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Abstract

Bilingual Word Embeddings (BWEs) are one001
of the cornerstones of cross-lingual transfer of002
NLP models. They can be built using only003
monolingual corpora without supervision lead-004
ing to numerous works focusing on unsuper-005
vised BWEs. However, most of the current ap-006
proaches to build unsupervised BWEs do not007
compare their results with methods based on008
easy-to-access cross-lingual signals. In this pa-009
per, we argue that such signals should always010
be considered when developing unsupervised011
BWE methods. The two approaches we find012
most effective are: 1) using identical words as013
seed lexicons (which unsupervised approaches014
incorrectly assume are not available for or-015
thographically distinct language pairs) and 2)016
combining such lexicons with pairs extracted017
by matching romanized versions of words018
with an edit distance threshold. We exper-019
iment on thirteen non-Latin languages (and020
English) and show that such cheap signals021
work well and that they outperform using more022
complex unsupervised methods on distant lan-023
guage pairs such as Chinese, Japanese, Kan-024
nada, Tamil, and Thai. In addition, we show025
that our signals are even competitive with the026
use of high-quality lexicons in supervised ap-027
proaches. Our results show that these training028
signals should not be neglected when building029
BWEs, even for distant languages.030

1 Introduction031

Bilingual Word Embeddings (BWEs) are useful032

for many cross-lingual tasks. They can be built033

effectively even when only a small seed lexicon034

is available by mapping monolingual embeddings035

into a shared space. This makes them particu-036

larly valuable for low-resources settings (Mikolov037

et al., 2013). In addition, unsupervised mapping038

approaches can build BWEs for some languages039

when no seed lexicon is available. Various un-040

supervised methods have been proposed (Zhang041

et al., 2017; Lample et al., 2018; Artetxe et al.,042

2018; Alvarez-Melis and Jaakkola, 2018; Chen and 043

Cardie, 2018; Hoshen and Wolf, 2018; Mohiuddin 044

and Joty, 2019; Alaux et al., 2019; Dou et al., 2020; 045

Grave et al., 2019; Li et al., 2020) relying on the 046

assumption that embedding spaces are isomorphic. 047

However, with one exception, none of them com- 048

pare their results with the widely available baseline 049

of using identical words as seed lexicons for boot- 050

strapping with semi-supervised approaches. In this 051

paper however, we argue that such signals should 052

be used as a cheap and effective baseline in the 053

development of future unsupervised methods. 054

We study two approaches for extracting the ini- 055

tial seed lexicons to build BWEs without relying 056

on expensive dictionaries: (1) relying on identical 057

pairs as proposed by Smith et al. (2017). Previous 058

work assumed such pairs not to be available for lan- 059

guage pairs with distinct scripts, hence the develop- 060

ment of various unsupervised mapping approaches. 061

We show that, surprisingly, they do appear in large 062

quantities in the monolingual corpora that we use, 063

even for distinct-script pairs. Although identical 064

pairs are noisy, we show that they are sufficient 065

to create good BWEs. In addition, we propose to 066

(2) strengthen identical pairs by extending them 067

with further easily accessible pairs based on roman- 068

ization and edit distance, which exploits implicit 069

links between languages in the form of approxi- 070

mate word transliteration pairs. We focus on distant 071

language pairs having distinct scripts for many of 072

which unsupervised approaches have failed or had 073

very poor performance so far. For instance, English 074

to Chinese, Japanese, Kannada, Tamil, and Thai, 075

which all obtain a score close to 0 on the Bilin- 076

gual Dictionary Induction (BDI) task (Vulić et al., 077

2019). We evaluate the two approaches on thirteen 078

different non-Latin1 languages paired with English 079

on BDI. We compare our lexicons’ performance 080

with unsupervised mapping and the frequently used 081

1We use (non-)Latin language here as a short form for
language standardly written in a (non-)Latin script.
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MUSE training lexicons (Lample et al., 2018) and082

