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Abstract

Understanding Neural Networks by studying their underlying geometry can help us design
more robust training methodologies and better architectures. In this work we approach this
problem via the lens of subspace clustering, where each input in the representation space is
represented as a linear combination of some other set of inputs. Such structures are called
self-expressive structures and in this work we analyse their evolution and juxtapose their
ability with linear classifiers. We also perform an analysis of the subspace clustering based
analysis and compare with other analysis tools to demonstrate how they are related but dif-
ferent formulations of one another. Additionally, we monitor the evolution of self-expressive
structures in networks trained to memorise parts of their training data and how they differ
from networks which generalise well. Next, as a step to test the limitations of the proposed
subspace clustering approach and other linear probing methodologies in the literature we
perform a similar set of tests on networks with non-linear activation functions and demon-
strate weakness of linear structures in differentiating between models with generalisation
and memorisation. Finally, we analyse the relationship between networks trained over cross
entropy loss and subspace separation loss to better understand how self expressive structures
emerge in neural networks just trained to classify data.

1 Introduction

Analysing structures in representations of trained Neural Networks has been the subject of interest for many
post-hoc interpretability methods Räuker et al. (2023). Kornblith et al. (2019) propose a Centered Kernel
Alignment (CKA) (Cortes et al., 2012) based similarity measure between linear kernels of network activations
(Linear-CKA) that been used to compare deep and wide neural networks in Nguyen et al. (2021), analysing
Vision Transformers Dosovitskiy et al. (2021) vs ResNets He et al. (2015) in Raghu et al. (2021), comparing
effects of loss functions Kornblith et al. (2021a), differences between self-supervised and supervised methods
Grigg et al. (2021a) and differences between self-supervised objectives for Vision Transformer representations
Shekhar et al. (2023).
Recently, works like Ding et al. (2021) and Davari et al. (2022b) have demonstrated that Linear-CKA Korn-
blith et al. (2019) similarity is usually dominated by similarity between singular vectors of neural activations
possessing the largest singular values, thereby rendering it insensitive to differences in singular vectors with
smaller singular values. Ding et al. (2021) propose a sensitivity test to rigorously evaluate similarity measures
by observing the effects of changes in internal representations of a network on a linear classifier’s performance
on those representations. Taking into account the observations made in Ding et al. (2021) about the spectral
behaviour of Linear-CKA we motivate a Low Ranked Subspace Clustering (LRSC) (Vidal & Favaro, 2014)
based pairwise affinity measure in conjunction with CKA and show its relationship to Linear-CKA (Korn-
blith et al., 2019). We demonstrate how this choice ameliorates some issues raised by Ding et al. (2021)
regarding Linear-CKA while also offering a more extensive comparison between the two in Section 5.
Since an LRSC Kernel over neural activations highlights self-expressive structures Elhamifar & Vidal (2013)
in neural representations, the combination of LRSC with CKA compares the similarity between self-expressive
structures of 2 neural representations. In Section 6 we demonstrate that self-expressive structures become
more class-concentrated as measured by its subspace representation reconstruction (sub. recon.) (Wright
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et al., 2009; You et al., 2020) as we go deeper in the network’s layers. Furthermore, this reconstruction based
accuracy strongly correlates with a linear probe’s Alain & Bengio (2018) performance on the same internal
representations, thereby serving as a tool to understand intermediate representations of neural networks via
computing just its singular vectors. Additionally in Section 6.2 we analyse networks which generalise well
and compare them to networks which memorise parts of their training set and observe that for most of the
layers of these 2 networks the learnt representations are similar and the dissimilarities between them only
appear in the last few layers where each network learns markedly different representations. These observa-
tions are in alignment with results from (Morcos et al., 2018; Stephenson et al., 2021; Davari et al., 2022a).
In Section 7 we explore the limits of representations analysis using tools that approximate linear subspaces.
In this setup we use rational activations (Boullé et al., 2020) based ResNets and compare them with ReLU
based ResNets under settings of generalisation and memorisation. We test the efficacy of LRSC-CKA and
Linear-CKA to discern differences between rational networks with varying generalisation performance and
demonstrate deficiencies in their ability to discover meaningful differences between networks trained in dif-
ferent regimes. We then take another prominent approach for representation analysis called Mean-Field
Theoretic Manifold Analysis (MFTMA) (Stephenson et al., 2021) and demonstrate similar deficiencies its
ability for the same task.
Finally in Section 8 to understand the emergence of self-expressive structures in networks trained on
Cross-Entropy loss we compare these networks with networks trained on Maximum Coding Rate Reduc-
tion(MCRR)(Yu et al., 2020) Loss. MCRR Loss encourages the model to separate out data points from
different classes into different subspaces, thereby encouraging the development of self-expressive structures.
In doing such a comparison we find that final layers of cross entropy trained networks indeed share similarity
with networks trained on MCRR loss, thereby indicating formation of self-expressive structures.

2 Related Work

Understanding neural networks via comparing the similarity of their internal representations has been the
subject of various lines of research with many different similarity measures. To begin with, Raghu et al.
(2017) propose a Canonical Correlation Analysis (CCA) HOTELLING (1936) based tool called SVCCA,
which uses an SVD over the representations of the network to remove noise before proceeding to compare
them using Canonical Correlational Analysis. Building upon SVCCA, Morcos et al. (2018) propose a dif-
ferent weighting of canonical correlations, thereby calling their methodology Projection Weighted Canonical
Correlation Analysis (PWCCA). Subsequently Kornblith et al. (2019) which utilises Centered Kernel Align-
ment (CKA) (Cortes et al., 2012) to measure similarities between kernels derived out of layerwise activations
demonstrates some limitations of CCA in terms of its inability to discover architecturally identical layers in
networks trained with different initialisations. Similar limitations of CCA based methods are also demon-
strated in Ding et al. (2021). Kornblith et al. (2019) predominantly utilises linear kernels for measuring
similarity between networks and therefore we shall refer it to as Linear-CKA.
Other representation similarity based approaches like Kriegeskorte et al. (2008) perform representation simi-
larity analysis by computing correlations between representation similarity matrices based on various distance
measures. Shahbazi et al. (2021) compares the similarity of representations by considering the distances of
positive semi-definite kernels on the Riemannian manifold. AGTIC (Lin & Kriegeskorte, 2020) proposes
an adaptive similarity criteria that ignores extreme values of similarity in the representations. Tang et al.
(2020) utilises Normalised Bures Similarity (Muzellec & Cuturi, 2019) to study similarity of neural networks
with respect to layerwise gradients.
Beyond just utilising representations, works like Representation Topology Divergence (Barannikov et al.,
2022) learn a graph based on embeddings and then computing similarity based on various connected com-
ponents in the graph. Works like Lu et al. (2022) try to use cosine information to compute an adjacency
matrix and study the modularity Newman & Girvan (2004) of the resulting graph. Similar approach was
also taken in Saini et al. (2021) which computes a graph based on sparse subspace representation Elhamifar
& Vidal (2013) and analyses the modularity of such graphs, along with using CKA (Kornblith et al., 2019)
to compute the similarity between graphs.
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3 Background

In this section we establish the foundation for the tools used and procedures adopted in our Subspace based
analysis of Neural Network Representations. We begin by laying the background on Low Ranked Subspace
Clustering (LRSC) (Vidal & Favaro, 2014) and provide justification for its use in Section 3.1. Then in
Section 3.2 we describe Centered Kernel Alignment or CKA (Cortes et al., 2012; Cristianini et al., 2001), a
well known technique for representation similarity comparison. We then combine LRSC with CKA and the
resultant approach is described in Section 4.1.

3.1 Low Rank Subspace Clustering

Given a Matrix X ∈ Rd×N of N data points which in the context of this study will be activations of
hidden layers of a Neural Network. Low Rank Subspace Clustering or LRSC Vidal & Favaro (2014) tries to
uncover the underlying structure of the data in this union of subspaces. LRSC accomplishes this by trying
to find a low rank representation of each point subject to Self-Expressiveness Vidal (2011) constraint, where
each point is expressed as a linear combination of other points in the subspace. More concretely, given a
low rank matrix X = [x1, . . . , xN ] where xi ∈ Rd ∀ i. The goal of LRSC is to learn an affinity matrix
C = [c1, . . . , cN ] ∈ RN×N where each column ci ∈ RN is the representation of xi as a linear combination
of other data points xj ’s ∀ j. More specifically each entry Cij in the matrix C denotes the weight of xj in
the self-expressive reconstruction of xi.
A noiseless version of LRSC Vidal & Favaro (2014), henceforth called LRSC-Noiseless, aims to solve the
objective in Equation 1.

min
C

rank(C) s.t. X = XC. =⇒ C∗ = V1V T
1 where X = U1Σ1V T

1

Where U1Σ1V T
1 is the Truncated SVD of X

(1)

Our goal in utilising LRSC is to analyse and compare internal activations of neural networks over a set of
N data points in an architecture agnostic manner. Therefore, we utilise the noise-robust version of LRSC,
as proposed in Vidal & Favaro (2014) and also shown in Equation 2. Utilising subspace clustering helps us
learn a pairwise affinity kernel or a graph between N data points. Doing so helps us represent every layer
of a neural network as an RN×N matrix, which is architecture agnostic, thereby facilitating analysis and
comparisons of different layers of same and different networks.

min
C
∥C∥∗ +

τ

2
∥X −XC∥2

F s.t. C = CT . =⇒ C∗ = V P 1
√

τ
(Σ)V T = V1(I − 1

τ
Σ−2

1 )V T
1

Pϵ(σ) =

{

1− ϵ2

σ2 , σ > ϵ

0, σ ≤ ϵ
& X = UΣV T is the Full SVD

∥C∥∗ =
∑

i

σi(C) - where σi denotes the ith singular value of C

Note that V1 and Σ1 denote the truncated V and Σ based on diagonal 0’s in P 1
√

τ
(Σ)

(2)

3.2 Centered Kernel Alignment

Starting with Kornblith et al. (2019), Centered Kernel Alignment or CKA (Cortes et al. (2012),Cristianini
et al. (2001)) has emerged has a key tool to analyse representations of Neural Networks (Raghu et al.
(2021),Nguyen et al. (2020),Grigg et al. (2021b),Nguyen et al. (2022)). Given 2 neural activation matrices
of layer i and j, namely X ∈ Rdi×N and Y ∈ Rdj×N , Linear-CKA Kornblith et al. (2019) computes their
respective RN×N inner product kernels K = XT X and L = YT Y. It then utilises CKA to compute a
similarity between two general kernels as shown in the Equation 3, where the equality on the left computes
the CKA similarity between any pairwise similarity matrices K and L. Similarly, the equality on the right,
also called CKALin, is a derived form of CKA for linear kernels XT X and YT Y where λi

X , λj
Y are the ith

and jth squared singular vectors and vi
X , vj

Y are the ith and jth right singular vectors of activation matrices
X and Y respectively. Note that, HSIC or Hilbert Space Independence Criterion Gretton et al. (2007) used
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in Equation 3 is a way to compute the similarity between two RN×N kernel matrices and serves as the
backbone of CKA.

CKA(K, L) =
HSIC(K, L)

√

HSIC(K, K)HSIC(L, L)
, CKALin(K, L) =

∑r1

i=1

∑r2

j=1 λi
Xλj

Y ⟨vi
X , vj

Y ⟩2
√

∑r1

i=1

(

λi
X

)2

√

∑r2

j=1



λj
Y

2

where HSIC(K, L) =
tr(HKHHLH)

(N − 1)2
and H = I − 1

N
11T

(3)

While for the purposes of this work we do refer to Kornblith et al. (2019) as Linear-CKA, the authors of
Kornblith et al. (2019) also experiment with other Kernels like the Radial Basis Functions and demonstrate
their effectiveness. Nguyen et al. (2022) is another study in the line of analysing neural representations that
studies the application of general non linear kernels to analyse neural representations with CKA.

4 Method

We now describe the methodologies used in this study to analyse neural networks. We begin by describing
how we use LRSC based affinity matrices to compute LRSC-CKA and a Subspace Representation based
classifier in Section 4.1 and Section 4.2, respectively. Then as a counter-part to Section 4.2 and analogous to
the methodology adopted in Saini et al. (2021) we define a Linear-CKA based classifier scheme in Section 4.3.
Lastly, in Section 4.4 we describe the configurations and protocols for training followed in subsequent sections.

