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ABSTRACT

Text watermarking is designed to embed hidden, imperceptible, markers within
content generated by large language models (LLMs), with the goal of tracing and
verifying the content’s origin to prevent misuse. The robustness of watermarking
algorithms has become a key factor in evaluating their effectiveness, but remains
an open problem. In this work, we introduce a novel watermark removal attack,
the Self-Information Rewrite Attack (SIRA), which poses a new challenge to the
robustness of existing watermarking techniques. Since embedding watermarks
requires both concealment and semantic coherence, current methods prefered to
embed them in high-entropy tokens. However, this reveals an inherent vulnera-
bility, allowing us to exploit this feature to identify potential green tokens. Our
approach leverages the self-information of each token to filter potential pattern to-
kens that embed watermarks and performs the attack through masking and rewrit-
ing in a black-box setting. We demonstrate the effectiveness of our attack by
implementing it against seven recent watermarking algorithms. The experimental
results show that our lightweight algorithm achieves state-of-the-art attack success
rate while maintaining shorter execution times and lower computational resource
consumption compared to existing methods. This attack points to an important
vulnerability of existing watermarking techniques and paves way towards future
watermarking improvements.

1 INTRODUCTION

Large language models (LLMs), exemplified by ChatGPT (OpenAll 2024) and Claude (Anthropic,
2024), have demonstrated remarkable capabilities in generating coherent, human-like text. However,
while these advances significantly expand AI’s potential in content creation, they have concurrently
heightened concerns regarding their misuse (Deshpande et al., [2023; Wang et al., 2024)), includ-
ing the spread of misinformation (Monteith et al., [2024) and threats to academic integrity (Stokel-
Walker, [2022)).

To mitigate risks associated with LLM-generated content, text watermarking has emerged as a
promising countermeasure (Kirchenbauer et al 2023} |Aaronson & Kirchner, 2022). This tech-
nique subtly alters the LLM’s generation process to embed imperceptible patterns in the output
text, which, while invisible to human readers, can be reliably detected using specialized algorithms.
This generate-detect framework enables differentiation between Al-generated and human-authored
content and allows tracing the text back to the specific LLM that created it (Li et al., [2024). Con-
sequently, this mechanism promotes accountability and helps mitigate LLM misuse, providing a
reliable means to ensure transparency and integrity in Al-generated content.

Recent studies have demonstrated that watermarking techniques exhibit significant robustness
against simple manipulations, including word deletions (Welbl et al. [2020) and emoji at-
tacks (Kirchenbauer et al.,2023)). However, traditional NLP attack strategies, such as token deletion
and insertion, are increasingly insufficient for thoroughly evaluating the robustness of advanced
watermarking algorithms. As LLMs continue to advance, there is a growing need for more sophisti-
cated testing methodologies that account for complex manipulation tactics, ensuring that watermark-
ing techniques remain resilient against emerging threats. To provide a more rigorous evaluation of
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watermarking robustness, model-based attacks have been proposed. These methods typically rewrite
watermarked texts using either closed-source commercial LLMs (Kirchenbauer et al., [2023)) or fine-
tuned open-source models trained on specially designed phrase datasets (Krishna et al., [2024). De-
spite their potential, these approaches face several limitations. First, they lack transparency, offering
limited control over the output text via a small set of hyperparameters. Second, they are often costly,
requiring token-based payments or significant computational resources. Furthermore, for newer
and more robust watermarking algorithms like SIR (Liu et al. [2024), these methods fail to deliver
effective attacks.

To resolve the aforementioned problem, we propose a lightweight and effective watermark removal
attack named SIRA (self-information rewrite attack). This method is inspired by a simple intuition:
watermarking algorithms aim to be imperceptible to users while preserving text quality, often favor-
ing high-entropy tokens to embed watermark patterns (Kirchenbauer et al., 2023} [Liu et al., [2023).
The high-entropy tokens, however, will usually have high self-information. Leveraging this insight,
we can identify potential “green list” token candidates within watermarked text under a black-box
setting. By masking these potential tokens and allowing the LLM to complete the masked segments,
we can effectively carry out a more effective paraphrasing attack. SIRA requires minimal resources
and works effectively even with a small model like LLaMA3-8B. Our experiments in seven wa-
termark algorithms show that SIRA outperforms all other black-box watermark removal attacks.
Specifically, our method achieves over a 90% attack success rate on most current watermarking
techniques (Kirchenbauer et al., [2023} |Zhao et al., [2023} |Liu et al., 2023; [Lu et al., [2024}; |Wu et al.,
2024;|Aaronson & Kirchner, |2022). We will release our code to further promote the development of
responsible Al (Gul [2024).

2 RELATED WORK

Self-information. Self-information, also known as surprisal, is a fundamental concept in Informa-
tion Theory, first introduced by Claude Shannon in his seminal work (Shannon, |1948). Shannon
employed self-information as the principal metric to quantify the information content associated
with the occurrence of specific events, effectively linking the rarity of an event to the amount of
information it communicates. This measure forms a cornerstone in the understanding of data en-
coding and compression, as articulated in Shannon’s source coding theorem, where events that are
more probable are represented with fewer bits, while less probable events require more bits, thereby
facilitating optimal compression (Shannon) [1948).

In the realm of Natural Language Processing (NLP), self-information plays a crucial role in the
analysis and modeling of language. It aids in deciphering language patterns, particularly in evalu-
ating the entropy and predictability of tokens within sequences. The concept is particularly useful
for quantifying the informativeness or surprise of a token, determined by its probability in a given
linguistic context. Language models, for instance, predict the probability of a subsequent token in a
sequence using the preceeding context:

Pty | t1,t2, ..., tk—1)

The self-information of the token in this context is computed as follows:

I(tk | t1,ta,... ,tk_1) = —logb(P(tk | ti,ta,... ,tk—l))

where I(t; | t1,t2,...,tk—1) denotes the self-information of token t; given the context of pre-
vious tokens, P(ty | t1,t2,...,tx—1) is the probability of token ¢; occurring after the preceding
sequence of tokens, and b represents the base of the logarithm, typically set to 2. Tokens that are
less predictable within a sequence, hence more informative, exhibit higher self-information values.

LLM Watermark. Watermarking techniques for large language models are designed to embed
identifiable patterns in model outputs, allowing for the traceability of generated text back to its
originating source. These watermarks serve as an essential tool for ensuring accountability and
ownership, particularly in scenarios where identifying the specific model or version that produced
the content is crucial. LLM watermark methods can be broadly classified into two primary cate-
gories: the KGW Family and the Christ Family. Each family employs distinct mechanisms that are
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integral to the internal workings of LLMs. The KGW Family (Kirchenbauer et al.| 2023} |Liu et al.,
2023; [Zhao et al., [2023; Wu et al.|, 2024; [Lu et al., 2024) focuses on modifying the logits—the raw
output probabilities produced by the model—before they are transformed into text. This approach
involves selectively adding bias to certain tokens, referred to as “green list” tokens, which influ-
ences the model to favor these tokens, thus embedding a statistical signature in the output. Post
text generation, a statistical metric based on the proportion of these “green” tokens is computed. A
predetermined threshold enables differentiation between watermarked and non-watermarked text.

