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ABSTRACT

Machine Unlearning (MU) aims to remove the influence of specific data points
from trained models, with applications ranging from privacy enforcement to de-
biasing and mitigating data poisoning. Although exact unlearning ensures com-
plete data removal via retraining, this process is computationally intensive, mo-
tivating the development of efficient approximate unlearning methods. Existing
approaches typically modify model parameters, which limits scalability, intro-
duces instability, and requires extensive tuning. We propose Noisy Scrubber, a
novel MU framework that learns to inject perturbations into the latent represen-
tations rather than modifying model parameters. To show Noisy Scrubber attains
approximate unlearning we theoretically establish bounds on the parameter gap
between original and exact unlearned model, as well as on the output discrepancy
between Noisy Scrubber and exact unlearning. Empirical results on CIFAR-10,
CIFAR-100, and AGNews demonstrate that Noisy Scrubber closely matches ex-
act unlearning while being significantly more efficient, reducing unlearning gaps
to 0.024, 0.129, and 0.006, respectively. Moreover, membership inference evalua-
tions confirm that Noisy Scrubber removes information comparably to retraining.
Our approach scales across model families in both vision and text, and introduces
a flexible, attachable noise module that enables on-demand and reversible unlearn-
ing.

1 INTRODUCTION

Deep learning models are increasingly deployed in real-world applications, achieving notable suc-
cess driven by advances in computational resources, data availability, and neural network architec-
tures. Training these models typically demands substantial compute and large-scale datasets, which
may accidentally include copyrighted content, private user data, biases, or other sensitive informa-
tion. Recent regulations, such as the General Data Protection Regulation (GDPR) and the California
Consumer Privacy Act (CCPA), grant users the right to request deletion of their data from machine
learning systems Nguyen et al.|(2022); Wang et al.| (2024). However, removing specific data points
from trained deep neural networks presents significant challenges. The highly non-convex nature of
neural networks makes it difficult to trace the influence of specific data points on model parameters.
Furthermore, learned representations are densely encoded in the model weights, where a single neu-
ron captures multiple unrelated concept phenomena known as polysemanticity Elhage et al.[(2022]).
This superposition complicates the removal of targeted information, as adjusting one neuron may
disrupt model utility. These challenges highlight the need for developing machine learning pipelines
that support strong performance while enabling efficient and reliable data deletion.

Machine Unlearning (MU) emerged as an area that aims to remove the influence of specific data
points from the trained model. One direct approach is exact unlearning, which involves retraining
the model on the data to be retained. While retraining the model from scratch provides strong
guarantees, it is computationally expensive. Therefore, recent research has focused on developing
efficient and fast approximation unlearning algorithms [Fan et al.|(2023)); Jia et al.|(2023); Izzo et al.
(2021); |Thudi et al.|(2022a); |[Neel et al.| (2021)). Although approximate unlearning methods provide
computational benefit, they do not provide provable guarantees of unlearning effectiveness, resulting
performance gap compared to exact unlearning|Golatkar et al.|(2020). While effectiveness cannot be
proven formally, it can be evaluated empirically through metrics such as accuracy on forget, retain,
and test sets and membership inference attack|Shokri et al.|(2017);Liu et al.[(2022)) without requiring
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data, model, or algorithmic assumptions as in certified unlearning |Guo et al.| (2019). Therefore,
developing an approximate unlearning algorithm requires balancing the inherent trade-offs between
forgetting quality, model utility, and efficiency.

Despite the advantage over exact unlearning, prior approximation unlearning methods exhibit signif-
icant performance variance because of hyperparameter selection, stochasticity from model parame-
ter optimisation and evaluation metric selection [Fan et al.|(2023));|Jia et al.|(2023). These approaches
require direct modification of the trained model parameters, which limits scalability and demands
extensive hyperparameter tuning that can introduce instability, particularly in large models. In con-
trast, We present Noisy Scrubber, a MU framework that avoids direct modification of trained model
parameters. Instead, it employs a neural network to generate noise that is injected into the latent
representation space, aligning the model’s predictions with the exact unlearned model’s predictions.
We show Noisy Scrubber attains approximate unlearning by theoretically establishing bounds on the
parameter gap between original and exact unlearned model, as well as on the output discrepancy be-
tween Noisy Scrubber and exact unlearning.

We empirically demonstrate the effectiveness of Noisy Scrubber in classification tasks for both class-
wise and random data forgetting across text and vision modalities. Our results show that Noisy
Scrubber exhibits strong unlearning capabilities and outperforms several state-of-the-art unlearning
methods. Experiments conducted on models of varying scales highlight its effectiveness and ef-
ficiency, particularly for larger models. Membership inference attacks further confirm that Noisy
Scrubber achieves information removal comparable to exact unlearning, thereby reducing the risk of
leaked forget information. Additionally, we show that Noisy Scrubber remains effective even with
limited subset of retain and forget samples. We summarise our contributions as follows:

* We introduce Noisy Scrubber, a novel MU framework that achieves unlearning by injecting
perturbations into latent representations, avoiding direct parameter modification.

* We derive bounds on (i) the parameter difference between trained and retrained models, and
(ii) the output discrepancy between Noisy Scrubber and exact unlearning to show Noisy
Scrubber attains approximate unlearning.

