CDFB(1,1)(t). (121)

Proof. The probability density function (PDF) of the Beta distribution B(a, b) is defined as:

p(x; a, b) =
xa−1(1− x)b−1

B(a, b)
, (122)

where B(a, b) = Γ(a)Γ(b)/Γ(a+ b) is the normalizing constant.

For the case a = b = 0.5:

B(0.5, 0.5) =
Γ(0.5)Γ(0.5)

Γ(1)
= π. (123)

The cumulative distribution function (CDF) is therefore given by:

CDFB(0.5,0.5)(t) =

∫ t

0

1

π
√
t(1− t)

dt (124)

(1)
=

∫ arcsin
√
t

0

1

π sin θ cos θ
(2 sin θ cos θdθ) (125)

=
2

π
arcsin

√
t. (126)

where step (1) employs the trigonometric substitution x = sin2 θ. Therefore, when γt =
CDFB(0.5,0.5)(t), we have

αt = sin2(
π

2
γt) = t. (127)

For the case a = b = 1:

B(1, 1) =
Γ(1)Γ(1)

Γ(2)
= 1. (128)

Therefore the CDF simplifies to

CDFB(1,1)(t) =

∫ x

0

1dt = t, (129)

inducing αt = sin2(π2 t). This completes the proof.

Appendix E Experimental Details

E.1 Details of Beta Parameter Tuning

As stated in Section 3.3, our theoretical analysis suggests that different downstream tasks may require
generated text to possess specific intrinsic structures, which in turn necessitates the generation process
to emphasize particular temporal phases. These temporal preferences are captured through different
γt schedules, which induce corresponding optimal αt through Condition 3.4.

Therefore, we hypothesize that the schedule preferences are mostly inherent to task nature rather than
data specifics. To validate this hypothesis, we conducted the following experiments demonstrating
that randomly chosen small subsets (50-150 instances) of test data suffice for reliable schedule
selection. Specifically, we compare schedule performance between small test subsets and full
evaluations in Table 1.
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Table 1: Schedule performance between small test subsets and full evaluations under different Beta-CDF
parameters.

Beta-CDF Parameters (0.5,0.5) (1,1) (0.9,0.3) (0.3,0.9)

Task: GSM8K (↑)
(length=128, steps=32)

Random subset 1 (n=132) 44.70 43.94 31.06 0.00
Random subset 2 (n=132) 46.97 41.67 40.91 0.00
Full test set (n=1319) 38.06 34.80 29.04 0.08

Task: HumanEval (↑)
(length=256, steps=64)

Random subset 1 (n=82) 8.54 20.73 26.83 1.22
Random subset 2 (n=82) 18.29 24.39 30.49 2.44
Full test set (n=164) 11.59 22.56 24.39 1.83

While HumanEval evaluations exhibit greater variance due to smaller test populations (n=164 total),
the relative performance rankings remain mostly consistent across subsets - a critical indicator of our
method’s robustness. This empirical validation confirms that schedule preferences are very probably
induced by intrinsic task attributes rather than specific data instances.

Therefore in practice, we recommend conducting initial grid searches using small random test
data subsets (about 50 150 instances) across parameters a, b ∈ {0.1, 0.2, ..., 1.0} to find a set of
well-performed schedules. After the coarse search, we can perform finer-grained selection on
shortlisted candidates using larger data subsets. This approach achieves comprehensive parameter
space exploration while maintaining computational feasibility.

E.2 Standard Benchmarks and Evaluation Settings

In this section, we briefly introduce the evaluation benchmarks and describe the experimental details.

Building upon established practices in LLM evaluation [30, 41, 43], we evaluate performance across
key dimensions including: general ability (BBH [28]), mathematics (GSM8K [10], Hendrycks
MATH [11], Minerva MATH [18]), and code generation (MBPP [7], HumanEval [9]). Evaluation
follows the conditional generation paradigm, where models produce completions given task prompts,
with performance quantified through exact match or other domain-specific evaluation metrics.

