
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

SIRA: EXPOSING VULNERABILITIES IN TEXT WATER-
MARKING WITH SELF-INFORMATION REWRITE AT-
TACKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Text watermarking is designed to embed hidden, imperceptible, markers within
content generated by large language models (LLMs), with the goal of tracing and
verifying the content’s origin to prevent misuse. The robustness of watermarking
algorithms has become a key factor in evaluating their effectiveness, but remains
an open problem. In this work, we introduce a novel watermark removal attack,
the Self-Information Rewrite Attack (SIRA), which poses a new challenge to the
robustness of existing watermarking techniques. Since embedding watermarks
requires both concealment and semantic coherence, current methods prefered to
embed them in high-entropy tokens. However, this reveals an inherent vulnera-
bility, allowing us to exploit this feature to identify potential green tokens. Our
approach leverages the self-information of each token to filter potential pattern to-
kens that embed watermarks and performs the attack through masking and rewrit-
ing in a black-box setting. We demonstrate the effectiveness of our attack by
implementing it against seven recent watermarking algorithms. The experimental
results show that our lightweight algorithm achieves state-of-the-art attack success
rate while maintaining shorter execution times and lower computational resource
consumption compared to existing methods. This attack points to an important
vulnerability of existing watermarking techniques and paves way towards future
watermarking improvements.

1 INTRODUCTION

Large language models (LLMs), exemplified by ChatGPT (OpenAI, 2024) and Claude (Anthropic,
2024), have demonstrated remarkable capabilities in generating coherent, human-like text. However,
while these advances significantly expand AI’s potential in content creation, they have concurrently
heightened concerns regarding their misuse (Deshpande et al., 2023; Wang et al., 2024), includ-
ing the spread of misinformation (Monteith et al., 2024) and threats to academic integrity (Stokel-
Walker, 2022).

To mitigate risks associated with LLM-generated content, text watermarking has emerged as a
promising countermeasure (Kirchenbauer et al., 2023; Aaronson & Kirchner, 2022). This tech-
nique subtly alters the LLM’s generation process to embed imperceptible patterns in the output
text, which, while invisible to human readers, can be reliably detected using specialized algorithms.
This generate-detect framework enables differentiation between AI-generated and human-authored
content and allows tracing the text back to the specific LLM that created it (Li et al., 2024). Con-
sequently, this mechanism promotes accountability and helps mitigate LLM misuse, providing a
reliable means to ensure transparency and integrity in AI-generated content.

Recent studies have demonstrated that watermarking techniques exhibit significant robustness
against simple manipulations, including word deletions (Welbl et al., 2020) and emoji at-
tacks (Kirchenbauer et al., 2023). However, traditional NLP attack strategies, such as token deletion
and insertion, are increasingly insufficient for thoroughly evaluating the robustness of advanced
watermarking algorithms. As LLMs continue to advance, there is a growing need for more sophisti-
cated testing methodologies that account for complex manipulation tactics, ensuring that watermark-
ing techniques remain resilient against emerging threats. To provide a more rigorous evaluation of

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

watermarking robustness, model-based attacks have been proposed. These methods typically rewrite
watermarked texts using either closed-source commercial LLMs (Kirchenbauer et al., 2023) or fine-
tuned open-source models trained on specially designed phrase datasets (Krishna et al., 2024). De-
spite their potential, these approaches face several limitations. First, they lack transparency, offering
limited control over the output text via a small set of hyperparameters. Second, they are often costly,
requiring token-based payments or significant computational resources. Furthermore, for newer
and more robust watermarking algorithms like SIR (Liu et al., 2024), these methods fail to deliver
effective attacks.

To resolve the aforementioned problem, we propose a lightweight and effective watermark removal
attack named SIRA(self-information rewrite attack). This method is inspired by a simple intuition:
watermarking algorithms aim to be imperceptible to users while preserving text quality, often favor-
ing high-entropy tokens to embed watermark patterns (Kirchenbauer et al., 2023; Liu et al., 2023).
The high-entropy tokens, however, will usually have high self-information. Leveraging this insight,
we can identify potential ”green list” token candidates within watermarked text under a black-box
setting. By masking these potential tokens and allowing the LLM to complete the masked segments,
we can effectively carry out a more effective paraphrasing attack. SIRA requires minimal resources
and works effectively even with a small model like LLaMA3-8B. Our experiments in seven wa-
termark algorithms show that SIRA outperforms all other black-box watermark removal attacks.
Specifically, our method achieves over a 90% attack success rate on most current watermarking
techniques (Kirchenbauer et al., 2023; Zhao et al., 2023; Liu et al., 2023; Lu et al., 2024; Wu et al.,
2024; Aaronson & Kirchner, 2022). We will release our code to further promote the development of
responsible AI (Gu, 2024).

2 RELATED WORK

Self-information. Self-information, also known as surprisal, is a fundamental concept in Informa-
tion Theory, first introduced by Claude Shannon in his seminal work (Shannon, 1948). Shannon
employed self-information as the principal metric to quantify the information content associated
with the occurrence of specific events, effectively linking the rarity of an event to the amount of
information it communicates. This measure forms a cornerstone in the understanding of data en-
coding and compression, as articulated in Shannon’s source coding theorem, where events that are
more probable are represented with fewer bits, while less probable events require more bits, thereby
facilitating optimal compression (Shannon, 1948).

In the realm of Natural Language Processing (NLP), self-information plays a crucial role in the
analysis and modeling of language. It aids in deciphering language patterns, particularly in evalu-
ating the entropy and predictability of tokens within sequences. The concept is particularly useful
for quantifying the informativeness or surprise of a token, determined by its probability in a given
linguistic context. Language models, for instance, predict the probability of a subsequent token in a
sequence using the preceeding context:

P (tk | t1, t2, . . . , tk−1)

The self-information of the token in this context is computed as follows:

I(tk | t1, t2, . . . , tk−1) = − logb(P (tk | t1, t2, . . . , tk−1))

where I(tk | t1, t2, . . . , tk−1) denotes the self-information of token tk given the context of pre-
vious tokens, P (tk | t1, t2, . . . , tk−1) is the probability of token tk occurring after the preceding
sequence of tokens, and b represents the base of the logarithm, typically set to 2. Tokens that are
less predictable within a sequence, hence more informative, exhibit higher self-information values.

LLM Watermark. Watermarking techniques for large language models are designed to embed
identifiable patterns in model outputs, allowing for the traceability of generated text back to its
originating source. These watermarks serve as an essential tool for ensuring accountability and
ownership, particularly in scenarios where identifying the specific model or version that produced
the content is crucial. LLM watermark methods can be broadly classified into two primary cate-
gories: the KGW Family and the Christ Family. Each family employs distinct mechanisms that are

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

integral to the internal workings of LLMs. The KGW Family (Kirchenbauer et al., 2023; Liu et al.,
2023; Zhao et al., 2023; Wu et al., 2024; Lu et al., 2024) focuses on modifying the logits—the raw
output probabilities produced by the model—before they are transformed into text. This approach
involves selectively adding bias to certain tokens, referred to as “green list” tokens, which influ-
ences the model to favor these tokens, thus embedding a statistical signature in the output. Post
text generation, a statistical metric based on the proportion of these “green” tokens is computed. A
predetermined threshold enables differentiation between watermarked and non-watermarked text.

Conversely, the Christ Family (Aaronson & Kirchner, 2022; Christ et al., 2024; Kuditipudi et al.,
2023) modifies the sampling process during the generation phase itself. Rather than altering the
logits, this family intervenes directly in the token selection during decoding. Techniques such as top-
k sampling, temperature adjustment, or nucleus sampling are adapted to ensure preferential selection
of watermarked tokens. This method provides more direct control over the generation process,
embedding watermarks that are resilient against post-processing attacks, such as paraphrasing.