Conversely, the Christ Family (Aaronson & Kirchner, 2022 |Christ et al., 2024; |Kuditipudi et al.,
2023)) modifies the sampling process during the generation phase itself. Rather than altering the
logits, this family intervenes directly in the token selection during decoding. Techniques such as top-
k sampling, temperature adjustment, or nucleus sampling are adapted to ensure preferential selection
of watermarked tokens. This method provides more direct control over the generation process,
embedding watermarks that are resilient against post-processing attacks, such as paraphrasing.

Watermark Removal Attacks. The robustness of a watermarking algorithm is crucial, as it de-
termines the effectiveness of the watermark under various real-world conditions, particularly in ad-
versarial settings. Attacks against watermarking algorithms, commonly referred to as watermark
tampering attacks, can be broadly categorized into two types:

Text manipulations: These attacks involve traditional NLP techniques to straightforward text ma-
nipulations, such as word deletion (Welbl et al.l |2020), substitution (Yu et al., 2010), or inser-
tion (Kirchenbauer et al., 2023). By altering the surface-level structure of the text, these meth-
ods attempt to distort or eliminate the watermark without drastically changing the content’s mean-
ing. These techniques exploit the fact that many watermarking algorithms embed patterns with
a pre-designed “green token” and “red token”, making them vulnerable to such basic modifica-
tions. Kirchenbauer et al.|(2023) propose emoji attack and copy-paste attack which insert emoji/hu-
man writtern text in the generated text to avoid detection.These methods are considered variants of
text manipulations, however, they are easily thwarted by detectors equipped with content filters and
often alter the semantics of the generated text which makes them inappropriate for real-world use.

Model-based paraphrasing: A more advanced form of attack involves using another LLM to para-
phrase the watermarked content. This approach takes advantage of the LLM’s ability to generate di-
verse rephrasings while maintaining the core meaning of the text. [Krishna et al.|(2024) propose DIP-
PER, a paraphrase generation model developed by fine-tuning T5-XXL (Raffel et al., 2020b) on an
aligned paragraph dataset. This model has been widely adopted in recent watermark research (Zhao
et al.,[2023} |Liu et al., 2024; Kuditipudi et al., [2023) to evaluate the robustness of watermarking al-
gorithms. [Zhang et al.|(2023) propose the random walk attack, which utilizes Llama2-7B (Touvron
et al |2023) as the generation model, with T5-XXL (Raffel et al., | 2020b) serving as a perturbation
oracle to iteratively modify the watermarked text. In each iteration, ROBERTa-v3 large (Liu, [2019)
is employed as a quality oracle to provide rewards, while GPT-3.5 |OpenAl| (2023) performs a final
quality check on the generated text. However, since this method does not ensure that the paraphrased
text retains the same semantics as the original watermarked text, it diverges significantly from the
goals of typical paraphrase attacks.

Our proposed SIRA falls under the category of model-based paraphrasing attacks. However, un-
like conventional paraphrasing techniques that generate entirely new sentences or passages based on
instructions, SIRA selectively replaces potential green words in the watermarked text to provide a
“neutral” template for rewriting. This targeted replacement approach enables more precise control
over the consistency and semantics of the watermark-removed text. Additionally, SIRA can be ef-
fectively implemented using a lightweight model, enhancing its efficiency for practical applications.

3 METHODS

In this section, we detail SIRA attack formulation and implementation. First, we lay out the problem
setting in Section then we develop the details of the method in Section
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Masked Text
Mask according to LLama3
self-infromation

Nike Inc enjoyed __ _gains .
777777 benefited fewer __ rewrite
__sports clothes_ __
continue__long_path __
long_ profits__ growth.

Watermarked Text Attack Text

Nike Inc enjoyed big sales in gains in North
America and Europe last quarter and benefited
from fewer markdowns, helping the maker of
sports clothes and sneaker continue on its long-
term path to long-term profits and sales growth.

Nike Inc. enjoyed significant revenue gains and

benefited from fewer markdowns, which helped

the sportswear and sneaker maker continue to
drive long-term profit and sales growth.

Watermarked strength & Nike has seen significant revenue growth in

North America and Europe, largely due to
reduced markdowns and a strong performance
in its core sports apparel and footwear
business. This success has enabled the
paraphrase | company to stay on track with its long-term

strategy of increasing profitability and sales.

Watermarked strength &

Reference Text

Figure 1: SIRA pipeline consisting to two steps. First, the attack generates a masked text based
on self-information. If the self-information of a specific part above a pre-set threshold, that portion
of the text is masked and replaced with a placeholder. Simultaneously, a reference text is generated
by asking the LLM to paraphrase. In the second step, the LLM is prompted to complete the masked
text while incorporating all the information from the reference text.

3.1 PROBLEM SETTING

Definition 1 (Language generative model). A Language generative model M : X — Y that maps
any input prompt € X to an output y € Y, where X the prompt space, Y the output space. We
denote Y}, is human written text space, Y,, is the machine generated unwatermarked text, Y,, is the
machine generated watermarked text.

Definition 2 (Watermark Algorithm): A watermark algorithm consists of a watermarking function
W, a secret key k, and a detector D. The watermarking function W, parameterized by the key k,
denote as Wy, modifies the output y to embed a watermark, given an input prompt z € X resulting
in a watermarked output M (x, W) — y, € Y,,. The detector D, using the same key k, can then
verify whether a given output §j € Y contains the embedded watermark. The detector D operates as
a binary classifier with the following output behavior:

1 if g is detected as watermarked
0 otherwise

D(Wy,9) :{ €]

The detector D contains a parameter , where the 6 is the z-score threshold.

Definition 3 (Perturbation Function): The attacker has a perturbation function P : Y,, — Y},
modifies the watermarked output y,, to produce a perturbed output y, = P(y,,). The function P
aims to minimize the detection success rate of the detector D on the perturbed output 7,. A function
S(yw,yp) measures the semantic similarity between the original watermarked output y,, and the
perturbed output y, = P(y,,). The pre-set threshold € € [0,1] is a parameter that quantifies the
minimum required level of semantic similarity between the original watermarked output ¥,, and the
perturbed output y, = P(yy,).

We define the scenario as a black box adversarial problem and we assume that the attacker should
not know the watermark algorithm 1V, the secret key £ and should not have access to the
detector D. The attacker does not have access to any information about the feature distribution of
the watermark algorithm or the model architecture.

For watermark algorithm, the goal is to achieve a balance between robustness and performance. The
detector D is formulated as an optimization problem with the objective of minimizing classification
errors. Specifically, the detector aims to maximize its accuracy in distinguishing between human-
written text y, and attack text y,. The goal of detector D can represente as:

max By, v, [log (1= Do, (Wi, yn)] + By, ~y, [l08(Dop, (Wi, 9p))] 2
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KGW Watermarked Text
Z-Score: 7.95
Green Token
Red Token

Prefix

Mask Text
Z-Score: 0.80
Green Token
Red Token

Prefix

Figure 2: Visualization of watermark text and the text after masking. We can find that according
to self-information filter, the mask text significantly reduce the z-score and remove most of the green
tokens. Note that actual z-score is lower since some placeholder which will be removed in next step
are treated as green token by detector. The shown text are using KGW-1 watermark.