4.1 LRSC-CKA

Algorithm 1: All pairs CKA

Data: Activation Matrices: [X1, . . . , Xl]
Result: Affinity Matrices: C = [C1, . . . , Cl]
Pairwise LRSC-CKA: S ∈ R

l×l
+ .

1 initialization: C = [];
2 S = 0;
3 for i← 1 to l do
4 Given Xi, Compute Ci based on Equation 1

or Equation 2 for LRSC-CKA or let
Ci = XT

i Xi for Linear-CKA;
5 C.append(Ci);

6 end
7 for i← 1 to l do
8 for j ← 1 to l do
9 Sij = CKA(Ci,Cj) - Equation 4;

10 Use Equation 3 for Linear-CKA.

11 end

12 end

CKALRSC(CX, CY) =

∑τ1

i=1

∑τ2

j=1⟨vi
X , vj

Y ⟩2√
τ1
√

τ2

(4)

Based on discussions in Section 3 we frame LRSC-
CKA as a spectral variant of Linear-CKA, an exper-
imental analysis for establishing that is conducted
in Section 5.2. Please note for all the results used
throughout the paper we use Equation 2 to compute
the LRSC Affinity Matrices, but for simplicity, let’s
consider a noiseless version of the problem described
in Equation 1. Given neural activation matrices for
layer i and j as X ∈ Rdi×N and Y ∈ Rdj×N , we first
compute their respective LRSC Affinity matrices de-
noted CX and CY based on Equation 1. Based on the
formula for Linear-CKA utilising the Singular Value
Decomposition of activation matrices X and Y as
shown in Equation 3, we write an analogous formula
for LRSC-CKA in Equation 4 for low rank approxi-
mations of X with rank τ1 and Y with rank τ2. Unless
otherwise stated, for all LRSC-CKA computations in
this study we select the low rank τ as the number
of components which explain 80% of the variance in
the matrix. Using the noiseless variant of LRSC from
Equation 1 allows us to more easily demonstrate that
LRSC-CKA is a uniformly weighted sum of pairwise
cosine similarities of top τ right singular vectors of X

and Y. In contrast to Linear-CKA from Equation 3
this uniformity over a set of τ singular vectors en-
sures that LRSC-CKA is sensitive to changes beyond

the dominant singular vectors, an issue that plagues Linear-CKA Ding et al. (2021),Davari et al. (2022b)
and algorithm 1 describes the process for computing LRSC-CKA for a given neural network.
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4.2 Subspace representation based classification

Next, we describe subspace representation reconstruction (sub. recon.) based classification from Wright
et al. (2009),You et al. (2020). Given a point xi ∈ R

d and its self expressive encoding ci ∈ R
N learned

via LRSC a per-class, reconstruction residual as defined in Equation 5. Once r
(k)
i for all classes have been

computed, xi is then assigned to the class, c, with the smallest residual norm ∥r(c)
i ∥2. A higher value in

this metric indicates a higher degree of co-planarity of a data point with respect to other points of the same
class among different classes. Since LRSC encodes the degree of co-planarity between data points, layerwise
LRSC-CKA is essentially a metric of similarity based upon co-planarity of data point xi’s across various
layers of a network. Computation of a subspace reconstruction based class label only requires an SVD of
activations Xl of a set of inputs for a given layer, which is obtained as a consequence of computing LRSC-
CKA between any 2 layers. It doesn’t require any additional training of linear classifiers for that layer’s
activations, thus making it a viable probe to evaluate linear structures in the activation space of a network.

The computation of subspace reconstruction based classification for every layer of the network is performed
as follows - (1) Using algorithm 1 for LRSC computation we obtain the set of layerwise LRSC matrices ¶Cl♢.
(2) Given each Cl ∈ R

N×N encodes the subspace representations for at network layer l for inputs x1, . . . , xN .

For each input xi we compute the class-wise subspace residual r
(k)
i as defined in Equation 5 over all classes

and assign it the label c = arg min
k

∥r(k)
i ∥ and do so for all inputs i over all layers l.

4.3 Linear CKA Coefficient based classification

To devise an approximate analogue of subspace representation reconstruction from Section 4.2 for Linear-
CKA, we follow affinity coefficient based classification as defined in Saini et al. (2021) to construct a linear
kernel coefficient based classification heuristic for Linear-CKA. Unlike subspace reconstruction based metric
defined in Section 4.2 which measures co-planarity of data points, a high Linear-CKA coefficient based
classification accuracy only provides information about the cosine similarity of a given data point xi in
terms of its class coherence. A high accuracy here indicates that most members of a class share a high
cosine similarity, which is more limiting than subspace reconstruction based accuracy of Section 4.2 as high
co-planarity doesn’t need high cosine similarity. In Section 6 we test both subspace reconstruction and
Linear-CKA Coefficient based classification schemes in terms of their correlation to a linear classifier and
demonstrate the efficacy of subspace reconstruction based measure. The computations involved for Linear-
CKA Coefficient based classification is as follows - (1) First similar to Section 4.2 we use algorithm 1 to
compute Linear-CKA for a network and simultaneously obtain a layerwise set of Linear Kernels ¶Ki♢. (2)
Given a Linear-Kernel K ∈ R

N×N
++ of activation matrix X = [x1, . . . , xN ] we compute the affinity of xi to class

k based on the formula in Equation 6 for inputs i over all classes k and assign xi the label c = arg max
k

a
(k)
i .

r
(k)
i = xi −

∑

xj∈X(k)

cijxj

xj ∈ X(k) - the set of examples in class k.

(5)
a

(k)
i =

∑

xj∈X(k)

⟨xi, xj⟩
∑

m

⟨xi, xm⟩

xj ∈ X(k) - the set of examples in class k.

(6)

4.4 Experimental Setup

For the purpose of experiments conducted in this work, we train ResNets He et al. (2015) on CIFAR10
and CIFAR1001 using the code available here2. For ResNets trained on CIFAR10 and CIFAR100 with
correct class labels we use a learning rate of 0.1 with a weight decay of 0.0001 trained for 164 epochs with a
learning rate step size change milestones at epoch 81 and 122 with a gamma of 0.1. For the same ResNets
but with a training regime around data memorisation or noisy labels as explained later in Section 6.2, we
use a learning rate of 0.1 with a weight decay of 0.0005 and training time of 200 epochs with a cosine

1https://www.cs.toronto.edu/ kriz/cifar.html
2https://github.com/bearpaw/pytorch-classification
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Figure 1: LRSC-CKA with varying levels of network depth to compare subspace evolution. Figure 1a and
Figure 1b - CIFAR 10. Figure 1c and Figure 1d - CIFAR100. LRSC-CKA and Linear CKA discover a
common set of high similarity layers in the network with a reduction in consensus arising for layer which
share lower similarity.

annealing based learning rate scheduler, similar to the setup followed in Forouzesh et al. (2022), both for
CIFAR10 and CIFAR100. For Rational Neural Network Boullé et al. (2020) experiments on CIFAR10 in
Section 7 we use the same parameters for correctly trained ResNets and for noisy training of Rational
Neural Networks, we correspondingly use the same parameters as noisy ResNets as described earlier. For
LRSC-CKA computations, unless otherwise stated we use a variance threshold of 80%. For training Linear
classifiers on internal representations of networks the classifier size is the same as ambient dimension size
and the learning rate is set to 0.001 with training for 164 epochs. For analysing ResNets in the Maximum
Coding Rate Reduction (MCRR) Yu et al. (2020) in Section 8 we follow the network, hyper-parameter and
dataset setup provided by authors in their paper.

5 Comparing Low Rank Subspace Clustering based CKA and Linear-CKA

Our goal is to analyse the role played by the singular value spectrum of activations of a given neural network
and how different functions over the spectrum yield different interpretations. More specifically, as shown
in Section 4.1 LRSC imposes a shrinkage operator like step-function over the singular values. Singular
values below a certain rank are 0 and the rest are given an equal weight. Whereas by contrast as shown
in Section 3.2, Linear-CKA squares the singular values of the representation matrices, which causes it to
be more sensitive to singular vectors with high singular values, as shown in Section 5.2,Ding et al. (2021)
and Davari et al. (2022b). A more analytical analysis of this fact is performed in Appendix A. Before
performing a rigorous analysis comparing the 2 methods, we show some basic results next.

5.1 A Simple comparison between LRSC-CKA and Linear-CKA

To begin, we show LRSC-CKA computations and corresponding Linear-CKA computations on ResNets
trained on CIFAR10 and CIFAR100 and demonstrate the results in Figure 1, where Figure 1a is the LRSC-
CKA of a network on CIFAR10 and Figure 1b is the corresponding Linear-CKA. Figure 1c and Figure 1d
contain the corresponding CIFAR100 analysis. We observe that both LRSC-CKA and Linear-CKA discover
largely similar similarity patterns with some differences about which regions of the network have a lower
similarity. Next in Figure 2 we compare LRSC-CKA in a high and low variance setting across 2 mutually
exclusive sample sizes on CIFAR10 with Linear-CKA. For the rest of the experiments we use the smaller
probing set unless otherwise stated. We observe that when comparing a low variance LRSC-CKA setup as
shown in Figure 2a and Figure 2d to Linear-CKA in Figure 2c and Figure 2f both setups indicate same regions
of the network as one sharing a high similarity but slightly differ in their degree of dissimilarity for regions
with lower CKA scores, with LRSC-CKA at 10% variance find virtually no similarity between initial and final
layer and Linear-CKA finding modest similarity. Given the block-structure similarity between Linear-CKA
and LRSC-CKA at such a low variance, it becomes clear that Linear-CKA pays a lot of attention to the
topmost singular vectors, and any difference between this instantiation of LRSC-CKA and Linear-CKA is
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Figure 2: Figure 2a - Figure 2c shows LRSC-CKA with varying levels of variance preserved vs Linear-CKA
on a CIFAR-10 set of 500 images. Figure 2d - Figure 2f shows LRSC-CKA with varying levels of variance
preserved vs Linear-CKA on a CIFAR-10 set of 2500 images. Network ResNet20.
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Figure 3: Figure 3a - Figure 3c shows LRSC-CKA with varying levels of variance preserved vs Linear-CKA
on a CIFAR-100 set of 600 images. Figure 3d - Figure 3f shows LRSC-CKA with varying levels of variance
preserved vs Linear-CKA on a CIFAR-100 set of 3000 images. Network ResNet20.

mostly along the rest of the singular vectors of the 2 representations, which is captured by a higher variance
instantiation of LRSC-CKA as shown in Figure 2b and Figure 2e. An analogous analysis for CIFAR100 is
performed in Figure 3.

5.2 Spectral analysis of LRSC-CKA and Linear-CKA

When computing the similarity between neural activation matrices X and Y , Linear-CKA computes a
weighted average over the cosine similarities of left singular vectors of X and Y as shown in Equation 3
and (Noiseless) LRSC-CKA computes a uniformly weighted average of those components up to a certain
rank. Recent works (Ding et al. (2021),Nguyen et al. (2022),Davari et al. (2022b)) have shown that Linear-
CKA is mostly sensitive to changes in directions of topmost principal components and not sensitive to lower
principal component deletion. We demonstrate that by the virtue of uniformly weighting cosine similarity’s
of principal components (PC), LRSC-CKA is sensitive to changes with greater uniformity. Similar to the
protocol followed in Ding et al. (2021) we describe the principal component (PC) sensitivity tests and present
the results in Table 1.
Given the original neural activation matrix X for a given layer and a set of its low rank representations S, we
perform a spectral sensitivity analysis comparing LRSC-CKA and Linear-CKA along the lines of Ding et al.
(2021). For the Top PC Addition Test in Table 1 the set S consists of low rank representations starting with
the first PC and going up to a representation that contains the top 50% PCs. The bottom PC Deletion Test
starts with top 80% Principal Components and removes them down to top 30% PCs, the lowest 20% PCs are
not used to maintain a parity for comparison. For the purpose of experimental validation we perform this
analysis on the last 5 layers, just like in Ding et al. (2021) and report the average for each network. Given
Low Rank Representations S = ¶Xτ♢τ2

τ1
, where τ1 and τ2 denote the start and end for number of principal

components in the low rank representation. The Principal Component Sensitivity Test for a given layer is
performed as follows -

1. Given the layer’s neural activation matrix X, compute the linear probe accuracy, denoted f(X),
LRSC affinity matrix based on Equation 2 denoted by CX and Linear Kernel KX = XT X.