show that our noisy word pairs make it possible to083

build BWEs for language pairs where unsupervised084

approaches failed before and give accuracy scores085

similar to high quality lexicons. Our work calls into086

question – at least for BDI – the strong trend toward087

unsupervised approaches in recent literature, simi-088

larly to Vulić et al. (2019), given that cheap signals089

are (i) available and easy to exploit, (ii) sufficient to090

obtain performance similar to high-quality dictio-091

naries like MUSE and (iii) able to make up for the092

failure of unsupervised methods. Finally, we ana-093

lyze which lexicon properties impact performance094

and show that our lexicon outperform unsupervised095

methods also for non-English language pairs. Our096

paper calls for the need to use easily accessible097

bilingual signals, such as identical and/or translit-098

eration word pairs, as baselines when developing099

unsupervised BWE approaches.100

2 Unsupervised pair extraction101

We show that we can extract the seed lexicon102

needed for mapping systems without the need for103

labeled data, making up for the failure of unsuper-104

vised methods. First, we show that identical pairs105

do appear in corpora of distant languages and can106

be exploited. Secondly, we propose a novel method107

to boost the identical pairs sets by extracting the ini-108

tial seed lexicon without the need for any bilingual109

knowledge, starting from monolingual corpora, and110

using romanization and edit distance.111

2.1 Identical pair approach112

When dealing with languages with different scripts,113

identical pairs would seem to be unlikely to occur,114

which is assumed by unsupervised mapping meth-115

ods. Smith et al. (2017) form dictionaries from116

identical strings which appear in both languages117

but limit their approach to similar languages shar-118

ing a common alphabet, such as European ones.119

Similarly, Lample et al. (2018) refrain from using120

such identical word pairs assuming they were not121

available for distant languages. However, there are122

domains where these pairs are actually available in123

large quantity; an example is Wikipedia: see the124

fastText wiki embedding (Bojanowski et al., 2017)125

statistics in Table 1. Most of these identical pairs126

are punctuation marks and digits, non-transliterated127

named entities written in the Latin script or English128

words (assumingly words of a title) which were not129

translated in the non-English languages. This is130

Lang ID Lang ID Lang ID
Ko-Th 17K Ko-He 11K He-Th 15K
En-Zh 62K En-Bn 31K En-Ar 19K
En-Th 46K En-Hi 30K En-Ru 18K
En-Ja 43K En-Ta 23K En-He 17K
En-El 35K En-Kn 21K En-Ko 15K
En-Fa 32K

Table 1: # identical pairs per language pair.

also true for language pairs not including English. 131

In this paper, we build BWEs based on these pairs 132

and show they are sufficient for good BDI results 133

on distant language pairs with distinct scripts. 134

2.2 Romanization based augmentation 135

(ID++) 136

Identical pairs are noisy and may appear in smaller 137

quantities for certain corpora and language pairs 138

(e.g., He-Ko). We proposed our romanization ap- 139

proach that builds the seed lexicon completely au- 140

tomatically and can augment the identical pairs set. 141

We exploit the concept of transliteration and ortho- 142

graphic similarity to find a cheap signal between 143

languages (cf. (Riley and Gildea, 2018; Severini 144

et al., 2020)) and to take advantage of cognates 145

(Chakravarthi et al., 2019). It consists of 3 steps at 146

the end of which we add the identical pairs and run 147

VecMap in a semi-supervised setting. 148

1. Source candidates First, we generate a list 149

of source language words, which are the candidates 150

to be matched with a word on the target side. We 151

use the English Wikipedia dumps2 as our monolin- 152

gual corpus and apply Flair (Akbik et al., 2018) to 153

extract Universal Part-of-Speech (UPOS) tags. We 154

collect all English proper nouns (PROPN) since 155

names are often transliterated between languages. 156

The resulting English proper noun set consists of 157

≈800K words. 158

2. Target candidates The language-specific 159

target data are extracted from the vocabulary of 160

the pre-trained Wikipedia fastText embeddings 161

(Bojanowski et al., 2017). The sets are not pre- 162

processed with a POS tagger assuming that such a 163

tool is missing or perform poorly for low-resource 164

languages. Compared to the English proper noun 165

set, the vocabularies are smaller: between 40K and 166

500K. Then, we romanize the corpora to obtain 167

equivalent words but with only Latin characters 168

– this supports distance-based metrics in step (3). 169

We use Uroman (Hermjakob et al., 2018) for ro- 170

manization. Examples of romanization are kарл 171

2https://dumps.wikimedia.org/ (01.04.2020)
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En-Th En-Ja En-Kn En-Ta En-Zh
Unsupervised

