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Abstract

Bilingual Word Embeddings (BWEs) are one
of the cornerstones of cross-lingual transfer of
NLP models. They can be built using only
monolingual corpora without supervision lead-
ing to numerous works focusing on unsuper-
vised BWEs. However, most of the current ap-
proaches to build unsupervised BWEs do not
compare their results with methods based on
easy-to-access cross-lingual signals. In this pa-
per, we argue that such signals should always
be considered when developing unsupervised
BWE methods. The two approaches we find
most effective are: 1) using identical words as
seed lexicons (which unsupervised approaches
incorrectly assume are not available for or-
thographically distinct language pairs) and 2)
combining such lexicons with pairs extracted
by matching romanized versions of words
with an edit distance threshold. We exper-
iment on thirteen non-Latin languages (and
English) and show that such cheap signals
work well and that they outperform using more
complex unsupervised methods on distant lan-
guage pairs such as Chinese, Japanese, Kan-
nada, Tamil, and Thai. In addition, we show
that our signals are even competitive with the
use of high-quality lexicons in supervised ap-
proaches. Our results show that these training
signals should not be neglected when building
BWEs, even for distant languages.

1 Introduction

Bilingual Word Embeddings (BWEs) are useful
for many cross-lingual tasks. They can be built
effectively even when only a small seed lexicon
is available by mapping monolingual embeddings
into a shared space. This makes them particu-
larly valuable for low-resources settings (Mikolov
et al., 2013). In addition, unsupervised mapping
approaches can build BWEs for some languages
when no seed lexicon is available. Various un-
supervised methods have been proposed (Zhang
et al., 2017; Lample et al., 2018; Artetxe et al.,

2018; Alvarez-Melis and Jaakkola, 2018; Chen and
Cardie, 2018; Hoshen and Wolf, 2018; Mohiuddin
and Joty, 2019; Alaux et al., 2019; Dou et al., 2020;
Grave et al., 2019; Li et al., 2020) relying on the
assumption that embedding spaces are isomorphic.
However, with one exception, none of them com-
pare their results with the widely available baseline
of using identical words as seed lexicons for boot-
strapping with semi-supervised approaches. In this
paper however, we argue that such signals should
be used as a cheap and effective baseline in the
development of future unsupervised methods.

We study two approaches for extracting the ini-
tial seed lexicons to build BWEs without relying
on expensive dictionaries: (1) relying on identical
pairs as proposed by Smith et al. (2017). Previous
work assumed such pairs not to be available for lan-
guage pairs with distinct scripts, hence the develop-
ment of various unsupervised mapping approaches.
We show that, surprisingly, they do appear in large
quantities in the monolingual corpora that we use,
even for distinct-script pairs. Although identical
pairs are noisy, we show that they are sufficient
to create good BWEs. In addition, we propose to
(2) strengthen identical pairs by extending them
with further easily accessible pairs based on roman-
ization and edit distance, which exploits implicit
links between languages in the form of approxi-
mate word transliteration pairs. We focus on distant
language pairs having distinct scripts for many of
which unsupervised approaches have failed or had
very poor performance so far. For instance, English
to Chinese, Japanese, Kannada, Tamil, and Thai,
which all obtain a score close to 0 on the Bilin-
gual Dictionary Induction (BDI) task (Vulic et al.,
2019). We evaluate the two approaches on thirteen
different non-Latin' languages paired with English
on BDI. We compare our lexicons’ performance
with unsupervised mapping and the frequently used

"We use (non-)Latin language here as a short form for
language standardly written in a (non-)Latin script.



MUSE training lexicons (Lample et al., 2018) and
show that our noisy word pairs make it possible to
build BWEs for language pairs where unsupervised
approaches failed before and give accuracy scores
similar to high quality lexicons. Our work calls into
question — at least for BDI — the strong trend toward
unsupervised approaches in recent literature, simi-
larly to Vuli¢ et al. (2019), given that cheap signals
are (i) available and easy to exploit, (ii) sufficient to
obtain performance similar to high-quality dictio-
naries like MUSE and (iii) able to make up for the
failure of unsupervised methods. Finally, we ana-
lyze which lexicon properties impact performance
and show that our lexicon outperform unsupervised
methods also for non-English language pairs. Our
paper calls for the need to use easily accessible
bilingual signals, such as identical and/or translit-
eration word pairs, as baselines when developing
unsupervised BWE approaches.

