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ABSTRACT

Monte Carlo Tree Search (MCTS) is an effective approach for finding low-cost
paths through any large combinatorial space that can naturally be structured as a
search tree. However, some combinatorial problems do not have a natural interpre-
tation as searches for a good path. For example, solving a CSP can be represented
as a path (assign variables sequentially and check the solution); however, proving
that no solution exists (via existing methods) requires enumerating multiple paths to
build out a “proof tree” demonstrating that every possible variable assignment leads
to a conflict. Rather than finding a good path (solution) within a tree, the search
problem becomes searching for a small proof tree within a forest of candidate trees.
In this paper we develop Monte Carlo Forest Search (MCFS), an algorithm for
finding small search trees. Our method leverages the benefits of the best MCTS
approaches and further introduces two key ideas. First, we estimate tree size via the
linear (i.e., path-based) and unbiased approximation from Knuth (1975). Second,
we query a strong solver at a user-defined depth rather than learning a policy across
the whole tree, in order to (1) reduce the variance of our tree-size estimates and
(2) focus our policy search on early decisions, which offer the greatest potential
for reducing tree size. We evaluated our approach on the Boolean satisfiability
(SAT) problem, and found that it matched or improved performance over a strong
baseline on two well-known distributions (sgen, random). Notably, we improved
walltime by 9% on sgen over the kcnfs solver and even further over the strongest
UNSAT solver from the 2021 SAT competition.

1 INTRODUCTION

Silver et al. (2017) took the world by storm when their AlphaGo system beat world champion Lee
Sodol at Go, marking the first time a computer program had achieved superhuman performance on
a game with such a large action space. Their key breakthrough was combining Monte Carlo Tree
Search (MCTS) rollouts with a neural network-based policy to find increasingly strong paths through
the game tree. This breakthrough demonstrated that, with good state-dependent policies, MCTS can
asymmetrically explore a game tree to focus on high-reward regions despite massive state spaces.

The MCTS algorithm used in AlphaGo (hereafter simply referred to as MCTS) combines three
powerful ideas: (1) Monte Carlo approximation of the value of a state by leveraging rollouts, thereby
avoiding the exponential cost of enumerating all subsequent sequences of actions (Kearns et al., 2002;
Coulom, 2006); (2) efficiently trading off exploration and exploitation in these rollouts by leveraging
multi-arm bandit policies (Kocsis & Szepesvári, 2006); and (3) function approximation of the policies
and values from previous problems to provide priors that further focus rollouts on promising paths
(Coulom, 2007; Sutskever & Nair, 2008; Maddison et al., 2014).

MCTS is most useful in combinatorial spaces that have a natural hierarchical decomposition into a
search tree. As a result, most of the original applications of MCTS were to search for good actions
in game trees (Coulom, 2006; Baudiš & loup Gailly, 2012; Zook et al., 2019; Schrittwieser et al.,
2020; Agostinelli et al., 2019). MCTS has also been used for searching for solutions to NP-hard
optimization problems (e.g. Browne et al., 2012; Abe et al., 2019; Khalil et al., 2022) and is a
promising approach for finding strong paths through any large combinatorial space.

However, many combinatorial problems cannot be expressed as searching for a good path. Consider
constraint satisfaction problems (CSPs): while solving a satisfiable problem corresponds to finding a
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path (assigning variables sequentially and checking the solution), existing methods for proving that
no solution exists require enumerating multiple paths to build out a “proof tree” that demonstrates that
all possible variable assignments lead to a conflict. The order in which variables are assigned—the
branching policy—has a dramatic effect on the size of the proof tree and the corresponding time to
solve the problem, so algorithm designers seek branching policies that lead to small proof trees. But
this task is no longer a standard search problem: rather than finding a high-reward path within a single
tree, our goal is to find a small tree within the forest of possible trees defined by every permutation of
variable orderings. This difference matters because of the cost of evaluating each candidate policy:
because each tree may be exponentially large and there are an exponential number of possible trees,
the full search space becomes doubly exponential in the number of actions.

We present a solution to this problem that we call Monte Carlo Forest Search (MCFS), an algorithm for
finding small search trees while retaining the benefits of MCTS outlined above. The MCFS algorithm
uses Knuth samples (Knuth, 1975) to obtain cheap and unbiased Monte Carlo approximations of tree
sizes. A Knuth sample is drawn as follows: given an n-ary tree, we construct a path from the root
to a leaf where an action is chosen at every node by rolling an n-sided unbiased die. If we denote
the realized path length as X , then an unbiased estimate of the true tree size is nX . For any variable
ordering, we can leverage Knuth samples to obtain a linear-time stochastic approximation of the size
of the proof tree that verifies all true and false assignments. We use MCTS to search over variable
orderings while using Knuth samples to estimate the size of the resulting trees.