1. 0.00 0.96 0.00 0.07 0.07
2. 0.00 0.48 0.00 0.07 0.00
3. 0.00 0.00 0.00 0.00� 0.00

Semi-supervised (Artetxe et al., 2018)
ID 24.40 48.87 22.03 17.93 37.00
Rom. 23.33 48.46 22.90 18.00 0.27
ID++ 23.47 49.14 24.23 18.20 35.00
MUSE 24.33 48.73 23.78 18.80 36.53

Table 2: acc@1 on BDI for unsupervised
(1: Artetxe et al. (2018), 2: Grave et al.
(2019), 3: Mohiuddin and Joty (2019)) and semi-
supervised approaches for 5 languages for which
unsupervised methods fail. The semi-supervised
results are obtained using VecMap with three dif-
ferent initial lexicons: the identical pair set (ID),
ID extended with romanization based pairs (ID++)
and the MUSE dictionary. We show an ablation
study as well, i.e., the romanized pairs only (Rom.).
Scores from Mohiuddin et al. (2020) are marked
with �.

(Russian)→ carl and βαβυλών (Greek)→ babylon.172

Uroman mainly covers 1-1 character correspon-173

dences and does not vocalize words for Arabic174

and Hebrew. In general, its romanization is not as175

accurate as the transliteration of a neural model.176

However, neural models need a training corpus of177

labeled pairs to work well while Uroman only uses178

the character descriptions from the Unicode table,3179

manually created tables and some heuristics, sup-180

porting a large number of languages.181

3. Candidate matching For an English noun182

to find the corresponding target word, the noun is183

compared with each (romanized) target word based184

on their orthography. The similarity of two words185

w1 and w2 is defined as 1 − NL(w1, w2), where186

NL is Levenshtein distance (Levenshtein, 1966)187

divided by the length of the longer string. We188

select a pair of words if the similarity is≥ 0.8; that189

ensures a trade off between number of pairs and190

quality, based on some manual investigation. We191

use the Symmetric Delete algorithm to speed up192

computation, similar to (Riley and Gildea, 2018).193

It takes the lists of source and target words, and a194

constant k and identifies all the source-target pairs195

that are identical after k insertion or deletions.4196

3http://unicode.org/Public/UNIDATA/UnicodeData.txt
4We used minimum frequency and minimum length equal

to 1, k equals to 2.