2 Unsupervised pair extraction

We show that we can extract the seed lexicon
needed for mapping systems without the need for
labeled data, making up for the failure of unsuper-
vised methods. First, we show that identical pairs
do appear in corpora of distant languages and can
be exploited. Secondly, we propose a novel method
to boost the identical pairs sets by extracting the ini-
tial seed lexicon without the need for any bilingual
knowledge, starting from monolingual corpora, and
using romanization and edit distance.

2.1 Identical pair approach

When dealing with languages with different scripts,
identical pairs would seem to be unlikely to occur,
which is assumed by unsupervised mapping meth-
ods. Smith et al. (2017) form dictionaries from
identical strings which appear in both languages
but limit their approach to similar languages shar-
ing a common alphabet, such as European ones.
Similarly, Lample et al. (2018) refrain from using
such identical word pairs assuming they were not
available for distant languages. However, there are
domains where these pairs are actually available in
large quantity; an example is Wikipedia: see the
fastText wiki embedding (Bojanowski et al., 2017)
statistics in Table 1. Most of these identical pairs
are punctuation marks and digits, non-transliterated
named entities written in the Latin script or English
words (assumingly words of a title) which were not
translated in the non-English languages. This is

Lang ID | Lang ID | Lang ID
Ko-Th 17K | Ko-He 11K | He-Th 15K
En-Zh 62K | En-Bn 31K | En-Ar 19K
En-Th 46K | En-Hi 30K | En-Ru 18K
En-Ja 43K | En-Ta 23K | En-He 17K
En-El 35K | En-Kn 21K | En-Ko 15K
En-Fa 32K

Table 1: # identical pairs per language pair.

also true for language pairs not including English.
In this paper, we build BWEs based on these pairs
and show they are sufficient for good BDI results
on distant language pairs with distinct scripts.

2.2 Romanization based augmentation
(ID++)

Identical pairs are noisy and may appear in smaller
quantities for certain corpora and language pairs
(e.g., He-Ko). We proposed our romanization ap-
proach that builds the seed lexicon completely au-
tomatically and can augment the identical pairs set.
We exploit the concept of transliteration and ortho-
graphic similarity to find a cheap signal between
languages (cf. (Riley and Gildea, 2018; Severini
et al., 2020)) and to take advantage of cognates
(Chakravarthi et al., 2019). It consists of 3 steps at
the end of which we add the identical pairs and run
VecMap in a semi-supervised setting.

1. Source candidates First, we generate a list
of source language words, which are the candidates
to be matched with a word on the target side. We
use the English Wikipedia dumps? as our monolin-
gual corpus and apply Flair (Akbik et al., 2018) to
extract Universal Part-of-Speech (UPOS) tags. We
collect all English proper nouns (PROPN) since
names are often transliterated between languages.
The resulting English proper noun set consists of
~800K words.

2. Target candidates The language-specific
target data are extracted from the vocabulary of
the pre-trained Wikipedia fastText embeddings
(Bojanowski et al., 2017). The sets are not pre-
processed with a POS tagger assuming that such a
tool is missing or perform poorly for low-resource
languages. Compared to the English proper noun
set, the vocabularies are smaller: between 40K and
500K. Then, we romanize the corpora to obtain
equivalent words but with only Latin characters
— this supports distance-based metrics in step (3).
We use Uroman (Hermjakob et al., 2018) for ro-
manization. Examples of romanization are kap.t

Zhttps://dumps.wikimedia.org/ (01.04.2020)



En-Th En-Ja En-Kn En-Ta En-Zh
Unsupervised
1. 0.00 0.96 0.00 0.07 0.07
2. 0.00 048 0.00 0.07 0.00
3. 0.00 0.00 0.00 0.00° 0.00
Semi-supervised (Artetxe et al., 2018)