* The noise module is lightweight, attachable, and independently training, enabling on-
demand and reversible unlearning.

* We demonstrate that Noisy Scrubber effectively approximates exact unlearning across
CIFAR-10, CIFAR-100, and AGNews, ranging from small CNNs to large architectures
such as ResNet-101, SWIN Transformer, and BERT. It achieves negligible membership
inference leakage, and outperforms state-of-the-art MU baselines under limited retain data.

2 MACHINE UNLEARNING AND EVALUATION

2.1 UNLEARNING PROBLEM FORMULATION

MU is the process of algorithmically removing the contribution of specific data points from a pre-
trained machine learning model |Cao & Yang| (2015); [Bourtoule et al.|(2021)); Nguyen et al.| (2022);
Wang et al.| (2024). The objective is to produce an updated model that behaves as if it had never
been trained on that data. It is critical for applications such as enforcing privacy regulations, like
the right to be forgotten, and removing outdated or incorrect information from the model Nguyen
et al.[(2022); Wang et al.| (2024). Formally, let #° denote the initial model parameters. We define
the model as a composite function f : X x R — R, f(z,0) = g(h(z, Oga), Octs), Where h is
the feature extractor with parameters O, g is the classification head with parameters 6,5, and the
full parameter set is 0 = (O, Ocis). A model is trained on a dataset D using a learning algorithm
A to yield the trained parameters §' = A(D, 0°). We partition the training set D into two disjoint
subsets: the forget set F C D, containing the data to be unlearned, and the retain set R = D \ F.
The primary goal of a MU algorithm is to find an unlearned model parameters, 8, using the trained
model parameters 6°, the forget set F', and the retain set R, such that f(., 0%) is a close approximation
of the retrained model f(.,0") where 6" = A(R,6°). In the context of classification, the choice of
the forget set F' defines various unlearning scenarios |Bourtoule et al.| (2021); |Graves et al.| (2021)).
Specifically, classwise forgetting refers to the removal of all training data associated with a particular
class, while random forgetting involves unlearning a randomly selected subset of training samples,
which may contain samples across all classes.
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2.2 EXACT AND APPROXIMATE UNLEARNING

Unlearning algorithms are generally classified into two types: exact and approximate unlearning.
Exact unlearning algorithms produce a model parameters §* that is identical to the one obtained by
retraining 6”. For neural networks, this usually means retraining from scratch or retraining a subset
of models affected by the data removal in the ensemble. However, exact methods entail a large com-
putational overhead, especially when training deep neural networks. For an unlearning algorithm
to be practical, the unlearning process must be significantly more computationally efficient than re-
training the model from scratch on the retain set. Therefore, approximate unlearning algorithms are
preferred in practice, as they are a proxy for full retraining, hence more computationally efficient.
These methods use the trained model parameters 6%, the retain set R, and the forget set F' to produce
an updated model parameters that behaves similarly to a retrained model parameters §”. However,
the gain in computational efficiency comes at the cost of reduced effectiveness in MU.

2.3  EVALUATING APPROXIMATE UNLEARNING

Unlearning evaluation can be divided into two categories: (i) assessing the extent of unlearning and
model utility, and (ii) evaluating the indistinguishability of the model and its outputs. An effec-
tive unlearning algorithm must balance the trade-off among forgetting quality, model utility, and
unlearning efficiency. The research community uses several empirical measures to capture these
trade-offs. |Zhao et al.| (2024) proposed the tug-of-war” (ToW) metric, which captures relative
accuracy differences between unlearned and retrained models across forget, retain, and test sets,
thereby quantifying the trade-off between forgetting quality and model utility. Privacy is typically
evaluated using Membership Inference Attacks (MIA), where an adversary attempts to distinguish
forget samples from unseen data. The MIA score is defined as the proportion of forget samples
identified as test data by the adversary and MIA-GAP quantifies the deviation of this score from the
retrained baseline. Computational efficiency is reflected in runtime efficiency (RTE), defined as the
relative speedup of an unlearning algorithm over full retraining. Finally, indistinguishability is eval-
uated both at the parameter level, using the /5 norm of parameter differences, and at the output level,
via the Jensen—Shannon divergence (JSD) between predictions of unlearned and retrained models.
Together, these metrics provide a holistic view of effectiveness, privacy, scalability, and similarity
to exact unlearning. Further details of all evaluation metrics is provided in Appendix [A.3]