Watermark Removal Attacks. The robustness of a watermarking algorithm is crucial, as it de-
termines the effectiveness of the watermark under various real-world conditions, particularly in ad-
versarial settings. Attacks against watermarking algorithms, commonly referred to as watermark
tampering attacks, can be broadly categorized into two types:

Text manipulations: These attacks involve traditional NLP techniques to straightforward text ma-
nipulations, such as word deletion (Welbl et al., 2020), substitution (Yu et al., 2010), or inser-
tion (Kirchenbauer et al., 2023). By altering the surface-level structure of the text, these meth-
ods attempt to distort or eliminate the watermark without drastically changing the content’s mean-
ing. These techniques exploit the fact that many watermarking algorithms embed patterns with
a pre-designed ”green token” and ”red token”, making them vulnerable to such basic modifica-
tions. Kirchenbauer et al. (2023) propose emoji attack and copy-paste attack which insert emoji/hu-
man writtern text in the generated text to avoid detection.These methods are considered variants of
text manipulations, however, they are easily thwarted by detectors equipped with content filters and
often alter the semantics of the generated text which makes them inappropriate for real-world use.

Model-based paraphrasing: A more advanced form of attack involves using another LLM to para-
phrase the watermarked content. This approach takes advantage of the LLM’s ability to generate di-
verse rephrasings while maintaining the core meaning of the text. Krishna et al. (2024) propose DIP-
PER, a paraphrase generation model developed by fine-tuning T5-XXL (Raffel et al., 2020b) on an
aligned paragraph dataset. This model has been widely adopted in recent watermark research (Zhao
et al., 2023; Liu et al., 2024; Kuditipudi et al., 2023) to evaluate the robustness of watermarking al-
gorithms. Zhang et al. (2023) propose the random walk attack, which utilizes Llama2-7B (Touvron
et al., 2023) as the generation model, with T5-XXL (Raffel et al., 2020b) serving as a perturbation
oracle to iteratively modify the watermarked text. In each iteration, RoBERTa-v3 large (Liu, 2019)
is employed as a quality oracle to provide rewards, while GPT-3.5 OpenAI (2023) performs a final
quality check on the generated text. However, since this method does not ensure that the paraphrased
text retains the same semantics as the original watermarked text, it diverges significantly from the
goals of typical paraphrase attacks.

Our proposed SIRA falls under the category of model-based paraphrasing attacks. However, un-
like conventional paraphrasing techniques that generate entirely new sentences or passages based on
instructions, SIRA selectively replaces potential green words in the watermarked text to provide a
”neutral” template for rewriting. This targeted replacement approach enables more precise control
over the consistency and semantics of the watermark-removed text. Additionally, SIRA can be ef-
fectively implemented using a lightweight model, enhancing its efficiency for practical applications.

3 METHODS

In this section, we detail SIRA attack formulation and implementation. First, we lay out the problem
setting in Section 3.1, then we develop the details of the method in Section 3.2.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Nike Inc enjoyed big sales in gains in North
America and Europe last quarter and benefited
from fewer markdowns, helping the maker of

sports clothes and sneaker continue on its long-
term path to long-term profits and sales growth.

Nike Inc enjoyed _ _ _ gains_ _
_ _ _ _ _ _ benefited_ fewer_ _ _

_ _ _ _ sports clothes_ _ _
continue_ _ long_path _ _
long_ profits_ _ growth.

Nike has seen significant revenue growth in
North America and Europe, largely due to

reduced markdowns and a strong performance
in its core sports apparel and footwear
business. This success has enabled the

company to stay on track with its long-term
strategy of increasing profitability and sales.

Nike Inc. enjoyed significant revenue gains and
benefited from fewer markdowns, which helped
the sportswear and sneaker maker continue to

drive long-term profit and sales growth.

Reference Text

Masked Text

Watermarked Text

Mask according to
self-infromation

paraphrase

LLama3
rewrite

Watermarked strength Watermarked strength

Attack Text

Figure 1: SIRA pipeline consisting to two steps. First, the attack generates a masked text based
on self-information. If the self-information of a specific part above a pre-set threshold, that portion
of the text is masked and replaced with a placeholder. Simultaneously, a reference text is generated
by asking the LLM to paraphrase. In the second step, the LLM is prompted to complete the masked
text while incorporating all the information from the reference text.

3.1 PROBLEM SETTING

Definition 1 (Language generative model). A Language generative model M : X → Y that maps
any input prompt x ∈ X to an output y ∈ Y , where X the prompt space, Y the output space. We
denote Yh is human written text space, Yu is the machine generated unwatermarked text, Yw is the
machine generated watermarked text.

Definition 2 (Watermark Algorithm): A watermark algorithm consists of a watermarking function
W , a secret key k, and a detector D. The watermarking function W , parameterized by the key k,
denote as Wk, modifies the output y to embed a watermark, given an input prompt x ∈ X resulting
in a watermarked output M(x,Wk) → yw ∈ Yw. The detector D, using the same key k, can then
verify whether a given output ŷ ∈ Y contains the embedded watermark. The detector D operates as
a binary classifier with the following output behavior:

D(Wk, ŷ) =

{
1 if ŷ is detected as watermarked
0 otherwise

(1)

The detector D contains a parameter θ, where the θ is the z-score threshold.

Definition 3 (Perturbation Function): The attacker has a perturbation function P : Yw → Yp

modifies the watermarked output yw to produce a perturbed output yp = P (yw). The function P
aims to minimize the detection success rate of the detector D on the perturbed output yp. A function
S(yw, yp) measures the semantic similarity between the original watermarked output yw and the
perturbed output yp = P (yw). The pre-set threshold ϵ ∈ [0, 1] is a parameter that quantifies the
minimum required level of semantic similarity between the original watermarked output yw and the
perturbed output yp = P (yw).

We define the scenario as a black box adversarial problem and we assume that the attacker should
not know the watermark algorithm W , the secret key k and should not have access to the
detector D. The attacker does not have access to any information about the feature distribution of
the watermark algorithm or the model architecture.

For watermark algorithm, the goal is to achieve a balance between robustness and performance. The
detector D is formulated as an optimization problem with the objective of minimizing classification
errors. Specifically, the detector aims to maximize its accuracy in distinguishing between human-
written text yh and attack text yp. The goal of detector D can represente as:

max
θD

Eyh∼Yh

[
log (1−DθD (Wk, yh)] + Eyp∼Yp

[log(DθD (Wk, yp))
]

(2)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Figure 2: Visualization of watermark text and the text after masking. We can find that according
to self-information filter, the mask text significantly reduce the z-score and remove most of the green
tokens. Note that actual z-score is lower since some placeholder which will be removed in next step
are treated as green token by detector. The shown text are using KGW-1 watermark.

For attacker, the perturbation function P is defined to minimize the probability that the detector D
successfully identifies the watermark in the perturbed output yp, while ensuring semantic preserva-
tion. The goal for P can represente as:

P ∗ = argmin
P

E [D(Wk, P (yw))] (3)

s.t. S(yw, P (yw)) ≥ ϵ (4)

Note that D(Wk, P (yw)) is only used during the evaluation phase. The attacker does not have access
to the detector during the training or generation stages.

3.2 SELF-INFORMATION REWRITE ATTACK

A primary challenge in watermark removal attacks is identifying the “green token” defined by the
watermarking algorithm. Some methods, such as Random Walk (Zhang et al., 2023), use grammati-
cal group matching to explicitly replace verbs. In contrast, approaches like DIPPER (Krishna et al.,
2024) and GPT Paraphraser (Liu et al., 2024) delegate the task of rewriting and removing green
token to large language models through high-level instructions. However, methods of this type lack
transparency and control; relying on LLM for consistency with original watermarked text.

Our attack is based on a common principle of watermarking algorithms, as discussed in the KGW
(Kirchenbauer et al., 2023; Liu et al., 2023) work: since the watermark must remain imperceptible
to the user, high-entropy tokens are ideal candidates for embedding. High-entropy tokens exhibit
a more uniform distribution of probabilities, this uniformity means that when logits are adjusted
to increase the likelihood of green tokens, it is easier to embed watermarks effectively without
significantly compromising the quality of the output. Meanwhile this also implied high-entropy
token has lower probability thus higher self-information.