Of course, Knuth samples provide a linear-time approximation of an exponential function and thus
will have very high variance, necessitating variance reduction techniques to reduce the sample
complexity of MCFS. The most obvious such technique is to take many Knuth samples rather than
only one, which we do. We also employ a further, more complex variance-reduction technique. When
we arrive at a node at a user-defined threshold depth, we query a known strong subsolver, rather than
continuing search all the way to a conflict. This limits sources of variance to the stochastic decisions
up to that node, and it focuses the search on early decisions where the neural network has the highest
potential to reduce tree size relative to inference cost.

We evaluated our approach on the Boolean satisfiability (SAT) problem, one of the most widely
studied combinatorial problems. Leveraging the MiniSAT (Eén & Sörensson, 2003) framework, we
integrated MCFS into the DPLL algorithm and learned a branching heuristic to efficiently find small
proof trees of unsatisfiability. Proofs of UNSAT are important in practice, e.g., for system debugging
(Suelflow et al., 2008) and formal verification (Bryant et al., 2009). As a result, the main track of the
annual SAT competition typically has around 50% UNSAT instances and has often featured further
tracks focused only on UNSAT instances (Berre et al., 2007).

We matched or improved over the performance of a strong baseline on two prominent SAT Competi-
tion distributions. First, we evaluated our method on uniform random 3-SAT at the solubility phase
transition, perhaps the best-studied SAT distribution which has been featured in the SAT Competition
from 2002 to 2018. We were able to match performance of kcnfs07, which was specifically de-
signed to target this distribution. Second, we evaluated our method on the sgen distribution, which
is notoriously difficult for its problem size and produced the smallest unsolved instance at the 2009
SAT competition. We improved running time on sgen by 9% over kcnfs07, which is 3.2× faster
than the hKis solver, which solved the most UNSAT instances in the 2021 SAT competition.

In what follows, we discuss related work in Section 2. We introduce the SAT problem, the DPLL
algorithm, and MCTS in Section 3 and describe our MCFS approach in Section 4. We present our
experimental setup and results in Sections 5 and 6 respectively. Finally, we discuss future work in
Section 7.

2 RELATED WORK

Tree search is a fundamental algorithm for combinatorial optimization. It works by iteratively
partitioning a search space, e.g., by choosing variables to branch on. At a high level, the efficiency of
tree search is measured by the product of (1) the number of branches and (2) the time required to
make each branching decision. In domains such as MIP solving, the “smart and expensive” paradigm
has won out, where entire linear programs are solved to determine a branching decision. In other
domains such as SAT solving, the “simple and cheap” paradigm dominates: high-performance SAT
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solvers make extremely cheap branching decisions that do not condition on subproblem state. After
20 years, VSIDS (Moskewicz et al., 2001) has remained among the state of the art for QBF and SAT;
it is a simple heuristic that only keeps track of how often a variable occurs in conflict analysis. Some
interesting early work developed more expensive heuristics (Huang & Darwiche, 2003), but these
generally could not compete with VSIDS in terms of running time. One specialized example in SAT
where a more expensive structural heuristic is beneficial is the solver kcnfs (Dequen & Dubois,
2003) for random 3-SAT. It branches based on a proxy measure for how likely a variable is to be in
the backbone, which is the set of literals that must be true in every model.

One might expect that machine learning could learn a more informative heuristic that is worth its cost,
especially for shallow-depth branches where decisions are most consequential. Two approaches exist
for learning models to make branching decisions: imitation learning and reinforcement learning.

Imitation learning works by learning a cheap approximation of (1) an expensive existing heuristic or
(2) an expensive feature that is a good proxy for a good branching decision. Gasse et al. (2019) and
Nair et al. (2020) exploited the fact that neural network inference time is faster than MIP heuristics
to learn cheaper approximations that achieve state-of-the-art performance. Relevant to our work on
UNSAT solving, Selsam & Bjørner (2019) learned to approximate small UNSAT core computation
and then branched on variables predicted to belong to a core. They computed small UNSAT cores
for 150,000 instances and trained a neural network to predict them, achieving a 6% speedup over a
strong SAT solver when using their network for a limited number of top-level branching decisions.
Note that if there exists a small UNSAT core, there exists a corresponding short proof, but there can
exist a short proof if there doesn’t exist a small UNSAT core.