2. For each low rank representation Xτ ∈ S:
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• Compute f(Xτ ), CXτ
and KXτ

- The linear probe accuracy, LRSC Affinity and Linear Kernel
of the said low rank representation.

• Compute ♣f(X) − f(Xτ )♣, the difference in linear probe accuracies between the original repre-
sentation and the low rank representation.

• Compute CKA(CX , CXτ
) and CKA(KX , KXτ

), the LRSC-CKA and the Linear-CKA between
the original and low rank representation.

3. Compute the Pearson’s Correlation Coefficient ρ between ♣f(X) − f(Xτ )♣ and CKA(CX , CXτ
) or

CKA(KX , KXτ
) to compute the sensitivity for LRSC-CKA and Linear-CKA respectively. Please

note that as 2 representations become similar, their CKA score will increase and the linear probe’s
accuracy difference between them will decrease, therefore we expect ρ to be more negative in case
of higher sensitivity.

We present the results of this procedure over 5 different random seeds of ResNet20 on CIFAR10 and CI-
FAR100 in Table 1. For each network we perform the Principal Component Sensitivity Test on the last 5
layers and compute Pearson’s Correlation Coefficient for LRSC-CKA and Linear-CKA for each layer and
show the mean and standard deviation. We observe that for Top PC Addition Test both LRSC-CKA and
Linear-CKA are sensitive to changes in the Top most Principal Components. But for changes in lower princi-
pal components as demonstrated by the Bottom PC Deletion Test we observe that LRSC-CKA is much more
sensitive than Linear-CKA. Therefore, LRSC-CKA has a higher sensitivity to change throughout the spec-
trum of an activation matrix as opposed to Linear-CKA, which is sensitive only to changes in the topmpost
PCs Ding et al. (2021),Nguyen et al. (2022),Davari et al. (2022b). A theoretical analysis of this phenomena
is further presented in Appendix A.

Top Principal Component Addition Sensitivity Test
Setup → CIFAR10 Network R20 CIFAR100 Network R20
CKA ↓ V1 V2 V3 V4 V5 V1 V2 V3 V4 V5

ρ - LRSC
µ -0.88 -0.9 -0.88 -0.9 -0.89 -0.98 -0.98 -0.99 -0.98 -0.98
σ 0.07 0.05 0.06 0.05 0.07 0.009 0.004 0.005 0.007 0.005

ρ - Linear
µ -0.96 -0.96 -0.97 -0.97 -0.95 -0.85 -0.85 -0.85 -0.84 -0.85
σ 0.04 0.03 0.02 0.04 0.05 0.14 0.13 0.15 0.15 0.14

Bottom Principal Component Deletion Sensitivity Test
Setup → CIFAR10 Network R20 CIFAR100 Network R20
CKA ↓ V1 V2 V3 V4 V5 V1 V2 V3 V4 V5

ρ - LRSC
µ -0.93 -0.95 -0.93 -0.94 -0.93 -0.94 -0.95 -0.96 -0.95 -0.96
σ 0.02 0.01 0.01 0.02 0.02 0.03 0.02 0.01 0.02 0.009

ρ - Linear
µ -0.51 -0.53 -0.62 -0.44 -0.45 -0.53 -0.55 -0.55 -0.57 -0.56
σ 0.74 0.63 0.45 0.75 0.68 0.79 0.8 0.8 0.8 0.79

Table 1: Avg. Pearson Correlation Coefficients ρ for Principal Components Additional and Deletion Tests
for Linear-CKA and LRSC-CKA. 5 Networks with different initialisations used for each dataset, denoted
V1-V5. This shall be the norm for using this notation for subsequent experiments unless otherwise stated.

6 Subspace Analysis of Networks with LRSC-CKA

Having established similarities and differences between Linear-CKA and LRSC-CKA in Section 5 we now
undertake a more detailed analysis of networks with LRSC-CKA. In Section 6.1 we try to understand the
evolution of self-expressive structures throughout the network and measure the correlation of their functional
performance, as defined in Section 4.2, to that of a respective linear-classifier. In Section 6.2 we further
investigate the self-expressive structures present in network trained to memorise parts of their training input
and corroborate the results observed in Section 6.1. We also show that networks which memorise are similar
to networks that generalise in all but the last few layers, indicating that changes as a result of noisy training
needed to achieve memorisation might manifest more strongly in the latter layers of the network.
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6.1 Self-Expressive Structures in the Latent Representations of Neural Networks

The LRSC Affinity matrix for each layer of a neural network encodes each input activation in terms of the
Self-Expressive structures present in that representation, much like how Linear-CKA encodes every input in
terms of its dot product with all other inputs. Computing the similarity between the LRSC affinity matrices
of any two layers using CKA thus provides a measure of similarity between the self-expressive structures
encoded by the two representations. To supplement this analysis, we also explore the class label homo-
geneity/cohesiveness in composition of the self-expressive structures via a reconstruction classification as
described in Equation 5, and we discuss those results next with additional results included in Appendix B.
In Figure 4 we plot the pairwise LRSC-CKA Heatmaps and layerwise subspace reconstruction based classi-
fication for ResNets trained on CIFAR10 and CIFAR100. We observe that as we go deeper in the network,
the subspace reconstruction based classification accuracy (blue line) rises rapidly, indicating that as we go
deeper a network separates out classes into separate subspaces. The subspace reconstruction based accu-
racy (blue line) also strongly correlates with the accuracy of a linear-classifier (orange line) trained on the
representations of that layer, as shown in Table 2. That is, as we go deeper in the network, the data in
addition to being more linearly separable w.r.t. class labels also becomes more self-expressive w.r.t. class
labels. Such a high correlation demonstrates the predictive classification power encoded in self-expressive
structures despite not necessarily being linearly-separable Elhamifar & Vidal (2013) and not being enforced
during the training of the network.
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Figure 4: Comparison between layer-wise linear probe accuracy vs subspace reconstruction based classifica-
tion accuracy on various networks trained on CIFAR 10 (Figure 4a-Figure 4b) and CIFAR100 (Figure 4c-
Figure 4d). We observe that as we go deeper in the networks, the subspace reconstruction accuracy increases
proportionally with the linear probe accuracy for those representations, indicating a strong correlation which
is quantitatively analyzed over different network sizes in Table 2.

Pearson’s Correlation ρ - layer wise linear probe accuracy vs metrics
Datasets−→ CIFAR 10 CIFAR 100

Metric ↓ R20 R56 R101 R164 R20 R56 R101 R164
LRSC recon. acc. 0.940 0.909 0.920 0.883 0.905 0.931 0.942 0.888

LRSC coeff. acc. 0.933 0.897 0.897 0.851 0.902 0.917 0.918 0.871
LinCKA coeff. acc. 0.903 0.865 0.864 0.820 0.845 0.888 0.897 0.816

Table 2: Pearson’s Correlation Coefficient ρ between layer wise linear probe accuracies and LRSC-CKA and
Linear-CKA metrics based accuracy for networks with different depths trained on CIFAR10 and CIFAR100.

In Section 8, we further explore the emergence of self-expressive structures in neural networks by comparing
networks trained on the cross-entropy loss vs those trained on Maximum Coding Rate Reduction (MCRR)
loss Yu et al. (2020), a measure that ensures that features of data from different classes belong to different
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linear subspaces, thereby encouraging the model to learn self-expressive structures.
Next in Section 6.2, a similar analysis on behaviour of self-expressive structures in networks which memorise
a part of their training data and thus poorly generalise is presented in Section 6.2. One of the goals
in doing so is to establish that the performance correlation between linear probe accuracy and subspace
reconstruction accuracy shown in Table 2 is not dependent on a network’s generalisation ability, but a more
robust phenomena.

6.2 Structure of Networks with data memorisation
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Figure 5: LRSC based comparison of ResNet20 when trained on CIFAR10 and CIFAR100 vs their Corrupted
Versions. Figure 5a is the LRSC-CKA map for a normally trained ResNet on CIFAR10 and Figure 5b is
the map for a network that memorises. Figure 5c offers a direct pairwise comparison of layers of the two
networks with the normal network on the vertical axis and the over fitted network on the horizontal axis,
here we clearly observe that the final few layers of the over fitted network share almost no similarity with
any layers of the normally trained network. This is also accompanied by a dip in the subspace reconstruction
based accuracy for those layers. An similar analysis using class and super class labels is done with CIFAR100
in Figure 5d - Figure 5f.
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In this set of experiments we use LRSC-CKA to investigate the behaviour of neural networks when they
have memorised parts of the training set and compare them with networks that offer good generalisation
performance. To do so, we follow the experimental setup in Forouzesh et al. (2022),Feldman & Zhang (2020),
and for the purpose of our study train ResNets on CIFAR10 and CIFAR100 with 50% of the training data
labelled uniformly at random. Our goal is to understand how such overfitting affects the manifold of the
learned representations as measured by the self-expressive coefficients learned by LRSC and how similar or
different are layers of a network which over-fits its training data w.r.t. a network that generalises well. We
observe that networks with memorisation, Figure 5b, tend to learn similar representations when compared
to networks with good generalisation, Figure 5a, for most of the network depth and differ substantially
in their later layers as shown in Figure 5c, while Maini et al. (2023) demonstrate that memorisation is
confined to a set of neurons rather than layers, observations similar to ours were also made in Morcos
et al. (2018), Stephenson et al. (2021), Davari et al. (2022a). This phenomena is also highlighted by a
decrease in the class-label homogeneity of the self-expressive structures, as shown in Figure 5c, of the 2
networks as they offer similar reconstruction based accuracy performance for all except the last few layers.
Figure 5d - Figure 5f show a similar set of conclusions between networks which generalise and memorise
on the CIFAR100 dataset. Figure 6 shows a similar analysis using Linear-CKA which also demonstrates
that the major changes between the two types of networks appear towards the end of the networks, but a
Linear-Kernel coefficient based classification methodology as described in Section 4.3 isn’t a reliable indicator
of performance shift. A more comprehensive set of results demonstrating the differences between networks
offering strong generalisation and memorisation performance while establishing their independence from
network depth along with experimental setup details are described in Appendix C.
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Figure 6: Analogous Linear CKA based comparison of ResNet20 when trained on CIFAR10 and CIFAR100
vs their Corrupted Versions.

Pearson’s Correlation ρ - layer wise linear probe accuracy vs metrics
Datasets→ CIFAR 10 CIFAR 100
Metric ↓ N1 N2 N3 N4 N5 N1 N2 N3 N4 N5

LRSC recon. acc. 0.94 0.96 0.93 0.91 0.96 0.91 0.90 0.86 0.93 0.89
LRSC coeff. acc. 0.95 0.93 0.93 0.90 0.96 0.93 0.89 0.90 0.91 0.89

LinCKA coeff. acc. 0.83 0.86 0.88 0.78 0.87 0.80 0.77 0.76 0.78 0.76

Table 3: Pearson’s Correlation Coefficient ρ between layer wise linear probe accuracies and LRSC-CKA and
Linear-CKA metrics based accuracy for networks trained on noisy datasets

Next, along the lines of Section 6.1, we establish the robustness of subspace reconstruction based classification
as defined in Section 4.2 by correlating its performance with that of a linear classifier trained on intermediate
layers of over fitted neural networks. We train different ResNets on CIFAR10 and CIFAR100 with 50% of
the data randomly labelled, see Figure 7 and Figure 8, and measure the correlation of our metric with
the accuracy of a linear classifier and present the results in Table 3. The goal in doing so is to establish
that the layer-wise correlations observed earlier in Section 6.1 are not dependent on an inherently well
performing model. As shown in Table 3 the subspace reconstruction based label assignment, denoted by
LRSC recon. acc., performs better than Linear-CKA coefficient based label assignment, indicating that the
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class cohesiveness of the self-expressive structures offers more insights into the generalisation performance
than dot-products of activations from the same class. This establishes the subspace reconstruction approach
as a valuable alternative to learning a linear classifier which first requires a computational overhead of
training a classifier for all layers of the network as the subspace reconstruction based accuracy can be readily
computed for any set of input activations. Additional results are presented in Appendix D.
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Figure 7: Along with Table 3 here we establish a correlation between layer-wise LRSC subspace reconstruc-
tion accuracy vs linear probe based classification accuracy on the internal layers of networks trained on
Noisy CIFAR 10 across different initialisations. The subspace reconstruction and linear probe accuracy for
these over fitted networks continues to rise till the final few layers where it starts dropping along with the
LRSC-CKA scores of those layers.