For attacker, the perturbation function P is defined to minimize the probability that the detector D
successfully identifies the watermark in the perturbed output y,,, while ensuring semantic preserva-
tion. The goal for P can represente as:

P* = arg mgn E [D(Wk, P(yw))] 3)

st S(Yw, P(yw)) > € ()]

Note that D(W},, P(y,,)) is only used during the evaluation phase. The attacker does not have access
to the detector during the training or generation stages.

3.2 SELF-INFORMATION REWRITE ATTACK

A primary challenge in watermark removal attacks is identifying the “green token” defined by the
watermarking algorithm. Some methods, such as Random Walk (Zhang et al.,2023), use grammati-
cal group matching to explicitly replace verbs. In contrast, approaches like DIPPER (Krishna et al.,
2024) and GPT Paraphraser (Liu et al., [2024) delegate the task of rewriting and removing green
token to large language models through high-level instructions. However, methods of this type lack
transparency and control; relying on LLM for consistency with original watermarked text.

Our attack is based on a common principle of watermarking algorithms, as discussed in the KGW
(Kirchenbauer et al., 2023} [Liu et al.| 2023) work: since the watermark must remain imperceptible
to the user, high-entropy tokens are ideal candidates for embedding. High-entropy tokens exhibit
a more uniform distribution of probabilities, this uniformity means that when logits are adjusted
to increase the likelihood of green tokens, it is easier to embed watermarks effectively without
significantly compromising the quality of the output. Meanwhile this also implied high-entropy
token has lower probability thus higher self-information.

In our approach, we propose a straightforward and easily implementable solution by leveraging
self-information to identify potential green-list tokens and subsequently rewrite them. High-entropy
tokens are typically associated with high self-information due to their unpredictability and low prob-
ability of occurrence. Meanwhile, small probability changes caused by the watermark algorithm
can reduce self-information, as briefly explained in Appendix [F] By considering both the change in
self-information and high-entropy token inherent nature, we classify tokens with high or moderate
self-information as potential green-list tokens and filter them out to obtain a more neutral template
for LLM rewriting. Empirically, our preliminary experiments show that utilizing self-information,
rather than directly filtering based on high entropy, results in higher attack success rates.
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Algorithm 1 Pseudocode for Self-information rewrite attack

1: Input: Watermarked token sequence y = {y1,¥2,...,Yn}, language model Mirqcr, self-
information percentile ¢, instruction s

2: Output: Response token sequence y, without watermark.

3y — Mattaer(y) > Paraphrase sequence y’ using M ¢qck
4: T[]

5: fori =1ton do > Compute self-information for each token in y
6: I[i] « —log P(y; | context)

7: end for

8: T, < Percentile(T, ¢) > Determine threshold from e percentile of I

9: fori=1tondo
10:  ifIi] > 7. then

11: Yi — > Mask token if above threshold
12: end if

13: end for

14: yp < Mattack y',y,s) > Generate de-watermarked response yp, using M

15: return y,

Given a watermarked text y = {yo, %1, - - ., Yn },» Where y; represents each token, we employ a base
language model My 1qck; Mattack is distinct from the generative model M used to produce the
watermarked text. We use M ;+qck to calculate the self-information for each token y; as follows:

I(y:) = —log P(y¢|yo, Y1, - - - Yi—15: Mattack),

where P(y:|yo, Y1, - - -, Yt—1; Mattack ) denotes the probability of token y; given its preceding tokens
in the sequence, as estimated by the language model M40 To mask the potential green list
tokens, we set a threshold €, and get the overall paragraph threshold by percentile:

7. + Percentile(I, €)

Any token with a self-information value I[i] > 7. is considered to be a potential token and will be
masked and replaced with a placeholder. In our experiments, we discovered that using placeholders
outperformed directly masking specific tokens. The placeholders serve as cues, maintain the text’s
structure, indicating where tokens have been masked whihc providing the LLM with hints about the
original text’s length and the likely number of words, allowing for more high quality reconstructions.
We shown one visualization of mask text and watermark text comparsion in Figure 5]

However, the compression will still result in the loss of watermark text information details. To
address this, we use the base LLM to rewrite the watermarked text, creating a reference text. This
rewritten text serves as a reference to provide the semantic information intergrity during the second
step. The reason we do not use the original watermarked text is that we find this leads LLM to take
shortcuts: LLM tend to directly take the content from the watermark text, due to the high similarity
between masked and watermark text.

In the final attack phase, we provide the LLM with the masked text, reference text, and instructions
for a fill-in-the-blank task, guiding it to reconstruct the missing content. We provide the instructions
we use in Appendix [D] The pseduocode of our algorithm is shown in Algorithm|[I]

4 EXPERIMENTS

4.1 SETUP

Dataset and Prompts. Following prior watermarking research (Kirchenbauer et al 2023} [Zhao
et al.,[2023; ILiu et al., [2024} [Kuditipudi et al.| [2023), we utilize the C4 dataset (Raffel et al.| [2020al)
for general-purpose text generation scenarios. We selected 500 random samples from the test set
to serve as prompts for generating the subsequent 230 tokens, using the original C4 texts as non-
watermarked examples.
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Table 1: Comparison of watermark algorithms under different attack methods.

Comparison of Watermark Algorithms under Different Attack Methods

W KGW-1 | Unigram | UPV | EWD | DIP SIR EXP
Attack

Word delete (Welbl et al.|[2020) 22.4% 1.6% 6.6% | 22.8% | 57.4% | 44.0% | 9.4%
Synonym Substitution (Yil et al.;[2010) | 83.2% 17.4% 65.2% | 76.2% | 99.6% | 82.0% | 51.0%
GPT Paraphraser (Liu et al.} 2024) 100 % 63.9% 71.9% | 90.8% | 99.8% | 58.8% | 72.2%
DIPPER-1 (Krishna et al.| 2624) 82.4% 37.0% 58.6% | 82.2% | 99.6% | 61.2% | 73.6%
DIPPER-2 (Krishna et al.,’2024) 95.8% 45.6% 61.8% | 89.0% | 99.8% | 63.6% | 82.2%
SIRA(Ours) 100% 93.8% | 93.0% | 100% | 99.8% | 83.4% | 93.4%

Watermark generation algorithms and language model. To conduct a comprehensive evalua-
tion, we select seven recent watermarking works: KGW (Kirchenbauer et al.,[2023)), Unigram (Zhao
et al.|[2023)), UPV (Liu et al,[2023)), EWD (Lu et al] [2024), DIP (Wu et al.,[2024), SIR (Liu et al.|
2024),EXP (Aaronson & Kirchner, 2022) in the assessment. The watermark hyperparameter set-
tings shown in Appendix [Al and the detection settings adhere to the default/recommendations (Pan
et al. |2024) configurations of the original works. Specifically, for KGW-k, k is the number of pre-
ceding tokens to hash. A smaller £ implies stronger attack robustness yet simpler watermarking
rules. We use KGW-1 in our experiment. For language models, we follow previous work setting
select (Kirchenbauer et al., 2023} |Liu et al., 2024} Zhao et al., 2023) Opt-1.3B (Zhang et al.,[2022)) as
watermark text generation model. We use LLaMA3-8b (Dubey et al.,[2023)) to ensure the lightweight
and usability of our method, along with its tokenizer for the calculation of self-information.