3 RELATED WORK

In recent years, there has been significant interest in MU. The goal of MU is to modify trained mod-
els in order to remove the influence of particular data points, originally motivated to prevent privacy
breaches (Ginart et al.| (2019); Neel et al.| (2021)); [Ullah et al.| (2021); |Sekhari et al.| (2021). While
retraining the model from scratch (exact unlearning) provides strong guarantees, it is generally com-
putationally infeasible for large datasets and models. To address this challenge, recent research has
focused on developing efficient approximate unlearning algorithms. These methods seek to remove
the effects of targeted data without incurring the high computational costs of full retraining. Among
these, the foundational methods FT and GA were discussed in Appendix However, GA has
been observed to significantly degrade overall model utility. Building on these, NegGrad+ |Kurmanji
et al.[(2023)) integrates both FT and GA in a joint optimisation framework: it minimises the loss on
the retain set I while maximising the loss on the forget set /. SCRUB |Kurmanji et al.| (2023), an
extension by the same authors, frames the problem as knowledge distillation |Hinton et al.| (2015).
Here, a student network is trained to imitate the teacher’s behaviour on R but disobey the teacher
on F'. {1-sparse unlearning [Jia et al.| (2023) introduces an ¢; penalty during fine-tuning, inspired by
model pruning, to promote sparsity in parameter updates. Other strategies leverage model sensitiv-
ity. Fisher Forgetting (FF) [Becker & Liebig| (2022); |Golatkar et al.|(2020) adds Gaussian noise to
model parameters, where the covariance is determined by the Fisher information matrix. However,
calculating the Fisher information at scale is computationally intensive and offers limited paralleliz-
ability on modern hardware. Influence Unlearning (IU) Izzo et al.|(2021); [Koh & Liang| (2017) uses
influence functions to estimate how individual points affect model parameters, connecting this work
to e-0 |Guo et al.| (2019) forgetting, but often relies on strong model and training assumptions [Guo!
et al.| (2019). Additionally, re-labelling-based methods erase knowledge by reassigning labels to the
forget set F' using samples from a prior distribution, for example, a uniform distribution used in the
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Figure 1: Noisy Scrubber Framework

random-label method. Saliency Unlearning (SalUn) [Fan et al.[(2023) selectively updates only the
most relevant, or salient parameters, partitioning model weights into those affected by F' and those
that are not. In contrast to prior works that require fine-tuning or updating model parameters, our
approach does not modify model parameters during unlearning, thereby avoiding the high compu-
tational cost and instability associated with updating the main model parameters. Instead, we train
a noise module that perturbs the model’s learned representations, selectively corrupting the repre-
sentations of forget samples while leaving the retain samples unaffected. To show Noisy Scrubber
attains approximate unlearning, we derived bounds on parameter difference between trained and
retrained models, and output discrepancy between Noisy Scrubber and exact unlearning.

4 NOISY SCRUBBER: ERASE WITH NOISY CORRUPTION

4.1 PROBLEM DEFINITION

We focus on the problem of approximate unlearning in the classification setting, considering both
classwise and random forgetting scenarios. Let the forget set be denoted as F' C D, and the retain
setas R C D\ F. We consider a practical setting where, instead of using the entire set D \ F as
the retain set, we choose a representative subset K. This assumption is particularly relevant when
complete access to the training dataset is unavailable, and only a limited number of samples from the
training distribution are available. Our goal is to derive model parameters 0% = U(F, R, 0%) using
the unlearning algorithm I/ that closely approximates the ideal retrained model. For evaluation, this
retrained model parameters 6" is defined as parameters obtained by training from scratch on the
complete set D \ F.

Proposition 1 (Parameter Difference Bound). Let D = R U F' be the full dataset, partitioned into

a retain set R and a forget set F', where RN F = (). Let the empirical risk functions be defined as

Lp(9) = ﬁ > l(x,0) and Lr(0) = ITl?I > U(z,0). The corresponding optimal parameters are
zeD TER

defined as 0 = arg n%in Lp(0) and 0" = arg main Lr(6), both obtained by performing T steps of
gradient descent from the same initialisation 6y with step size a.
Assume the loss function l(x, 0) satisfies the following properties:

1. It is continuously differentiable in 0 for every x.

2. It is M-Lipschitz smooth with respect to 6.

3. The per-sample gradient is bounded, i.e.,

Vi(z,0)| < G for some constant G > 0.

Then, the Euclidean distance between the optimal parameters is upper bounded as:

2G|F|

t__ pr <
I = ol < 3

( aMT—-1 _ 1)

Under assumption of p-strong convexity of loss function l(x, 0) upper bound reduces to:

F
1ot — o) < SIE1
u|D|
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Proposition [I] establishes that the magnitude of the parameter perturbation induced by removing a
subset F' scales linearly with the subset size | F'| and decays at a rate inversely proportional to the
total dataset size |D|. This highlights that model parameters are more stable in well-conditioned
settings with large datasets, however remain sensitive to the removal of small subsets containing
high-influence samples. Further, imposing a strong convexity assumption leads to a significantly
tighter bound, indicating that strong convexity functions as an effective regularizer. In practice,
strong convexity can be introduced during training through the addition of L2 regularisation. The
complete proof of Proposition[l]is provided in the Appendix

4.2 UNLEARNING WITH NOISY SCRUBBER

Noisy Representations. We begin with motivating the rationale behind noisy representations for
MU. Prior work on data uncertainty has primarily focused on the noisy labels, noisy inputs, and
out-of-distribution (OOD) samples [Li et al.| (2021} |2022); |Geng et al.| (2021); |Li et al.| (2023). Mo-
tivated by data uncertainty, we consider the central question: Can we perturb the representations
of forget samples in a way that makes them highly uncertain, without affecting the representations
of retain samples? Targeting input representations is necessary, as the MU setting does not permit
prior assumptions about the presence of input or output noise. Given that the exact unlearned model
parameters " produces highly uncertain outputs for forget samples, while maintaining retain set
performance, our objective is formulated as perturbing input representations so that they align with
the outputs of 6.