As a final note to conclude this analysis we add a secondary set of results focusing on a more narrow
comparison between memorising and generalising networks wherein we only compare layers of networks with
topological correspondence, i.e. layers with the same depth, in Figure 9. We note that this is a limited
way to compare 2 neural networks as the representations of a layer of 1 network can share varying degrees
of similarity to the corresponding topological neighbourhood of another network, as different networks may
converge to different solutions at different layers. This point may especially be exacerbated by the fact that
for our comparison both networks have been trained on different underlying data distributions, and are not
guaranteed to have layer to layer correspondence.
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Figure 8: Analogous to Figure 7, Correlation study between layer-wise LRSC subspace reconstruction accu-
racy vs linear probe based classification accuracy on various networks trained on Noisy CIFAR 100.
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Figure 9: Earlier analysis comparing networks with strong and poor generalisation, like in Figure 5, focused
on a complete pairwise comparison of the 2 networks. Here we conduct a simpler (also very limiting) layer to
layer comparison of the generalising networks with memorising networks in Figure 9a, it is also accompanied
by a corresponding subspace reconstruction based analysis over the 2 types of networks wherein the earlier
observations of differences between generalising and memorising networks of Section 6.2 are reaffirmed. All
analysis presented in this figure are done over 5 pairs of generalising and memorising ResNet 56s trained on
clean and noisy CIFAR 10 respectively. Corresponding complete layerwise LRSC-CKA analysis over these
5 pairs is shown in Figure 9b and Figure 9c, mean and standard deviation, respectively. Additional results
are shown in Section C.5.

6.3 Corroboration on Mini Image Net 100

In this section we perform additional analysis along the lines of Section 6.1 and Section 6.2 on Mini-ImageNet
Vinyals et al. (2017). In Figure 10 we perform analysis analogous to Figure 6 and demonstrate that for
normally trained networks self-expressive structures emerge in the later layers, this is in consensus with
results from Section 6.1. We also demonstrate that networks trained to memorise data begin to differ for
normally trained in later layers, This conclusion is in consensus with experimental results of Section 6.2.
Additional experimental details and results accompanying Figure 10 are shown in Appendix E

Additionally along the lines of Section 6.1 and Section 6.2, we also demonstrate the robustness and utility
of subspace reconstruction based classification by evaluating its correlation to the generalisation of a linear
probe trained on the same layer of the network. We do this to reassert the conclusions established for
CIFAR10 and CIFAR100 in Section 6.1 and Section 6.2 on Mini Image-Net 100. In Table 4 we demonstrate
the subspace reconstruction based accuracy correlates strongly with that of a linear classifier in networks
trained on both well generalising and memorising regimes. This helps us establish its validity as a probing tool
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Figure 10: Analogous to Figure 6 here we study the LRSC based comparison of ResNet56 when trained on a
clean and noisy version of Mini Image Net 100. In Figure 10a we show the LRSC-CKA map for a ResNet56
trained on Mini Image Net 100 and Figure 10b for a ResNet56 overfitting on the noisy Mini Image Net 100.
Same as Figure 6, Figure 10c offers a direct pairwise comparison of the two networks. We observe that the 2
networks share very little similarity towards the later layers, This is more concretely shown by a divergence
in the subspace reconstruction based accuracy for those layers.

to evaluate neural network representations especially when compared to raw coefficients based approaches
highlighted in Section 4.3 and Row 2 and 3 of Table 4. Additional results for experiments in this section are
presented in Appendix E.

Pearson’s Correlation ρ - layer wise linear probe accuracy vs metrics
Datasets→ Mini Image Net 100 Mini Image Net 100 (Noisy)
Metric ↓ V1 V2 V3 V4 V5 N1 N2 N3 N4 N5

LRSC recon. acc. 0.97 0.97 0.96 0.97 0.97 0.9 0.90 0.92 0.92 0.93
LRSC coeff. acc. 0.96 0.94 0.95 0.9 0.94 0.89 0.87 0.91 0.9 0.89

LinCKA coeff. acc. 0.89 0.88 0.86 0.89 0.9 0.79 0.74 0.76 0.75 0.83

Table 4: Pearson’s Correlation Coefficient ρ between layer wise linear probe accuracies and LRSC-CKA and
Linear-CKA metrics based accuracy for networks trained on clean and noisy Mini Image Net

7 Limitations of probing with linear structures

In Section 6.2, we demonstrated that when comparing networks that generalise and memorise, the meaningful
differences in learned representations only start to appear in the later layers. These findings were also
observed in Stephenson et al. (2021) using a Mean-Field Theoretic Manifold Analysis (MFTMA) technique
Stephenson et al. (2020),Cohen et al. (2020); Chung et al. (2018; 2016). MFTMA computes Manifold
Capacity (αM ), which estimates the linear-separability of a set of manifolds by measuring the amount of
class information embedded in given set of points. A large value of αM implies well-separated manifolds.
More details can be found in Appendix F.
Next, as a sanity check, we observe the relationship between subspace reconstruction and linear probe
accuracy with MFTMA - αM on ResNets trained on CIFAR10 in normal and noisy regimes, just like in
Section 6.2. For this purpose, we take pairs of ResNet-20 trained on CIFAR10 under normal and noisy
settings and compare their layerwise behaviour in Figure 11. We observe that just as the layers between the
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Figure 11: LRSC, Linear Probe and MFTMA based comparison between 5 pairs of ResNet 20 trained with
ReLU Activations under normal and noisy label settings on the CIFAR10 dataset. We observe that when
comparing a pair of normal and over fitted network for most of their depth, the subspace accuracy, the linear
probe accuracy and Manifold capacity all demonstrate similar behaviour, with differences arising only in the
last few layers.

two different networks start to diverge in their LRSC-CKA similarity, linear probe accuracy and the subspace
reconstruction accuracy, manifold capacity αM of the 2 networks starts to diverge as well with the network
trained to memorise now exhibiting a lower value of αM , indicating reduced linear separability in final layer
representations, this is expected and is along the lines of observations made in Section 6.2. Additionally
as shown in Figure 11, the subspace reconstruction accuracy, linear probe accuracy and MFTMA Manifold
capacity αM between the layers of a normal and a noisy network are similar throughout its depth with
the exception of a final few layers, where we see a deviation between a normal and an over fitted (noisy)
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network. The observations Figure 11 differ from the ones made in Maini et al. (2023) where the authors
observe that effects of memorisation aren’t necessarily localised and a more complete set of counterpart results
to Figure 11 are shown in Section F.1 and the corresponding Linear-CKA analysis is shown in Section F.3.
Since, Subspace Reconstruction Accuracy, Linear Probe Accuracy and MFTMA all try to quantify the degree
of linear separability of the underlying data manifold. In order to better understand the relation between the
3 quantities we compute correlations among them and present those in Table 5. We also augment Table 5
with similar correlations computed for Linear-CKA Coefficient based classification. We observe that while
the subspace reconstruction and linear probe layerwise accuracies strongly correlate under both normal and
noisy training regimes, the layerwise MFTMA is somewhat correlated with layerwise subspace reconstruction
accuracy and weakly correlated with layerwise linear probe accuracy.

Pearson’s Correlation ρ between the respective pairs of metrics
Datasets→ CIFAR 10 CIFAR 10n

Test ↓ V1 V2 V3 V4 V5 µ N1 N2 N3 N4 N5 µ
sub. rec. vs probe 0.94 0.95 0.95 0.94 0.95 0.94 0.94 0.96 0.93 0.91 0.96 0.94
Lin. coeff. vs probe 0.9 0.9 0.89 0.92 0.88 0.9 0.83 0.86 0.88 0.78 0.87 0.84

sub. rec. vs MFTMA 0.82 0.83 0.82 0.77 0.82 0.81 0.71 0.59 0.55 0.56 0.69 0.62
Lin. coeff. vs MFTMA 0.85 0.86 0.87 0.75 0.87 0.84 0.83 0.75 0.77 0.75 0.83 0.79
probe vs MFTMA 0.7 0.7 0.7 0.62 0.68 0.68 0.68 0.53 0.65 0.67 0.66 0.64

Table 5: Pearson’s Correlation Coefficient ρ between layer wise linear probe accuracy, LRSC based subspace
reconstruction accuracy, Linear-CKA coefficient based accuracy and MFTMA for ResNet-20s trained on
clean and noisy CIFAR10 datasets. Pairwise correlations between subspace reconstruction, linear probe and
MFTMA are highlighted in bold. We observe that subspace reconstruction based accuracy is strongly corre-
lated with Linear Probe accuracy and is generally more correlated to Manifold Capacity than a Linear Probe
would be, indicating that subspace reconstruction accuracy is a strong proxy for testing linear-separability
of manifolds.

Next, we repeat the same set of experiments with ResNet-20s having rational polynomial activations
based on Boullé et al. (2020) and compare the differences between models that generalise and memorise
to better understand the differences in geometry of generalisation and memorisation for models with
fundamentally different learning abilities. Rational Neural Networks Boullé et al. (2020) are networks
with trainable activations that are low-degree rational polynomials. Composition of such functions offers
good approximation power with a small computational overhead and Boullé et al. (2020) show that such
networks require lesser depth than ReLU networks to approximate smooth functions. The LRSC-CKA
similarity results for some pairs of normally and noisily trained rational resnets are presented in Figure 12.
We observe that unlike ReLU based ResNets from Figure 11, the final layers of Rational ResNets as shown
in Figure 12a-Figure 12e under normal and noisy regimes don’t show significant dissimilarities, even though
the performance of the normal and the noisy networks are very different. This also translates to similar,
though still divergent subspace reconstruction and linear probe accuracies when comparing the final few
layers of the normal and noisy networks. This behaviour is also reflected in MFTMA αM , which indicates
that linear separability of the data manifolds is similar between the 2 regimes. This demonstrates that in
memorisation regimes changes induced due to non-linear activations lead to structures whose projections on
lower dimensional subspaces is similar to networks trained in a generalisation regimes, thereby indicating
that the use of non-linear activations helps the model learn structures which are not easily resolvable
with linear models. A more comprehensive set of companion results to Figure 12 is shown in Figure 44
of Section F.2. Additionally, just as was done for ReLU ResNets in Table 5, we also perform a similar
analysis to measure the correlations between Subspace Reconstruction Accuracy, Linear Probe Accuracy
and MFTMA and present the results in Table 6. We observe the same correlation strengths as before with
Subspace Reconstruction and Linear Probe Accuracy being the most strongly correlated, whereas MFTMA
being mildly correlated to the subspace reconstruction metric and being very weakly correlated with linear
probe performance.
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Figure 12: Along the lines of Figure 11 a similar comparison involving LRSC, Linear Probe and MFTMA
between pairs ResNet 20 trained with Rational Polynomial Activations under normal and noisy label settings
on the CIFAR10 dataset. We observe that despite the differences in generalisation ability of a normal and
an over fitted network they have similar trajectory of metrics throughout their depth. Indicating that
the differences between a normal and noisily trained network manifests along more non-linear manifolds in
rational networks.