Baseline Methods. For our method, we use € = 0.3 as threshold. For attack method, we use word
deleteion (Welbl et al., [2020), synonym substitution (Yu et al., 2010), Dipper (Krishna et al.,|2024),
and GPT Paraphaser (Liu et al., 2024) to compare with our method. For GPT Paraphaser, we use the
GPT-40-2024-05-13 (OpenAlL [2024)) version. For DIPPER-1 the lex diversity is 60 without order
diversity, and for DIPPER-2 we additionally increase the order diversity by 40. The word deletion
ratio is set to 0.3 and the synonym substitution ratio is set to 0.5. The synonyms are obtained from
the WordNet synset (Miller, |1995).

Evaluation. We utilize the attack success rate as our primary metric. The attack success rate is
defined as the proportion of generated attack texts for which the watermark detector incorrectly
classify the attack text as unwatermarked sample, compared to the total number of attack texts.
To mitigate the influence of detection thresholds, we follow prior work (Liu et al. [2024; [Zhao
et al., 2023) adjust z-threshold of detector until reach target false positive rate in Figure [3]. We use
generated 500 attack texts as positive samples and 500 humnn-written texts as negative samples.
We dynamically adjust the detector’s thresholds to establish false positive rates at 1% and 10%, and
we report the true positive rates and Fl-scores. All experiments for our method were conducted on
single NVIDIA A100 40GB GPU.

4.2 EXPERIMENTAL RESULTS.

In Table (1} we present the attack success rates of various watermark removal methods across differ-
ent watermarking algorithms. The results demonstrate that our approach consistently outperforms
all other methods for each watermarking algorithm. Notably, the closest competitors to our method
are DIPPER (Krishna et al., |2024) and GPT Paraphraser (Liu et al., 2024), which are model-based
paraphrasing attacks. Our approach surpasses these competitors by a significant margin in experi-
ments involving seven watermarking algorithms on the C4 dataset (Raffel et al.,[2020a)).

To further demonstrate the effectiveness of our method and avoid the impact of a fixed z-threshold
on detector performance, we follow previous work by setting the FPR to 1% and 10%, and report the
true positive rate of the detector on adversarial texts based on the adjusted z-threshold corresponding
to the FPR. Additionally, we report the best F1 score that the watermark algorithm can achieve
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TPR_under 1% FPR_across watermark methods and attack methods TPR_under 10% FPR _across watermark methods and attack methods Best F1 Score across Watermark Methods and Attack Types

(a) True positive rate of different (b) True positive rate of different (c)Best Fl1-score could achieved by
watermark with false postivite rate watermark with false postivite rate different watermark algorithm de-
set to 1%. set to 10%. tector.

Figure 3: To avoid the default z-threshold impact the robustness of watermark algorithm, we dy-
namically adjust the z-score threshold of the watermarking algorithm until achieving specified false
positive rates for the watermark detector. We display the true positive rate and the best F1 score
could achieve by watermark detector. Lower TPR and F1 scores at a given FPR indicate that the
watermark detector struggles more to differentiate between attack texts and human-written texts,
suggesting a more effective attack. We show the detail number of above figure in Appendix

PPL P ance Across Different and Attacks

s-BERT Performance Across Different and Attacks

Attack Method

stitution
= GPT Paraphraser
= DIPPER 1

200 { = DIPPER 2

= SIRA Ours

& S o N & Q > & & ° 2 & Q
& o § & & & & & o K. & B S &

Watermark Algorithms Watermark Algorithms.

(a) Performance of PPL. (b) Performance of s-BERT.

Figure 4: Performance comparison of watermark methods against various attack methods based on
PPL (Perplexity]) and s-BERT (Sentence-BERT scoref). The word delete will signicantly increase
the PPL and lead to overflow. We marked the overflow data with NaN in the fig.fa] The synonym
substitution will also increase the PPL. The paraphrased text has better text quaility than original
watermark text for our method and GPT Paraphraser.

under different attacks. The results are shown in Figure[3] and the detailed numbers are provided in
Appendix Bl Lower true positive at a given false positive rate indicate that the watermark detector
struggles more to differentiate between adversarial texts and human-written texts. Our algorithm
achieves optimal attack performance in most cases; suggesting a more effective attack.

4.3 TEXT QUALITY ANALYSIS

To further demonstrate that our method does not adversely affect text quality, we conduct additional
evaluations of the text generated by the model. We compare Perplexity (PPL) of the text quality.
Furthermore, we specifically calculate the sentence-level embedding similarity (Sentence-BERT
Score (s-BERT)) before and after the attack to explore whether the attack alters the semantic content
at the sentence level. We also conducted experiments in the Appendix [EJusing ChatGPT as a judge
to measure overall semantic similarity. The results, shown in Figure d] indicate that our method has
a smaller impact on text quality compared to other approaches.Our approach, similar to other model-
based methods, benefits from more powerful large language models, achieving better performance
in terms of the PPL metric compared to the original watermarked text. Additionally, our method
retains a greater degree of semantic information. We show the detail numbers of two metrics in

Appendix
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Table 2: Comparison of Execution Time and VRAM Usage for Different Methods. Note that the ex-
ecution speed of GPT Paraphraser may vary depending on the network status and real-time OpenAl
server load.

Method Execution Time (s) | VRAM Usage (MB)
GPT Paraphraser 12.8 N/A
DIPPER 14.7 45462
SIRA 10.3 18640

Table 3: Comparison with Random Masking Strategy. Notice here the random mask performance
also benefit from other steps like rewriting in our framework. The vanilla random mask has similar
attack success rate as word deletion.

Mask Ratio 0.4 0.5 0.6 0.7 0.8
Random Mask 52% | 66% | 78% | 80% | 82%
Self-information Mask | 80% | 88% | 92% | 96% | 100%

4.4 GENERATION SPEED

In this section, We conducted the attack experiments using 50 distinct watermark texts, each con-
taining approximately 230 + 20 tokens. For each method, we measured both execution time and
VRAM usage. The reported execution time reflects the average for a single attack instance. The
experiments were run on two NVIDIA A100 GPUs, utilizing a sequential device map for baseline
methods requiring multiple GPUs. The configuration for the GPT Paraphraser follows the setup
described in Section 4.1l The results are shown in Table 2]

One of the main limitations of current model-based watermark removal attacks is their substantial
resource consumption. For instance, DIPPER built on the T5-XXL model, necessitates two 40GB
A100 GPUs for effective operation. Similarly, the GPT parser introduces considerable costs due to
its dependence on a proprietary model that employs token-based billing.