Noisy Scrubber formulation. Let % be decomposed into two components: feature extractor param-
eters 0f,,, and classifier parameters 0!,.. 0%, generates a representation vector # = h(z, 6}, ) € R?
for a given input z, and 0% maps the representation # to a prediction over k classes, i.e.,
y = g(,0Y%,). Noisy Scrubber aims to inject noise vector € into latent representations of 6%, i.e.,
h(z,0,,) + € such that its outputs align with outputs of §”. Mathematically our objective is defined
as finding a noise vector € such that:

g(h(mV gfeat) + € ect:ls) ~ g(h(l’, 0&&1)7 crls)
We can find € by solving the following optimisation problem:

: t s ot
€ = arg H(llln lg(h(z, Opea) + €, Oc15) — g(h(@, Ofnr), i) I ey
éeRr
Deriving a closed-form solution for € requires strong assumptions on g, such as invertibility, which
is generally intractable in the case of neural networks. Instead, we can use a gradient descent-based
algorithm to obtain the optimal value of e.

Proposition 2 (Output Difference Bound). Consider a full dataset D partitioned into a retain set
R and a forget set F such that D = RUF and RN F = (. We define two parameter vectors,
0 and 0", which are the outputs of training on the empirical risks Lp(0) and Lr(0), respectively.
Both are obtained by running T  iterations of gradient descent with a learning rate o from a common
initialisation 0.

Assume the following conditions hold:
1. The model f(x,0) is L-Lipschitz continuous with respect to its parameter 0 for all x € X.

2. The per-sample loss function l(x, 0) is M-smooth with respect to 0.

3. The per-sample gradient is bounded, i.e., |Vi(x,0)| < G for some constant G > 0.
Then, for any input x € X and ¢ = argmin |g(h(z,0,,) + € 04) — g(h(z,04,,),00;)

éerd ' '
difference in the model’s output is upper bounded by:

, the

2GL|F|

aMT
bl ) ~1

lg (i, Ofear) + €, 001;) — f (2, 07| <

Proposition [2 shows that the perturbed model output is closer to the exact unlearned model com-
pared to the unperturbed case demonstrating approximate unlearning. The bound provides a formal
guarantee that output discrepancy can be controlled and reduced through the optimal perturbation e.
The proof of Proposition [2]is provided in the Appendix
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Noisy Scrubber. In order to perform unlearning we require to calculate optimal e using Equation
(I). Directly solving Equation for each sample requires access to the parameters of 6" and
involves iteratively optimising per sample, which is computationally expensive. To address this,
we train a neural network p(., ¢) to approximate the solution of this optimisation problem. The
network p(., @), takes the intermediate representation & = h(x, G}GGt), as input and generates a
noise vector z = p(&, ¢). This noise vector is added to the model’s intermediate representation
Z = & + z, and the resulting perturbed representation is subsequently processed by the downstream
layers for prediction ynoise = g(2, 0%). The combination of the original model parameters 6* and
the noise module parameters ¢ constitutes the unlearned model parameters 0% = [0%, ¢]. Figure
shows the proposed MU pipeline. This noise module is independent of the model and can be easily
attached or detached, which also allows us to forget learned knowledge for a specific period of
time. Furthermore, this approach improves the efficiency of unlearning since only the noise module
requires training, which is significantly more efficient than updating all parameters of model.

Before presenting the training details of the noise module parameters ¢, we introduce Uniform-
Except-One (UEQ) distribution U* over k classes, where a specified class ¢ € {1,2,...k} are
assigned equal probability mass. For each class index ¢ € {1,...,k}, the probability mass function
is given by:

—— otherwise.

.
uriy =1, e
k—1

In the classification setting, we avoid relying on the model parameters 6" to optimise Equation (TJ), by
assuming that an exact unlearned model output a UEO distribution for forget set samples reflecting
maximal uncertainty, while preserving the same output distribution as §* for retain samples. This
assumption captures the fact that the exact unlearned model has no exposure to the forgotten data,
and therefore assigning zero probability to the forgotten class or a uniform distribution over all
classes corresponds to the maximum-entropy distribution. Therefore, we train the noise module with
a KL-divergence based contrastive loss (KLC) (Equation , which encourages p(., ¢) to generate
noisy representations 2 such that g(., 6%, ) preserves the original output distribution on retain samples
while aligning forget sample outputs with the UEO distribution.

KLC = (1 - A)I<L(ynoisy, yclean) + AKL (ynoisy7 u-frg max {yc]ean}) (2)

where, A\ = 0if x € Rand A = 1if & € F, ynoisy is prediction by 6" after noisy perturbation in

representation, yjea is prediction by #* without perturbation and U* represents UEO distribution
where, k denotes the total number of classes in the classification task. During training, model pa-
rameters 6" is frozen, intermediate representations of input z are passed to the noise module p(., ¢),
which generates noisy representation Z. During the backward pass, only the noise module is updated
such that the KL.C loss Equation (2)) is minimised.