To further consolidate our understanding of limitations of network analysis with linear structures, we compare
ReLU ResNets and Rational ResNets trained in clean and noisy regimes and present the results in Figure 14
for LRSC-CKA. In Figure 14a we compare a normally trained ReLU ResNet (R20) to a normally trained
Rational ResNet (R20r) and observe that both networks learn similar representations along their depth, with
slightly higher final layer linear probe and subspace reconstruction based accuracies for the ReLU network.
Interestingly this is also accompanied a corresponding difference in layerwise manifold capacity of αM with
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Pearson’s Correlation ρ between the respective pairs of metrics
Datasets→ CIFAR 10 CIFAR 10n

Test ↓ R1 R2 R3 R4 R5 µ RN1 RN2 RN3 RN4 RN5 µ
sub. rec. vs probe 0.91 0.93 0.9 0.9 0.91 0.91 0.92 0.92 0.92 0.94 0.85 0.91
Lin. coeff. vs probe 0.87 0.83 0.81 0.87 0.88 0.85 0.82 0.8 0.75 0.84 0.72 0.78

sub. rec. vs MFTMA 0.81 0.71 0.8 0.85 0.76 0.79 0.72 0.7 0.67 0.54 0.58 0.64
Lin. coeff. vs MFTMA 0.84 0.68 0.78 0.79 0.77 0.77 0.65 0.65 0.66 0.46 0.53 0.59
probe vs MFTMA 0.69 0.55 0.6 0.66 0.61 0.62 0.58 0.6 0.53 0.48 0.4 0.52

Table 6: Analogous to Table 5 here we present the Pearson’s Correlation Coefficient ρ between layer wise
linear probe accuracy, LRSC based subspace reconstruction accuracy, Linear-CKA coefficient based accuracy
and MFTMA for Rational ResNet-20s trained on clean and noisy CIFAR10 datasets.
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Figure 13: LRSC-CKA based pairwise comparison of 5 ReLU ResNets trained on noisy CIFAR10
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Figure 14: Cross Architectural LRSC-CKA based comparison of ResNet 20 trained with ReLU and Rational
Polynomial Activations under normal and noisy label settings on the CIFAR10 dataset. Figure 14c and
Figure 14d demonstrate that a noisy ReLU Network learns different representations in its final layers.

the ReLU network showing a higher αM than the rational network, therefore providing supplementary
evidence for increased linear separation in case of ReLU networks.
Next, comparing the same ReLU resnet (R20) with a noisily trained rational resnet (R20rn) in Figure 14b we
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observe that last layers of both ResNets aren’t similar to the same degree as was the case earlier in Figure 14a
when both networks were normally trained. This also indicated by diverging subspace reconstruction and
linear probe accuracies and much lower αM for noisy rational ResNet than normal ReLU ResNet. Next we
proceed to analyse the final two combinations and compare a noisily trained ReLU ResNet with a normal
and noisy Rational ResNet. In Figure 14c we compare the noisily trained ReLU ResNet(R20n) to a normally
trained Rational ResNet(R20r), analogous to the observations that were made in Section 6.2, we observe
that the last layers of noisy ReLU ResNet(R20n) are very dissimilar to all layers of Rational ResNet(R20r)
and as one would expect the subspace reconstruction and linear probe performance of the noisy relu resnet
is lower than that of the normally trained rational network but the underlying manifold is still more linearly
separable. Just like how the normally trained relu resnet shared similarities with all the layers of a similarly
trained rational resnet as shown earlier in Figure 14a, the noisy relu resnet does the same but for the last
layers, thereby also indirectly offering a corroboration of results in Section 6.2 where we demonstrated that
normally and noisily trained relu networks tend to differ only in the later layers. Finally comparing noisily
trained versions of both networks in Figure 14d we again observe that the final layers of noisy relu resnet
are not similar to any layer of its noisy rational counterpart. Even though the linear separability (αM ) of
manifolds in the final layer representations are different, both the networks exhibit similar linear probe and
subspace reconstruction accuracies. The noisy rational network doesn’t show a similar behaviour, its final
layers are similar to various layers of a noisy ReLU ResNet. Figure 13 compares 5 noisy relu networks one
by one, and it clearly demonstrates that the last few layers of each network is dissimilar from the rest. Based
on these observations, the set of experiments described in this section clearly establish that structures learnt
by rational networks when trained to fit noisy training data are completely different to those learnt by ReLU
networks and Linear Probes, Subspace Reconstruction and MFTMA are less efficient at discovering the
differences between generalising and memorising geometries in rational neural networks. Additional results
for experiments in this section are presented in Appendix F and Appendix G.

8 Analysis of Networks trained with subspace separation loss vs classification loss

To better observe the emergence of class homogeneous self-expressive structures in deeper layers of a net-
work we compare networks trained on cross-entropy (CE) with networks trained on Maximum Coding Rate
ReductionYu et al. (2020) (MCRR), which we describe next for completeness.
Given a dataset X = [x1, . . . , xN ] ∈ R

d×N coming from a disjoint union of manifolds whereM = ⊔k
i=1Mi in

ambient space R
d and a network f(x, θ) : Rd → R

p, the Maximum Coding Rate Reduction(MCRR) Yu et al.
(2020) training framework learns a mapping z = f(x, θ) ∈ R

p such that Z = [z1, . . . , zN ] ∈ R
p×N belongs

to a disjoint union of linear subspaces S = ⊔k
i=1Si in ambient space R

p. The MCRR training framework
encourages the following properties - (1) Representations for inputs from different classes are uncorrelated
and belong to different linear subspaces. (2) Representations for inputs from the same class are correlated
and belong to the same linear subspace. (3) The dimension or volume of the space occupied by inputs from
a class should be as large as possible as long as they are uncorrelated with the rest.
Works like Ji et al. (2017),Lezama et al. (2017),Zhang et al. (2019b),Zhang et al. (2019a) try to enforce the
self-expressive property in the learned representations but cannot ensure all the 3 previously listed prop-
erties in the learned representation. Given data samples X = [x1, . . . , xN ] and a network f(x, θ) where
zi = f(xi, θ) is the learned representation for xi, thereby creating a learned representation matrix Z =
[z1, . . . , zN ] encoded each input data point. According to Ma et al. (2007) the total number of bits needed
to encode Z up to a precision ϵ on a per input formulation is defined in Equation 7.

R(Z, ϵ) =



1

2



log det


I +
p

nϵ2
ZZT



(7)
Rc(Z, ϵ♣Π) =

k
∑

j=1

tr(Πj)

2N
log det



I +
p

tr(Πj)ϵ2
ZΠjZT



(8)

For Z belonging to multiple classes such that Z = [Z1, . . . , ZK ] where each Zi ∈ Si. Let Π = ¶Πj ∈
R

N×N♢k
j=1 be a set of diagonal matrices which encode class membership information of all N samples. Then

the average number of bits per sample which respects the partition Π based on Ma et al. (2007) is defined
as in Equation 8.
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As mentioned in the desiderata for the MCRR training framework, features from different classes should be
uncorrelated and thus span the largest possible volume of the space, implying that the coding rate of the
entire set Z should be high. Whereas features from the same class should occupy a smaller volume as they
should be highly correlated to each other. Therefore learning a representation Z from X given a partition
Π involves maximising the difference between the coding rate for the full dataset and all class subsets. This
formulation known as MCRR is summarised in Equation 9.

max
Z,Π

∆R(Z, Π, ϵ) = R(Z, ϵ)−Rc(Z, ϵ♣Π)

where ∥zi∥2
2 = 1 ∀i

and Π = ¶Πj ∈ R
N×N♢k

j=1

(9)
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Figure 15: LRSC-CKA Analysis of a ResNet 18 trained with Maximal Coding Rate Reduction (MCRR)
and Cross Entropy (CE) loss on CIFAR10 and CIFAR100. Figure 15a and Figure 15b show the LRSC-CKA
for networks trained on CIFAR10 with Cross Entropy Loss and MCRR Loss respectively. For MCRR loss
in Figure 15b the layers of the network are divided into 2 stages, with the latter stage exhibiting a high
subspace reconstruction accuracy, indicating the presence of self-expressive structures. Figure 15c shows a
comparison between the 2 networks demonstrating the emergence of self expressive structures in final layers
of a cross entropy network as indicated by its similarity to the second stage of MCRR layers along with
a high subspace reconstruction accuracy. Corresponding analysis for CIFAR100 is shown in Figure 15d -
Figure 15f.
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Given that class coherent self-expressive structures emerge in networks trained on cross-entropy (CE) loss,
our goal is to compare and contrast such a network to one trained with MCRR loss and analyse the repre-
sentations learned in the 2 frameworks. To do so we follow the experimental setup in the original work on
MCRR Loss Yu et al. (2020) and train ResNets with cross-entropy loss and MCRR loss on CIFAR10 and
CIFAR100 using super class labels. Our analysis with LRSC-CKA presented in Figure 15 finds that networks
trained with MCRR Loss exhibit a 2 stage partition of layers, with layers of a stage having high intra-stage
similarity while exhibiting extremely low inter-stag similarity. As shown by the evolution of layer wise sub-
space reconstruction accuracy in Figure 15b and Figure 15e, the second stage of layers in the MCRR network
corresponds to layers which separates out data into different subspaces based on their class - indicated by
a higher subspace reconstruction based accuracy. When compared with networks trained on the CE loss
we observe that layers in the first stage of blocks in a network trained with MCRR loss are similar to most
layers of the network trained with CE loss and the layers in the second stage of the MCRR trained network
shares some similarity with those final few layers of the CE trained network whose subspace reconstruction
based accuracy is high, indicating the emergence of class coherent self-expressive structures. This analysis
establishes the emergence of class coherent self-expressive structures in networks trained with CE loss and
also indicates that regardless of the training objective large parts of the network learn representations that
are very similar, with meaningful differences emerging only much later in the network. Kornblith et al.
(2021b) also showed a similar late divergence of representation in networks trained with different classifi-
cation losses and Shekhar et al. (2023) on the other hand demonstrates that in the case of self-supervised
training of Vision Transformers Dosovitskiy et al. (2021) the choice of objectives, namely, Joint-Embedding
Chen et al. (2020),Caron et al. (2021) vs Reconstruction based learning He et al. (2021),Zhou et al. (2022)
leads to dissimilar features that appear quite early in a network.
A more complete set of results for LRSC-CKA and Linear-CKA along with the details of the experimental
setup is provided in Appendix H.

9 Conclusions

In this work we motivate the use of self-expressive structures to understand the underlying geometry in
representations of hidden layers of a neural network. In doing so we use Low Rank Subspace Clustering
(LRSC) on the activations of hidden layers of neural networks to encode each layer as a self-expressive
affinity matrix which is architecture agnostic. We then use Centered Kernel Alignment(CKA) to compare
affinity matrices of various layers of a network and across networks, and in doing so demonstrate that :

• The combination of LRSC with CKA is an alternate spectral formulation of Linear-CKA which makes
the similarity measure more sensitive to changes over a broader spectrum of principal components
of the representations. Using LRSC-CKA we then demonstrate when compared to well trained
networks, the networks which memorise parts of their training data tend to demonstrate significant
differences in their final layer representations. Taking this further we also demonstrate that this
phenomena tends to diminish upon the use of non linear activations like rational polynomials.

• We also demonstrate show that the predictive performance encoded in self-expressive structures
strongly correlates which performance of a linear classifier trained on the same representations,
irrespective of the networks generalisation ability.

• Finally we compare cross entropy objective based networks to networks trained on a coding rate ob-
jective, which encourage the separation of data into different subspaces. This is done to demonstrate
that self-expressive structures emerge in networks trained with a cross-entropy objective, even when
such constraints were not explicitly enforced.
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A Connection between LRSC-CKA and Linear-CKA

Linear-CKA and LRSC-CKA are two versions of weighted sums of cosine similarity between the right-singular
vectors of the original representations. Given activation matrices of layer i and j, namely X ∈ Rdi×N and
Y ∈ Rdj×N , CKA Kornblith et al. (2019) computes their similarity via Equation 3. For given 2 layer wise
neural activation matrices X = UXΣXV T

X and Y = UY ΣY V T
Y , which are centred, we first demonstrate why

Linear-CKA Kornblith et al. (2019) is more sensitive to first few principal components in Section A.1 and
then we demonstrate how Linear-CKA Kornblith et al. (2019) is related to LRSC-CKA in Section A.2 while
also showing how LRSC-CKA alleviates some shortcomings of Linear-CKA Kornblith et al. (2019).