In our approach, we propose a straightforward and easily implementable solution by leveraging
self-information to identify potential green-list tokens and subsequently rewrite them. High-entropy
tokens are typically associated with high self-information due to their unpredictability and low prob-
ability of occurrence. Meanwhile, small probability changes caused by the watermark algorithm
can reduce self-information, as briefly explained in Appendix F. By considering both the change in
self-information and high-entropy token inherent nature, we classify tokens with high or moderate
self-information as potential green-list tokens and filter them out to obtain a more neutral template
for LLM rewriting. Empirically, our preliminary experiments show that utilizing self-information,
rather than directly filtering based on high entropy, results in higher attack success rates.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Algorithm 1 Pseudocode for Self-information rewrite attack

1: Input: Watermarked token sequence y = {y1, y2, . . . , yn}, language model Mattack, self-
information percentile ϵ, instruction s

2: Output: Response token sequence yp without watermark.
3: y′ ←Mattack(y) ▷ Paraphrase sequence y′ using Mattack

4: I← []
5: for i = 1 to n do ▷ Compute self-information for each token in y
6: I[i]← − logP (yi | context)
7: end for
8: τϵ ← Percentile(I, ϵ) ▷ Determine threshold from ϵ percentile of I
9: for i = 1 to n do

10: if I[i] > τϵ then
11: yi ← ∅ ▷ Mask token if above threshold
12: end if
13: end for
14: yp ←Mattack(y

′,y, s) ▷ Generate de-watermarked response yp using M
15: return yp

Given a watermarked text y = {y0, y1, . . . , yn}, where yi represents each token, we employ a base
language model Mattack; Mattack is distinct from the generative model M used to produce the
watermarked text. We use Mattack to calculate the self-information for each token yt as follows:

I(yt) = − logP (yt|y0, y1, . . . , yt−1;Mattack),

where P (yt|y0, y1, . . . , yt−1;Mattack) denotes the probability of token yt given its preceding tokens
in the sequence, as estimated by the language model Mattack. To mask the potential green list
tokens, we set a threshold ϵ, and get the overall paragraph threshold by percentile:

τϵ ← Percentile(I, ϵ)

Any token with a self-information value I[i] > τϵ is considered to be a potential token and will be
masked and replaced with a placeholder. In our experiments, we discovered that using placeholders
outperformed directly masking specific tokens. The placeholders serve as cues, maintain the text’s
structure, indicating where tokens have been masked whihc providing the LLM with hints about the
original text’s length and the likely number of words, allowing for more high quality reconstructions.
We shown one visualization of mask text and watermark text comparsion in Figure 5.

However, the compression will still result in the loss of watermark text information details. To
address this, we use the base LLM to rewrite the watermarked text, creating a reference text. This
rewritten text serves as a reference to provide the semantic information intergrity during the second
step. The reason we do not use the original watermarked text is that we find this leads LLM to take
shortcuts: LLM tend to directly take the content from the watermark text, due to the high similarity
between masked and watermark text.

In the final attack phase, we provide the LLM with the masked text, reference text, and instructions
for a fill-in-the-blank task, guiding it to reconstruct the missing content. We provide the instructions
we use in Appendix D. The pseduocode of our algorithm is shown in Algorithm 1.

4 EXPERIMENTS

4.1 SETUP

Dataset and Prompts. Following prior watermarking research (Kirchenbauer et al., 2023; Zhao
et al., 2023; Liu et al., 2024; Kuditipudi et al., 2023), we utilize the C4 dataset (Raffel et al., 2020a)
for general-purpose text generation scenarios. We selected 500 random samples from the test set
to serve as prompts for generating the subsequent 230 tokens, using the original C4 texts as non-
watermarked examples.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 1: Comparison of watermark algorithms under different attack methods.

Comparison of Watermark Algorithms under Different Attack Methods

Attack

Watermark
KGW-1 Unigram UPV EWD DIP SIR EXP

Word delete (Welbl et al., 2020) 22.4% 1.6% 6.6% 22.8% 57.4% 44.0% 9.4%

Synonym Substitution (Yu et al., 2010) 83.2% 17.4% 65.2% 76.2% 99.6% 82.0% 51.0%

GPT Paraphraser (Liu et al., 2024) 100% 63.9% 71.9% 90.8% 99.8% 58.8% 72.2%

DIPPER-1 (Krishna et al., 2024) 82.4% 37.0% 58.6% 82.2% 99.6% 61.2% 73.6%

DIPPER-2 (Krishna et al., 2024) 95.8% 45.6% 61.8% 89.0% 99.8% 63.6% 82.2%

SIRA(Ours) 100% 93.8% 93.0% 100% 99.8% 83.4% 93.4%

Watermark generation algorithms and language model. To conduct a comprehensive evalua-
tion, we select seven recent watermarking works: KGW (Kirchenbauer et al., 2023), Unigram (Zhao
et al., 2023), UPV (Liu et al., 2023), EWD (Lu et al., 2024), DIP (Wu et al., 2024), SIR (Liu et al.,
2024),EXP (Aaronson & Kirchner, 2022) in the assessment. The watermark hyperparameter set-
tings shown in Appendix A, and the detection settings adhere to the default/recommendations (Pan
et al., 2024) configurations of the original works. Specifically, for KGW-k, k is the number of pre-
ceding tokens to hash. A smaller k implies stronger attack robustness yet simpler watermarking
rules. We use KGW-1 in our experiment. For language models, we follow previous work setting
select (Kirchenbauer et al., 2023; Liu et al., 2024; Zhao et al., 2023) Opt-1.3B (Zhang et al., 2022) as
watermark text generation model. We use LLaMA3-8b (Dubey et al., 2023) to ensure the lightweight
and usability of our method, along with its tokenizer for the calculation of self-information.

Baseline Methods. For our method, we use ϵ = 0.3 as threshold. For attack method, we use word
deleteion (Welbl et al., 2020), synonym substitution (Yu et al., 2010), Dipper (Krishna et al., 2024),
and GPT Paraphaser (Liu et al., 2024) to compare with our method. For GPT Paraphaser, we use the
GPT-4o-2024-05-13 (OpenAI, 2024) version. For DIPPER-1 the lex diversity is 60 without order
diversity, and for DIPPER-2 we additionally increase the order diversity by 40. The word deletion
ratio is set to 0.3 and the synonym substitution ratio is set to 0.5. The synonyms are obtained from
the WordNet synset (Miller, 1995).

Evaluation. We utilize the attack success rate as our primary metric. The attack success rate is
defined as the proportion of generated attack texts for which the watermark detector incorrectly
classify the attack text as unwatermarked sample, compared to the total number of attack texts.
To mitigate the influence of detection thresholds, we follow prior work (Liu et al., 2024; Zhao
et al., 2023) adjust z-threshold of detector until reach target false positive rate in Figure 3 . We use
generated 500 attack texts as positive samples and 500 humnn-written texts as negative samples.
We dynamically adjust the detector’s thresholds to establish false positive rates at 1% and 10%, and
we report the true positive rates and F1-scores. All experiments for our method were conducted on
single NVIDIA A100 40GB GPU.

4.2 EXPERIMENTAL RESULTS.

In Table 1, we present the attack success rates of various watermark removal methods across differ-
ent watermarking algorithms. The results demonstrate that our approach consistently outperforms
all other methods for each watermarking algorithm. Notably, the closest competitors to our method
are DIPPER (Krishna et al., 2024) and GPT Paraphraser (Liu et al., 2024), which are model-based
paraphrasing attacks. Our approach surpasses these competitors by a significant margin in experi-
ments involving seven watermarking algorithms on the C4 dataset (Raffel et al., 2020a).