Reinforcement learning directly searches for policies that can produce such short proofs instead of
seeking to imitate an existing heuristic. Seminal early work on SAT by Lagoudakis & Littman (2001)
used TD-learning to train a policy to select between seven predefined branch heuristics based on
simple hand-crafted features; Yolcu & Póczos (2019) learned a local search heuristic; and Tönshoff
et al. (2022) built a generic graph neural network-based method for iteratively changing assignments
in CSPs and demonstrated good results on 100 variable SAT problems. For QBF, Lederman et al.
(2019) learned an alternative to VSIDS using the REINFORCE algorithm that roughly minimizes
decisions. They improved over VSIDS in CPU time on hard problems from a distribution within
the framework of CADET, an open-source competitive solver. For model counting, Vaezipoor et al.
(2021) used an evolutionary strategy to learn a state-of-the-art branching heuristic, demonstrating
improvements in walltime performance over the competitive SharpSAT solver on instances with
more than 10,000 variables. Finally, Kurin et al. (2019)’s work is closest to our own. They used
reinforcement learning for branching in the CDCL solver Minisat. Training on random-SAT problems
with 50 variables and generalizing online to 250 variables for both SAT and UNSAT instances, they
were able to improve running time over a generic solver. However, they had difficultly scaling
due to high variance returns and credit assignment, two issues that our MCFS approach addresses.
They resolved the path / tree distinction by treating a traversal through a tree as a path and allowing
backtracking state transitions, but they only trained on SAT problems where the optimal SAT policy
was a path rather than a traversal.

MCTS has several existing applications to solving NP-hard problems. Browne et al. (2012) used the
UCT algorithm for solving MIPs, taking paths from the root to a leaf and propagating up the maximum
over child LP values; Abe et al. (2019) searched over assignment paths in graph problems such as
choosing edges to cut in a graph; and Khalil et al. (2022) searched over paths of variables to find MIP
backdoors. The work of Scavuzzo et al. (2022) is the closest to our own in distinguishing between
searching for paths and trees. They introduced “TreeMDPs” in which each state can transition to
many states, which are a natural representation for UNSAT proof trees since after branching on a
variable, we must explore both the paths for the true and false literal of that variable.

We approximate the tree size of a DPLL policy via Knuth’s estimate (Knuth, 1975). There are other
approaches for approximating tree size (e.g., Kilby et al., 2006), but they are not based on finding
paths, and we saw no clear-cut way to integrate them into MCFS.
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3 PRELIMINARIES

This section includes the required technical background on both Boolean saisfiability problems as
well as Monte Carlo Tree Search.

3.1 BOOLEAN SATISFIABILITY
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Figure 1: Example illustrating the importance of branching policies to the computational cost of
solving SAT instances. a) The problem contains a large number of satisfiable clauses and a small
unsatisfiable “core”, which do not share any variables. b) Branching first on variables from the
satisfiable clauses leads to a large search tree, where the same conflict must be identified many times.
c) Branching on the single variable x6 from the unsatisfiable clauses leads to a small search tree
where the contradiction is immediately found.

Boolean satisfiability (SAT) problems are defined as follows. A SAT instance S is defined by a set of
clauses C = {c1, . . . , cm} over a set of variables X = {x1, . . . , xn}. Each clause consists of a set
of Boolean literals, defined as either a variable xi or its negation ¬xi. Each clause is evaluated as
True iff at least one of its literals is true (i.e., the literals in a clause are joined by OR operators). For
example, a clause ci = xj ∨ ¬xk evaluates to True iff either xj is set to True or xk is set to False. S
is True if there exists an assignment of values to variables for which all the clauses simultaneously
evaluate to True (i.e., the clauses are joined by AND operators). If such an assignment exists, the
instance is called satisfiable; it is called unsatisfiable otherwise.

SAT solvers try to find a way to set the variables to demonstrate that the problem is satisfiable (SAT),
or to construct a proof tree that shows that no setting of the literals can satisfy the formula (UNSAT).

In this paper, we consider only UNSAT problems, for which such proof trees must be found.
Many SAT solvers rely on the Davis-Putnam-Logemann-Loveland algorithm (DPLL), which assigns
variables in an order given by some (potentially state-dependent) variable selection policy.

Definition 1. Let S be a SAT instance. A policy ϕ is a mapping ϕ : S → (v,1) that determines
which variable v to assign in DPLL and what value 1 ∈ {0, 1} to assign it to first.1

Given a policy, the DPLL algorithm is straightforward: it iterates over the selected variables recur-
sively, checking both the True and False assignments, and performing “unit propagation” at each step
(setting variable values forced by single-variable (“unit”) clauses; propagating these values to other
clauses in which the same variables appear (possibly in negated form); repeating until no unit clauses
remain) until either a conflict or satisfying assignment is found. The full pseudocode of the DPLL
algorithm is included in Appendix A.2.

There can be massive gaps in performance between different policies for choosing branching variables
in DPLL. For example, Figure 1 shows a formula that leads to a three-node proof tree if x6 is selected

1When looking for a SAT assignment one must occasionally backtrack and try a different assignment for a
literal. This is handled by the DPLL algorithm itself rather than the policy.
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first by the policy, but a tree that could have as many as 2|X| − 1 nodes if x6 is selected last. Another
way that policies can affect tree size is through DPLL’s unit propagation step: policies that cause more
unit propagation earlier in the search have fewer decisions to make overall and therefore yield smaller
search trees. Overall, for an instance S that is solved using variable selection policy ϕ, we denote
the size of the resulting proof tree as Tϕ(S). For a given distribution over problems P, our goal is to
find a policy ϕ∗ that minimizes the average proof tree size L(ϕ;P) = ES′∼P [Tϕ(S

′)]. Finding such
policies is computationally challenging; for a problem with n variables, there are O(2nn!) possible
variable selection policies, and exactly evaluating Tϕ(S) entails O(2n) operations.