Our implementation leverages the open-source pretrained weights and evaluation toolkit from
LLaDA [43], modifying only the mask schedule that governs the iterative unmasking process.
The mask schedule affects the number of tokens unmasked at each step, with certain schedules
permitting zero-token unmasking during the process. Therefore, generation quality discrepancies
occur even when sampling steps are set as the sequence length. All experiments can be efficiently
conducted on a single NVIDIA A800 GPU.

E.3 Additional Results and Raw Data

Fig. 7 shows the result of our main experiments on benchmark BBH [28] and GSM8K [10], where our
beta-parameterized schedules exhibit comparable yet not better performance than the linear schedule.

Tab. 2-7 shows the raw data of all our main experiments. We highlight entries matching or exceeding
the highest mean within statistical variance (±1std) in bold.

E.4 Further Discussions on Task-specific Schedule Preferences

Our methodology provides both a theoretical foundation for understanding schedule preferences
and a practical mechanism for task-specific optimization – overcoming the limitations of previous
one-size-fits-all approaches – rather than proposing a universally superior schedule.

Therefore, the empirical parity on certain benchmarks (see Appendix E.3) confirms that linear
schedules already serve as near-optimal candidates for specific task categories. In fact, linear schedule
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Figure 7: Performance evaluation of energy-optimized schedules on BBH [28] and GSM8K [10] where our
beta-parameterized schedules exhibit comparable yet not better performance than the linear schedule.
Each panel corresponds to a distinct benchmark. The x-axis displays sampling steps on a logarithmic scale,
while the y-axis quantifies task performance, where higher values denote superior generation quality.

Table 2: Performance evaluation of beta-parameterized schedules on MBPP [7] benchmark. All experiments
fix generation length at 256 and higher values indicate better sampling quality.

Interpolation Schedule Mask Schedule 8 16 32 64 128 256

Manually Designed Schedules

CDF(B(0.5, 0.5)) t 0.20± 0.20 2.00± 0.63 6.40± 1.10 16.4± 1.66 28± 2.01 40.6± 2.2
− sin(π2 t) 0.20± 0.20 0.4± 0.28 3.8± 0.86 10.4± 1.37 19.8± 1.78 28± 2.01
CDF(B(1, 1)) sin2(π2 t) 1.4± 0.53 4.8± 0.96 13.8± 1.54 20.6± 1.81 35.2± 2.14 40.2± 2.19

Beta Reparameterizing Schedules

CDF(B(0.3, 0.9)) − 0.20± 0.20 0.20± 0.20 0.20± 0.20 0.20± 0.20 0.20± 0.20 1.6± 0.56
CDF(B(0.9, 0.3)) − 4.4± 0.92 14.4± 1.57 23.4± 1.9 34.8± 2.13 39.8± 2.19 40± 2.19
CDF(B(1, 0.2)) − 5.8± 1.05 15.4± 1.62 23.8± 1.91 32± 2.09 36.2± 2.15 38.8± 2.18
CDF(B(0.9, 0.9)) − 1.6± 0.56 5± 0.98 11.6± 1.43 20.6± 1.81 35.4± 2.14 39.8± 2.19

Table 3: Performance evaluation of beta-parameterized schedules on HumanEval [9] benchmark. All
experiments fix generation length at 256 and higher values indicate better sampling quality.

Interpolation Schedule Mask Schedule 8 16 32 64 128 256

Manually Designed Schedules

CDF(B(0.5, 0.5)) t 1.83± 1.05 1.83± 1.05 5.49± 1.78 11.59± 2.51 25.61± 3.42 32.32± 3.66
− sin(π2 t) 1.83± 1.05 1.83± 1.05 3.05± 1.35 7.32± 2.04 17.07± 2.95 25.61± 3.42
CDF(B(1, 1)) sin2(π2 t) 4.27± 1.58 11.59± 2.51 13.41± 2.67 22.56± 3.27 27.44± 3.49 31.3± 3.63

Beta Reparameterizing Schedules

CDF(B(0.3, 0.9)) − 1.83± 1.05 1.83± 1.05 1.83± 1.05 1.83± 1.05 1.83± 1.05 1.83± 1.05
CDF(B(0.9, 0.3)) − 4.88± 1.69 12.8± 2.62 17.68± 2.99 24.39± 3.36 31.71± 3.64 31.1± 3.63
CDF(B(1, 0.2)) − 10.37± 2.39 14.02± 2.72 20.73± 3.18 26.83± 3.47 28.66± 3.54 29.88± 3.59
CDF(B(0.9, 0.9)) − 3.05± 1.35 7.93± 2.12 10.37± 2.39 24.39± 3.36 28.66± 3.54 32.32± 3.66

Table 4: Performance evaluation of beta-parameterized schedules on BBH [28] benchmark. All experiments
fix generation length at 128 and higher values indicate better sampling quality.