In contrast, our proposed pipeline operates using a minimal configuration of the LLaMA3-8b model,
requiring only 18GB of VRAM. This enables compatibility with many consumer-grade GPUs, sig-
nificantly reducing hardware requirements. Our approach is efficient enough to run on GPUs with
as little as 20GB of memory, and each attack is completed in just two model inferences which makes
our attack faster than other methods. We also experimented with larger models in Appendix [E] such
as Llama3-80b, and found that using a larger model can further improve semantic preservation and
the quality of generated text .

4.5 ABLATION EXPERIMENT

In this section, we aim to further scrutinize the self-information rewrite attack and emphasize the
potential of this attack. We utilize Opt-1.3b and a random sample of 50 prompts from the C4 dataset
to generate watermarked responses. Unless otherwise specified, we use Llama-3-8b as the base
model for our attack. The temperature for the base model is set to 0.7.

Self-information mask versus Random mask In this experiment, we replace self-information-
based selective masking with a random masking strategy, while keeping all other steps unchanged.
We use the same masking ratios, ranging from 0.4 to 0.8 in increments of 0.1, and compare the
resulting attack success rates. The Unigram watermarking method is employed to generate the
watermarked text. The results are presented in Table 3] To ensure fair comparisons, the random
masking strategy is executed five times, and the final average attack success rate is reported.

The results indicate that, at any given mask ratio, the self-information-based masking method sig-
nificantly outperforms the random strategy. More importantly, the random masking approach exists
a bottleneck, with limited improvement in attack success rates beyond a ratio of 0.6. This due to
random mask can not make sure all target green token are removed. For a single watermarked text
with fixed mask ratio, our method is deterministic, as the same tokens are masked each time. In
contrast, the random approach does not provide this guarantee.
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Table 4: Effect of self-information Threshold on the Success Rate of the UPV Algorithm

self-information threshold ¢ | 0.25 | 0.30 | 0.35 | 0.40 | 045 | 0.5 | 0.55 | 0.60 | 0.65 | 0.70
Attack Success Rate 96% | 94% | 94% | 88% | 80% | 76% | 12% | 70% | 58% | 32%

Table 5: Comparison of Attack Success Rate and Average z-score. The reference text is generated
by asking the base model to paraphrase the watermarked response, while the attack text is generated
using our two-step approach.

Text Attack Success Rate | Average z-score
Human-written Text N/A 0.12
Reference Text 64% 3.75
Attack Text 94% 1.85

How does the self-information threshold affect final performance? In this experiment, we use
UPV as the watermarking algorithm. We varied the value of € from 0.25 to 0.70 in increments of
0.05 to test its impact on the success rate of the attack using the UPV algorithm. The results are
shown in table 4l

We observed that the attack success rate is directly influenced by the value of €. For the UPV
algorithm, setting the threshold to 0.3 results in a highly effective attack. A significant performance
gap is observed when ¢ increases from 0.60 to 0.65. Additionally, based on human evaluation,
when € is below 0.25, the generated attack text tends to lose more detailed information from the
original watermarked text, such as character dialogues. Considering both performance and semantic
preservation, we recommend setting € between 0.2 and 0.3. For less robust algorithms, setting ¢
between 0.4 and 0.5 is sufficient to achieve an attack success rate exceeding 90%.

We set € to 0.3 in Table [I]since watermarking algorithms may employ a hybrid strategy, embedding
the watermark primarily in low-entropy tokens while embedding a smaller portion in high-entropy
tokens or with a "hard list”. Setting € to 0.3 effectively removes the watermark while preserving the
original semantics.

Does the success of the attack due to paraphrased reference text? We used the Unigram water-
marking algorithm to generate watermarked text. We set the detector’s z threshold to 4 according to
its default settings. For a given input, the detector calculates its z-score, and if the score exceeds 4,
the text is classified as watermarked.

We measured the attack success rate for each of the following stages: the reference text generated
in the first step of our algorithm, and the final attack text. Additionally, we calculated the average
z-score for each stage and reported the z-score of human-written text as a reference. The result
are shown in Table[3] We observed that the attack success rate for the reference text is lower than
that of the final attack text. Paraphrase strategies tend to preserve more n-grams from the original
text, which may still be detectable by the watermark detection algorithm. In contrast, our attack
reduces the presence of such n-grams by utilizing self-information filtering. Additionally, the z-score
produced by our method is closer to that of human-written text compared to simple paraphrasing
approaches.

5 CONCLUSION

In this paper, we presents the Self-Information Rewrite Attack (SIRA), a lightweight and effective
method for removing watermarks from LLM-generated text by targeting anomalous tokens. Empiri-
cal results show that SIRA outperforms existing methods in attack success rates across multiple wa-
termarking techniques while preserving text quality and requiring minimal computational resources.
By exploiting vulnerabilities in current watermarking algorithms, SIRA highlights the need for more
robust and adaptive watermarking approaches in watermark embedding. We will release our code
to the community to facilitate further research in developing responsible Al practices and advancing
the robustness of watermarking algorithms.

10
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BROADER IMPACT

In this work, we aim to provide an approach to test the robustness of Large Language Models wa-
termark. We propose a method that can remove different watermark in LLM generated text. We are
aware of the potential risks that our work entails for the security and safety of LLMs, as they are
increasingly adopted in various domains and applications. Nevertheless, we also believe that our
work advances the open and transparent research on the challenges and limitations of LLM water-
mark, which is crucial for devising effective solutions and protections. Similarly, the last few years
the exploration of adversarial attacks (Wei et al., 2023; Madry et al.,|2017; Krishna et al.l 2024) has
led to the improvement of responible Al and led to techniques to safeguard against such vulnerabil-
ities,e further coordinated with them before publicly releasing our results. We also emphasize that,
our ultimate goal in this paper is to identify of weaknesses of existing methods.

LIMITATIONS

Evaluation:We have observed that existing watermarking techniques tend to embed in high-entropy
text, which may represent a potential vulnerability. This characteristic could be exploited by attack-
ers to weaken the security guarantees of LLMs. The work most similar to ours is DIPPER, but our
motivations differ slightly: while DIPPER aims to evade detectors of Al-generated text, our focus is
specifically on LLM watermarking algorithms. Due to this difference in objectives, we did not in-
clude methods for detecting Al-generated text, such as GPT-zero, in our evaluation. We will explore
in future work whether our method can be extended to detectors for adversarial Al-generated text.

Empirical: One limitation of our work is that it is specifically tailored to natural language. Some
watermarking methods for LLMs, such as SWEET (Lee et al., 2023), are designed for code gen-
eration. Due to the inherently lower entropy nature in code generation tasks, our method does not
design for such scenario. Additionally, this work primarily focuses on the attack. In our future work,
we will further investigate how to modify watermarking algorithms to effectively defend against our
proposed attack.