1D 2440 48.87 22.03 1793 37.00
Rom. 2333 48.46 2290 18.00 0.27
ID++ 23.47 49.14 2423 1820 35.00
MUSE | 2433 4873 2378 18.80 36.53
Table 2: acc@1 on BDI for unsupervised

(1: Artetxe et al. (2018), 2: Grave et al.
(2019), 3: Mohiuddin and Joty (2019)) and semi-
supervised approaches for 5 languages for which
unsupervised methods fail. The semi-supervised
results are obtained using VecMap with three dif-
ferent initial lexicons: the identical pair set (ID),
ID extended with romanization based pairs (ID++)
and the MUSE dictionary. We show an ablation
study as well, i.e., the romanized pairs only (Rom.).
Scores from Mohiuddin et al. (2020) are marked
with ©.

(Russian)— carl and BafBurcv (Greek) — babylon.
Uroman mainly covers 1-1 character correspon-
dences and does not vocalize words for Arabic
and Hebrew. In general, its romanization is not as
accurate as the transliteration of a neural model.
However, neural models need a training corpus of
labeled pairs to work well while Uroman only uses
the character descriptions from the Unicode table,?
manually created tables and some heuristics, sup-
porting a large number of languages.

3. Candidate matching For an English noun
to find the corresponding target word, the noun is
compared with each (romanized) target word based
on their orthography. The similarity of two words
wy and wy is defined as 1 — NL(wy, we), where
NL is Levenshtein distance (Levenshtein, 1966)
divided by the length of the longer string. We
select a pair of words if the similarity is > 0.8; that
ensures a trade off between number of pairs and
quality, based on some manual investigation. We
use the Symmetric Delete algorithm to speed up
computation, similar to (Riley and Gildea, 2018).
It takes the lists of source and target words, and a
constant k and identifies all the source-target pairs
that are identical after k insertion or deletions.*

3http://unicode.org/Public/UNIDATA/UnicodeData.txt
*We used minimum frequency and minimum length equal
to 1, k equals to 2.

The final step is to look up, for each romanized
target word, its original non-romanized form.

3 Evaluation

We evaluate our seed lexicons on BDI to show the
quality of the BWESs obtained with them. Recent
papers (Marchisio et al., 2020) show that there is
a direct relationship between BDI accuracy and
downstream BLEU for machine translation. More-
over, Sabet et al. (2020) show that good-quality
word embeddings directly reflect the performance
also for extrinsic tasks like word alignment. We
use the VecMap tool to build BWE:s since it sup-
ports both unsupervised, semi-supervised and su-
pervised techniques (Artetxe et al., 2018). The
semi-supervised approach is of particular interest
to us since it performs well with small and noisy
seed lexicons by iteratively refining them. We use
pre-trained Wikipedia fastText embeddings (Bo-
janowski et al., 2017) as the input monolingual
vectors, taking only the 200K most frequent words
and using default parameters otherwise. We com-
pare the performance of VecMap using our lexicons
with MUSE, a high-quality dictionary. MUSE con-
tains dictionaries for many languages and it was
created using a Facebook internal translation tool
(Lample et al., 2018). Since Kannada is not sup-
ported by MUSE, we use the dictionary provided
by Author (2020). We show acc@1 scores based
on CSLS vector similarity calculated by the MUSE
evaluation tool (Lample et al., 2018).

Tables 2 and 3 show accuracy for all language
pairs considering English as the source; see Ta-
ble 7 in Appendix B for the full table containing
results in both directions. Table 2 gives scores
for language pairs for which unsupervised meth-
ods completely diverge (acc@1 < 1). We report
results for three unsupervised methods (Artetxe
et al., 2018; Mohiuddin and Joty, 2019; Grave et al.,
2019). In contrast, using identical word pairs as
lexicon (ID) or its extension with the romanize-
tion based pairs (ID++) with VecMap leads to suc-
cessful BWEs without any parallel data or manu-
ally created lexicons. In addition, scores are even
comparable to high-quality dictionaries like MUSE.
Looking at results for all language pairs in Table 2
and 3, our sets always obtain results comparable to
MUSE (baseline dictionaries), with improvements

SWe follow Artetxe et al. (2018) work for comparison
reasons and did not remove identical pairs from the test sets.
However, overlaps between train romanized lexicons and test
lexicons correspond to less than 1%.