A.1 Analysis of Linear-CKA

Given centred neural activation matrices X = UXΣXV T
X and Y = UY ΣY V T

Y , where each column of the ma-
trix is the representation for a data point. Linear-CKA Kornblith et al. (2019) then requires the computation
of Linear-Kernel Gram Matrices as shown in Equation 10.

XT X = VXΣ2
XV T

X and Y T Y = VY Σ2
Y V T

Y . (10)

Re-writing Equation 10 as follows,

XT X = VXΛXV T
X and Y T Y = VY ΛY V T

Y . Where Λ = Σ2. (11)

From the first part of Equation 3 and Equation 11.

CKA(K, L) =
HSIC(K, L)

√

HSIC(K, K)HSIC(L, L)
(12)

Where,

HSIC(K, L) =
tr(HKHHLH)

(N − 1)2
(13)

H = I − 1

N
11T (14)

Letting K = XT X and L = Y T Y . As X and Y are already centred, Computing the 3 Hilbert Space
Independence Criterion (HSIC) values. Computing the numerator of Equation 12,

HSIC(XTX, YTY) =
tr(HXT XHHY T Y H)

(N − 1)2

HSIC(XTX, YTY) =
tr(XT XY T Y )

(N − 1)2

HSIC(XTX, YTY) =
tr(VXΛXV T

X VY ΛY V T
Y )

(N − 1)2

HSIC(XTX, YTY) =
tr(ΛXV T

X VY ΛY V T
Y VX)

(N − 1)2

HSIC(XTX, YTY) =

∑r1

i=1

∑r2

j=1 λi
Xλj

Y ⟨vi
X , vj

Y ⟩2
(N − 1)2

(15)
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Computing the denominator of Equation 12,

HSIC(XTX, XTX) =
tr(XT XXT X)

(N − 1)2

HSIC(XTX, XTX) =
tr(VXΛXV T

X VXΛXV T
X )

(N − 1)2

HSIC(XTX, XTX) =
tr(ΛXV T

X VXΛXV T
X VX)

(N − 1)2

HSIC(XTX, XTX) =

∑r1

i=1

(

λi
X

)2

(N − 1)2

(16)

A similar compution with matrix Y yields,

HSIC(YTY, YTY) =

∑r2

j=1

(

λi
Y

)2

(N − 1)2
(17)

Combining Equation 15,Equation 16 and Equation 17 yields the formula for Linear-CKA Kornblith et al.
(2019) in terms of eigen-decomposition of the linear kernels of respective neural activation matrices, as shown
in Equation 3 and Equation 18.

CKALinear(XT X, YT Y) =

∑r1

i=1

∑r2

j=1 λi
Xλj

Y ⟨vi
X , vj

Y ⟩2
√

∑r1

i=1

(

λi
X

)2

√

∑r2

j=1



λj
Y

2 (18)

Works like Ma & Belkin (2017) empirically demonstrate that the eigen-values of real world data and kernel
matrices tend to decay rapidly. Udell & Townsend (2018) show that data that can derived from a latent
variable model can be approximated by a low rank matrix, the proof of which is detailed in Section A.3.
Beckermann & Townsend (2019) further provide bounds on the Singular Values of matrices with Displacement
Structure and demonstrate exponential decay of singular values.
For the purpose of our analysis of Linear-CKA Kornblith et al. (2019) we adopt a simplified exponential
decay model over singular values from Braun (2006), whereas more involved results exist in Beckermann &
Townsend (2019).
In an exponential decay model Braun (2006), we assume that given an eigen-decomposition of the linear
kernel matrix, its ith eigen-value λi = O(ρβi), where ρ < 1. More concretely, for linear kernels,

Given any activation’s linear kernel matrix XT X = V Σ2V T , let λi = λ1ρi−1 (19)

Computing the sum of square of eigen values of any XT X,

n
∑

i=1

(λi)
2

= λ2
1 + λ2

2 + · · ·+ λ2
n

n
∑

i=1

(λi)
2

= λ2
1 + λ2

1τ + · · ·+ λ2
1τn−1 , where τ = ρ2 ≪ 1

n
∑

i=1

(λi)
2

= λ2
1(1 + τ + · · ·+ τn−1)

n
∑

i=1

(λi)
2

= λ2
1

1− τn

1− τ

n
∑

i=1

(λi)
2 ≈ λ2

1

1

1− τ

(20)
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As a consequence of Equation 20,

λ2
1

∑n

i=1 (λi)
2 ≈

λ2
1(1− τ)

λ2
1

λ2
1

∑n

i=1 (λi)
2 ≈ 1− τ

λ1
√

∑n

i=1 (λi)
2
≈
√

1− τ , where τ ≪ 1

(21)

Therefore, substituting the result in Equation 21 into the summation for i = 1 and j = 1 in Equation 18, we
obtain -

λ1
Xλ1

Y ⟨v1
X , v1

Y ⟩2
√

∑r1

i=1

(

λi
X

)2

√

∑r2

j=1



λj
Y

2
≈
√

1− τX

√
1− τY ⟨v1

X , v1
Y ⟩2 (22)

Similarly, In a polynomial decay model Braun (2006) model we assume that λ2
i = O(i−α), where α > 1.

Therefore for Linear Kernels λ2
i = λ2

1i−α. Therefore conducting a similar computation to Equation 20-
Equation 22,

Computing the sum of square of eigen values of any XT X,

n
∑

i=1

(λi)
2

= λ2
1 + λ2

2 + · · ·+ λ2
n

n
∑

i=1

(λi)
2

= λ2
1 + λ2

12−α + · · ·+ λ2
1n−α

n
∑

i=1

(λi)
2 ≤ λ2

1(2 +
21−α

α− 1
) , from Theoreom A.4 Braun (2006)

n
∑

i=1

(λi)
2 ≤ 3λ2

1 , for α≫ 1

(23)

Using Equation 23 and computing the fraction of square of first kernel eigenvalue to the sum of squares as
in Equation 21 -

λ2
1

∑n

i=1 (λi)
2 ≥

λ2
1

3λ2
1

λ2
1

∑n

i=1 (λi)
2 ≈

1

3

λ1
√

∑n

i=1 (λi)
2
≈ 1√

3

(24)

Analogously to Equation 22, substituting from Equation 24 for a polynomial decay of eigen values into the
summation for i = 1 and j = 1 in Equation 18,

λ1
Xλ1

Y ⟨v1
X , v1

Y ⟩2
√

∑r1

i=1

(

λi
X

)2

√

∑r2

j=1



λj
Y

2
≈ 1

3
⟨v1

X , v1
Y ⟩2 (25)
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Which reveals Linear-CKA assigns a higher weight to the cosine similarity between the top right singular
values of activation matrices, thereby demonstrating why Linear-CKA is insensitive to changes in most but
the top singular vectors Ding et al. (2021), Davari et al. (2022b).

A.2 Analysis of LRSC-CKA

Continuing the analysis further for LRSC-CKA having given the same (assuming centred) X = UXΣXV T
X

and Y = UY ΣY V T
Y as in Section A.1. We first compute their respective LRSC Affinity matrices CX = VXV T

X

and CY = VY V T
Y by Equation 1, where VX and VY are rank-r (assumed same for simplicity) truncated right

singular vectors of X and Y respectively. Essentially when comparing LRSC-CKA with Linear-CKA we
observe that LRSC Affinity is a Linear Kernel with all singular values below a cut-off threshold (rank-r,
for simplicity) set to 0 and all singular values above this threshold clamped to 1. Then, the corresponding
LRSC-CKA based on Equation 18 is given by Equation 26.

CKALRSC(CX, CY) =
r

∑

i=1

r
∑

j=1

1

r
⟨vi

X , vj
Y ⟩2 (26)

Given that real data matrices are largely low rank Udell & Townsend (2018) with r = O(log(n + d)), we can
see that when compared to Linear-CKA, Equation 25, the cosine similarity of larger right singular vectors
of X and Y contribute a smaller fraction to the LRSC-CKA output. This analysis offers an additional view
into the experimental findings of Section 5 regarding why LRSC-CKA is more sensitive throughout the span
of its singular vectors and why Linear-CKA is mostly sensitive to a few top singular vectors.

A.3 Big Data Matrices are Low Rank

Here we state Theorem 2.6 from Udell & Townsend (2018), Big Data Matrices are Low Rank, for the
sake of completeness. We begin by stating the Johnson-Lindenstrauss Lemma (JL-Lemma) and its variants
Matoušek (2008).

Lemma A.1 (Johnson-Lindenstrauss Lemma Udell & Townsend (2018)) Let 0 < ϵJL < 1, Given

N data samples x1, . . . , xN ∈ R
d and r = 8(log n)/ϵ2

JL. Then, ∃ Q : Rd → R
r such that

(1− ϵJL)∥xi − xj∥2 ≤ ∥Qxi −Qxj∥2 ≤ (1 + ϵJL)∥xi − xj∥2, 1 ≤ i, j ≤ N, w.h.p (27)

Udell & Townsend (2018) then proposes a variant of the JL-Lemma based on the differences of inner products,
states as follows.

Lemma A.2 (Variant of the JL-Lemma Udell & Townsend (2018)) Let 0 < ϵJL < 1, Given N

data samples x1, . . . , xN ∈ R
d and r = 8(log n)/ϵ2

JL. Then, ∃ Q : Rd → R
r such that

♣xT
i xj − xT

i QT Qxj ♣ ≤ ϵJL(∥xi∥2 + ∥xj∥2 − xT
i xj), 1 ≤ i, j ≤ N, w.h.p (28)

Theorem A.3 (Big Data Matrices are Low Rank Udell & Townsend (2018)) Let X ∈ R
m×n with

m ≥ n and 0 < ϵ < 1. Then, with r = ⌈72 log(2n + 1)/ϵ2⌉ we have

inf
rank(Y )≤r

∥X − Y ∥max ≤ ϵ∥X∥2 (29)

where ∥·∥max is the maximum absolute entry norm and ∥·∥2is the spectral norm.
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B Additional results on correlation between layer wise linear probe performance

with LRSC and Linear-CKA coefficients

In this section we provide an additional and a more complete set of results for the material presented in
Figure 4 and Table 2 of Section 6.1.

B.1 Correlation of layerwise LRSC Coefficients with Linear Probe accuracy for CIFAR10

In this section we demonstrate layerwise dynamics observed for the correlation between Subspace Coefficient
based classification and linear probes as shown in row 2 of Table 2 for CIFAR10.
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Figure 16: Comparison between layer-wise linear probe accuracy vs LRSC Coefficient based classification
accuracy on various networks trained on CIFAR 10.

B.2 Correlation of layer wise Linear-CKA Coefficients with Linear Probe accuracy for CIFAR10

In this section we demonstrate layerwise dynamics observed for the correlation between Linear-CKA Coef-
ficient based classification and linear probes as shown in row 3 of Table 2 for CIFAR10.
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Figure 17: Comparison between layer-wise linear probe accuracy vs Linear-CKA Coefficient based classifi-
cation accuracy on various networks trained on CIFAR 10
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B.3 Correlation of layerwise LRSC Coefficients with Linear Probe accuracy for CIFAR100

We demonstrate layerwise dynamics observed for the correlation between Subspace Coefficient based classi-
fication and linear probes as shown in row 2 of Table 2 for CIFAR100.
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Figure 18: Comparison between layer-wise linear probe accuracy vs LRSC Coefficient based classification
accuracy on various networks trained on CIFAR 100

B.4 Correlation of layer wise Linear-CKA Coefficients with Linear Probe accuracy for CIFAR100

We demonstrate layerwise dynamics observed for the correlation between Linear-CKA Coefficient based
classification and linear probes as shown in row 3 of Table 2 for CIFAR100.
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Figure 19: Comparison between layer-wise linear probe accuracy vs Linear-CKA Coefficient based classifi-
cation accuracy on various networks trained on CIFAR 100
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C Additional Results comparing the effects of memorisation and generalization on

neural networks

In this section we detail additional experimental results comparing the effects of memorisation and gen-
eralisation in support of the results shown in Section 6.2. First, in Table 7 and Table 8 we demonstrate
the performance of various networks used for these tasks. Subsequently from Section D.2 - Section D.6 we
demonstrate the differences between networks trained in normal clean-label training regimes and network
trained in noisy label regimes by using LRSC-CKA and Linear-CKA on CIFAR10 and CIFAR100.