Interpolation Schedule Mask Schedule 8 16 32 64 128

Manually Designed Schedules

CDF(B(0.5, 0.5)) t 12.76± 0.32 15.83± 0.34 17.32± 0.34 17.91± 0.35 19.29± 0.35
− sin(π2 t) 11.95± 0.32 14.58± 0.33 16.36± 0.34 17.42± 0.35 18.06± 0.35
CDF(B(1, 1)) sin2(π2 t) 11.29± 0.31 14.21± 0.32 16.83± 0.34 17.32± 0.35 18.6± 0.35

Beta Reparameterizing Schedules

CDF(B(0.3, 0.9)) − 3.7± 0.22 9.12± 0.3 12.04± 0.31 16.82± 0.34 17.23± 0.35
CDF(B(0.9, 0.3)) − 7.71± 0.27 10.15± 0.3 13.52± 0.33 16.13± 0.34 18.48± 0.35
CDF(B(0.3, 0.3)) − 12.23± 0.31 15.87± 0.34 17.02± 0.35 17.11± 0.34 19.12± 0.35
CDF(B(0.7, 0.7)) − 12.24± 0.32 14.91± 0.33 16.66± 0.35 17.6± 0.35 19.28± 0.35
CDF(B(0.9, 0.9)) − 11.67± 0.31 14.33± 0.33 16.73± 0.34 17.62± 0.35 18.85± 0.35
CDF(B(1.3, 1.3)) − 10± 0.29 13.79± 0.32 16.36± 0.34 17.46± 0.35 17.88± 0.35
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Table 5: Performance evaluation of beta-parameterized schedules on GSM8K [10] benchmark. All
experiments fix generation length at 128 and higher values indicate better sampling quality.

Interpolation Schedule Mask Schedule 8 16 32 64 128

Manually Designed Schedules

CDF(B(0.5, 0.5)) t 2.43± 0.42 18.20± 1.26 40.26± 1.35 48.37± 1.38 49.20± 1.38
− sin(π2 t) 0.53± 0.20 6.44± 0.68 27.37± 1.23 45.03± 1.37 47.08± 1.37
CDF(B(1, 1)) sin2(π2 t) 4.32± 0.56 17.59± 1.05 36.47± 1.33 46.70± 1.37 47.76± 1.38

Beta Reparameterizing Schedules

CDF(B(0.3, 0.9)) − 0.61± 0.22 0.91± 0.18 0.99± 0.27 2.12± 0.40 8.42± 0.76
CDF(B(0.9, 0.3)) - 6.14± 0.66 15.39± 0.99 29.42± 1.26 39.20± 1.34 46.70± 1.37
CDF(B(0.8, 0.8)) − 4.62± 0.58 19.64± 1.09 40.26± 1.35 46.02± 1.37 48.52± 1.38
CDF(B(0.9, 0.9)) − 4.78± 0.53 19.94± 1.10 36.54± 1.33 45.49± 1.37 48.14± 1.38

Table 6: Performance evaluation of beta-parameterized schedules on Hendrycks Math [11] benchmark.
All experiments fix generation length at 256 and higher values indicate better sampling quality.