If we are prepared to assume that the optimal variable selection policy, ϕ∗
P = argminϕ′ L(ϕ′;P) is

learnable given an appropriate model family, we could in principle learn an approximation to the
optimal policy, ϕ̂∗, to use within our solver. The challenge is designing a procedure to efficiently
minimize L(ϕ;P) so that we can collect labeled training examples. This is a challenging reinforce-
ment learning problem. As mentioned above, given any particular variable selection policy, even
evaluating the loss function on a single instance requires time exponential in the problem size, and
the space of variable selection policies is massive.

3.2 MCTS

MCTS is an algorithm that has been successfully used to find good policies in large search spaces.
Modern instantiations of MCTS, like the one used by AlphaGo, follow four key steps.

Action Selection At every state s, MCTS chooses an action a ∈ argmina′(Q(s, a′)− U(s, a′)).
Q(s, a) is the cost estimate of a at state s and U(s, a) is the corresponding confidence interval. These
confidence bounds are computed via the PUCT algorithm (Rosin, 2011; Silver et al., 2016):

U(s, a) = cpuctP (s, a)

√∑
a′ N(s, a′)

1 +N(s, a)
(1)

where N(s, a) is the number of lookaheads that branch on action a at state s and cpuct is a constant
that controls exploration. P (s, a) represents a prior distribution over the actions for a given state. This
prior comes from the key innovation of AlphaZero, combining MCTS with a neural-network-based
policy. This policy network is trained to output a prior P (s, a) when given the state s as input. It is
trained to match the count of how many times each action was taken once MCTS terminates. This
creates a loop where MCTS finds strong paths through the tree to supervise the neural network, and
the neural network guides MCTS in future iterations to discover even stronger paths.

Expansion When MCTS reaches a state that has actions which have never been played, it can
choose to take one of these actions and create a new child node. This causes the tree to progressively
widen in areas that are sampled frequently.

Simulation The MCTS traversal is cut short when it reaches one of these newly-constructed nodes.
However, rewards are only stored at the terminal nodes of the tree. To deal with this issue, MCTS
uses a value network, which is trained to predict the value of a path originating from this state.

Backpropagation The reward (predicted by the value network or achieved at the leaf) is passed
back through the traversal path. The Q-values and visit counts of each node are updated accordingly.

After a fixed number of iterations, it commits to the action at the root having the largest number of
samples, and the resulting state becomes the new root node for MCTS. This outer loop repeats until it
has found a path to a leaf of the tree. Finally each node along this path is used as a training example
for the policy network and the reward of the path is used to train the value network. The pseudocode
for the inner loop of MCTS is given in Appendix A.2.

AlphaZero’s neural network architecture has two important feature that make it well suited for its
task. Firstly, they use convolutional neural networks which work well for games like Go which are
translationally invariant and rotationally symmetric. Secondly, they jointly train the policy network
and value network. This allows them to share a single representation and allows the value network to
leverage the more powerful training signal the policy network provides.

AlphaZero stores nodes in a tree structure where a node is reached by a single sequence of decisions.
There may be many nodes with identical state if the nodes are reached with different decision order.
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4 METHODS

We introduce Monte Carlo Forest Search, a method for adapting MCTS to the setting where policies
produce trees rather than paths, which is precisely the problem of searching for a DPLL variable
selection policy for solving UNSAT. The pseudocodes for both the inner and outer loop of MCFS
are given in Appendix A.2 and the differences with MCTS highlighted in red. We now describe
how MCFS turns trees into paths and how MCFS alters expansion, selection and value modeling of
MCTS.

4.1 TURNING TREES INTO PATHS

To evaluate a given policy, ϕ′, we need to know the associated tree size, Tϕ′(S). The simulation step of
MCTS would require visiting O(2n) states before reaching a terminal node. This is computationally
expensive, both because the absolute number of states may be prohibitively large, and because at each
node in the tree we need to query ϕ′ to decide which variable is assigned next, which is non-trivial
when ϕ′ is parameterized by a neural network. We address this by stochastically approximating
Tϕ′(S) using Knuth samples (Knuth, 1975).

Theorem 1 (due to Knuth (1975)). Let ℓP be the length of a path P sampled uniformly at random
from a binary tree T with size sT . Then, sT = EP [2ℓP ].

In the context of a DPLL solver with variable selection policy ϕ′, this amounts to replacing a complete
traversal of the binary tree of all True / False assignments with a set of paths through the tree where
assignments are chosen uniformly at random. We can take the length of the resulting paths, ℓ, and
give each node at depth d a cost of 2ℓ−d for its corresponding policy decision. The average of these
costs across a set of paths approximates the proof tree size.