Unsup. ID Rom. ID++ | MUSE Unsup. ID Rom. ID++ | PanLex
En-Ar 36.30 | 40.27 3933  40.20 39.87 Th-Ko 0.00 2.81 3.37 3.09 2.95
En-Hi 40.20 | 40.47 39.60 40.20 40.33 Th-He 0.00 9.75 0.00 8.86 10.13
En-Ru 44.80 | 49.13 48.87 49.53 48.80 Ko-Th 0.00 | 1590 1423 15.26 14.36
En-El 4790 | 47.87 48.00 48.27 48.00 Ko-He 14.62 | 15.68 16.08 16.00 15.11
En-Fa 36.70 | 37.67 36.80 37.67 38.00 He-Th 0.00 | 16.42 0.00 16.54 17.90
En-He 44.60 | 44.47 4453 44.67 45.00 He-Ko 14.30 | 15.39 15.15 15.09 16.06
En-Bn 18.20 | 19.87 19.80 20.13 21.60
En-Ko | 19.80 | 27.92 2840 2881 | 28.94 Table 4: acc@1 on BDI for unsupervised and semi-

Table 3: acc@1 on BDI for (best) unsupervised
method and semi-supervised VecMap with differ-
ent initial lexicons. (full table in Appendix B, Table
7).

for Arabic, Chinese, Russian and Greek. In the un-
supervised cases (Table 2), both ID and ID++ pair
sets lead to an accuracy improvement of at least
17 points. ID++ outperform ID for three of the
five low-resource pairs and five out of eight high-
resource pairs proving that the romanized pairs can
indeed strengthen the identical pairs sets. These
results show that good quality BWEs can be built
by relying on implicit cross-lingual signals with-
out expensive supervision or fragile unsupervised
approaches.

Non-English centric evaluation We analyze
the performance of ID and ID++ for language pairs
that do not include English. We use the test dictio-
naries of Vuli¢ et al. (2019) that are derived from
PanLex (Baldwin et al., 2010; Kamholz et al., 2014)
by automatically translating each source language
word into the target languages. We run VecMap
for all combinations of Korean, Hebrew, and Thai.
Romanized train lexicons are extracted by combin-
ing the languages through English (e.g., Th-Ko is
obtained using En-Th and En-Ko), i.e., words are
paired if their English translation is the same. Table
4 shows results. When Thai is involved, the unsu-
pervised method fails as for English-Thai. Both
ID and ID++ always outperform the respective un-
supervised scores, and perform similar to higher-
quality dictionaries. Additionally, ID++ outper-
forms ID in 3 out of 6 cases. These results demon-
strate further the simplicity and high quality of our
methods.

Romanized-only We analyze the performance
of romanized pair lexicons on their own. Line
Rom. in Table 2 and 3 shows that they obtain com-
petitive results to the other two approaches, with
improvements for Japanese, and perform similarly
to MUSE dictionaries. The only failure is for for
Chinese (En-Zh) — presumably because Chinese
has a logographic script that does not represent

supervised VecMap for all combinations of Korean,
Hebrew, and Thai. PanlLex are results obtained
with training lexicons from Vuli¢ et al. (2019) and
semi-supervised VecMap.

phonemes directly, so romanization is less effective.
These results show that the romanized pairs on their
own also represent strong signals that shouldn’t be
neglected. Moreover, they constitute a good alter-
native when identical pairs are not available is such
quantities (e.g., corpora of religious domain, law
field, or cultural-specific documents).

Impact of OOVs We analyze the pairs used for
the various sets (Appendix A, Table 5). We define
OOVs as words for which there is no embedding
available among the pre-trained Wikipedia fastText
embeddings. Our romanized sets contain a sub-
stantial number of OOVs. (The identical pair sets
do not contain OOVs because words are extracted
from the top 200K most frequent.) The main rea-
son for OOVs is that the selected English pair of a
word is so rare that they do not have embeddings.
On the other hand, the high number of OOVs (and
resulting reduction of usable pairs) has only limited
negative impact on the performance.