To further demonstrate the effectiveness of our method and avoid the impact of a fixed z-threshold
on detector performance, we follow previous work by setting the FPR to 1% and 10%, and report the
true positive rate of the detector on adversarial texts based on the adjusted z-threshold corresponding
to the FPR. Additionally, we report the best F1 score that the watermark algorithm can achieve

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

(a) True positive rate of different
watermark with false postivite rate
set to 1%.

(b) True positive rate of different
watermark with false postivite rate
set to 10%.

(c) Best F1-score could achieved by
different watermark algorithm de-
tector.

Figure 3: To avoid the default z-threshold impact the robustness of watermark algorithm, we dy-
namically adjust the z-score threshold of the watermarking algorithm until achieving specified false
positive rates for the watermark detector. We display the true positive rate and the best F1 score
could achieve by watermark detector. Lower TPR and F1 scores at a given FPR indicate that the
watermark detector struggles more to differentiate between attack texts and human-written texts,
suggesting a more effective attack. We show the detail number of above figure in Appendix B.

(a) Performance of PPL. (b) Performance of s-BERT.

Figure 4: Performance comparison of watermark methods against various attack methods based on
PPL (Perplexity↓) and s-BERT (Sentence-BERT score↑). The word delete will signicantly increase
the PPL and lead to overflow. We marked the overflow data with NaN in the fig. 4a. The synonym
substitution will also increase the PPL. The paraphrased text has better text quaility than original
watermark text for our method and GPT Paraphraser.

under different attacks. The results are shown in Figure 3, and the detailed numbers are provided in
Appendix B. Lower true positive at a given false positive rate indicate that the watermark detector
struggles more to differentiate between adversarial texts and human-written texts. Our algorithm
achieves optimal attack performance in most cases; suggesting a more effective attack.

4.3 TEXT QUALITY ANALYSIS

To further demonstrate that our method does not adversely affect text quality, we conduct additional
evaluations of the text generated by the model. We compare Perplexity (PPL) of the text quality.
Furthermore, we specifically calculate the sentence-level embedding similarity (Sentence-BERT
Score (s-BERT)) before and after the attack to explore whether the attack alters the semantic content
at the sentence level. We also conducted experiments in the Appendix E using ChatGPT as a judge
to measure overall semantic similarity. The results, shown in Figure 4, indicate that our method has
a smaller impact on text quality compared to other approaches.Our approach, similar to other model-
based methods, benefits from more powerful large language models, achieving better performance
in terms of the PPL metric compared to the original watermarked text. Additionally, our method
retains a greater degree of semantic information. We show the detail numbers of two metrics in
Appendix C.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 2: Comparison of Execution Time and VRAM Usage for Different Methods. Note that the ex-
ecution speed of GPT Paraphraser may vary depending on the network status and real-time OpenAI
server load.

Method Execution Time (s) VRAM Usage (MB)
GPT Paraphraser 12.8 N/A

DIPPER 14.7 45462
SIRA 10.3 18640

Table 3: Comparison with Random Masking Strategy. Notice here the random mask performance
also benefit from other steps like rewriting in our framework. The vanilla random mask has similar
attack success rate as word deletion.

Mask Ratio 0.4 0.5 0.6 0.7 0.8
Random Mask 52% 66% 78% 80% 82%

Self-information Mask 80% 88% 92% 96% 100%

4.4 GENERATION SPEED

In this section, We conducted the attack experiments using 50 distinct watermark texts, each con-
taining approximately 230 ± 20 tokens. For each method, we measured both execution time and
VRAM usage. The reported execution time reflects the average for a single attack instance. The
experiments were run on two NVIDIA A100 GPUs, utilizing a sequential device map for baseline
methods requiring multiple GPUs. The configuration for the GPT Paraphraser follows the setup
described in Section 4.1. The results are shown in Table 2.

One of the main limitations of current model-based watermark removal attacks is their substantial
resource consumption. For instance, DIPPER built on the T5-XXL model, necessitates two 40GB
A100 GPUs for effective operation. Similarly, the GPT parser introduces considerable costs due to
its dependence on a proprietary model that employs token-based billing.

In contrast, our proposed pipeline operates using a minimal configuration of the LLaMA3-8b model,
requiring only 18GB of VRAM. This enables compatibility with many consumer-grade GPUs, sig-
nificantly reducing hardware requirements. Our approach is efficient enough to run on GPUs with
as little as 20GB of memory, and each attack is completed in just two model inferences which makes
our attack faster than other methods. We also experimented with larger models in Appendix E, such
as Llama3-80b, and found that using a larger model can further improve semantic preservation and
the quality of generated text .

4.5 ABLATION EXPERIMENT

In this section, we aim to further scrutinize the self-information rewrite attack and emphasize the
potential of this attack. We utilize Opt-1.3b and a random sample of 50 prompts from the C4 dataset
to generate watermarked responses. Unless otherwise specified, we use Llama-3-8b as the base
model for our attack. The temperature for the base model is set to 0.7.

Self-information mask versus Random mask In this experiment, we replace self-information-
based selective masking with a random masking strategy, while keeping all other steps unchanged.
We use the same masking ratios, ranging from 0.4 to 0.8 in increments of 0.1, and compare the
resulting attack success rates. The Unigram watermarking method is employed to generate the
watermarked text. The results are presented in Table 3. To ensure fair comparisons, the random
masking strategy is executed five times, and the final average attack success rate is reported.

The results indicate that, at any given mask ratio, the self-information-based masking method sig-
nificantly outperforms the random strategy. More importantly, the random masking approach exists
a bottleneck, with limited improvement in attack success rates beyond a ratio of 0.6. This due to
random mask can not make sure all target green token are removed. For a single watermarked text
with fixed mask ratio, our method is deterministic, as the same tokens are masked each time. In
contrast, the random approach does not provide this guarantee.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 4: Effect of self-information Threshold on the Success Rate of the UPV Algorithm

self-information threshold ϵ 0.25 0.30 0.35 0.40 0.45 0.5 0.55 0.60 0.65 0.70

Attack Success Rate 96% 94% 94% 88% 80% 76% 72% 70% 58% 32%

Table 5: Comparison of Attack Success Rate and Average z-score. The reference text is generated
by asking the base model to paraphrase the watermarked response, while the attack text is generated
using our two-step approach.

Text Attack Success Rate Average z-score
Human-written Text N/A 0.12

Reference Text 64% 3.75
Attack Text 94% 1.85

How does the self-information threshold affect final performance? In this experiment, we use
UPV as the watermarking algorithm. We varied the value of ϵ from 0.25 to 0.70 in increments of
0.05 to test its impact on the success rate of the attack using the UPV algorithm. The results are
shown in table 4.

We observed that the attack success rate is directly influenced by the value of ϵ. For the UPV
algorithm, setting the threshold to 0.3 results in a highly effective attack. A significant performance
gap is observed when ϵ increases from 0.60 to 0.65. Additionally, based on human evaluation,
when ϵ is below 0.25, the generated attack text tends to lose more detailed information from the
original watermarked text, such as character dialogues. Considering both performance and semantic
preservation, we recommend setting ϵ between 0.2 and 0.3. For less robust algorithms, setting ϵ
between 0.4 and 0.5 is sufficient to achieve an attack success rate exceeding 90%.

We set ϵ to 0.3 in Table 1 since watermarking algorithms may employ a hybrid strategy, embedding
the watermark primarily in low-entropy tokens while embedding a smaller portion in high-entropy
tokens or with a ”hard list”. Setting ϵ to 0.3 effectively removes the watermark while preserving the
original semantics.

Does the success of the attack due to paraphrased reference text? We used the Unigram water-
marking algorithm to generate watermarked text. We set the detector’s z threshold to 4 according to
its default settings. For a given input, the detector calculates its z-score, and if the score exceeds 4,
the text is classified as watermarked.

