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Abstract

Machine learning models often suffer performance degradation when faced with
corrupted data. In this work, we explore a technique that combines a data augmen-
tation strategy (AugMix) with adversarial training, in order to increase robustness
to both natural and adversarial forms of data corruption.

1 Introduction

Traditionally, machine learning models are trained using Empirical Risk Minimization (ERM), where
model parameters are optimized to minimize the average error on the training dataset [20]:

min
θ

E(x,y)∼D[L(fθ(x), y)], (1)

where D is the distribution over inputs x with corresponding labels y, L is a loss function (e.g.,
cross-entropy), and fθ is the machine learning model parameterized by θ, such as a deep neural
network. The foundation of ERM is the assumption that training data is sampled independently from
the same data distribution as test (e.g., operational) data [1]. In reality, operational data often differs
from training data, and this difference can degrade the model’s performance. Differences between
training and operational data may be due to natural or adversarial factors, such as changes in the
data collection process [17, 10], changes in the environment or sensors [7], or adversarial examples
[19, 2, 13].

When deploying machine learning models in safety- or mission-critical applications, it is imperative
that these models are designed to be robust to various forms of data corruption. A common approach
to build robustness is to train the model on augmented data, and various strategies exist for applying
natural [6, 3, 24, 22, 9] and adversarial [5, 15] data augmentations during training. However, the
research community largely has been exploring each type of robustness (e.g., natural vs. adversarial)
in isolation. This leads to scenarios such as a model that is robust to adversarial examples, but not
robust to common corruptions, and vice versa. Real systems necessitate models that are robust to
a whole suite of possible data corruptions and shifts, thus, there is a need for methods to jointly
optimize multiple dimensions of robustness.

In this paper, we propose a new approach to improve robustness against both common corruptions
and adversarial examples. The approach involves combing the AugMix data augmentation technique
from [9] with the adversarial training methodology from [15]. We call our combined approach
RobustAugMix. We train models using our approach on the CIFAR-10 dataset [12], and demonstrate
an improvement (over baselines considered) in both robustness to common corruptions on the
CIFAR-10-C dataset [8] and robustness to adversarial examples.
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2 Related Work

Data Augmentation Data augmentation has become a standard approach to increase generalization
performance, and is beginning to emerge as a useful strategy for enhancing robustness to common
corruptions. For image classification tasks, random flips, rotations and crops are commonly used
to increase the size and variation of the training set and hence increase performance [6]. More
sophisticated techniques such as Cutout [3], which produces random occlusions, CutMix [22], which
replaces parts of an image with another, and MixUp [24], which linearly interpolates between two
images, have also shown improvements over standard data transformations.

To increase robustness to naturally-corrupted data, [9] presented an approach called AugMix, which
utilizes a chain of simple augmentation operations in concert with a consistency loss. The augmen-
tations are sampled stochastically and combined via a weighted sum to produce a wide diversity
of augmented images. The developers enforce a consistent embedding by the classifier across di-
verse augmentations of the same input image through the use of Jensen-Shannon divergence as a
consistency loss. The AugMix training objective is:

min
θ

E(x,y)∼D{LCE(fθ(x), y) + λ ∗ LJSD[fθ(x), fθ(gAug(x)), fθ(gAug(x))]}, (2)

where, LCE is the cross-entropy loss, LJSD is the Jensen-Shannon divergence loss, gAug(x) is the
stochastic function for applying a chain of augmentations, and λ is a scalar to help balance the
contributions of the two loss terms. For more details on each of these functions, refer to [9].

There have also been several proposed methods that build off of or outperform AugMix. For example,
PixMix [11] is comprised of two main components: a set of structurally complex pictures (“Pix”),
and a pipeline for augmenting clean training images with these pictures (“Mix”). In [4], NoisyMix
combines data augmentations with stability training and noise injections to improve model robustness
and in-domain accuracy. In our work, we fix AugMix as our baseline, and consider how it can be
combined with adversarial training to increase robustness to adversarial examples, and reserve the
consideration of these alternative data augmentations strategies for future work.

Adversarial Training Adversarial training was first introduced in [5] as a defense against adversar-
ial examples [19]. Adversarial training can be thought of as a data augmentation strategy in which
adversarial perturbations are applied to the training inputs. [15] formalized the adversarial training
objective as a form of robust optimization:

min
θ

E(x,y)∼D[ max
||δ||p<ϵ

L(fθ(x+ δ), y)], (3)

where, δ is the adversarial perturbation for input x with true label y, || · ||p is an ℓp norm (e.g., p = 2 is
the Euclidean norm), and ϵ is the constraint on the size of the perturbation given that norm. The inner
maximization is typically approximated using projected gradient descent (PGD), which performs
iterative updates using the gradient of the loss with respect to the perturbation δ, and projected onto
the ϵ-ball.

There has been some inital work aimed at combining aspects of data augmentation with adversarial
training. [16] attempts to tackle the robust overfitting problem by incorporating data augmentation
into adversarial training. In [21], the authors develop an extension to AugMix that first randomly
samples multiple augmentation operators, then learns an adversarial mixture of the selected operators.
In both of these works, the authors are still primarily focused on a single robustness objective (e.g.,
improving adversarial robustness or robustness to corruptions). In our work, we aim to jointly
optimize robustness to both natural and adversarial shifts in data.