4.2 SIMULATION FROM A PRE-EXISTING POLICY

Rather than querying a value network at the first time a node is encountered and backpropagating, we
callout to either (1) a pre-existing variable selection policy or (2) a value network that approximates
the tree size of this fixed policy after a fixed number of decisions ℓ2. In practice, the policies we
learn are implemented with deep neural networks, which are far more expensive to evaluate than
standard heuristics. When applying this approach to large UNSAT problems, the sheer amount of
policy network calls required to decide a policy for an entire problem will outweigh the time savings
even if the decisions result in smaller policy trees. This is especially true for smaller subproblems
that take a fraction of a second to solve with existing methods. To circumvent this bottleneck, we
leverage existing SAT solvers at both training time and testing time. After ℓ decisions, the problem
is small enough to be solved quickly and reliably using a pre-existing solver. This number of
decisions is held constant across training and testing time so that the policy network can learn to
leverage this downstream solver. A given node at depth d along the path updates its Q value with
2ℓ−dTϕsub

(S∗) + 2ℓ−d − 1, where ℓ is the fixed number of decisions before the subsolver; S∗ is
the SAT instance that is given to the subsolver; and ϕsub is the policy of the subsolver being used.
An added benefit of this approach is that the subsolver used within the model is easily replaceable,
allowing us to use the best subsolver available for whichever distribution we are targeting.

4.2.1 VALUE NETWORK FOR PRE-EXISTING POLICY

During training, rather than explicitly solving the subproblem at depth ℓ, we only need to know the
number of decisions that the subsolver would have had to make. We therefore train an additional
neural network to predict how many decisions a subsolver would require for a given SAT instance,
giving us access to a much cheaper (albeit potentially unreliable) reward signal during training.
Unlike MCTS, this value network is estimating the cost of a fixed policy. This network is trained
from an initial batch of subsolver calls and then retrained as we collect new, large batches of data, so
its performance may vary. When the output of the network is too unreliable, it may not carry enough

2Another reason to use node expansion is that it can lower the variance of the rewards below a given state.
However, we noticed empirically that the variance does not grow significantly with sample length within the
range of number of decisions before we call a subsolver. Therefore, the variance reduction does not outweigh
the benefit of removing expensive subsolver calls.
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signal about the true number of decisions for good policies to be learned. To address this challenge,
we add functionality to use a mix of calls to the subsolver and calls to our value network, proportional
to an online estimate of the accuracy of the value network. We track the mean multiplicative error
ϵ of our value network over time by querying the value network with every subsolver call. Given
a user-defined accuracy threshold parameter t (we use t = 0.5), we sample the value network with
probability 1−min(1, ϵ/t), so the probability of calling the subsolver halves as the error halves.

4.3 SELECTION

We make three deviations from Equation 1. First, we add a Qd coefficient to calibrate confidence
intervals across different depths in the tree. We select variable v = argminv′(Q(s, v′)−QdU(s, v′).
In AlphaZero, rewards preserve scale with depth, where -1 represents a loss and 1 represents a win.
Because costs in our setting scale exponentially with depth, we calibrate each depth with Qd, the
average tree size of nodes at depth d, which can be thought of as a per-depth constant. We compute
Qd online as the running average of tree sizes encountered from depth d. Second, we initialized
Q values with the first lookahead, as this represents an unbiased measure of performance of our
incumbent policy (i.e., the first sample is exactly the neural network policy), which we would like to
improve upon. This is similar to AlphaZero’s choice of initializing Q to 0, which is the baseline they
aim to improve upon. Third, we only compute P (S, a) once at each committed decision and passed
down the network prediction to its child nodes. This saves substantial computation since our calls to
the policy network tends to dominate the running time.

We also change our data structure for state transitions from a tree to a graph similar to Czech et al.
(2020) so that we are invariant to the order of past decisions. This lets us share information across
different paths to the same state which is common with variables with similar scores.

4.4 POLICY AND VALUE MODELLING

Unlike Go, SAT problems vary in size and are invariant to permutations of its rows (clauses) and
columns (variables within a clause). We capture the invariances of our problem by using an equivariant
architecture where permutations of the input guarantee a corresponding permutation in the output
and that can handle any size input matrix. We also add a third head to our network beyond the policy
and value head to predict Q-values. The purpose of the Q-value head was as an auxiliary task to help
train a better shared representation for the policy head; we observed a 5% reduction in tree size after
adding the Q-value head.

5 IMPLEMENTATION AND EXPERIMENTAL DETAILS

We integrated our MCFS algorithm into the CDCL solver Maple LCM Dist ChronoBT (Ryvchin &
Nadel, 2018), which won the 2018 SAT competition and is based on the MiniSAT framework (Eén &
Sörensson, 2003). We removed all clause-learning components so that the solver was running strictly
DPLL search. We trained our neural networks with PyTorch (Paszke et al., 2019) in Python and
ported over to our solver in C++ using tracing. We include our code in the supplementary material
and will link to a public repository at publication time. Below, we describe implementation details
and bechmarks. See Appendix B for a description of our model training.