We measured the attack success rate for each of the following stages: the reference text generated
in the first step of our algorithm, and the final attack text. Additionally, we calculated the average
z-score for each stage and reported the z-score of human-written text as a reference. The result
are shown in Table 5. We observed that the attack success rate for the reference text is lower than
that of the final attack text. Paraphrase strategies tend to preserve more n-grams from the original
text, which may still be detectable by the watermark detection algorithm. In contrast, our attack
reduces the presence of such n-grams by utilizing self-information filtering.Additionally, the z-score
produced by our method is closer to that of human-written text compared to simple paraphrasing
approaches.

5 CONCLUSION

In this paper, we presents the Self-Information Rewrite Attack (SIRA), a lightweight and effective
method for removing watermarks from LLM-generated text by targeting anomalous tokens. Empiri-
cal results show that SIRA outperforms existing methods in attack success rates across multiple wa-
termarking techniques while preserving text quality and requiring minimal computational resources.
By exploiting vulnerabilities in current watermarking algorithms, SIRA highlights the need for more
robust and adaptive watermarking approaches in watermark embedding. We will release our code
to the community to facilitate further research in developing responsible AI practices and advancing
the robustness of watermarking algorithms.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Scott Aaronson and H. Kirchner. Watermarking gpt outputs. https://www.scottaaronson.com/
talks/watermark.ppt, 2022.

Anthropic. Claude 3.5, 2024. URL https://www.anthropic.com/news/claude-3-family. Ac-
cessed: 2024-09-24.

Patrick Chao, Alexander Robey, Edgar Dobriban, Hamed Hassani, George J Pappas, and Eric
Wong. Jailbreaking black box large language models in twenty queries. arXiv preprint
arXiv:2310.08419, 2023.

Miranda Christ, Sam Gunn, and Or Zamir. Undetectable watermarks for language models. In The
Thirty Seventh Annual Conference on Learning Theory, pp. 1125–1139. PMLR, 2024.

Ameet Deshpande, Vishvak Murahari, Tanmay Rajpurohit, Ashwin Kalyan, and Karthik
Narasimhan. Toxicity in chatgpt: Analyzing persona-assigned language models. arXiv preprint
arXiv:2304.05335, 2023.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, et al. The llama 3 herd of models. arXiv,
arXiv:2407.21783, 2023. URL https://arxiv.org/abs/2407.21783.

Jindong Gu. Responsible generative ai: What to generate and what not. arXiv preprint
arXiv:2404.05783, 2024.

Nikola Jovanović, Robin Staab, and Martin Vechev. Watermark stealing in large language models.
arXiv preprint arXiv:2402.19361, 2024.

John Kirchenbauer, Jonas Geiping, Yuxin Wen, Jonathan Katz, Ian Miers, and Tom Goldstein. A
watermark for large language models. In International Conference on Machine Learning, pp.
17061–17084. PMLR, 2023.

Kalpesh Krishna, Yixiao Song, Marzena Karpinska, John Wieting, and Mohit Iyyer. Paraphrasing
evades detectors of ai-generated text, but retrieval is an effective defense. Advances in Neural
Information Processing Systems, 36, 2024.

Rohith Kuditipudi, John Thickstun, Tatsunori Hashimoto, and Percy Liang. Robust distortion-free
watermarks for language models. TMLR, 2023.

Taehyun Lee, Seokhee Hong, Jaewoo Ahn, Ilgee Hong, Hwaran Lee, Sangdoo Yun, Jamin Shin,
and Gunhee Kim. Who wrote this code? watermarking for code generation. arXiv preprint
arXiv:2305.15060, 2023.

Shen Li, Liuyi Yao, Jinyang Gao, Lan Zhang, and Yaliang Li. Double-i watermark: Protecting
model copyright for llm fine-tuning. arXiv preprint arXiv:2402.14883, 2024.

Aiwei Liu, Leyi Pan, Xuming Hu, Shuang Li, Lijie Wen, Irwin King, and S Yu Philip. An un-
forgeable publicly verifiable watermark for large language models. In The Twelfth International
Conference on Learning Representations, 2023.

Aiwei Liu, Leyi Pan, Xuming Hu, Shiao Meng, and Lijie Wen. A semantic invariant robust water-
mark for large language models, 2024. URL https://arxiv.org/abs/2310.06356.

Yinhan Liu. Roberta: A robustly optimized bert pretraining approach. arXiv preprint
arXiv:1907.11692, 2019.

Yijian Lu, Aiwei Liu, Dianzhi Yu, Jingjing Li, and Irwin King. An entropy-based text watermarking
detection method. arXiv preprint arXiv:2403.13485, 2024.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083,
2017.

George A Miller. Wordnet: a lexical database for english. Communications of the ACM, 38(11):
39–41, 1995.

11

https://www.scottaaronson.com/talks/watermark.ppt
https://www.scottaaronson.com/talks/watermark.ppt
https://www.anthropic.com/news/claude-3-family
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2310.06356

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Scott Monteith, Tasha Glenn, John R Geddes, Peter C Whybrow, Eric Achtyes, and Michael Bauer.
Artificial intelligence and increasing misinformation. The British Journal of Psychiatry, 224(2):
33–35, 2024.

OpenAI. Chatgpt (feb 13 version), 2023. URL https://chat.openai.com. Large language model.

OpenAI. Chatgpt-4o: Multimodal and multilingual capabilities. OpenAI website, 2024.
https://openai.com/chatgpt-4o.

Leyi Pan, Aiwei Liu, Zhiwei He, Zitian Gao, Xuandong Zhao, Yijian Lu, Binglin Zhou, Shuliang
Liu, Xuming Hu, Lijie Wen, et al. Markllm: An open-source toolkit for llm watermarking. arXiv
preprint arXiv:2405.10051, 2024.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21(140):1–67, 2020a.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21(140):1–67, 2020b.

Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-
networks. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language
Processing, pp. 3982–3992, Hong Kong, China, November 2019. Association for Computational
Linguistics. doi: 10.18653/v1/D19-1410. URL https://aclanthology.org/D19-1410.

Claude Elwood Shannon. A mathematical theory of communication. The Bell system technical
journal, 27(3):379–423, 1948.

Chris Stokel-Walker. Ai bot chatgpt writes smart essays-should academics worry? Nature, 2022.

Hugo Touvron, Louis Martin, Kevin R. Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,
Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, and Shruti Bhosale. Llama 2: Open foun-
dation and fine-tuned chat models. arXiv, abs/2307.09288, 2023. URL https://arxiv.org/
abs/2307.09288.

Xiao Wang, Tianze Chen, Xianjun Yang, Qi Zhang, Xun Zhao, and Dahua Lin. Unveiling the misuse
potential of base large language models via in-context learning. arXiv preprint arXiv:2404.10552,
2024.

Alexander Wei, Nika Haghtalab, and Jacob Steinhardt. Jailbroken: How does llm safety training
fail? In Advances in neural information processing systems (NeurIPS), 2023.

Johannes Welbl, Po-Sen Huang, Robert Stanforth, Sven Gowal, Krishnamurthy Dj Dvijotham, Mar-
tin Szummer, and Pushmeet Kohli. Towards verified robustness under text deletion interventions.
In International Conference on Learning Representations, 2020.

Qilong Wu and Varun Chandrasekaran. Bypassing llm watermarks with color-aware substitutions.
arXiv preprint arXiv:2403.14719, 2024.

Yihan Wu, Zhengmian Hu, Junfeng Guo, Hongyang Zhang, and Heng Huang. A resilient and
accessible distribution-preserving watermark for large language models. 2024.

Liang-Chih Yu, Hsiu-Min Shih, Yu-Ling Lai, Jui-Feng Yeh, and Chung-Hsien Wu. Discriminative
training for near-synonym substitution. In Proceedings of the 23rd International Conference on
Computational Linguistics (Coling 2010), pp. 1254–1262, 2010.

Hanlin Zhang, Benjamin L Edelman, Danilo Francati, Daniele Venturi, Giuseppe Ateniese, and
Boaz Barak. Watermarks in the sand: Impossibility of strong watermarking for generative models.
arXiv preprint arXiv:2311.04378, 2023.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christo-
pher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer
language models. arXiv preprint arXiv:2205.01068, 2022.