The final step is to look up, for each romanized 197

target word, its original non-romanized form. 198

3 Evaluation 199

We evaluate our seed lexicons on BDI to show the 200

quality of the BWEs obtained with them. Recent 201

papers (Marchisio et al., 2020) show that there is 202

a direct relationship between BDI accuracy and 203

downstream BLEU for machine translation. More- 204

over, Sabet et al. (2020) show that good-quality 205

word embeddings directly reflect the performance 206

also for extrinsic tasks like word alignment. We 207

use the VecMap tool to build BWEs since it sup- 208

ports both unsupervised, semi-supervised and su- 209

pervised techniques (Artetxe et al., 2018). The 210

semi-supervised approach is of particular interest 211

to us since it performs well with small and noisy 212

seed lexicons by iteratively refining them. We use 213

pre-trained Wikipedia fastText embeddings (Bo- 214

janowski et al., 2017) as the input monolingual 215

vectors, taking only the 200K most frequent words 216

and using default parameters otherwise. We com- 217

pare the performance of VecMap using our lexicons 218

with MUSE, a high-quality dictionary. MUSE con- 219

tains dictionaries for many languages and it was 220

created using a Facebook internal translation tool 221

(Lample et al., 2018). Since Kannada is not sup- 222

ported by MUSE, we use the dictionary provided 223

by Author (2020). We show acc@1 scores based 224

on CSLS vector similarity calculated by the MUSE 225

evaluation tool (Lample et al., 2018).5 226

Tables 2 and 3 show accuracy for all language 227

pairs considering English as the source; see Ta- 228

ble 7 in Appendix B for the full table containing 229

results in both directions. Table 2 gives scores 230

for language pairs for which unsupervised meth- 231

ods completely diverge (acc@1 < 1). We report 232

results for three unsupervised methods (Artetxe 233

et al., 2018; Mohiuddin and Joty, 2019; Grave et al., 234

2019). In contrast, using identical word pairs as 235

lexicon (ID) or its extension with the romanize- 236

tion based pairs (ID++) with VecMap leads to suc- 237

cessful BWEs without any parallel data or manu- 238

ally created lexicons. In addition, scores are even 239

comparable to high-quality dictionaries like MUSE. 240

Looking at results for all language pairs in Table 2 241

and 3, our sets always obtain results comparable to 242

MUSE (baseline dictionaries), with improvements 243

5We follow Artetxe et al. (2018) work for comparison
reasons and did not remove identical pairs from the test sets.
However, overlaps between train romanized lexicons and test
lexicons correspond to less than 1%.
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Unsup. ID Rom. ID++ MUSE
En-Ar 36.30 40.27 39.33 40.20 39.87
En-Hi 40.20 40.47 39.60 40.20 40.33
En-Ru 44.80 49.13 48.87 49.53 48.80
En-El 47.90 47.87 48.00 48.27 48.00
En-Fa 36.70 37.67 36.80 37.67 38.00
En-He 44.60 44.47 44.53 44.67 45.00
En-Bn 18.20 19.87 19.80 20.13 21.60
En-Ko 19.80 27.92 28.40 28.81 28.94

Table 3: acc@1 on BDI for (best) unsupervised
method and semi-supervised VecMap with differ-
ent initial lexicons. (full table in Appendix B, Table
7).

for Arabic, Chinese, Russian and Greek. In the un-244

supervised cases (Table 2), both ID and ID++ pair245

sets lead to an accuracy improvement of at least246

17 points. ID++ outperform ID for three of the247

five low-resource pairs and five out of eight high-248

resource pairs proving that the romanized pairs can249

indeed strengthen the identical pairs sets. These250

results show that good quality BWEs can be built251

by relying on implicit cross-lingual signals with-252

out expensive supervision or fragile unsupervised253

approaches.254

Non-English centric evaluation We analyze255

the performance of ID and ID++ for language pairs256

that do not include English. We use the test dictio-257

naries of Vulić et al. (2019) that are derived from258

PanLex (Baldwin et al., 2010; Kamholz et al., 2014)259

by automatically translating each source language260

word into the target languages. We run VecMap261

for all combinations of Korean, Hebrew, and Thai.262

Romanized train lexicons are extracted by combin-263

ing the languages through English (e.g., Th-Ko is264

obtained using En-Th and En-Ko), i.e., words are265

paired if their English translation is the same. Table266

4 shows results. When Thai is involved, the unsu-267

pervised method fails as for English-Thai. Both268

ID and ID++ always outperform the respective un-269

supervised scores, and perform similar to higher-270

quality dictionaries. Additionally, ID++ outper-271

forms ID in 3 out of 6 cases. These results demon-272

strate further the simplicity and high quality of our273

methods.274

Romanized-only We analyze the performance275

of romanized pair lexicons on their own. Line276

Rom. in Table 2 and 3 shows that they obtain com-277

petitive results to the other two approaches, with278

improvements for Japanese, and perform similarly279

to MUSE dictionaries. The only failure is for for280

Chinese (En-Zh) – presumably because Chinese281

has a logographic script that does not represent282

Unsup. ID Rom. ID++ PanLex
Th-Ko 0.00 2.81 3.37 3.09 2.95
Th-He 0.00 9.75 0.00 8.86 10.13
Ko-Th 0.00 15.90 14.23 15.26 14.36
Ko-He 14.62 15.68 16.08 16.00 15.11
He-Th 0.00 16.42 0.00 16.54 17.90
He-Ko 14.30 15.39 15.15 15.09 16.06

Table 4: acc@1 on BDI for unsupervised and semi-
supervised VecMap for all combinations of Korean,
Hebrew, and Thai. PanLex are results obtained
with training lexicons from Vulić et al. (2019) and
semi-supervised VecMap.