Parameterization of MCFS Two important hyperparameters were (1) the constant for choosing
the level of exploration cpuct and (2) the number of lookaheads k. Through a coarse grid search,
we selected cpuct = 0.5 and k = 100, 000, which found the best policies within an approximate
48-hour time window. After k lookaheads, we either committed to the action with the highest counts
v = argmaxv′ N(S, v′) or sampled the best action from our current neural network policy. We set
the probability of these alternatives to 0.5 to balance on-policy and off-policy learning. Each MCFS
decision yields a training point with a (state, policy vector, Q value) triple, where the policy vector
consists of normalized counts from MCFS.

We chose ℓ = 6 and ℓ = 8 for the random and sgen distributions respectively, since that is where
MCFS tended to find the strongest policies under reasonable time constraints. We made decisions
with MCFS until depth ℓ, summing to 2ℓ decisions for every run
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Prior to a good policy network being learned, MCFS is less efficient. We pretrained our policy
network and value network by running MCFS with 10,000 lookaheads on 1,000 instances for random
and sgen. We ran one iteration of MCFS with 1,000 instances and 10,000 lookaheads to improve
the policy and value network further and then a final iteration with 2,000 instances and 100,000
lookaheads, which we used to train our final model. Each pretraining run of MCFS took approximately
24 hours and were run on 300-variable and 55-variable problems from random and sgen. The two
iterations using the prior took approximately 48 hours and was respectively run on 300-variable and
65-variable problems from random and sgen.3

Benchmarks and Baselines We targeted instance distributions that are well known and difficult
for modern SAT solvers, with similar-sized action spaces to Go. We do not consider industrial SAT
instances, as they often contain millions of variables with state spaces significantly larger than any
application of MCTS we are aware of. We evaluated our approach on a random distribution (uniform
random 3-SAT at the solubility phase transition, or R3SAT) and a crafted distribution (sgen).

For R3SAT, we followed Crawford & Auton (1996) to estimate the location of the phase transition
with a number of clauses-to-number of variables (n/m) ratio of n = 4.258 ·m+ 58.26 ·m−2/3. We
trained on 300 variable instances where calling a subsolver was quick (≈ 1 second solving time), and
filtered out SAT instances for training and testing. To evaluate upward-size generalization, we set
aside 100 test instances at our training size of 300 variables as well as at 350, 400, and 450 variables.
R3SAT is a well-studied distribution where there has been a focused algorithmic effort, making it
an especially challenging benchmark. We compare to kcnfs07 (Dequen & Dubois, 2003), which
is specifically designed for this distribution and among the strongest solvers. We used the version
submitted to the 2007 SAT competition (Berre et al., 2007), where it won the silver medal in the
Random UNSAT track, the last time it was submitted to a competition. It previously won the gold
medal at the 2005 Random UNSAT track submission.

sgen (Spence, 2010) is a hand-crafted generator that is notoriously difficult for its size. An sgen
generated instance was the smallest to be unsolved at the 2009 SAT competition. The principle
behind the generator is to ensure that many assignments must be made before reaching a conflict.
At a high level, the variables are partitioned so that variables across partitions seldom appear in
clauses together but contradictions occur across partitions so it is difficult to find a contradiction
without assigning many variables. We set the -unsat option on the generator, which guarantees
instances that contain contradictions. For similar reasons as R3SAT, we trained with 65 variables,
and to evaluate upward-size generalization we set aside 100 test instances at our training size of
65 variables as well as at 75, 85, and 95 variables. Unlike R3SAT, there are no solvers known to
perform well on this distribution. We likewise selected kcnfs07 for our sgen benchmark since it
was consistently faster than the best UNSAT solver from the most recent (2021) SAT competition,
hKis, but we also included hKis in our evaluation.

We also evaluated a uniform+kcnfs baseline for each dataset, where we replaced neural network
calls with uniform-random decisions and called the kcnfs07 solver for subproblems at the same
user-defined depth. We tried purely random decisions without calling out to the kcnfs subsolver
on 65 variable sgen problems and average running time was a factor of 40 times slower than kcnfs.
Given the poor performance, we did not run pure random beyond this dataset.

Computing Resources We ran our model training and solver benchmarking experiments on a small
cluster of approximately 20 nodes that has 20 8 GB Tesla M60 GPUs. For MCFS runs, we also used a
large shared cluster of CPU nodes. Each MCFS run was allocated 16 GB of memory and a maximum
of 48 hours. Each solver benchmarking run was allocated 8 GB of memory.

6 RESULTS

We evaluated (1) search tree size and (2) running time for our approach against the two baselines on
each of our eight test instance sets. We present the full results in Table 1. We measured running time
as the cumulative CPU and GPU time with runsolver (Roussel, 2011).