12

https://chat.openai.com
https://aclanthology.org/D19-1410
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Zhaoxi Zhang, Xiaomei Zhang, Yanjun Zhang, Leo Yu Zhang, Chao Chen, Shengshan Hu, Asif
Gill, and Shirui Pan. Large language model watermark stealing with mixed integer programming.
arXiv preprint arXiv:2405.19677, 2024.

Xuandong Zhao, Prabhanjan Ananth, Lei Li, and Yu-Xiang Wang. Provable robust watermarking
for ai-generated text. arXiv preprint arXiv:2306.17439, 2023.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

BROADER IMPACT

In this work, we aim to provide an approach to test the robustness of Large Language Models wa-
termark. We propose a method that can remove different watermark in LLM generated text. We are
aware of the potential risks that our work entails for the security and safety of LLMs, as they are
increasingly adopted in various domains and applications. Nevertheless, we also believe that our
work advances the open and transparent research on the challenges and limitations of LLM water-
mark, which is crucial for devising effective solutions and protections. Similarly, the last few years
the exploration of adversarial attacks (Wei et al., 2023; Madry et al., 2017; Krishna et al., 2024) has
led to the improvement of responible AI and led to techniques to safeguard against such vulnerabil-
ities,e further coordinated with them before publicly releasing our results. We also emphasize that,
our ultimate goal in this paper is to identify of weaknesses of existing methods.

LIMITATIONS

Evaluation:We have observed that existing watermarking techniques tend to embed in high-entropy
text, which may represent a potential vulnerability. This characteristic could be exploited by attack-
ers to weaken the security guarantees of LLMs. The work most similar to ours is DIPPER, but our
motivations differ slightly: while DIPPER aims to evade detectors of AI-generated text, our focus is
specifically on LLM watermarking algorithms. Due to this difference in objectives, we did not in-
clude methods for detecting AI-generated text, such as GPT-zero, in our evaluation. We will explore
in future work whether our method can be extended to detectors for adversarial AI-generated text.

Empirical: One limitation of our work is that it is specifically tailored to natural language. Some
watermarking methods for LLMs, such as SWEET (Lee et al., 2023), are designed for code gen-
eration. Due to the inherently lower entropy nature in code generation tasks, our method does not
design for such scenario. Additionally, this work primarily focuses on the attack. In our future work,
we will further investigate how to modify watermarking algorithms to effectively defend against our
proposed attack.

Theoretical: This work primarily focuses on empirical research. Our attack method targets phrase-
level attacks across different watermarking techniques for LLMs and relies on an empirical results,
similar to DIPPER. Due to the varying assumptions underlying different watermarking techniques,
we cannot provide a theoretical guarantee proof for the final attack’s success on each watermark
type. Meanwhile establish the upper or lower bound on its performance is not in the scope of this
work.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

CONTENTS OF THE APPENDIX

The contents of the supplementary material are organized as follows:

• In appendix A, we list the hyperparameters of the watermarking algorithm we used in
experiment section 4.

• In appendix B, w we present the specific data points corresponding to the figure shown in
section 4.2.

• In appendix C, we provide the precise data underlying the figure depicted in section 4.3.
• In appendix D, we provide the prompt we used to generate attack text.
• In appendix E, we conduct extensive experiment to evaluate the overall preservation of the

semantic meaning of the original watermarked text.
• In appendix F, we offer a brief discussion about the change of self-information under wa-

termark algorithm influence.
• In appendix G, we provide a visual comparison of the text generated by our method with

watermarked text, non-watermarked text, and text generated by other attack methods.
• In appendix H, we discuss several watermark attack methods we do not include in our main

paper due to setting different.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A WATERMARK ALGORITHM SETTING

In this section, we list the hyperparameters of the watermarking algorithm we used in section 4
below.

1 {
2 "algorithm_name ": "KGW",
3 "gamma": 0.5,
4 "delta": 2.0,
5 "hash_key ": 15485863 ,
6 "prefix_length ": 1,
7 "z_threshold ": 4.0
8 }

Listing 1: configuration KGW

1 {
2 "algorithm_name ": "Unigram",
3 "gamma": 0.5,
4 "delta": 2.0,
5 "hash_key ": 15485863 ,
6 "z_threshold ": 4.0
7 }

Listing 2: configuration Unigram

1 {
2 "algorithm_name ": "UPV",
3 "gamma": 0.5,
4 "delta": 2.0,
5 "z_threshold ": 4.0,
6 "prefix_length ": 1,
7 "bit_number ": 16,
8 "sigma": 0.01,
9 "default_top_k ": 20,

10 }

Listing 3: configuration UPV

1 {
2 "algorithm_name ": "EWD",
3 "gamma": 0.5,
4 "delta": 2.0,
5 "hash_key ": 15485863 ,
6 "prefix_length ": 1,
7 "z_threshold ": 4.0
8 }

Listing 4: configuration EWD

1 {
2 "algorithm_name ": "DIP",
3 "gamma": 0.5,
4 "alpha ":0.45 ,
5 "hash_key ": 42,
6 "prefix_length ": 5,
7 "z_threshold ": 1.513,
8 "ignore_history ": 1
9 }

Listing 5: configuration DIP

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

1 {
2 "algorithm_name ": "SIR",
3 "delta": 1.0,
4 "chunk_length ": 10,
5 "scale_dimension ": 300,
6 "z_threshold ": 0.0,
7 }

Listing 6: configuration SIR

1 {
2 "algorithm_name ": "EXP",
3 "prefix_length ": 4,
4 "hash_key ": 15485863 ,
5 "threshold ": 2.0,
6 "sequence_length ": 230
7 }

Listing 7: configuration EXP

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

B BEST F1 SCORE AND TPR/FPR

In table 6, we list the specific data from the figure in fig. 3, which reflects different attack method’s
performance of dynamically adjusting the watermark detector’s z-threshold until a specified false
positive rate is achieved. We report both the F1 score and true positive rate. It can be observed that,
in most cases, our attack method achieves the best performance.

Table 6: In this experiment, we dynamically adjust the z-score threshold of the watermarking algo-
rithm until achieving specified false positive rates for the watermark detector. We display the true
positive rate and F1 score at this threshold. We also present the classifier’s optimal F1 score under
the dynamic threshold settings. For attack methods, lower TPR and F1 scores at a given FPR indicate
that the watermark detector struggles more to differentiate between attack texts and human-written
texts, suggesting a more effective attack.

Method Attack Type 1% FPR 10% FPR Best F1 (%)

TPR (%) F1 (%) TPR (%) F1 (%) F1 (%)

KGW-1

No attack 100 99.5 100 95.2 99.8
DIPPER -1 1.6 3.1 7.8 13.3 66.6
DIPPER -2 0.8 1.6 7.0 12.1 66.6

GPT Paraphraser 1.8 3.6 8.7 14.0 66.8
SIRA 1.1 2.1 8.4 14.0 66.6

Unigram

No attack 100 99.5 100 95.2 99.8
DIPPER -1 89.0 93.7 97.6 95.8 95.4
DIPPER -2 86.0 91.8 96.8 94.2 94.6

GPT Paraphraser 73.6 84.3 91.7 91.6 91.6
SIRA 29.0 44.6 62.2 72.7 80.0

UPV

No attack 100 99.5 100 95.2 99.8
DIPPER -1 74.8 85.2 94.4 93.1 93.1
DIPPER -2 67.8 80.4 91.6 91.6 91.6

GPT Paraphraser 53.0 69.2 82.2 86.2 86.9
SIRA 27.0 42.3 65.6 75.4 81.4

EWD

No attack 100 99.5 100 95.2 99.8
DIPPER -1 66.2 79.2 91.4 90.8 90.8
DIPPER -2 54.8 70.3 83.2 81.2 81.2

GPT Paraphraser 46.6 63.1 75.4 81.3 83.8
SIRA 10.2 18.3 35.8 49.1 71.6

DIP

No attack 100 99.5 100 95.2 99.8
DIPPER -1 5.4 10.0 24.0 36.1 67.7
DIPPER-2 2.2 4.3 16.4 26.2 66.7

GPT Paraphraser 4.3 8.3 20.4 32.0 76.6
SIRA 1.6 3.1 11.2 18.7 66.7

SIR

No attack 100 99.5 100 95.2 99.8
DIPPER -1 64.6 78.0 82.4 85.6 85.6
DIPPER -2 57.6 72.6 72.6 83.4 83.4

GPT Paraphraser 66.2 79.2 85.2 87.3 87.3
SIRA 42.8 59.5 70.2 77.9 82.4

EXP

No attack 100 99.5 100 95.2 99.8
DIPPER -1 0.8 1.6 1.2 2.1 66.6
DIPPER -2 0.4 0.8 2.0 3.8 66.7

GPT Paraphraser 0.4 0.8 2.0 3.8 82.6
SIRA 0 5.4 9.3 8.3 66.6

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

C DETAIL NUMBER OF PPL AND SENTENCE BERT SCORE

In this section, we list the detail number of PPL and sentence-bert score we present in the section 4.3.