Distill Noisy Scrubber (Distill-NS). Unlike the retrained parameters ", Noisy-Scrubber augments
the model with an additional noise module ¢, yielding parameters 0 = [0%, ¢]. This distinct param-
eterization makes the two models distinguishable which makes evaluation of proximity between 6"
and 6" difficult, and increases susceptibility to inference attacks|Yang et al.|(2024). To address this
problem, we employ knowledge distillation |[Hinton et al.| (2015) to obtain a single, unified model 6%
that does not include the additional parameters from the noise module. Knowledge distillation is a
technique for transferring knowledge from a larger teacher model to a smaller student model. In our
approach, the unlearned parameters 0% = Oyeacher = [{ 0Ly, 0415 }+ @] serves as the teacher. A separate
copy of the original trained model parameters 6° acts as the student model Ogpygent = {0L,,, 0%} The

feat® “cls
student model is trained to mimic the teacher using a knowledge distillation loss (KD) defined as:

KD =« KL(f(~estudent)y f(7 eteacher)) + /B MSE(Ostudemy Oteucher) + Yy CE(arg max {f(7 gstudem)}? y) (3)
where Ogugent = h(., [0, ]swdent) denotes the student’s intermediate representation, Owacher =
h(., [¢(0f.s)]tcacher) is the noisy representation produced by the teacher, y represents the true class
label, CE denotes cross-entropy loss and MSE denotes mean square error. The student model is
trained to minimise KD-loss using both the forget set F' and the retain set R. This yields a single
unlearned model parameters 8* which excludes noise parameters ¢.
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Table 1: Performance comparison of MU methods in the class-wise forgetting scenario. Results are
reported as a + b, denoting the mean a and standard deviation b over 5 independent trials.

Methods Metrics CIFAR10 CIFAR100 AGNews
Retrain RTE (sec) 137.27 234.61 3064.68
ToW 0.98340.00 0.30840.00 0.74840.02
FT MIA-Gap  0.00240.00 0.55640.00 0.0064-0.09
RTE (sec)  8.75740.15 46.912+2.46 199.404+£19.87
ToW 0.4344-0.00 0.5544-0.00 0.2044-0.00
GA MIA-Gap  0.00040.00 0.0024-0.00 0.0004-0.00
RTE (sec)  5.620+1.80 38.83140.61 143.61540.21
ToW 0.97610.00 0.31640.00 0.87140.01
£1-Sparse MIA-Gap  0.00010.00 0.546+0.00 0.035+0.00
RTE (sec)  9.3524+1.26 48.989+1.88 201.630411.21
ToW 0.07540.00 0.02140.0 0.4814-0.00
U MIA-Gap  0.00040.00 0.0004-0.00 0.2094-0.00
RTE (sec)  8.98040.06 46.188+1.89 77.8561+0.91
ToW 0.89440.00 0.75640.00 0.9554-0.00
NegGrad+ MIA-Gap  0.00040.00 0.0024-0.00 0.0004-0.00
RTE (sec)  8.16240.31 26.37310.15 136.951£1.59
ToW 0.92140.00 0.3464-0.00 0.73840.13

Random-Label MIA-Gap  0.000£0.00 0.433+0.00 0.001+0.00
RTE (sec) 11.035+0.39  49.457+1.172  244.402£3.35

ToW 0.786£0.00 0.469+0.0 0.902+0.00
SCRUB MIA-Gap  0.0024+0.00 0.3324+0.0 0.000+0.00
RTE (sec)  9.400£0.53 49.069+0.58 241.720£3.18
ToW 0.918+0.00 0.352+0.00 0.628+0.18
SALUN MIA-Gap  0.000£0.00 0.433+0.00 0.000+0.00
RTE (sec) 14.891+£5.49  71.998+42.65  336.329£5.52
ToW 0.976£0.00 0.871+0.00 0.994+0.00

Noisy-Scrubber ~ MIA-Gap  0.000£0.00 0.000+0.00 0.000=£0.00
RTE (sec) 15.658+0.13  24.710£0.45 95.002+1.19

ToW 0.968+0.00 0.564+0.00 0.993+0.00
Distill-NS MIA-Gap  0.000£0.00 0.186+0.00 0.000+0.00
RTE (sec)  22317£2.70  27.901+£3.19 269.67440.17