3The parameters and architecture described in this paper are only for the last iteration of MCFS. We made
several minor improvements across iterations, and we expect that the performance would have been at least as
good had we used an identical setup for all iterations.
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.
Tree size (1000s) [Reduction] CPU+GPU time (s) [Reduction]

Distribution #Vars uniform+kcnfs kcnfs07 NN (Ours) uniform+kcnfs kcnfs07 NN (Ours)

65 158.2 162.3 132.2 [1.23x] 7.2 4.0 27.4
sgen 75 1,799.3 1,792.3 1,594.0 [1.12x] 46.3 44.1 63.6

85 8,932.9 8,874.8 8,156.2 [1.09x] 213.0 219.9 217.3
95 98,534.0 97,979.7 92,407.9 [1.06x] 2364.8 2454.7 2243.7 [1.09x]

300 44.3 8.9 8.6 [1.02x] 11.5 1.9 13.9
random 350 215.7 43.3 42.7 [1.01x] 56.6 10.5 23.2

400 1,103.5 226.9 223.5 [1.02x] 290.8 53.2 66.1
450 5,207.9 989.7 994.9 1526.6 291.8 309.6

Table 1: Mean decisions (1000s) and running time (CPU+GPU s) over 100 instances of our approach,
kcnfs07, and uniform+kcnfs. The reductions in decisions and running time are reported with
respect to kcnfs.

On R3SAT, kcnfs07 is an extremely strong solver and there is a question whether there is anything
better. It far surpassed random branching on the top-level decisions (4–5x reduction in tree size
and walltime). Despite the strength of kcnfs, we were able to squeeze out 1-2% performance
improvements in term of average tree size over kcnfs07 on up to 400 variables. With the overhead
from our neural network calls, these reductions in tree size were not sufficient for improving running
time.

On sgen, there is no known specialized solver and therefore much greater scope for improvement.
kcnfs07 is not specialized for sgen; we observed that it typically found only marginally smaller
trees than the uniform+kcnfs baseline, but it was the best existing solver that we found. The best
UNSAT solver from the most recent SAT competition (hKis) was 3.2× slower than kcnfs07 (See
Appendix A.3). We reduced average tree size over kcnfs07 on our training distribution (65 variables)
by a factor of 1.23. Our model generalized well to larger problem sizes, reducing tree size even on
95-variable problems, which took approximately 40 minutes to solve and are 700x more difficult
than our training distribution. Our solver incurred roughly constant-time overhead that prevented
us from improving running time on the 65-variable and 75-variable datasets. The community cares
much more about asymptotic behaviour and we were able to improve the running time over kcnfs
by 1% on 85-variable problems and 9% (≈ 3 minutes faster) on 95-variable problems.

Our GPU overhead was especially large because of our outdated GPU hardware. We were able
to access one high-performance GPU (Nvidia TITAN Xp) for an experiment on the 65 and 75
variable sgen datasets and the 300 and 350 variable R3SAT datasets. This hardware change closed
the running-time gap between our method and kcnfs by on average 16.5 seconds on sgen and 6.1
seconds on R3SAT. We report those results in Appendix A.4.

7 CONCLUSIONS AND FUTURE WORK

In this paper, we presented Monte Carlo Forest Search (MCFS), an algorithm for finding small trees
while retaining the benefits of Monte Carlo Tree Search. Our method works when the tree size can
be approximated with Knuth samples, a cheap and unbiased Monte Carlo approximation from a
single path. We evaluated our approach on the well-known DPLL tree search algorithm for Boolean
satisfiability, where the tree size of a policy can be approximated via Knuth samples. We matched or
improved performance over a strong baseline on two well-known distributions.

In future work, we would like to generalize MCFS to CDCL solvers. Most high-performance
industrial solvers use the CDCL algorithm, which adds a clause-learning component to DPLL to
allow information sharing across the search tree. We saw no clear way of approximating the size of a
CDCL search tree with Knuth samples as unlike DPLL, policy decisions in CDCL are made with
knowledge of the history of past decisions. We would also like to focus on richer experimental results
that go beyond this methodologically-focused paper. We would like to explore more distributions
(especially those with weaker solvers), experiment with other subsolvers beyond kcnfs, and add
more computation time for additional lookaheads per instance and deeper searches.
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Reproducibility Statement In Section 5, we describe our datasets, baselines, experimental pipeline,
and compute resources. We present the pseudocode of our algorithm in Appendix A.2 and the model
training details in Appendix B. The supplementary material contains our source code and datasets.
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A APPENDIX

A.1 DPLL

The DPLL algorithm makes calls to two subroutines.

Unit Propagation Unit propagation finds all unit clauses, or clauses which contain only a single
unassigned literal. It then removes all other clauses which contain that literal; from all clauses that
contain the literal’s complement, it removes the literal’s complement.

Pure Literal Assignment Pure literal assignment finds all literals such that their complements are
not present in the SAT instance, which are known as pure literals. It then removes every clause that
contains a pure literal.