Theoretical: This work primarily focuses on empirical research. Our attack method targets phrase-
level attacks across different watermarking techniques for LLMs and relies on an empirical results,
similar to DIPPER. Due to the varying assumptions underlying different watermarking techniques,
we cannot provide a theoretical guarantee proof for the final attack’s success on each watermark
type. Meanwhile establish the upper or lower bound on its performance is not in the scope of this
work.

14
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CONTENTS OF THE APPENDIX

The contents of the supplementary material are organized as follows:

In appendix [A] we list the hyperparameters of the watermarking algorithm we used in
experiment section

In appendix [B] w we present the specific data points corresponding to the figure shown in
section

In appendix [C} we provide the precise data underlying the figure depicted in section[4.3]
In appendix [D| we provide the prompt we used to generate attack text.

In appendix [E] we conduct extensive experiment to evaluate the overall preservation of the
semantic meaning of the original watermarked text.

In appendix [F| we offer a brief discussion about the change of self-information under wa-
termark algorithm influence.

In appendix [Gl we provide a visual comparison of the text generated by our method with
watermarked text, non-watermarked text, and text generated by other attack methods.

In appendix[H} we discuss several watermark attack methods we do not include in our main
paper due to setting different.

15
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A WATERMARK ALGORITHM SETTING

In this section, we list the hyperparameters of the watermarking algorithm we used in section [4]
below.

{
"algorithm_name”: "KGW",
"gamma": 0.5,
"delta”": 2.0,
"hash_key": 15485863,
"prefix_length": 1,
"z_threshold"”: 4.0

Listing 1: configuration KGW

"algorithm_name”: "Unigram”,
"gamma": 0.5,

"delta”": 2.0,

"hash_key": 15485863,
"z_threshold"”: 4.0

Listing 2: configuration Unigram

"algorithm_name”: "UPV",
"gamma": 0.5,

"delta": 2.0,
"z_threshold”: 4.0,
"prefix_length"”: 1,
"bit_number”: 16,
"sigma": 0.01,
"default_top_k": 20,

Listing 3: configuration UPV

"algorithm_name”: "EWD",
"gamma": 0.5,

"delta": 2.0,
"hash_key": 15485863,
"prefix_length": 1,
"z_threshold”: 4.0

Listing 4: configuration EWD

"algorithm_name”: "DIP",
"gamma": 0.5,
"alpha":0.45,
"hash_key": 42,
"prefix_length”": 5,
"z_threshold”: 1.513,
"ignore_history": 1

Listing 5: configuration DIP

16
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{
"algorithm_name”: "SIR",
"delta”": 1.0,
"chunk_length": 10,
"scale_dimension”: 300,
"z_threshold”: 0.0,
3
Listing 6: configuration SIR
{
"algorithm_name”: "EXP",
"prefix_length": 4,
"hash_key": 15485863,
"threshold”: 2.0,
"sequence_length": 230
}

Listing 7: configuration EXP

17
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B BEST F1 SCORE AND TPR/FPR

In table [6] we list the specific data from the figure in fig. 3] which reflects different attack method’s
performance of dynamically adjusting the watermark detector’s z-threshold until a specified false
positive rate is achieved. We report both the F1 score and true positive rate. It can be observed that,

in most cases, our attack method achieves the best performance.

Table 6: In this experiment, we dynamically adjust the z-score threshold of the watermarking algo-
rithm until achieving specified false positive rates for the watermark detector. We display the true
positive rate and F1 score at this threshold. We also present the classifier’s optimal F1 score under
the dynamic threshold settings. For attack methods, lower TPR and F1 scores at a given FPR indicate
that the watermark detector struggles more to differentiate between attack texts and human-written
texts, suggesting a more effective attack.

Method Attack Type 1% FPR 10% FPR Best F1 (%)
‘TPR (%) F1(%) TPR (%) F1 (%) F1 (%)
No attack 100 99.5 100 95.2 99.8
DIPPER -1 1.6 3.1 7.8 133 66.6
KGW-1 DIPPER -2 0.8 1.6 7.0 12.1 66.6
GPT Paraphraser 1.8 3.6 8.7 14.0 66.8
SIRA 1.1 2.1 8.4 14.0 66.6
No attack 100 99.5 100 95.2 99.8
DIPPER -1 89.0 93.7 97.6 95.8 954
Unigram DIPPER -2 86.0 91.8 96.8 94.2 94.6
GPT Paraphraser 73.6 84.3 91.7 91.6 91.6
SIRA 29.0 44.6 62.2 72.7 80.0
No attack 100 99.5 100 95.2 99.8
DIPPER -1 74.8 85.2 94.4 93.1 93.1
UPV DIPPER -2 67.8 80.4 91.6 91.6 91.6
GPT Paraphraser 53.0 69.2 822 86.2 86.9
SIRA 27.0 4.3 65.6 754 814
No attack 100 99.5 100 95.2 99.8
DIPPER -1 66.2 79.2 91.4 90.8 90.8
EWD DIPPER -2 54.8 70.3 83.2 81.2 81.2
GPT Paraphraser 46.6 63.1 75.4 81.3 83.8
SIRA 10.2 18.3 35.8 49.1 71.6
No attack 100 99.5 100 95.2 99.8
DIPPER -1 5.4 10.0 24.0 36.1 67.7
DIP DIPPER-2 22 43 164 26.2 66.7
GPT Paraphraser 4.3 83 20.4 32.0 76.6
SIRA 1.6 3.1 11.2 18.7 66.7
No attack 100 99.5 100 95.2 99.8
DIPPER -1 64.6 78.0 82.4 85.6 85.6
SIR DIPPER -2 57.6 72.6 72.6 83.4 83.4
GPT Paraphraser 66.2 79.2 85.2 87.3 87.3
SIRA 42.8 59.5 70.2 77.9 824
No attack 100 99.5 100 95.2 99.8
DIPPER -1 0.8 1.6 1.2 2.1 66.6
EXP DIPPER -2 0.4 0.8 2.0 3.8 66.7
GPT Paraphraser 0.4 0.8 2.0 3.8 82.6
SIRA 0 54 9.3 8.3 66.6
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C DETAIL NUMBER OF PPL AND SENTENCE BERT SCORE

In this section, we list the detail number of PPL and sentence-bert score we present in the section|4.3]

Watermark KGW-T Unigram UPV EWD DIP SIR EXP
Attack PPL(]) s-BERT(1) | PPL(}) s-BERT(1) | PPL(}) s-BERT(1) | PPL(}) s-BERT(1) | PPL  s-BERT(f) | PPL(}) s-BERT(1) | PPL(}) s-BERT(1)
No attack 12.00 055 1749 0.56 927 0.56 o4 057 10.60 057 11,76 0.56 16.48 054
Word delcte NaN 0.03 NaN 0.03 NaN 0.03 NaN 0.0 NaN 0.04 NaN 0.03 NaN 0.04

Synonym Substitution 252.85 0.01 252.85 0.01 25285 0.0T 52.85 0 252.85 0.01 25285 0.0 52.85 0.02
GPTP 9.19 0.88 8.96 0.87 8.28 0.87 9.20 0.88 8.79 0.88 9.52 0.87 11.98 0.86
DIPPER-1T 12.00 0.80 11.80 0.79 10.31 0.8T 11.87 0.76 11.93 0.80 12.43 0.79 16.56 0.77

DIPPER-2 12.15 0.79 11.80 0.79 10.34 0.80 11.96 0.76 11.86 0.79 12.42 0.78 16.45 0.76
SIRA (Ours) 10.59 0.78 9.37 0.78 891 0.77 9.10 0.78 9.02 0.77 9.74 0.78 10.93 0.75

Table 7: Performance of different attack methods against various watermark techniques.