Table 7: Performance of ReLU Networks of various depths used in these experiments on the probing set of
CIFAR10.

Performance (%) over normal and noisy training regimes
Regime→ Normal CIFAR 10 Noisy CIFAR 10
Metric ↓ R20 R56 R101 R164 R20n R56n R101n R164n

Accuracy % 91.2 90.2 94.39 93.2 65.4 61.4 50.8 54

Table 8: Performance of ReLU Networks of various depths used in these experiments on the probing set of
CIFAR100.

Performance (%) over normal and noisy training regimes
Regime→ Normal CIFAR 100 Noisy CIFAR 100
Metric ↓ R20 R56 R101 R164 R20n R56n R101n R164n

Accuracy % 66.6 71.3 71.3 74 40.3 29.6 26.5 27.8
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C.1 Additional corroborative analysis with LRSC-CKA on effects Memorisation on ResNets trained

on CIFAR10

In Figure 20 we document the behaviour of normally and noisily trained ResNets of various depths, denoted
by R20, R56, R101 and R164.
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Figure 20: Analysis of ResNets trained on CIFAR10 and Noisy CIFAR10 with LRSC-CKA. The top row of
the figure various architectures trained on clean labels as part of a normal training setup. The second row
contains corresponding ResNets training on data with 50% of the labels being assigned uniformly at random.
The last row is a comparison between normal and noisily trained network of a given depth. Therefore as a
consequence, each column of this figure represents a normally trained network, a noisily trained network of
the same depth and a comparison between the two.
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In Figure 21 we add the LRSC Subspace Coefficient based analysis as described in Section 4.3 and Saini
et al. (2021) just for completeness, though it is not central to our arguments.
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Figure 21: Coefficient based analysis of ResNets trained on CIFAR10 and Noisy CIFAR10 with LRSC
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C.2 Additional corroborative analysis with LRSC-CKA on effects Memorisation on ResNets trained

on CIFAR100
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Figure 22: Analysis of ResNets trained on CIFAR100 and Noisy CIFAR100 with LRSC. As before, the top
row of the figure shows various architectures trained on clean labels. The second row contains corresponding
ResNets training on noisy labels. The last row is a comparison between normal and noisily trained network
of a given depth.
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(h) ResNet 164n

Figure 23: Coefficient based analysis of ResNets trained on CIFAR100 and Noisy CIFAR100 with LRSC

C.3 Corresponding corroborative analysis with Linear-CKA on effects Memorisation on ResNets

trained on CIFAR10

In Figure 24 of this section we demonstrate the Linear-CKA analogue of Section C.1.
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Figure 24: Corresponding to Figure 20 here we present an analysis of ResNets trained on CIFAR10 and Noisy
CIFAR10 with Linear-CKA. As stated earlier, the top row of the figure has various architectures trained on
clean labels. The second row contains corresponding ResNets training on noisy labels. The last row is a
comparison between normal and noisily trained network of a given depth.

C.4 Corresponding corroborative analysis with Linear-CKA on effects Memorisation on ResNets

trained on CIFAR100

In this section we present the Linear-CKA analysis on CIFAR100 dataset corresponding to Figure 22.
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(l) ResNet 164 vs 164n

Figure 25: Counterpart to Figure 22 here we show the analysis of ResNets trained on CIFAR100 and Noisy
CIFAR100 with Linear-CKA. The top row of the figure shows various architectures trained on clean labels.
The second row contains corresponding ResNets training on noisy labels. The last row is a comparison
between normal and noisily trained network of a given depth.

C.5 Topologically corresponding Layer to Layer comparison

In this section we present additional results accompanying Figure 9. In Figure 26 we show the Linear-CKA
layer to layer (diagonal) analysis on CIFAR10. In Figure 27 and Figure 28 we show the corresponding
LRSC-CKA and Linear-CKA analysis on CIFAR100, respectively.
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Figure 26: Linear CKA Analogue to the analysis of Figure 9
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Figure 27: CIFAR100 counterpart to LRSC-CKA Layer to Layer analysis of Figure 9
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Figure 28: Linear CKA Analogue to the analysis of Figure 27
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(a) LRSC Variance parameter characteristics CIFAR10
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(b) LRSC Variance parameter characteristics CIFAR10

Figure 29: LRSC Variance parameter sensitivity analysis

C.6 LRSC Variance Threshold Sensitivity

As an extension to experiments of Section 5.1 we show LRSC-CKA over varying values of variance thresholds
to learn the LRSC Kernel. Here in Figure 29 via the means of Subspace Reconstruction based accuracy in
Section 4.2 we demonstrate that the comparison of networks via LRSC is fairly insensitive to the value of
variance thresholding used to learn the LRSC Kernel. The upper half of Figure 29a shows the subspace
reconstruction accuracy over varying thresholds from 50% - 90% variance explained for networks trained
on clean CIFAR10. The bottom half of Figure 29a does the same for networks trained on noisy CIFAR10.
In Figure 29a we observe the differences between generalising and memorising networks as observed in
Section 6.2 for all values of variance thresholds. A similar analysis is shown for CIFAR100 in Figure 29b.
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D Additional results on correlation between layer wise linear probe performance

with LRSC and Linear-CKA coefficients for networks with memorisation

In this section we lay out detailed LRSC-CKA results for the experiments conducted in Table 3 of Section 6.2
to demonstrate the correlation of layerwise subspace reconstruction based accuracy with layerwise linear
probe accuracy for networks that memorise. In each subsection we demonstrate LRSC-CKA outputs used
to compute the correlations for each row of Table 3. Section D.1 demonstrates the layerwise subspace
reconstruction and linear probe accuracies of 5 ResNets labeled N1-N5 which were trained to memorise
CIFAR10. Section D.2 demonstrates the corresponding correlations between subspace coefficient based
accuracy as defined in Section 4.3 and Saini et al. (2021). Finally Section D.3 shows the correlations
between Linear-CKA coefficient and linear probe accuracy on CIFAR10. Section D.4 - Section D.6 host the
corresponding results for CIFAR100.

D.1 Correlation of layer wise LRSC subspace reconstruction accuracy with Linear Probe accuracy for

Noisy CIFAR10
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(d) ResNet 20N4
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(e) ResNet 20N5

Figure 30: Correlational comparison between layer-wise LRSC subspace reconstruction accuracy vs linear
probe based classification accuracy on various networks trained on Noisy CIFAR 10

D.2 Correlation of layer wise LRSC coefficient based accuracy with Linear Probe accuracy for Noisy

CIFAR10
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Figure 31: Correlational comparison between layer-wise LRSC coefficient based accuracy vs linear probe
based classification accuracy on various networks trained on Noisy CIFAR 10
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D.3 Correlation of layer wise Linear CKA coefficient based accuracy with Linear Probe accuracy for

Noisy CIFAR10
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Figure 32: Correlational comparison between layer-wise Linear-CKA coefficient based accuracy vs linear
probe based classification accuracy on various networks trained on Noisy CIFAR 10

D.4 Correlation of layer wise LRSC subspace reconstruction accuracy with Linear Probe accuracy for

Noisy CIFAR100
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Figure 33: Correlational comparison between layer-wise LRSC subspace reconstruction accuracy vs linear
probe based classification accuracy on various networks trained on Noisy CIFAR 100
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D.5 Correlation of layer wise LRSC coefficient based accuracy with Linear Probe accuracy for Noisy

CIFAR100
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Figure 34: Correlational comparison between layer-wise LRSC coefficient based accuracy vs linear probe
based classification accuracy on various networks trained on Noisy CIFAR 100

D.6 Correlation of layer wise Linear CKA coefficient based accuracy with Linear Probe accuracy for

Noisy CIFAR100
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Figure 35: Correlational comparison between layer-wise Linear-CKA coefficient based accuracy vs linear
probe based classification accuracy on various networks trained on Noisy CIFAR 100
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E Additional results for analysis conducted on Mini ImageNet 100

In this section we show additional supporting results for the analysis conducted in Section 6.3. We begin so
by demonstrating the performance of networks used perform the analysis of Table 4 in Table 9.

Table 9: Performance of ResNet 20s used in these experiments on the probing set.

Performance (%) over normal and noisy training regimes
Regime→ Mini ImageNet 100 Noisy Mini ImageNet 100
Metric ↓ V1 V2 V3 V4 V5 N1 N2 N3 N4 N5

Accuracy % 57.5 58.2 58.1 58.3 59.1 29.5 29.3 29.9 29.5 30.7

Next in Table 10 we also provide the details for networks used to generate additional results supplementing the
analysis of Figure 10, comparing Clean and Noisly Trained ResNet 56s via LRSC-CKA. The corresponding
Linear-CKA analysis is shown in Section E.1.

Table 10: Performance of ResNet 56s used in these experiments on the probing set.

Performance (%) over normal and noisy training regimes
Regime→ Mini ImageNet 100 Noisy Mini ImageNet 100
Metric ↓ V1 V2 V3 V4 V5 N1 N2 N3 N4 N5

Accuracy % 64.07 63.7 65.5 62.8 61.7 22.05 22.5 21.3 22.03 21.6

E.1 Linear-CKA Analysis of the ResNet 56 on Mini ImageNet 100

Next we demonstrate the Linear-CKA counterpart analysis of Figure 10 from Section 6.3. As stated earlier
in Section 6.3 we trained ResNet 56s on clean and noisy versions of Mini ImageNet 100 with the cleanly
trained ResNet 56 achieving an accuracy of 64.07% on the probing set and the noisily trained ResNet 56
achieving an accuracy of only 22.05%.
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Figure 36: Linear-CKA analogue of LRSC-CKA results in Figure 10.
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E.2 Aggregated network pairwise and one to one layer comparison of clean and noisy ResNet 56s on

Mini Image Net 100

In this section, similar to Figure 9 in Section 6.2 we show the aggregated Pairwise and One to One Analysis
of network layers analyzing clean and noisily trained ResNet 56s (5 for each setting) on Mini Image Net 100
using LRSC-CKA in Figure 37 and Linear-CKA inFigure 38.
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Figure 37: Similar to Figure 9, All analysis presented in this figure are done over 5 pairs of generalising
and memorising ResNet 56s trained on clean and noisy Mini Image Net 100 respectively. Figure 37a shows
the Layer to Layer comparison between the two networks. Corresponding complete layerwise LRSC-CKA
analysis over these 5 pairs is shown in Figure 37b and Figure 37c, mean and standard deviation, respectively.
As shown in Figure 37a the final layers of clean and noisy network start to deviate significantly in their
performance.
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Figure 38: Linear-CKA Counter Part to Figure 37.
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E.3 Additional LRSC-CKA Analysis of the ResNet 56s on Mini ImageNet 100
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Figure 39: LRSC-CKA Analysis on Mini Image Net comparing normally and noisily trained networks. First
row consists of 4 normally trained ResNet 56s, the second row consists of 5 noisily trained ResNet 56s. The
third row is the comparison between 4 normally and noisily trained ResNets. Therefore, each column in the
figure demonstrates a normally trained ReLU network, a noisily trained ReLU network and their comparison.
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E.4 Additional Linear-CKA Analysis of the ResNet 56s on Mini ImageNet 100
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Figure 40: Linear-CKA Analysis on Mini Image Net comparing normally and noisily trained networks. First
row consists of 4 normally trained ResNet 56s, the second row consists of 5 noisily trained ResNet 56s. The
third row is the comparison between 4 normally and noisily trained ResNets. Therefore, each column in the
figure demonstrates a normally trained ReLU network, a noisily trained ReLU network and their comparison.
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E.5 Additional LRSC-CKA Analysis of the previous networks on Mini ImageNet 100
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Figure 41: LRSC-CKA Analysis on Mini Image Net comparing normally and noisily trained networks. First
row consists of 5 normally trained ResNet 20s, the second row consists of 5 noisily trained ResNet 20s. The
third row is the comparison between 5 normally and noisily trained ResNets. Therefore, each column in the
figure demonstrates a normally trained ReLU network, a noisily trained ReLU network and their comparison.
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E.6 Corresponding Linear-CKA Analysis of the previous networks on Mini ImageNet 100
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Figure 42: Linear-CKA Analysis on Mini Image Net comparing normally and noisily trained networks.
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F Additional Results on LRSC-CKA, Linear-CKA and MFTMA analysis of Rational

and ReLU networks under normal and noisy training regimes

In this section we include additional supporting results for experiments conducted in Section 7. We being by
first providing a brief description of manifold capacity as stated in MFTMA(Stephenson et al., 2021) - Given
K object manifolds with random binary labels each represented by a cloud of points in a D-dimensional
space having the same label, Stephenson et al. (2021) defines manifold capacity α = K/D by the number
of object manifolds where most manifold dichotomies can be separated by a hyperplane. They (Stephenson
et al., 2021) relate this to Cover’s function counting theorem(Cover, 1965), but the a key deviation being that
the fundamental counting objects for MFTMA(Stephenson et al., 2021) are manifolds rather than discrete
points. This allows Stephenson et al. (2021) to argue about linear separability of manifolds rather than
discrete points. Earlier work (Chung et al., 2016) showed that manifold capacity for point clouds can be
formulated based on the manifold capacity of D-dimensional balls of radius R with random orientations in
the ambient space, also providing closed form expressions for effective dimension DM and effective radius
RM for the convex hulls of general point clouds in random orientation. Subsequent advances by Cohen
et al. (2020) help with estimation of manifold capacities in real data. More specifically, it connects linear
separability of class manifolds (αM ) with the class manifold’s geometric properties like manifold dimension
- DM , manifold radius - RM and the correlations between the manifold centres - ρcenter.