5 EXPERIMENT AND ANALYSIS

5.1 EXPERIMENT SETUPS

Dataset and Models: We evaluate unlearning using standard classification benchmark datasets
from both image and text domains, including MNIST |LeCun et al.| (2010), CIFAR10 and CI-
FAR100 |Krizhevsky & Hintonl (2009), AGNews Zhang et al.| (2015b)), and DBPedia |[Zhang et al.
(2015a). For the MNIST and CIFAR10 datasets, we utilize simple CNN [LeCun et al.| (1995)archi-
tectures, while for CIFAR100, we employ ResNet He et al.| (2016) and SWIN transformer models
Liu et al.| (2021). For AGNews and DBPedia, we utilized BERT [Devlin et al.| (2019) model.
Evaluation Metrics: We evaluate unlearning performance using the ToW metric (Equation [4)),
MIA-GAP, and RTE. We implement MIA using prediction confidence attack based method [Yeom!
et al.[(2018);|Song & Mittal| (2021)). To evaluate indistinguishability, we used JSD (Equation@ and
{5 norm of model parameters. Further details of all evaluation metrics is provided in Appendix[A.3}
Unlearning Setup: We investigate two unlearning scenarios: class-wise forgetting and random data
forgetting. For our experiments, the forget set F' contains 1000 samples, while the retain set R
comprises 2000 samples. For class-wise forgetting, we randomly select 1000 samples from a single
class to form the forget set F', and 2000 samples randomly drawn from the remaining classes to
create the retain set R. For random forgetting, we select 1000 samples at random from the dataset
to form F', and 2000 samples from the remaining data to form R. We compare our approach against
baselines and the state-of-art, including FT, GA, NegGrad+, ¢1-sparse, Random-label, SCRUB, and
SALUN, implementing each methods by following their official repositories. Hyperparameters for
these methods are tuned for each dataset, with the corresponding values detailed in the Appendix
[A%6.3] All experiments were conducted on NVIDIA RTX 4070 (12GB) GPU.
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Table 2: Indistinguishability of different MU methods in the class-wise forgetting scenario. Results
are reported as a £ b, with a representing the mean and b the standard deviation computed over 5
independent trials.

Methods Metrics CIFAR10 CIFAR100 AGNews
FT JSD 0.300040.00  0.79340.00 0.33504-0.02
£2-Score 55.12540.00  125.004£0.00  18.182+0.05
GA JSD 1.71640.02 2.05+0.00 3.55040.02
£2-Score 54.6710.00 124.9940.00  12.994£0.00
01 -Sparse JSD 0.2494-0.00 0.77740.00 0.2634-0.00
173p £2-Score 53.6174+0.06  124.53940.00 124.923+0.06
U JSD 16.498+0.00  20.4040.00 0.4674-0.00
£2-Score 150.3740.00  134.95540.00 11.22540.00
NeoGrad+ JSD 0.38840.00 1.57610.00 0.4514-0.00
g £2-Score 54.705+0.00  125.094£0.00  14.478+0.02
Random-Label JSD 0.416+0.00 0.76240.00 0.35140.00
£2-Score 56.5344+0.00  125.1324+0.00 19.532+0.14
SCRUB JSD 0.37140.00 0.8044-0.00 0.1374:0.00
£2-Score 55.22840.00  125.06040.00 14.721+£0.09
SALUN JSD 0.4044-0.00 0.75640.00 0.3234-0.00
£2-Score 56.2601+0.00  125.06940.00 18.835+0.31
Distill-NS JSD 0.24840.00 0.88240.00 0.0794-0.00
£2-Score 56.0924+0.00  124.9464+0.00 11.256+0.00
Noisy Scrubber JSD 0.938+-0.00 1.98840.00 0.41140.00

5.2 EXPERIMENTAL RESULTS

Noisy Scrubber scrubs away information from trained model. Table[I|presents a comprehensive
evaluation of our proposed method Noisy Scrubber and its distilled variant, Distill-NS. For reference,
the ideal ToW and MIA-Gap values are 1 and O for exact unlearning. Any approximate unlearning
algorithm that exhibit minimum deviation from these ideal values is considered superior. On CI-
FAR10, CIFAR100, and AGNews datasets, Noisy Scrubber achieves ToW gaps of 0.066, 0.129,
and 0.024 relative to retraining, demonstrating its strong ability to approximate the performance
of exact unlearning, outperforming all baselines and prior state-of-the-art unlearning techniques.
In terms of privacy leakage, measured by MIA-Gap, Noisy Scrubber obtains values very close to
zero in all three datasets, signifying negligible vulnerability to MIA and forget information leakage.
Additional results on datasets, models, and results on random forgetting scenarios are provided in
Appendix Sections [A.§| and The Distill-NS yields a single unified unlearned model, enabling
the computation of a pseudo-distinguishability score for Noisy Scrubber. In terms of distinguisha-
bility, shown in Table [2| Distill-NS achieves highly competitive results on CIFAR10, CIFAR100,
and AGNews, while demonstrating effective unlearning. In terms of computational efficiency, both
Noisy Scrubber and Distill-NS achieve notable runtime improvements over conventional retraining
and surpass prior unlearning approaches in balancing speed and efficacy. Significant reductions
in runtime are achieved for large architectures, such as ResNet101 and Swin Transformer on CI-
FAR100 and BERT on AGNews. While improvements are less in CIFAR10 due to its smaller model
size, Noisy Scrubber still maintains competitive runtime efficiency. Although IU achieves the fastest
runtime on AGNews, its significantly lower unlearning effectiveness and privacy scores undermine
its practical utility. Overall, these result establish Noisy Scrubber as a scalable, privacy-preserving,
and effective machine unlearning solution across a range of modalities and model architectures.