D FILL IN BLANK INSTRUCTION

We present our generation prompts below. During the generation process, the reference text and the
masked text are replaced by the two texts obtained in the first step.

You will be shown one reference paragraph and one incomplete paragraph. Your task is to
write a complete paragraph using incomplete paragraph. The complete paragraph should
have similar length with reference paragraph. You need to include all the information in the
reference. but do not take the expression and words in the reference paragraph. You should
only answer the complete paragraph.

reference: [reference text]

incomplete paragraph: [mask text]

E GPT SEMANTIC JUDGE

GPT Semantic Judge Prompts

You are a helpful assistant. You will receive a original text and a pharased text .Please act as
an impartial judge and evaluate how much the pharased text keep the original text semantic
meaning. Be as objective as possible. Rate the response on a scale from 1 to 10. A rating of
1 signifies the pharased text has totally different meaning with the original text. A rating of
10 signifies the pharased text has same meaning with the original text . Your answer should
strictly be the format: [Rating].

Here’s the original text: [Watermarked text]

Here’s the pharsed text:[Attack text]

In this section, we conduct extensive experiments to evaluate the overall preservation of the semantic
meaning of the original watermarked text. We use ChatGPT (OpenAl, 2024)) as an impartial judge
to obtain the quantitative results.

The attack success rate alone is not a sufficient metric for evaluating an attack method. It is
also crucial to assess whether the original and paraphrased outputs preserve similar semantics.
The Sentence-BERT score (Reimers & Gurevychl 2019), presented in section @l, measures the
sentence-level similarity between the original watermarked text and the adversarial text. However,
it falls short in determining whether the overall semantics are preserved. Inspired by the LLM jail-
break work PAIR [2023)), which leverages carefully crafted prompts and the powerful
capabilities of ChatGPT to score attack texts and targets for quantitative evaluation, we adapted their
prompts to use ChatGPT for assessing the semantic similarity between watermarked texts and at-
tack texts . This approach allows us to obtain semantic similarity scores that more closely align with
human perception. We show the judge prompt in appendix [E|and the result in shown in table[g]

We observed that using GPT for paraphrasing alone best preserves the original text’s semantics,
whereas methods like word deletion and synonym replacement were largely ineffective. Our ap-
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Table 8: Semantic Preservation for Different Methods

| Word delete | Synonym | GPT Paraphraser | DIPPER-1 | DIPPER-2 | SIRA
Semantic Preservation | 2.59 | 263 | 8.25 | 5.28 | 6.34 | 6.84

proach demonstrated superior semantic preservation compared to the DIPPER method. Addition-
ally, we conducted experiments using LLaMA3-70B and found that, due to the model’s enhanced
capability to comprehend the “preserve information” instruction in the rewrite task, the semantic
preservation score increased to 7.34. Furthermore, there was a 10%-20% reduction in perplex-
ity, depending on the specific watermarking algorithm, and 10% higher attack success rate,when
LLaMA3-70B was used as the base model.
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F SELF-INFORMATION, ENTROPY AND PROBABILITY
We provide a brief explanation of how watermark algorithm change the self-information. To begin,
we introduce the definitions of self-information.

Self-Information (I (x)): This measures the amount of information or “surprise” associated with a
specific token z. It quantifies how unexpected the occurrence of a token is in a given context:

I(z) = —log, P(x)

When considering the context h, it becomes the conditional self-information:

I(x | h) = —log, P(x | h)

where P(z | h) is the probability of token x occurring given the preceding context A.

We first analyze the non-conditional scenario, assuming that watermarking slightly increases the
probability of certain tokens by a small amount ¢, while adjusting the probabilities of other tokens
to maintain normalization. The ¢ change in token influcenced by watermark algorithm usually very
small (e.g less than le-3).

The adjusted probability for the watermarked token x,, is:
P'(zy) = P(xy) + 0

The adjusted probabilities for other tokens x; (i # w) are:
P'(z;) = P(x;) — ¢

where ., €; = 4.

1w
The change in entropy due to these adjustments is given by:

AH = H(P')— H(P) ==Y [P'(x;)log P'(x;) — P(x;)log P(x;)]

i

The partial derivative of entropy with respect to P(x,,) is:

OH
OP ()

= —log P(x,) — 1

The change in entropy due to a small change § in P(x,,) is approximately:

oH

AH ~
OP(xy)

d = —(log P(xy) + 1)0

In high-entropy contexts, where P(z,,) is small, log P(x,,) becomes a large negative value. There-
fore, log P(x,,)-+1 is still negative, and the product with the small ¢ results in a tiny A H (decrease in
logarithmically). This attribute makes watermark algorithm need to embed pattern in high-entropy
tokens, otherwise it will significantly compromising the quality of the output.

For self-information, the change in self-information is:

AI(xw) = —log P/(xw) + log P(xw)

The derivative of self-information with respect to P(z,,) is:

dI(zy) 1

dP(z,)  P(zy)

For small P(x,,), is large, making AI(x,,) more significant for small § compared to AH.

_1
P(zw)
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Similarly, for conditional self-information, assume that the model predicts N possible next tokens
with equal probability, where:
1

P(x | Context) = N

For large N, P(z | Context) becomes small.

The adjusted probability for the watermarked token x,, is:

1
P'(x, | Context) = — + 6
(24 | Context) N+

The adjusted probabilities for other tokens z; (i # w) are:

1
P'(z; | Context) = N %, for z; # T,

The change in Conditional Self-Information is:

1
AI(zy, | Context) = I'(x,, | Context) — I(x,, | Context) = — log (N + 6) +log N

Using a Taylor series approximation for small §:

1 1
log (N +6> ~ log (N) + N§

The approximate change in conditional self-information is:
AI(x,, | Context) =~ —N§
Compared to the change in entropy, it is obvious self-information are more sensitive metric:

OH
AH ~ 07(5 = —(log P(zw) +1)d

When P(x | Context) is small, the magnitude of the derivative is large, this indicates that small
changes in P(z | Context) result in bigger changes in I(z | Context). As a result, the green token
influenced by watermark change will have less self-information than original.

High-entropy tokens are usually associated with high self-information due to their unpredictability
and low probability of occurrence. Considering the reduce self-information, these potential green
tokens generally will exhibit high or moderate self-information values. Therefore in practice, we
filter out all tokens with high or moderate self-information. This ensures us can comprehensive
eliminate potential tokens. As demonstrated in our experiments in table[d] a threshold of 0.4 achieves
an 88% attack success rate.