phonemes directly, so romanization is less effective. 283

These results show that the romanized pairs on their 284

own also represent strong signals that shouldn’t be 285

neglected. Moreover, they constitute a good alter- 286

native when identical pairs are not available is such 287

quantities (e.g., corpora of religious domain, law 288

field, or cultural-specific documents). 289

Impact of OOVs We analyze the pairs used for 290

the various sets (Appendix A, Table 5). We define 291

OOVs as words for which there is no embedding 292

available among the pre-trained Wikipedia fastText 293

embeddings. Our romanized sets contain a sub- 294

stantial number of OOVs. (The identical pair sets 295

do not contain OOVs because words are extracted 296

from the top 200K most frequent.) The main rea- 297

son for OOVs is that the selected English pair of a 298

word is so rare that they do not have embeddings. 299

On the other hand, the high number of OOVs (and 300

resulting reduction of usable pairs) has only limited 301

negative impact on the performance. 302

4 Conclusion 303

We presented two approaches to deal with the fail- 304

ure of unsupervised methods for some language 305

pairs, focusing on English paired with non-Latin 306

languages. (i) We exploited identical pairs that sur- 307

prisingly appear in corpora of distinct scripts. (ii) 308

We combined them with a simple method to ex- 309

tract the initial hypothesis set via romanization and 310

edit distance. With both approaches, we obtained 311

results that are competitive with high-quality dictio- 312

naries. Without using explicit cross-lingual signal, 313

we outperformed previous unsupervised work for 314

most languages and in particular for five language 315

pairs for which previous unsupervised work failed. 316

Our results question the strong trend towards unsu- 317

pervised mapping approaches, and show that cheap 318

cross-lingual signals should always be considered 319

for building BWEs, even for distant languages. 320
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A Statistics451

In this section we show statistics on the language452

pairs analyzed and additional scores. Table 5453

presents the number of pairs for each set that are454

not OOVs in the fastText wiki embeddings (Bo-455

janowski et al., 2017).456

MUSE ID Romanized ID++
En-Th 6,799 46,653 10,721 / 53,804 58779 / 101066
En-Ja 7,135 43,556 11,488 / 118,626 54970 / 161848
En-Kn 1,552 21,090 12,888 / 59,207 33843 / 80032
En-Ta 8,091 23,538 5,987 / 120,836 29472 / 143990
En-Zh 8,728 62,289 6,360 / 41,829 68597 / 103971
En-Ar 11,571 19,275 4,773 / 61,031 24019 / 80115
En-Hi 8,704 30,502 16,180 / 73,553 46557 / 103791
En-Ru 10,887 18,663 9,913 / 301,698 28520 / 319688
En-El 10,662 35,270 20,740 / 150,472 55841 / 185244
En-Fa 8,869 32,866 10,226 / 85,210 43019 / 117817
En-He 9,634 17,012 4,005 / 40,258 20977 / 57059
En-Bn 8,467 31,954 10,721 / 53,804 42573 / 85532
En-Ko 7,999 15,518 9956 / 134156 25344 / 149031

Table 5: Number of pairs used that are not OOVs
in the fastText wiki embeddings compared to the
full size of the sets. For MUSE full and identical
pairs sets there are no OOVs.

Size of seed set and word frequency We ana-457

lyze the impact of the size of the initial romanized458

seed set and of word frequency. Table 6 displays ac-459

curacy scores for MUSE and Romanized lexicons460

containing n ∈ {25, 1000} least and most frequent461

word pairs. Performance of VecMap applied to462

seed sets of size 25 is close to 0. The only excep- 463

tion is Russian where the unsupervised approach 464

already works well. Next, we investigate seed sets 465

of size 1000 consisting of either the least frequent 466

or the most frequent words. High-frequency seed 467

sets give better results as expected. The effect is 468

particularly strong for Tamil: the high-frequency 469

set has performance close to the full set whereas 470

the low-frequency set is at ≤0.07. Performance of 471

MUSE seed sets of size 25 and romanized seed sets 472

of size 1000 is similar, demonstrating the higher 473

quality of MUSE. However, obtaining the roman- 474

ized pairs is much cheaper. 475

B Main results 476

In Table 7 there are the accuracy scores based on 477

CSLS vector similarity calculated by the MUSE 478

evaluation tool (Lample et al., 2018). We show 479

the scores for thirteen language pairs in both direc- 480

tions. The first five pairs are the ones for which 481

unsupervised methods fail. We show both unsuper- 482

vised and semi-supervised VecMap performance 483

with baselines dictionaries and our three sets. 484

C Reproducibility 485

We run our method on up to 48 cores of Intel(R) 486

Xeon(R) CPU E7-8857 v2 with 1TB memory and 487

a single GeForce GTX 1080 GPU with 8GB mem- 488

ory. The training of semi-suprised BWEs using 489

VecMap took approximately 1 hour per language 490

pair. For VecMap, as well as for all others methods 491

we analyzed, we used the latest code available in 492

their git repositories with default parameters. ID++ 493

is implemented in Python. 494
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MUSE Rom.
25L 25H 1000L 1000H 25L 25H 1000L 1000H