Interpolation Schedule Mask Schedule 8 16 32 64 128 256

Manually Designed Schedules

CDF(B(0.5, 0.5)) t 11.5± 0.44 11.58± 0.44 12.78± 0.46 16.3± 0.51 18.86± 0.54 20.24± 0.56
− sin(π2 t) 11.5± 0.44 11.5± 0.44 11.68± 0.45 14.36± 0.48 17.9± 0.53 18.84± 0.54
CDF(B(1, 1)) sin2(π2 t) 12.02± 0.45 16.54± 0.51 18.8± 0.54 19.3± 0.55 20.18± 0.56 20.18± 0.56

Beta Reparameterizing Schedules

CDF(B(0.3, 0.9)) − 11.5± 0.44 11.5± 0.44 11.5± 0.44 11.5± 0.44 11.48± 0.44 11.52± 0.44
CDF(B(0.9, 0.3)) − 16.32± 0.51 18.76± 0.54 19.5± 0.55 19.9± 0.55 20.18± 0.56 20.08± 0.55
CDF(B(1, 0.2)) − 18.44± 0.54 18.88± 0.54 19.58± 0.55 19.98± 0.55 20.02± 0.55 19.98± 0.55
CDF(B(0.9, 0.9)) − 11.64± 0.44 15.82± 0.51 18.5± 0.54 19.28± 0.55 20.2± 0.56 20.2± 0.56

Table 7: Performance evaluation of beta-parameterized schedules on Minerva Math [18] benchmark. All
experiments fix generation length at 256 and higher values indicate better sampling quality.

Interpolation Schedule Mask Schedule 8 16 32 64 128 256

Manually Designed Schedules

CDF(B(0.5, 0.5)) t 0.12± 0.05 0.50± 0.10 4.70± 0.30 16.54± 0.51 26.68± 0.59 30.10± 0.61
− sin(π2 t) 0.04± 0.03 0.26± 0.07 0.92± 0.13 8.74± 0.39 21.70± 0.56 27.26± 0.60
CDF(B(1, 1)) sin2(π2 t) 0.30± 0.08 1.84± 0.19 6.50± 0.34 15.94± 0.50 25.8± 0.59 29.20± 0.61

Beta Reparameterizing Schedules

CDF(B(0.3, 0.9)) − 0.04± 0.03 0.12± 0.05 0.06± 0.03 0.20± 0.06 0.34± 0.08 0.90± 0.13
CDF(B(0.9, 0.3)) − 1.40± 0.17 5.56± 0.32 13.16± 0.46 20.84± 0.55 26.84± 0.59 29.36± 0.61
CDF(B(1, 0.2)) − 1.28± 0.16 4.82± 0.30 10.64± 0.43 17.14± 0.51 23.68± 0.57 26.78± 0.59
CDF(B(0.9, 0.9)) − 0.18± 0.06 1.48± 0.17 6.90± 0.35 17.28± 0.51 26.0± 0.59 29.54± 0.61

αt = t is a special case in our framework since it corresponds to γt = CDF (B(0.5, 0.5)), a point in
our parameter space.

Specifically, γt = CDF (B(0.5, 0.5)) has higher derivatives on both initial and final generation
phases while being relatively static in the middle. Since γ̇t appears in the denominator of our energy
functional expressions, tasks requiring sustained refinement throughout generation (particularly
middle phases) rather than the starting or ending phases might inherently favor the linear schedule.

Among the six tasks we experimented on, BBH [28] is only one that focuses on general reason-
ing problems. As for GSM8K [10], although it is mathematics-focused, its answers use detailed
natural language explanations compared to other math benchmarks. This might be the reason why
sustained refinement in the middle phases are preferred. Considering this similarity, it is reasonable
that GSM8K [10] and BBH [28] have similar preference on schedules although it is difficult to
mathematically deduce the exact expression of the energy functionals.

Considering the complexity of real-world tasks, it is indeed a challenging direction to systematically
study the relationship between tasks and their prefered schedules. A promising research direction in-
volves designing intermediate benchmarks that balance practical relevance with analytical tractability
- more sophisticated than our current toy examples yet simpler than real-world tasks.
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Table 8: Comparison of beta reparameterized and manually designed schedules on math-reasoning task
Hendrycks Math [11]. Sampling steps set as 64.

Prompt
In a 8 fluid ounce bottle of Vitamin Water, there are 125 calories. How many
calories would be contained in a 12 fluid ounce bottle? Express your answer
in decimal form.