3 RobustAugMix

On their own, AugMix is not robust to adversarial examples, and adversarial training will not
guarantee robustness to non-adversarial perturbation types, such as common corruptions. In order to
combine the benefits of AugMix and adversarial training, and to develop models that are robust to
both natural and adversarial data corruptions, we propose to optimize the following objective:
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min
θ

E(x,y)∼D[LCE(fθ(x), y) + λ ∗ LJSD[fθ(x), fθ(gAug(x)), fθ(x+ δ∗)]] (4)

where δ∗ = arg max
||δ||p<ϵ

LCE(fθ(x+ δ), y), (5)

where the third input to the Jensen-Shannon loss term from AugMix is replaced with an adversarial
example. By minimizing this loss, our hope is to enable the model to learn to perform well on clean
data (due to cross-entropy term), and learn to produce outputs for images that have been corrupted by
both natural and adversarial data augmentations that are close to the outputs for the corresponding
clean images.

We compare training a model via the RobustAugMix approach in Equation 4 with various base-
lines, including standard training via Equation 1, vanilla AugMix via Equation 2, and robust (i.e.,
adversarial) training via Equation 3.

4 Experiments

Dataset The CIFAR-10 [12] dataset contains small 32 × 32 × 3 color natural images, with 50,000
training images and 10,000 testing images, and has 10 classification categories. In order to measure
a model’s resilience to natural data shift, we evaluate our models on the CIFAR-10-C [8]. This
dataset is constructed by corrupting the original CIFAR-10 test set. There are a total of 19 corruption
types, including noise, blur, weather, and digital corruptions, each appearing at 5 severity levels or
intensities. Since the CIFAR-10-C corruptions are used to measure network behavior under data shift,
the 19 corruptions are reserved for testing, and not introduced during the training procedure.

Training Setup The neural network architecture used for this study was a 50-2 Wide ResNet
[23] and was trained for 100 epochs with batch size of 128. It was optimized with stochastic
gradient descent using Nesterov momentum. The networks were trained using an initial learning
rate of 0.1 which decays following a cosine learning rate [14]. The input images were pre-processed
with standard random left-right flipping and cropping prior to any additional augmentations, and
normalized with the mean of the standard deviation of the CIFAR-10 dataset. For AugMix, we
used the same augmentation scheme as presented in [9], with 3 augmentation chains and λ = 12.
The adversarial examples for training the robust models were solved for using PGD with 7 steps of
gradient descent, a step size of 2.5 ∗ ϵ/7, and ϵ = 1.0 consrained by the Euclidean norm (e.g., p = 2).

5 Results

Figure 1 presents a sample of the results of each model when tested against a corruption from
four of the different corruption categories. The full results over all 19 corruptions are presented
in Appendix A. As presented in the plots, the proposed RobustAugMix approach is more robust
compared to the baselines when tested against Gaussian noise, glass blur, and JPEG compression.
However, it does not perform as well against Fog. One hypothesis is that adversarial training enhances
robustness to high-frequency corruptions (e.g., noise) at the cost of reduced robustness to lower-
frequency corruptions (e.g., Fog). While RobustAugMix does not always outperform vanilla AugMix
on CIFAR10-C, RobustAugMix improves over standard training in 15 out of 19 of the common
corruptions, particularly when tested against corruptions of higher severity levels. RobustAugMix
also outperforms robust (i.e., adversarial) training for every corruption type.

Figure 2 presents the adversarial accuracy obtained by each model when tested against adversarial
perturbations of increasing size (i.e., epsilon). We generate adversarial examples for testing using
the CIFAR-10 test set, using 10 steps of PGD, a step size of 2.5 ∗ ϵ/7, and ϵ constrained by the
Euclidean norm. Note that RobustAugMix achieves very similar adversarial accuracy to Robust
training, and significantly improves over Standard and AugMix. RobustAugMix, thus, achieves our
goal of enhancing robustness to naturally corrupted images, while also remaining robust to adversarial
attacks.
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Figure 1: Accuracy of models trained using a standard approach, robust approach (i.e., adversarial
training), AugMix, and RobustAugMix, when tested against 4 types of common corruptions (gaussian
noise, glass blur, fog, and jpeg compression) of increasing severity.

Figure 2: Accuracy of models trained using a standard approach, robust (i.e., adversarial) training,
AugMix, and RobustAugMix, when tested against the CIFAR10 test set perturbed using ℓ2 adversarial
perturbations of increasing size (ϵ).

6 Conclusions and Future Work

This paper presents a new approach to achieve robustness against corrupted images and adversarial
attacks. The AugMix method brings robustness against low-frequency domain corruptions and the
robust training enhances robustness against high-frequency domain corruptions. Some potential
limitations of RobustAugMix include a drop in clean accuracy compared to Standard and AugMix
training, and an increased computational cost needed to train with adversarial perturbations.

Additional experiments are needed to better characterize the performance of RobustAugMix. Future
work will include comparing to other baselines (e.g., an ensemble of models trained with AugMix and
adversarial training, independently) and data augmentation techniques (e.g., AugMax [21]), adding
additional augmentations into the AugMix strategy (e.g., Fourier perturbations [18]), and repeating
these experiments on other datasets.
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A Appendix

We present results of our experiments on the full CIFAR10-C dataset, broken out by corruption type
and severity level in Figures 3-6. Noise corruptions are shown in Figure 3, blur corruptions in Figure
4, weather corruptions in Figure 5, and digital corruptions in Figure 6.
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Figure 3: Noise Corruptions

Figure 4: Blur Corruptions

Figure 5: Weather Corruptions
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Figure 6: Digital Corruptions
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