4 Conclusion

We presented two approaches to deal with the fail-
ure of unsupervised methods for some language
pairs, focusing on English paired with non-Latin
languages. (i) We exploited identical pairs that sur-
prisingly appear in corpora of distinct scripts. (ii)
We combined them with a simple method to ex-
tract the initial hypothesis set via romanization and
edit distance. With both approaches, we obtained
results that are competitive with high-quality dictio-
naries. Without using explicit cross-lingual signal,
we outperformed previous unsupervised work for
most languages and in particular for five language
pairs for which previous unsupervised work failed.
Our results question the strong trend towards unsu-
pervised mapping approaches, and show that cheap
cross-lingual signals should always be considered
for building BWEs, even for distant languages.
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A Statistics

In this section we show statistics on the language
pairs analyzed and additional scores. Table 5
presents the number of pairs for each set that are
not OOVs in the fastText wiki embeddings (Bo-
janowski et al., 2017).

MUSE 1D Romanized ID++
En-Th 6,799 | 46,653 10,721/ 53,804 58779 /101066
En-Ja 7,135 | 43,556 11,488 /118,626 54970/ 161848
En-Kn 1,552 | 21,090 12,888/ 59,207 33843/ 80032
En-Ta 8,091 | 23,538  5,987/120,836 29472/ 143990
En-Zh 8,728 | 62,289 6,360/ 41,829 68597 /103971
En-Ar | 11,571 | 19,275 4,773/ 61,031 24019/ 80115
En-Hi 8,704 | 30,502 16,180/ 73,553 46557/103791
En-Ru | 10,887 | 18,663  9,913/301,698 28520/319688
En-El | 10,662 | 35,270 20,740/150,472 55841/ 185244
En-Fa 8,869 | 32,866 10,226/ 85,210 43019/117817
En-He | 9,634 | 17,012 4,005/ 40,258 20977/ 57059
En-Bn 8,467 | 31,954 10,721/ 53,804 42573/ 85532
En-Ko | 7,999 | 15,518 9956/ 134156 25344 /149031

Table 5: Number of pairs used that are not OOVs
in the fastText wiki embeddings compared to the
full size of the sets. For MUSE full and identical
pairs sets there are no OOVs.

Size of seed set and word frequency We ana-
lyze the impact of the size of the initial romanized
seed set and of word frequency. Table 6 displays ac-
curacy scores for MUSE and Romanized lexicons
containing n € {25,1000} least and most frequent
word pairs. Performance of VecMap applied to

seed sets of size 25 is close to 0. The only excep-
tion is Russian where the unsupervised approach
already works well. Next, we investigate seed sets
of size 1000 consisting of either the least frequent
or the most frequent words. High-frequency seed
sets give better results as expected. The effect is
particularly strong for Tamil: the high-frequency
set has performance close to the full set whereas
the low-frequency set is at <0.07. Performance of
MUSE seed sets of size 25 and romanized seed sets
of size 1000 is similar, demonstrating the higher
quality of MUSE. However, obtaining the roman-
ized pairs is much cheaper.

B Main results

In Table 7 there are the accuracy scores based on
CSLS vector similarity calculated by the MUSE
evaluation tool (Lample et al., 2018). We show
the scores for thirteen language pairs in both direc-
tions. The first five pairs are the ones for which
unsupervised methods fail. We show both unsuper-
vised and semi-supervised VecMap performance
with baselines dictionaries and our three sets.

C Reproducibility

We run our method on up to 48 cores of Intel(R)
Xeon(R) CPU E7-8857 v2 with 1TB memory and
a single GeForce GTX 1080 GPU with 8 GB mem-
ory. The training of semi-suprised BWEs using
VecMap took approximately 1 hour per language
pair. For VecMap, as well as for all others methods
we analyzed, we used the latest code available in
their git repositories with default parameters. ID++
is implemented in Python.