En-Ta
→ 14.73 16.27 17.33 17.40 0.00 0.00 0.07 17.80
← 16.48 18.35 22.44 23.44 0.00 0.00 0.00 21.57

En-Fa
→ 35.33 34.20 38.07 37.20 0.00 0.20 37.47 37.47
← 41.73 42.60 44.14 44.21 0.07 0.13 42.40 43.40

En-Zh
→ 39.00 39.40 38.20 37.67 0.00 0.00 0.07 0.40
← 32.93 34.47 34.33 34.40 0.00 0.00 0.07 0.60

En-Ru
→ 49.07 43.07 49.07 49.27 49.33 47.73 49.40 49.00
← 65.93 60.60 65.93 66.13 65.80 64.47 65.60 66.40

Table 6: acc@1 using 25 or 1000 pairs lower-frequency (L) and higher-frequency (H) sets for MUSE and
our romanized only (Rom.) set.

Baselines Our
Unsupervised Semi-sup. Semi-supervised
1 2 3 MUSE ID Rom. ID++

1 En-Th
→ 0.00 0.00 0.00 24.33 24.40 23.33 23.47
← 0.00 0.00 0.00 19.04 19.92 17.96 19.85

2 En-Ja
→ 0.96 0.48 0.00 48.73 48.87 48.46 49.14
← 0.96 0.00 0.00 32.87 33.22 34.80 33.43

3 En-Kn
→ 0.00 0.00 0.00 23.78∗ 22.03 22.90 24.23
← 0.00 0.00 0.00 41.25∗ 43.04 42.50 41.79

4 En-Ta
→ 0.07 0.07 0.00� 18.80 17.93 18.00 18.20
← 0.07 0.00 0.00� 24.38 24.78 23.51 24.78

5 En-Zh
→ 0.07 0.00 0.00 36.53 37.00 0.27 35.00
← 0.00 0.00 0.00 32.80 34.33 0.07 32.67

6 En-Ar
→ 33.60 7.67 36.30� 39.87 40.27 39.33 40.20
← 47.72 12.92 52.60� 54.48 54.42 54.42 54.62

7 En-Hi
→ 40.20 0.00 0.00� 40.33 40.47 39.60 40.20
← 50.57 0.07 0.00� 50.50 49.77 49.90 50.10

8 En-Ru
→ 48.80 37.33 46.90� 48.80 49.13 48.87 49.53
← 66.13 52.73 64.70� 65.67 66.13 65.73 66.07

9 En-El
→ 47.67 34.67 47.90� 48.00 47.87 48.00 48.27
← 63.40 49.20 63.50� 63.33 63.27 64.40 63.47

10 En-Fa
→ 33.27 0.53 36.70� 38.00 37.67 36.80 37.67
← 39.99 0.40 44.50� 43.47 43.67 42.93 43.60

11 En-He
→ 44.60 37.13 44.00� 45.00 44.47 44.53 44.67
← 57.88 50.01 57.10� 57.94 58.14 57.81 57.94

12 En-Bn
→ 18.20 0.00 0.00� 21.60 19.87 19.80 20.13
← 22.19 0.00 0.00� 28.46 28.88 28.67 29.41

13 En-Ko
→ 19.80 9.62 0.00 28.94 27.92 28.40 28.81
← 24.37 13.83 0.00 34.09 33.40 33.74 33.95

Table 7: acc@1 for unsupervised methods (1: Artetxe et al. (2018), 2: Grave et al. (2019), 3: Mohiuddin
and Joty (2019)) and semi-supervised VecMap with different initial lexicons: MUSE set, identical pairs
dataset (ID), our romanized only sets (Rom.), and the union of identical and romanized pairs (ID++). We
show both forward (→) and backward (←) directions. In bold the best result for each pair of languages,
for “Baselines” and “Our”.
Scores from Mohiuddin et al. (2020) are marked with �.
∗Kannada is not supported by MUSE, so we use the dictionary provided by (Author, 2020).
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