On the Rollout-Training Mismatch
in Modern RL Systems
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Abstract

Modern reinforcement learning (RL) systems pursue efficiency by adopting hybrid
engines for rollout generation (e.g., vVLLM) and model training (e.g., FSDP). Here,
we show such hybrid engine introduces a subtle rollout-training mismatch: even
with the same model weights and architecture, the two backends can produce
significantly different token probabilities, implicitly turning on-policy RL into
off-policy. We address this problem with truncated importance sampling (TIS),
a simple yet effective correction that bridges the distribution gap and stabilizes
training, even under aggressive rollout quantization. Extensive experimental results
show that TIS improves training quality in standard BF16 RL with hybrid engines.
Moreover, TIS preserves downstream performance relative to BF16 rollouts when
using 8-bit rollouts for speedup.

1 Introduction

Modern reinforcement learning (RL) frameworks tend to apply hybrid engines to maximize training
efficiency, such as using highly optimized inference engines (e.g., vLLM) for rollout generation while
using separate backends (e.g., FSDP) for model training [[Sheng et al., {2024}, Hu et al., [2024].

Here, we show that this hybrid design brings an unexpected rollout-training mismatch issue [Chen
et al,[2025]. As shown in Figure [I| (left), despite sharing the same model parameters 6, the rollout
policy myim and the training policy 7gqp can produce significantly different token probabilities. The
mismatch problem becomes particularly severe when using quantized rollouts (e.g., INTS, FPS), as
quantization further amplifies the distribution gap between rollout and training policies, hurting the
training effectiveness.

To address this problem, we propose to use truncated importance sampling (TIS) [[onides| 2008]],
a simple yet effective algorithmic fix that applies importance sampling correction to bridge the
distribution gap. TIS modifies the policy gradient computation by incorporating the importance
ratio between the training and rollout policies. As shown in Figure [I] (right), applying TIS to the
DAPO-32B RL setting [[Yu et al.|[2025] significantly improves the training effectiveness.

2 The Rollout-Training Mismatch Problem

For simplicity, we use the REINFORCE algorithm as an example. The policy gradient update is:
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Figure 1: Left: Token probability differences brought by the mismatch problem. Right: Performance
comparison between normal RL training and training after fixing the mismatch problem. Experiments
are conducted on Qwen2.5-32B dense model with DAPO recipe using 4 nodes of 8xH100 GPUs.

0« 0+ p-Eqon)R(a) - Vglogm(a,0)].

In practice, modern RL frameworks employ hybrid computation designs where rollout generation
uses highly optimized inference engines (e.g., vLLM) while model training uses separate backends
(e.g., FSDP). This creates a mismatch:
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Here, msyp denotes the model instantiated with the training backend and 7, represents the same
model loaded with the inference engine. Despite sharing the same parameters 6, these policies can
produce significantly different token probabilities, making the training implicitly off-policy.

Empirically, the impact of this rollout-training mismatch is significant. As shown in Figure|l|(left),
for certain tokens, they even yield contradictory predictions—myiim(a, ) = 1 and 7qp(a, 6) = 0,
which breaks the on-policy assumption and secretly makes the RL training become off-policy.

3 Bridging the Gap Between Rollout and Training

3.1 Improving Numerical Precision

One may suspect vLLM implementation as the root cause. We patched vLLM to (i) expose the
true sampling probabilities rather than adjusted logprobs, and (ii) cast its Im_head to fp32 to match
HuggingFace precision [[Chen et al 2025]]. However, as shown in Figure[I] the rollout-training
mismatch persists even after these fixes, suggesting the problem is fundamental to hybrid backend
designs.

3.2 Truncated Importance Sampling

Instead of trying to eliminate the distribution mismatch at the system level, we propose to adapt the
model update to be aware of this mismatch through importance sampling correction. We modify the
gradient computation as follows:
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To ensure training stability, we use truncated importance sampling (TIS) [Ionides} 2008]], a classic
technique in statistics where extensive work has analyzed the behavior of importance sampling.
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3.3 Extension to PPO

The same principle applies to PPO, where the expected policy gradient of standard PPO is:
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With hybrid-engine implementation, the actual policy gradient in modern RL becomes:
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We mitigate the discrepancy between the expected and actual policy gradients with TIS:
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4 Experiments

4.1 Main results

We conduct experiments using Qwen2.5-32B dense model with the popular DAPO [Yu et al.} 2025]
recipe, using AIME2024 for evaluation. As shown in Figure [T] (right) and Figure 2] TIS brings
significant downstream performance gain and helps prevent entropy collapse in DAPO-32B training.
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Figure 2: Training dynamics of Qwen2.5-32B with the DAPO recipe, with and without the TIS fix.

4.2 Fix the Mismatch in Quantized Rollout

We note that the mismatch problem can become more severe when using quantized rollouts (e.g.,
INTS, FP8) to accelerate RL training, while TIS can still effectively fix the problem.

We conduct regular PPO training on GSM8K dataset, both with a standard setup (BF16 rollouts),
and a setup with INT8 quantized rollouts. As shown in Figure [3| (left), when employing quantized
rollouts, the token probability difference between rollout (e.g., vLLM) and training (e.g., FSDP)
becomes even larger. This leads to significant performance degradation as shown in Figure 3] (right).
This again confirms that the distribution gap between rollout and training policies significantly affects
RL training effectiveness.

Additionally, applying TIS manages to mitigate the gap greatly, effectively allowing quantized rollouts
to achieve a similar performance with standard rollouts, while retaining the training efficiency gain
since TIS induces little computation overhead.

4.3 Comparison with Alternative Approaches

To assess the effectiveness of TIS and understand the impact of its design choices, we conducted
experiments comparing TIS with two variants below.
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Figure 3: Left: Token-level probability differences. Right: Performance comparison for normal RL
training on GSM8K and RL training with INT8 quantized rollouts. Experiments are conducted on
Qwen2.5-0.5B dense model using one node of 4xA6000 GPU
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As shown in Figure[d] TIS outperforms both variants consistently, especially in cases where the gap
is large (e.g., FP8/INTS8). The gap for is relatively small and all methods work reasonably well.
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Figure 4: Ablation on different rollout-training mismatch mitigation strategies on Qwen2.5-0.5B.

Note that PPO-IS and Vanilla-IS achieves near 0 accuracy for INTS rollouts thus being highly
overlapped. The KL divergence between the distributions of vVLLM and FSDP engines is on the right.

5 Conclusion

In this paper, we show that modern RL systems with hybrid backends suffer from a rollout-training
mismatch issue, where policies with identical parameters still produce different token distributions.
This gap appears even in standard BF16 training and becomes more severe with quantized rollouts,
breaking the on-policy assumption and hurting the RL training effectivenss. We propose to use
truncated importance sampling (TIS) as a simple and effective fix, and demonstrated that it restores
stable training and preserves downstream accuracy while unlocking the efficiency gains of quantized
rollouts. These results highlight the mismatch as a fundamental challenge in today’s RL frameworks
and establish TIS as a practical solution moving forward.
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