MUSE Rom.

25  25H 1000L 1000H 25L  25H 1000L 1000H

En-Ta — | 1473 16227 1733 1740 | 0.00 0.00 0.07 17.80
+— | 1648 1835 2244 2344 | 0.00 0.00 0.00 21.57

En-Fa — | 3533 3420 3807 37.20| 0.00 020 3747 3747
«~— | 4173 4260 44.14 4421 | 0.07 0.13 4240 43.40
En-Zh — 1 39.00 3940 3820 37.67 | 0.00 0.00 0.07 0.40
<~ | 3293 3447 3433 3440 | 0.00 0.00 0.07 0.60
En-Ru — | 49.07 43.07 49.07 49.27 | 49.33 47.73 4940 49.00
+— | 6593 6060 6593 66.13 | 65.80 6447 65.60 66.40

Table 6: acc@1 using 25 or 1000 pairs lower-frequency (L) and higher-frequency (H) sets for MUSE and
our romanized only (Rom.) set.

Baselines Our
Unsupervised Semi-sup. Semi-supervised

1 2 3 MUSE ID Rom. ID++

| EnTh 0.00 0.00 0.00 24.33 | 24.40 23.33 23.47
<~ | 0.00 0.00 0.00 19.04 | 19.92 1796 19.85

> Enda 096 048 0.00 48.73 | 48.87 48.46 49.14
+«~ | 09 0.00 0.00 32.87 | 33.22 34.80 33.43

3 EnKn 0.00 0.00 0.00 23.78*| 22.03 2290 24.23
<~ | 0.00 0.00 0.00 41.25% 43.04 4250 41.79

A EnTa 0.07 0.07  0.00° 18.80 | 17.93 18.00 18.20
<~ | 0.07 000 0.00° 24.38 | 24.78 23.51 24.78

5 Enzh 0.07 0.00 0.00 36.53 | 37.00 0.27 35.00
+~ | 0.00 0.00 0.00 32.80 | 3433 0.07 32.67

6 EnAr 33.60 7.67 36.30° 39.87 | 40.27 39.33 40.20
— | 4772 1292 52.60° 54.48 | 54.42 5442 54.62

7 Enmi 40.20  0.00  0.00° 40.33 | 40.47 39.60 40.20
<~ | 50.57 0.07 0.00° 50.50 | 49.77 49.90 50.10

& EnRu 48.80 37.33 46.90° 48.80 | 49.13 48.87 49.53
— | 66.13 5273 64.70° 65.67 | 66.13 65.73 66.07

9 Enpl 47.67 34.67 47.90° 48.00 | 47.87 48.00 48.27
— | 63.40 4920 63.50° 63.33 | 6327 64.40 63.47

10 EnFa 3327 0.53 36.70° 38.00 | 37.67 36.80 37.67
— 3999 040 44.50° 4347 | 43.67 4293 43.60

11 EnHe 44.60 37.13 44.00° 45.00 | 44.47 4453 44.67
«— | 57.88 50.01 57.10° 57.94 | 58.14 57.81 5794

12 EnBn 1820 0.00 0.00° 21.60 | 19.87 19.80 20.13
<~ [22.19 000 0.00° 28.46 | 28.88 28.67 29.41

13 EnKo 19.80 9.62  0.00 2894 | 27.92 28.40 28.81
+— | 2437 13.83 0.00 34.09 | 33.40 33.74 33.95

Table 7: acc@1 for unsupervised methods (1: Artetxe et al. (2018), 2: Grave et al. (2019), 3: Mohiuddin
and Joty (2019)) and semi-supervised VecMap with different initial lexicons: MUSE set, identical pairs
dataset (ID), our romanized only sets (Rom.), and the union of identical and romanized pairs (ID++). We
show both forward (—) and backward (+—) directions. In bold the best result for each pair of languages,
for “Baselines” and “Our”.

Scores from Mohiuddin et al. (2020) are marked with .

*Kannada is not supported by MUSE, so we use the dictionary provided by (Author, 2020).
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