In Figure 43 of Section F.1 we present the full set of results shown in Figure 11 of Section 7 and in Section F.3
we present the corresponding analysis with Linear-CKA. Similarly, for Figure 12 of Section 7 we present the
full set of results in Figure 44 of Section F.2 and the corresponding Linear-CKA results in Section F.4.

For all Rational Neural Nets in these experiments, we follow the rational function choices from Boullé et al.
(2020) and train networks in normal and noisy regimes on CIFAR10. The performance of ReLU ResNets
used is shown in Table 11 and the performance of Rational networks is shown in Table 12.

Table 11: Performance of ReLU Networks (ResNet 20) used in these experiments on the probing set.

Performance (%) over normal and noisy training regimes
Regime→ Normal CIFAR 10 Noisy CIFAR 10
Metric ↓ V1 V2 V3 V4 V5 N1 N2 N3 N4 N5

Accuracy % 91.2 92 93 92.2 90.6 66.6 67.8 64 64 68.2

Table 12: Performance of Rational Networks (ResNet 20 Rat) used in these experiments on the probing set.

Performance (%) over normal and noisy training regimes
Regime→ Normal CIFAR 10 Noisy CIFAR 10
Metric ↓ R1 R2 R3 R4 R5 RN1 RN2 RN3 RN4 RN5

Accuracy % 89 88.6 87.6 89 88 48.6 47 43.2 45.2 45.6
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F.1 LRSC-CKA, Linear Probe and MFTMA based comparison of ReLU Networks under normal and

noisy training regimes of CIFAR10
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Figure 43: Extended results of LRSC and MFTMA based comparison of ResNet 20 trained with ReLU
Activations under normal and noisy label settings on the CIFAR10 dataset. First row consists of 5 normally
trained ReLU ResNets, the second row consists of 5 noisily trained ReLU ResNets. The third row is the
comparison between 5 normally and noisily trained ReLU ResNets. Therefore, each column in the figure
demonstrates a normally trained ReLU network, a noisily trained ReLU network and their comparison. The
subsequent figures in Appendix F follow the same layout, whether for LRSC-CKA or Linear-CKA or ReLU
ResNets or Rational ResNets.
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F.2 LRSC-CKA, Linear Probe and MFTMA based comparison of Rational Networks under normal

and noisy training regimes of CIFAR10
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Figure 44: Extended results of LRSC and MFTMA based comparison of ResNet 20 trained with Rational
Activations under normal and noisy label settings on the CIFAR10 dataset. First row consists of 5 normally
trained Rational ResNets, the second row consists of 5 noisily trained Rational ResNets. The third row
is the comparison between 5 normally and noisily trained Rational ResNets. Each column in the figure
demonstrates a normally trained Rational network, a noisily trained Rational network and their comparison.
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F.3 Linear-CKA, Linear Probe and MFTMA based comparison of ReLU Networks under normal and

noisy training regimes of CIFAR10
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Figure 45: Extended results of Linear-CKA and MFTMA based comparison of ResNet 20 trained with ReLU
Activations under normal and noisy label settings on the CIFAR10 dataset. First row consists of 5 normally
trained ReLU ResNets, the second row consists of 5 noisily trained ReLU ResNets. The third row is the
comparison between 5 normally and noisily trained ReLU ResNets. Each column in the figure demonstrates
a normally trained ReLU network, a noisily trained ReLU network and their comparison.
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F.4 Linear-CKA, Linear Probe and MFTMA based comparison of Rational Networks under normal

and noisy training regimes of CIFAR10
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Figure 46: Extended results of Linear-CKA and MFTMA based comparison of ResNet 20 trained with
Rational Activations under normal and noisy label settings on the CIFAR10 dataset. First row consists of
5 normally trained Rational ResNets, the second row consists of 5 noisily trained Rational ResNets. The
third row is the comparison between 5 normally and noisily trained Rational ResNets. Each column in
the figure demonstrates a normally trained Rational network, a noisily trained ReLU network and Rational
comparison.
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G Additional results involving comparisons between ReLU and Rational Networks

across training regimes

In this section we show additional results for Figure 14 in Section 7 where we take ReLU and Rational ResNets
trained across normal and noisy regimes and perform a cross comparison between the two architectures. The
goal of Figure 14 in Section 7 was to demonstrate that memorisation in ReLU ResNets caused the final
few layers to have different representations from the rest of the network. Especially when compared to
normally trained ReLU and Rational networks, additionally we also observed that most but the last layers of
a noisily trained ReLU network shared some similarity with all layers of a noisily trained rational network.
Indicating that the effects of memorisation manifest differently when using highly non-linear activations.
Next we show additional results for Figure 14 of cross-comparison between the quadruplet of networks with
different random initialisations in Figure 47 and Figure 48 of Section G.1 using LRSC-CKA. Corresponding
comparisons using Linear-CKA are shown in Figure 49 and Figure 50 of Section G.2.

G.1 LRSC-CKA based comparisons between ReLU and Rational Networks across training regimes
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Figure 47: Continuing upon Figure 14 we next show results for cross comparison of ResNet 20 trained with
ReLU and Rational Polynomial Activations under normal and noisy label settings. Each row of this figure
and the next show a inter-activation comparison of ReLU and Rational ResNets trained in normal and noisy
regimes. We demonstrate that the final layers of a noisily trained ReLU ResNet is dissimilar to most layers
of a Rational ResNet, regardless of its performance. This isn’t true for a normally trained ReLU ResNet.
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Figure 48: Additional extended results for all pairs comparison of ResNet 20 trained with ReLU and Rational
Polynomial Activations under normal and noisy label settings on the CIFAR10 dataset.

G.2 Linear-CKA based comparisons between ReLU and Rational Networks across training regimes

In this section we show the Linear-CKA analogues for the results shown in Section G.1. Figure 49h contains
the Linear-CKA counterpart to results of Figure 47 and Figure 50 shows the corresponding Linear-CKA
results for Figure 48.
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Figure 49: Part 1/2 Linear-CKA analogue of extended results shown for all pairs comparison of ResNet
20 trained with ReLU and Rational Polynomial Activations under normal and noisy label settings on the
CIFAR10 dataset.

H Additional Results comparing the effects of training neural networks on cross

entropy vs maximum coding rate reduction loss

Here we describe additional results for the experiments conducted in Section 8. We begin so by first describing
the experimental setup used, which is based on the experimental setup in Yu et al. (2020). For the purpose
of these experiments we use ResNets He et al. (2015) with depths ranging from 18 to 101. The networks
used in this experiment are based on the code in this github repo3. For ResNets trained with Cross-Entropy
loss on CIFAR10 and CIFAR100 we use a learning rate of 0.1 with a weight decay of 10−5 trained for 164
epochs with learning rate step reduction by a factor of 0.1 at epochs 81 and 122. For networks trained with
MCRR loss on CIFAR10 and CIFAR100 we use a learning rate of 0.001 and a weight decay of 10−4 for 800
epochs with learning rate step reduction by 0.1 at epochs 200 and 400. When training the networks with
MCRR loss on CIFAR100, we use the 20 super classes as labels based on the protocol described in Appendix
B.2 of Yu et al. (2020).

3https://github.com/kuangliu/pytorch-cifar
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Figure 50: Part 2 - Extended results for all pairs comparison of ResNet 20 trained with ReLU and Rational
Polynomial Activations under normal and noisy label settings on the CIFAR10 dataset.

H.1 Additional LRSC-CKA results analyzing the effects of training ResNets with Maximal Coding

Rate Reduction and Cross Entropy losses on CIFAR10

In this section we show the comparison of ResNets trained on Cross Entropy and MCRR loss across different
network sizes. We take 4 ResNets of different sizes, namely - 18,34,50, 101 and train them on the two loses
and then compare the same architecture over the 2 losses. The results are shown in Figure 51. These results
are an extension of results shown in Figure 15f.
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Figure 51: LRSC Analysis of ResNets trained with Maximal Coding Rate Reduction and Cross Entropy
loss on CIFAR10. The first row shows various ResNets trained using the Cross Entropy loss and the second
row shows the same networks trained using the MCRR loss. The third row offers corresponding pairwise
comparisons between architecture’s training on Cross Entropy loss and MCRR loss. A column of this figure
therefore indicates a ResNet of a given depth trained on the Cross Entropy Loss, the same ResNet architecture
trained on MCRR Loss and a comparison between the two different ResNets. All the 4 columns together
demonstrate the emergence of self expressive structures in Cross Entropy trained networks towards their
later stages, regardless of network size. All other subsequent figures in Appendix H, whether for LRSC-CKA
or Linear-CKA for both CIFAR10 and CIFAR100 follow a similar schematic unless otherwise stated.

59



Under review as submission to TMLR

H.2 Additional LRSC-CKA results analyzing the effects of training ResNets with Maximal Coding

Rate Reduction and Cross Entropy losses on CIFAR100

Similar to Section H.1, in Figure 52 of this section we show additional results of comparisons between Cross
Entropy Loss and MCRR Loss on CIFAR100 that were presented in Figure 15f.
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(k) ResNet 50 MCRR - CE
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Figure 52: LRSC Analysis of ResNets trained with Maximal Coding Rate Reduction and Cross Entropy
loss on CIFAR100. As stated previously, The first row shows various ResNets trained using the Cross
Entropy loss, the second row shows the same networks trained using the MCRR loss and the third row offers
corresponding pairwise comparisons between architecture’s training on Cross Entropy loss and MCRR loss.
A column of this figure therefore indicates a ResNet of a given depth trained on the Cross Entropy Loss, the
same ResNet architecture trained on MCRR Loss and a comparison between the two different ResNets.
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H.3 Observing and analyzing the effects of training ResNets with Maximal Coding Rate Reduction

and Cross Entropy losses on CIFAR10 with Linear-CKA

In this section we lay down the Linear-CKA counter part of the results on CIFAR10 shown in Section H.1
comparing Cross Entropy vs MCRR trained ResNets in Figure 53.
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Figure 53: Linear CKA Analysis of ResNets trained with Maximal Coding Rate Reduction and Cross Entropy
loss on CIFAR10.
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H.4 Observing and analyzing the effects of training ResNets with Maximal Coding Rate Reduction

and Cross Entropy losses on CIFAR100 with Linear-CKA

In this section we lay down the Linear-CKA counter part of the results on CIFAR100 shown in Section H.2
comparing Cross Entropy vs MCRR trained ResNets in Figure 54.
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Figure 54: Linear CKA Analysis of ResNets trained with Maximal Coding Rate Reduction and Cross Entropy
loss on CIFAR100.
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