Another advantage of self-information is that it is computed for each token within its specific con-
text, allowing it to naturally adapt to the varying nature of different sequence types. This provides
a dynamic and context-sensitive measure that better aligns with the structure of natural sequences.
In contrast, entropy is context-agnostic, treating all token sequences equally when calculating
average uncertainty. By leveraging self-information, which adapts to each token’s context, it be-
comes easier to identify sequences that deviate from expected contextual patterns — such as those
that may be watermarked. We believe this is a key reason why filtering by self-information empiri-
cally outperforms filtering by entropy.

G VISUALIZATION

In this section, we present a visual comparison of our algorithm with other model-based paraphras-
ing methods, along with the corresponding z-scores after the attack. For discrete methods, green
tokens are marked in green, and red tokens in red. In the watermarking algorithm, the detector iden-
tifies the embedded watermark through green tokens and calculates the z-score; fewer green tokens
or a lower z-score indicate a more successful attack. For continuous methods, the shade of color
denotes the weight of the watermarked token, with darker colors representing higher weights. In the
case of attacked text, lighter colors indicate a more successful attack.
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KGW SIRA attack KGW DIPPER aitack. KGW GPTatiack

7-Score: 927 7-Score: 138 7-Score: 110 7-Score: 540 7-Score: 260

Figure 5: Comparison of different paraphrasing methods on KGW watermarks. Each word’s color
indicates whether it is a green or red token. Fewer green words/lower z-scores suggest a more
effective paraphrasing approach. The unwatermarked text represents the model’s output without the
influence of the watermarking algorithm. The example demonstrates that our method achieves a
better z-score than the unwatermarked text..

Unigram watermarked Unigram SIRA atack Unigram DIPPER attack Unigram GPT attack

Z-Score: 5.62 Z-Score: 2.84 Z-Score: 4.95 Z-Score:3.71

Figure 6: Comparison of different paraphrasing methods on Unigram watermarks.
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EWD watermarked EWD SIRA attack EWD DIPPER attack EWD GPT attack

Z-Score: 8.18 Z-Score: -0.78 Z-Score: 4.02 Z-Score: 3.84

Figure 7: Comparison of different paraphrasing methods on EWD watermarks.

UPV watermarked UPV SIRA attack UPV DIPPER attack UPV GPT attack

Z-Score: 7.54 Z-Score: 128 Z-Score: 2.93 Z-Score: 4.24

Figure 8: Comparison of different paraphrasing methods on UPV watermarks. The color of each
word indicates whether it belongs to a green token or a red token. Less green signifies a more effec-
tive paraphrasing approach. Our methods show better performance in removing original watermark
text green token.
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EXP watermarked EXP SIRA attack EXP DIPPER attack EXP GPT attack

Z-Score: 0.00 Z-Score: 0.28 Z-Score: 0.08 Z-Score: 0.00
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Figure 9: Comparison of different paraphrasing methods on EXP watermarks. The color of each
word indicates whether it is a green or red token. For EXP, lighter word colors and higher z-
scores indicate a more effective attack.

H EXTENDED DISCUSSION IN RELATED WORKS

In this section, we discuss the watermark-stealing attack (Jovanovi¢ et al) 2024} [Wu & Chan
[drasekaran], 2024} [Zhang et al.| 2024)), which is related to our work but operates under different
assumptions. We give a brief introduction to this kind of attack and analyze its advantages and
disadvantages compared to our methods.

In a typical watermark-stealing attack, an adversary interacts with a watermarked LLM model
through its API or queries, attempting to reverse-engineer or approximate the embedded water-
mark. Through repeated queries, attackers may identify patterns in token choices or subtle markers
in output text that are indicative of a watermark. Two main attack methods emerge from this process:

* Spoofing Attacks: Here, attackers use the approximated watermark pattern to make non-Al-
generated text appear as though it was produced by the LLM, thereby deceiving detection
systems.

* Scrubbing Attacks: These attacks aim to remove the watermark from Al-generated text. By
understanding how the watermark is embedded, attackers substitute or adjust specific to-
kens or structures to evade detection, making Al-generated content appear as if it is human-
authored.

For watermark-stealing attacks, these works assume that the attacker has:
1. Unlimited access to the watermark-generated model API, through which the attacker can
issue input prompts and observe the generated responses.
2. Access to the detector API (with or without different assumptions).
3. Knowledge of the context size.
4. An aligned watermarked model that can follow provided instructions.
In a black-box paraphrasing attack, we assume that the attacker’s knowledge is limited to only

the watermarked text and nothing else. Because this assumption is much weaker than that of a
watermark-stealing attack, we do not include such methods in our main comparisons.

Compared to the paraphrasing attack, these methods have the following advantages:

1. Minimal Semantic Drift: By focusing on substituting only the watermarked tokens, such
methods tend to retain the original semantic structure of the text more effectively than
black-box rewriting, which can sometimes introduce unintended semantic changes.
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2. Fine-Grained Control: Watermark-stealing attacks operate at a token level, allowing precise
control over watermark removal without needing to rephrase entire sentences or sections,
which may be challenging in highly sensitive content.

3. Better piror knowledge: Since such attacks assume the attacker has unlimited access to the
watermarked model, they can continuously probe the watermark pattern through specific
input queries, thereby gaining stronger prior knowledge.

These methods also have disadvantages:

1. Possible Efficiency Issue: As mentioned in SCTS (Wu & Chandrasekaran| [2024)), repeated
probing introduces additional time overhead, resulting in higher resource consumption
compared to paraphrasing methods.

2. Limited Scope of Application: Black-box rewrite attacks do not require knowledge of the
watermarking mechanism, making them suitable for use against a wide variety of water-
marking techniques.

3. Possible lower robustness: Because black-box rewrite attacks focus on altering the content
through paraphrasing, they can reduce the chance of detection by watermarking systems
that rely on token-level patterns.

Notably, we need to mention SCTS (Wu & Chandrasekaran| [2024). This method also involves
modifying color tokens, but it is entirely different from our proposed approach. In SCTS, The
attacker prompts the watermarked LLM multiple times with various inputs, collecting a significant
amount of output data to capture the frequency distribution of tokens. By examining this collection
of outputs, the attacker can calculate the frequency of each token appearing in the generated text.
Watermarked LLMs favor certain tokens, so these ”green” tokens appear more frequently than others
due to the watermarking bias.The attacker observes these frequencies for anomalies or patterns that
deviate from what would be expected in unwatermarked text. Tokens that consistently appear at
higher frequencies or in specific contexts are likely candidates for ”green” tokens.

Therefore, this method identifies green tokens using a frequency-based approach and has two main
limitations. First, it shares a common limitation of such methods, requiring access to the LLM
API and permission to adjust its parameters. Second, it is only applicable to biased watermarking
methods, such as UMD and its variants.

In contrast, the key insight of our method is that current watermarking techniques require embedding
on high-entropy or uniformly distributed tokens to maintain text quality, as explained in Section F.
By leveraging self-information, we can exploit this characteristic to identify potential green tokens
and rewrite them accordingly. Our method offers greater flexibility as it does not require access to
the watermarking model and not limited to biased watermark algorithm.
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