Comparison with number of retain samples. We evaluate baseline and prior state-of-the-art un-
learning methods alongside Noisy Scrubber across varying retain set sizes, ranging from 10 to 2000
samples. This evaluation aims to assess the effectiveness of each method when limited amount of
retain data is available. Figure 2] demonstrates that increasing the number of retain samples on CI-
FAR10 leads to improved performance for Noisy-Scrubber, which converges at 500 samples and
outperforms both baselines and prior state-of-the-art methods. On CIFAR100, performance initially
rises with more retain samples but exhibits a sharp decline at 1000 samples. This is because the
forget set contains only 500 samples (representing a single class) and with 1000 retain samples, the
noise module becomes biased towards the retain set, resulting in higher forget set accuracy and drop
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ToW (CIFAR100) MIA (CIFAR100) ToW (CIFAR10) MIA (CIFAR10)

Figure 2: Comparison of the impact of number of retain samples on ToW and MIA performance for
CIFAR10 and CIFAR100 datasets

ToW (CIFAR100) MIA (CIFAR100) ToW (CIFAR10) MIA (CIFAR10)

Figure 3: Comparison of the impact of number of forget samples on ToW and MIA performance for
CIFARI10 and CIFAR100 datasets.

in ToW. As the number of retain samples increases further, Noisy-Scrubber’s performance recovers,
contrasting with GA, NegGrad+, and IU, whose performance continues to deteriorate. It is also
noted that, for both CIFAR10 and CIFAR100, Noisy-Scrubber starts with lower ToW compared to
other methods when trained with very few retain samples, indicating that the noise module initially
requires few data samples for effective learning. Figure[2|also compare the MIA scores as the num-
ber of retain samples increases. Noisy Scrubber consistently maintains MIA scores close to 1 on
both CIFAR10 and CIFAR100, demonstrating its strong resilience against membership inference
attacks and forget information leakage.

Comparison with number of forget samples. This evaluation aims to assess the effectiveness of
baseline and prior state-of-the-art unlearning methods when limited amount of forget data is avail-
able. Figure [3|illustrates that increasing the number of forget samples leads to higher ToW scores
on both CIFAR10 and CIFAR100 datasets. For small number of forget samples, ToW values are
lower compared to other methods in both datasets, as the noise module requires a sufficient quantity
of forget samples for effective training. Beyond a certain threshold in number of forget samples, the
ToW metric saturates. Similarly, Figure [3] shows that the MIA scores of Noisy Scrubber improve
with an increasing number of forget samples. This improvement occurs because the noise module
becomes more proficient at corrupting forget sample representations, making them indistinguishable
from test data to membership inference attackers.

6 CONCLUSION

This work introduced Noisy Scrubber, a novel framework for machine unlearning that injects tar-
geted noise into latent representations rather than modifying model parameters. To show Noisy
Scrubber attains approximate unlearning we theoretically establish bounds on the parameter gap
between original and exact unlearned model, as well as on the output discrepancy between Noisy
Scrubber and exact unlearning. To bypass costly per-sample optimization for computing optimal
perturbations, we introduce a noise module trained with a KL divergence-based contrastive loss to
approximate these perturbations. Extensive experiments on CIFAR-10, CIFAR-100, and AGNews,
ranging from small CNNs to large architectures such as ResNet-101, SWIN Transformer, and BERT
demonstrate that Noisy Scrubber consistently approximates exact unlearning while outperforming
state-of-the-art baselines in accuracy retention, privacy protection, and runtime efficiency. These
findings highlight representation-level perturbations as a promising direction for scalable unlearn-
ing. Future research may explore extending Noisy Scrubber to continual unlearning, scenarios with
extremely limited forget/retain data, and large-scale foundation models.
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A APPENDIX

A.1 BROADER IMPACT

Machine Unlearning (MU) research holds significant promise for enabling users to request deletion
of their data from trained models, enhancing model safety by removing inappropriate or obsolete in-
formation. In this work, we develop a scalable approximate unlearning method that achieves strong
data forgetting, maintains high utility, and preserves generalisation. This is particularly relevant as
model and dataset sizes continue to grow, and in practical scenarios where models may be iteratively
retrained by third parties, often without access to the original training data. Additionally, updating
all parameters in a large model is unstable and requires a lot of tuning. We tried to address all these
issues in this work.

A.2 BASELINE APPROXIMATION UNLEARNING

We next review two baseline approximation unlearning techniques.

& Fine-tuning (FT): FT|Golatkar et al.|(2020); [Warnecke et al|(2021) fine-tunes the original model
6% on the retain set R for small number of training epochs to yield §%. It leverages the concept of
catastrophic forgetting from continual learning Parisi et al.|(2019)), where training on R initiates the
model 6* to forget information related to F.

& Gradient Ascent (GA): GA [Graves et al.| (2021)); [Thudi et al.| (2022al) fine-tunes the original
model §! on the forget set I’ with the objective of maximizing the loss for samples in F to yield 6.

A.3 UNLEARNING EVALUATION

Prior studies have examined MU performance |Golatkar et al.| (2020) Thudi et al.| (2022a) |Graves
et al.|(2021)), however, using a single evaluation metric may not fully reflect the performance of MU
Thudi et al.| (2022b)). Based on our review of prior evaluation methods, we focus on the following
evaluation methods and metrics used in our experimental investigation.

& Accuracy-based metric: In classification tasks, model utility is typically measured by accuracy
on the retain and test sets, where higher accuracy denotes better utility. Forgetting quality is empir-
ically evaluated by the accuracy on the forget set, with lower accuracy implying better unlearning.
Ideally, post-unlearning accuracy on the forget and retain sets should closely match that of a model
retrained from scratch. [Zhao et al| (2024) introduced the "tug-of-war” (ToW) metric (Equation [),
which computes the relative accuracy differences between unlearned and retrained models on forget,
retain, and test sets.