Attack
Watermark KGW-1 Unigram UPV EWD DIP SIR EXP

PPL(↓) s-BERT(↑) PPL(↓) s-BERT(↑) PPL(↓) s-BERT(↑) PPL(↓) s-BERT(↑) PPL s-BERT(↑) PPL(↓) s-BERT(↑) PPL(↓) s-BERT(↑)
No attack 12.00 0.55 11.49 0.56 9.27 0.56 11.64 0.57 10.60 0.57 11.76 0.56 16.48 0.54

Word delete NaN 0.03 NaN 0.03 NaN 0.03 NaN 0.01 NaN 0.04 NaN 0.03 NaN 0.04
Synonym Substitution 252.85 0.01 252.85 0.01 252.85 0.01 252.85 0 252.85 0.01 252.85 0.02 252.85 0.02

GPT Paraphraser 9.19 0.88 8.96 0.87 8.28 0.87 9.20 0.88 8.79 0.88 9.52 0.87 11.98 0.86
DIPPER-1 12.00 0.80 11.80 0.79 10.31 0.81 11.87 0.76 11.93 0.80 12.43 0.79 16.56 0.77
DIPPER-2 12.15 0.79 11.80 0.79 10.34 0.80 11.96 0.76 11.86 0.79 12.42 0.78 16.45 0.76

SIRA (Ours) 10.59 0.78 9.37 0.78 8.91 0.77 9.10 0.78 9.02 0.77 9.74 0.78 10.93 0.75

Table 7: Performance of different attack methods against various watermark techniques.

D FILL IN BLANK INSTRUCTION

We present our generation prompts below. During the generation process, the reference text and the
masked text are replaced by the two texts obtained in the first step.

Generation Prompts

You will be shown one reference paragraph and one incomplete paragraph. Your task is to
write a complete paragraph using incomplete paragraph. The complete paragraph should
have similar length with reference paragraph. You need to include all the information in the
reference. but do not take the expression and words in the reference paragraph. You should
only answer the complete paragraph.
reference: [reference text]
incomplete paragraph: [mask text]

E GPT SEMANTIC JUDGE

GPT Semantic Judge Prompts

You are a helpful assistant. You will receive a original text and a pharased text .Please act as
an impartial judge and evaluate how much the pharased text keep the original text semantic
meaning. Be as objective as possible. Rate the response on a scale from 1 to 10. A rating of
1 signifies the pharased text has totally different meaning with the original text. A rating of
10 signifies the pharased text has same meaning with the original text . Your answer should
strictly be the format: [Rating].
Here’s the original text: [Watermarked text]
Here’s the pharsed text:[Attack text]

In this section, we conduct extensive experiments to evaluate the overall preservation of the semantic
meaning of the original watermarked text. We use ChatGPT (OpenAI, 2024) as an impartial judge
to obtain the quantitative results.

The attack success rate alone is not a sufficient metric for evaluating an attack method. It is
also crucial to assess whether the original and paraphrased outputs preserve similar semantics.
The Sentence-BERT score (Reimers & Gurevych, 2019), presented in section 4.3 , measures the
sentence-level similarity between the original watermarked text and the adversarial text. However,
it falls short in determining whether the overall semantics are preserved. Inspired by the LLM jail-
break work PAIR (Chao et al., 2023), which leverages carefully crafted prompts and the powerful
capabilities of ChatGPT to score attack texts and targets for quantitative evaluation, we adapted their
prompts to use ChatGPT for assessing the semantic similarity between watermarked texts and at-
tack texts . This approach allows us to obtain semantic similarity scores that more closely align with
human perception. We show the judge prompt in appendix E and the result in shown in table 8.

We observed that using GPT for paraphrasing alone best preserves the original text’s semantics,
whereas methods like word deletion and synonym replacement were largely ineffective. Our ap-

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Table 8: Semantic Preservation for Different Methods

Word delete Synonym GPT Paraphraser DIPPER-1 DIPPER-2 SIRA
Semantic Preservation 2.59 2.63 8.25 5.28 6.34 6.84

proach demonstrated superior semantic preservation compared to the DIPPER method. Addition-
ally, we conducted experiments using LLaMA3-70B and found that, due to the model’s enhanced
capability to comprehend the ”preserve information” instruction in the rewrite task, the semantic
preservation score increased to 7.34. Furthermore, there was a 10%-20% reduction in perplex-
ity, depending on the specific watermarking algorithm, and 10% higher attack success rate,when
LLaMA3-70B was used as the base model.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

F SELF-INFORMATION, ENTROPY AND PROBABILITY

We provide a brief explanation of how watermark algorithm change the self-information. To begin,
we introduce the definitions of self-information.

Self-Information (I(x)): This measures the amount of information or ”surprise” associated with a
specific token x. It quantifies how unexpected the occurrence of a token is in a given context:

I(x) = − log2 P (x)

When considering the context h, it becomes the conditional self-information:

I(x | h) = − log2 P (x | h)

where P (x | h) is the probability of token x occurring given the preceding context h.

We first analyze the non-conditional scenario, assuming that watermarking slightly increases the
probability of certain tokens by a small amount δ, while adjusting the probabilities of other tokens
to maintain normalization. The δ change in token influcenced by watermark algorithm usually very
small (e.g less than 1e-3).

The adjusted probability for the watermarked token xw is:

P ′(xw) = P (xw) + δ

The adjusted probabilities for other tokens xi (i ̸= w) are:

P ′(xi) = P (xi)− ϵi

where
∑

i ̸=w ϵi = δ.

The change in entropy due to these adjustments is given by:

∆H = H(P ′)−H(P) = −
∑
i

[P ′(xi) logP
′(xi)− P (xi) logP (xi)]

The partial derivative of entropy with respect to P (xw) is:

∂H

∂P (xw)
= − logP (xw)− 1

The change in entropy due to a small change δ in P (xw) is approximately:

∆H ≈ ∂H

∂P (xw)
δ = −(logP (xw) + 1)δ

In high-entropy contexts, where P (xw) is small, logP (xw) becomes a large negative value. There-
fore, logP (xw)+1 is still negative, and the product with the small δ results in a tiny ∆H(decrease in
logarithmically). This attribute makes watermark algorithm need to embed pattern in high-entropy
tokens, otherwise it will significantly compromising the quality of the output.

For self-information, the change in self-information is:

∆I(xw) = − logP ′(xw) + logP (xw)

The derivative of self-information with respect to P (xw) is:

dI(xw)

dP (xw)
= − 1

P (xw)

For small P (xw), 1
P (xw) is large, making ∆I(xw) more significant for small δ compared to ∆H .

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Similarly, for conditional self-information, assume that the model predicts N possible next tokens
with equal probability, where:

P (x | Context) =
1

N
For large N , P (x | Context) becomes small.