Beta Parameterized Schedule
γt = CDFB(0.9,0.3)(t):

find the 12 fluid ounce bottle, we need
to multiply the number of calories in
the 8 fluid ounce bottle by 1.5.
So, the answer to be 125 * 1.5 =
187.5..
Therefore, the answer 187.5 calories
are contained in a 12 fluid ounce bottle
of Vitamin Water.input::

Manually Designed Schedule
αt = t:

187.5
Solution:
125/8 = 187.5
1:8 = 125.5
1:1 = 125.5
1:2 = 125.5
1:3 = 125.5
1:4 = 125.5
1:5 = 125.5
1:6 = 125.5
1:7 = 125.5
1:8 = 125.5
1:9 = 125.5
1:10 = 125.5
1:11 = 125.5
1:12 = 125.5
1:13 = 125.5
1:14 = 125.5
1:15 = 125.5
1:16 = 125.5
1:17 = 125.5
1:18 = 125.5
1:19 = 125.5
1:2

E.5 Additional Samples

We present comparative samples from identical tasks and sampling steps under different schedules.
Fig. 8 illustrates how optimized schedules produce mathematically coherent outputs, while Fig. 9
provides code generation examples demonstrating better quality.

E.6 Details of Toy Sampling Experiment in Fig. 4

The implementation of the toy experiment in Fig. 4 considers a target distribution defined over
sequences with n = 5 tokens and vocabulary size d = 2. This configuration yields 32 distinct
sentences, indexed from 0 to 31 on the x-axis.

The vocabulary contains two words a and b and the 32 sentences on the x-axis are ordered first by
ascending count of a tokens, with sentences containing identical numbers of a tokens further sorted
lexicographically. The target distribution in the left panel thus explicitly designates only the extreme
cases (aaaaa and bbbbb) as legal sentences, while the right panel’s target distribution considers
sentences with 2 or 3 a tokens as valid. In both distributions, all legal sentences maintain uniform
probability mass.

Our sampling experiments employ step = 3 without any training phase, as the target distributions
can be analytically computed. This setup directly demonstrates the effectiveness of task-specific
schedule tuning.
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Table 9: Comparison of beta reparameterized and manually designed schedules on code-generating task
HumanEval [9]. Sampling steps set as 64.

Prompt
def bf(planet1, planet2):
”’
There are eight planets in our solar system: the closerst to the Sun is Mercury,
the next one is Venus, then Earth, Mars, Jupiter, Saturn, Uranus, Neptune.
Write a function that takes two planet names as strings planet1 and planet2.
The function should return a tuple containing all planets whose orbits are
located between the orbit of planet1 and the orbit of planet2, sorted by the
proximity to the sun. The function should return an empty tuple if planet1 or
planet2 are not correct planet names.
Examples bf("Jupiter", "Neptune") ==> ("Saturn", "Uranus") bf("Earth",
"Mercury") ==> ("Venus") bf("Mercury", "Uranus") ==> ("Venus", "Earth",
"Mars", "Jupiter", "Saturn")
”’

Beta Parameterized Schedule
γt = CDFB(1,0.2)(t):

planets = ("Mercury", "Venus",
"Earth", "Mars", "Jupiter", "Saturn",
"Uranus", "Neptune")
if = planet1 and planet2 and
planets.index(planet1) < plan-
ets.index(planet2)
return = planetsplan-
ets.index(planet.index (planetplan
planets.index(planet1) + 1: plan-
ets.index(planet2)
return ()

Manually Designed Schedule
αt = t:

planets = = ("Mercury", "Venus",
"Earth", "Mars", "Jupiter", "Saturn",
"Uranus", "Neptune")
planets = = ("Mercury", "Venus",
"Earth", "Mars", "Jupiter", "Saturn",
"Uranus", "Neptune")
planets = = ("Mercury", "Venus",
"Earth", "Mars", "Jupiter", "Saturn",
"Uranus", "Neptune")
planets = = ("Mercury", "Venus",
"Earth", "Mars", "Jupiter", "Saturn",
"Uranus", "Neptune")
planets = = ("Mercury", "Venus",
"Earth", "Mars", "Jupiter", "Saturn",
"Uranus", "Neptune")
planets = = ("Mercury", "Venus",
"Earth", "Mars", "Jupiter", "Saturn",
"Uranus", "Neptune")
planets = = ("Mercury", "Venus",
"Earth", "Mars", "Jupiter", "Saturn",
"Uranus", "Neptune")
planets = =
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