Algorithm 1 DPLL
Input: SAT instance S, policy ϕ

S ← UnitPropagation(S)
S ← PureLiteralAssign(S)
if S is empty then

return True
end if
if S contains an empty clause then

return False
end if
v ← ϕ(S)
return DPLL(S∧v = 0) OR DPLL(S∧v = 1)

A.2 MONTE CARLO FOREST SEARCH PSEUDO-CODE

The red text represents where we diverge from MCTS.

Algorithm 2 MCFS: Inner Loop
Input: SAT instance S, subsolver policy ϕsub, policy depth ℓ

Scurr ← S, D ← {}
while i < ℓ do

Choose variable xi ∈ Scurr with lowest LCB: Q(S, v)−QdU(S, v)
Append (xi, Scurr) to D
Draw z from Bernoulli with p = 0.5
Scurr ← Scurr ∧ (xi = z)
Scurr ← DPLLstep(Scurr)
i← i+ 1

end while
Cost← Tϕsub

(Scurr)
j = 0
for (x, S) in D do

Update LCB with cost 2ℓ−jCost + 2ℓ−j − 1
j ← j + 1

end for
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Algorithm 3 MCFS: Outer Loop
Input: SAT instance S, subsolver policy ϕsub,

number of iterations k, policy depth ℓ

Sroot ← S
Initialize Q values for every state to the value of single lookahead
while i < ℓ do

Set P (S′, v)← P (Sroot, v) for all S′ and v
j ← 0
while j < k do

MCFSInnerLoop(Sroot, ϕsub, ℓ)
j ← j + 1

end while
if Random draw with p=0.5 is True then

Set vbest to the variable with the highest count after inner loop
else

vbest ← argmaxP (Sroot, v)
end if
Draw z from Bernouli with p = 0.5
Sroot ← Sroot ∧ vbest = z
i← i+ 1

end while

A.3 HKIS V.S. KCNFS07 ON SGEN

Tree size (1000s) CPU+GPU time (s)
# Vars hkis kcnfs07 hkis kcnfs07
65 422.1 162.3 12.2 4.0
75 2,996.7 1,792.3 127.7 44.1
85 111,435.8 97,979.7 699.1 219.9

We leave out 95 variables as hKis was not able to solve any problem within 6 hours.

A.4 FASTER GPU BENCHMARKING

CPU+GPU time (s)
Distribution # Vars uniform+kcnfs kcnfs07 NN (Ours)
sgen 65 4.2 2.3 8.1
sgen 75 24.7 23.1 27.1

R3SAT 300 6.3 1.3 7.2
R3SAT 350 29.7 5.7 12.3

B MODEL TRAINING

We used the exchangeable architecture of Hartford et al. (2018). We represented a CNF SAT instance
with n clauses and m variables as an n×m× 128 clause-variable permutation-equivariant tensor,
where entry (i, j) is tv if the true literal for variable i appears in clause j, fv if the false literal
for variable i appears in clause j, and 0 otherwise. tv and fv are random 128-dimensional vectors
representing the true and false embeddings for a given literal. Following Hamilton et al. (2017),
we also added a node degree feature to every literal embedding. We instantiated the permutation-
equivariant portion of the exchangeable architecture as four exchangeable matrix layers with 512
output channels, with leaky RELU as the activation function. We mean-pooled the output to a vector,
with each index representing a different variable. We experimented with attention pooling in the last
exchangeable layer but didn’t observe any improvements.

Given these shared exchangeable layers, we added three feed-forward heads: a policy head, a Q-value
head, and a value head. The policy and Q-value heads both had two feed-forward layers with 512
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channels and a final layer that mapped to the single output channel. The value head was the same,
except there was a final mean pool that output a single scalar. The policy head was trained to predict
the normalized counts of MCFS and the Q-value head was trained to predict the Q-values from
MCFS. We used the cross-entropy loss for both. The purpose of the Q-value head was as an auxiliary
task to help train a better shared representation for the policy head; we observed a 5% reduction in
tree size after adding the Q-value head. We trained the value network with mean-squared error (MSE)
against the log2 tree size of subsolver calls at leaf nodes. The value head was not backpropagated
through the exchangeable layers. Using a shared representation was important for training the value
head; MSE tended to be a factor of 2 worse when using a network trained with only a value head.

For training the exchangeable architecture, we used the Adam optimizer (Kingma & Ba, 2014), with
a learning rate of 0.0001 and a batch size of 1 (the largest batch size that fit on our 8 GB GPUs).
Online, we branched on the argmax variable from our neural network prediction. We used a held-out
validation set to select a model that produced the minimum mean tree size when used within a DPLL
solver. For a given depth d, MCFS makes 2d decisions; therefore, we received exponentially more
data points at deeper depths where decisions are less important. We experimented with exponentially
upsampling nodes inversely proportional to their depth but observed no performance gains. For every
leaf node, we recorded the true tree size to train our value network.
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