The adjusted probability for the watermarked token xw is:

P ′(xw | Context) =
1

N
+ δ

The adjusted probabilities for other tokens xi (i ̸= w) are:

P ′(xi | Context) =
1

N
− δ

N − 1
, for xi ̸= xw

The change in Conditional Self-Information is:

∆I(xw | Context) = I ′(xw | Context)− I(xw | Context) = − log

(
1

N
+ δ

)
+ logN

Using a Taylor series approximation for small δ:

log

(
1

N
+ δ

)
≈ log

(
1

N

)
+Nδ

The approximate change in conditional self-information is:
∆I(xw | Context) ≈ −Nδ

Compared to the change in entropy, it is obvious self-information are more sensitive metric:

∆H ≈ ∂H

∂P (xw)
δ = −(logP (xw) + 1)δ

When P (x | Context) is small, the magnitude of the derivative is large, this indicates that small
changes in P (x | Context) result in bigger changes in I(x | Context). As a result, the green token
influenced by watermark change will have less self-information than original.

High-entropy tokens are usually associated with high self-information due to their unpredictability
and low probability of occurrence. Considering the reduce self-information, these potential green
tokens generally will exhibit high or moderate self-information values. Therefore in practice, we
filter out all tokens with high or moderate self-information. This ensures us can comprehensive
eliminate potential tokens. As demonstrated in our experiments in table 4, a threshold of 0.4 achieves
an 88% attack success rate.

Another advantage of self-information is that it is computed for each token within its specific con-
text, allowing it to naturally adapt to the varying nature of different sequence types. This provides
a dynamic and context-sensitive measure that better aligns with the structure of natural sequences.
In contrast, entropy is context-agnostic, treating all token sequences equally when calculating
average uncertainty. By leveraging self-information, which adapts to each token’s context, it be-
comes easier to identify sequences that deviate from expected contextual patterns — such as those
that may be watermarked. We believe this is a key reason why filtering by self-information empiri-
cally outperforms filtering by entropy.

G VISUALIZATION

In this section, we present a visual comparison of our algorithm with other model-based paraphras-
ing methods, along with the corresponding z-scores after the attack. For discrete methods, green
tokens are marked in green, and red tokens in red. In the watermarking algorithm, the detector iden-
tifies the embedded watermark through green tokens and calculates the z-score; fewer green tokens
or a lower z-score indicate a more successful attack. For continuous methods, the shade of color
denotes the weight of the watermarked token, with darker colors representing higher weights. In the
case of attacked text, lighter colors indicate a more successful attack.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Figure 5: Comparison of different paraphrasing methods on KGW watermarks. Each word’s color
indicates whether it is a green or red token. Fewer green words/lower z-scores suggest a more
effective paraphrasing approach. The unwatermarked text represents the model’s output without the
influence of the watermarking algorithm. The example demonstrates that our method achieves a
better z-score than the unwatermarked text..

Figure 6: Comparison of different paraphrasing methods on Unigram watermarks.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Figure 7: Comparison of different paraphrasing methods on EWD watermarks.

Figure 8: Comparison of different paraphrasing methods on UPV watermarks. The color of each
word indicates whether it belongs to a green token or a red token. Less green signifies a more effec-
tive paraphrasing approach. Our methods show better performance in removing original watermark
text green token.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Figure 9: Comparison of different paraphrasing methods on EXP watermarks. The color of each
word indicates whether it is a green or red token. For EXP, lighter word colors and higher z-
scores indicate a more effective attack.

H EXTENDED DISCUSSION IN RELATED WORKS

In this section, we discuss the watermark-stealing attack (Jovanović et al., 2024; Wu & Chan-
drasekaran, 2024; Zhang et al., 2024), which is related to our work but operates under different
assumptions. We give a brief introduction to this kind of attack and analyze its advantages and
disadvantages compared to our methods.

In a typical watermark-stealing attack, an adversary interacts with a watermarked LLM model
through its API or queries, attempting to reverse-engineer or approximate the embedded water-
mark. Through repeated queries, attackers may identify patterns in token choices or subtle markers
in output text that are indicative of a watermark. Two main attack methods emerge from this process:

• Spoofing Attacks: Here, attackers use the approximated watermark pattern to make non-AI-
generated text appear as though it was produced by the LLM, thereby deceiving detection
systems.

• Scrubbing Attacks: These attacks aim to remove the watermark from AI-generated text. By
understanding how the watermark is embedded, attackers substitute or adjust specific to-
kens or structures to evade detection, making AI-generated content appear as if it is human-
authored.

For watermark-stealing attacks, these works assume that the attacker has:

1. Unlimited access to the watermark-generated model API, through which the attacker can
issue input prompts and observe the generated responses.

2. Access to the detector API (with or without different assumptions).
3. Knowledge of the context size.
4. An aligned watermarked model that can follow provided instructions.

In a black-box paraphrasing attack, we assume that the attacker’s knowledge is limited to only
the watermarked text and nothing else. Because this assumption is much weaker than that of a
watermark-stealing attack, we do not include such methods in our main comparisons.

Compared to the paraphrasing attack, these methods have the following advantages:

1. Minimal Semantic Drift: By focusing on substituting only the watermarked tokens, such
methods tend to retain the original semantic structure of the text more effectively than
black-box rewriting, which can sometimes introduce unintended semantic changes.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

2. Fine-Grained Control: Watermark-stealing attacks operate at a token level, allowing precise
control over watermark removal without needing to rephrase entire sentences or sections,
which may be challenging in highly sensitive content.

3. Better piror knowledge: Since such attacks assume the attacker has unlimited access to the
watermarked model, they can continuously probe the watermark pattern through specific
input queries, thereby gaining stronger prior knowledge.

These methods also have disadvantages:

1. Possible Efficiency Issue: As mentioned in SCTS (Wu & Chandrasekaran, 2024), repeated
probing introduces additional time overhead, resulting in higher resource consumption
compared to paraphrasing methods.

2. Limited Scope of Application: Black-box rewrite attacks do not require knowledge of the
watermarking mechanism, making them suitable for use against a wide variety of water-
marking techniques.

3. Possible lower robustness: Because black-box rewrite attacks focus on altering the content
through paraphrasing, they can reduce the chance of detection by watermarking systems
that rely on token-level patterns.

Notably, we need to mention SCTS (Wu & Chandrasekaran, 2024). This method also involves
modifying color tokens, but it is entirely different from our proposed approach. In SCTS, The
attacker prompts the watermarked LLM multiple times with various inputs, collecting a significant
amount of output data to capture the frequency distribution of tokens. By examining this collection
of outputs, the attacker can calculate the frequency of each token appearing in the generated text.
Watermarked LLMs favor certain tokens, so these ”green” tokens appear more frequently than others
due to the watermarking bias.The attacker observes these frequencies for anomalies or patterns that
deviate from what would be expected in unwatermarked text. Tokens that consistently appear at
higher frequencies or in specific contexts are likely candidates for ”green” tokens.

Therefore, this method identifies green tokens using a frequency-based approach and has two main
limitations. First, it shares a common limitation of such methods, requiring access to the LLM
API and permission to adjust its parameters. Second, it is only applicable to biased watermarking
methods, such as UMD and its variants.

In contrast, the key insight of our method is that current watermarking techniques require embedding
on high-entropy or uniformly distributed tokens to maintain text quality, as explained in Section F.
By leveraging self-information, we can exploit this characteristic to identify potential green tokens
and rewrite them accordingly. Our method offers greater flexibility as it does not require access to
the watermarking model and not limited to biased watermark algorithm.

26

	Introduction
	Related Work
	Methods
	Problem setting
	Self-information rewrite attack

	Experiments
	Setup
	Experimental Results.
	Text quality analysis
	Generation Speed
	Ablation Experiment

	Conclusion
	Watermark algorithm setting
	Best F1 score and TPR/FPR
	Detail number of PPL and sentence bert score
	Fill in blank instruction
	GPT Semantic Judge
	Self-information, Entropy and Probability
	Visualization
	Extended discussion in related works