ToW(0“,0", F, R, Diesi) = (1 — da(6",0", F)) - (1 — da(6“,0", R)) - (1 — da(0",0", Deest)) (4

where a(f, D) denotes accuracy on D of model 6 and da(*,0", D) = |a(6%,D) — a(6", D)|
is absolute difference between accuracy of model 8" and 6" on D. ToW favours models whose
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accuracy closely matches that of retrained models across forget, retain and test sets. ToW values
range from O to 1, where higher scores indicate better unlearning.

& Membership Inference Attack Score (MIA Score): In privacy literature, MIA [Shokri et al.
(2017) assesses whether a given sample is part of the training dataset or not by examining model
outputs (e.g. confidence, loss values). MIA can be utilised to assess forgetting quality. To calculate
MIA we define an attacker that attempts to distinguish between samples in the forget set from the
samples in the never-seen distribution (test set not part of the training process). The failure of the
attacker in distinguishing never-seen samples from the forget set acts as a measure of forgetting

quality. MIA is calculated as TIgIF where, T'Nr denote number of true negative predicted by MIA

model on forget set and | F'| denote number of samples in forget set. MIA score ranges from 0 to
1, where a higher value signifies that more forget set samples are predicted as non-training data,
reflecting better unlearning. Ideally, the MIA score of the unlearned model should closely match
that of a model retrained from scratch. MIA-GAP is defined to compare MIA performance between
the unlearned model and the retrained model, which is the absolute difference between MIA scores
of the unlearned model and the retrained model. |Zhao et al.| (2024) proposed the ToW-MIA metric
(Equation [5), which measures forget quality using MIA instead of accuracy.

TOW-MIA (6", 0", F, R, Dyeet) = (1 — dm(6%,0", F)) - (1 — da(6",6", R)) - (1 — da(6", 0", Diew)) (5)

where m(0, D) denotes MIA on D of model 6 and the first term dm(6%,0", F) = |m(6%, F) —
m(0", F)| represents the absolute MIA performance difference between unlearned and retrained
models. Unlike ToW, which measures forgetting quality via accuracy, ToW-MIA assesses it using
the MIA score. Similar to ToW, ToW-MIA also ranges from 0 and 1, where a higher score indicates
better unlearning.

& Run-time efficiency (RTE): It evaluates the runtime efficiency of the unlearning algorithm (/)
by comparing it to the retraining baseline. Specifically, the time required by the retrained model is
used as a reference, and the speedup achieved by the approximate unlearning algorithm is measured
relative to this baseline.

& Indistinguishability measures: The indistinguishability measures similarity between unlearned
model 8" and retrained model 8”. One standard approach is to compute the /5 norm of the difference
between 6% and 6", given by ||6* — 6"||. A smaller {5 norm indicates higher similarity between the
two models. Additionally, the indistinguishability of the model’s outputs can be quantified using the
Jensen-Shannon divergence (JSD) (Equation[6) between the prediction on data samples D by model
0" and 6".

JSD(8",0", D) = 1 (KL(8"(D) Q) + KL(®" (D)|Q))) ©

where Q = 1(6%(D) + 6"(D)) and KL denotes the Kullback-Leibler divergence. Lower JS di-
vergence values indicate that the outputs of the unlearned and retrained models are more difficult to
distinguish.

A.4  PROOF OF PROPOSITION(I]

Let D = R U F be a dataset, where R N F' = (). Let the empirical risk functions be defined as
Lp(0) = ﬁ > wepl(z,0) and Lr(0) = ﬁ > wcr l(z,0).The corresponding optimal parameters
are defined as §* = arg ngn Lp(0) and 0" = arg mein Lr(0), both obtained by performing T steps
of gradient descent from the same initialisation 6, with step size .

Assume the loss function I(z, 0) satisfies the following properties:

1. Itis continuously differentiable in # for every x.
2. Itis M-Lipschitz smooth with respect to 6.

3. The gradient norm is bounded for any single sample, i.e., || Vi(x,0)|| < G for some con-
stant G > 0.

If both parameters 6, " are updated using GD, let us denote the updates as follows:
HfH =0 —aVLp(6)
01 =07 —aVLR(6])

Let §; = 6} — 07, then find ||67| = ||6% — 6%

13
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let 0% converges at 7T} ie.., 6% = 9}1, 0" converges at T ie.., 0" = 07,
we assume 7' rounds such that 7' > Ty & T > T5,
which still implies: 0" = 6% and 6" = 0. as VLp(0) = 0and VLg(0) = 0, V steps > T1 & Tn

Proof. We start with
5i+1 = 9§+1 - ir+1
=0 —aVLp(0!) — 0 +aVLR(6))
= (0; = 0;7) — a(VLp(6;) — VLR(6]))
1di1] = 11(6; = 67) — a(VLp(8;) — VLr(6}))||
< 167 = 071l + VLD (67) — VLR(67))]]

After applying the triangular inequality:
18i41ll < 10ill + VLD (87) — VLr(6])]] ()
Find |[VLp(0}) — VLp(07)] <?

Add & Subtract VLg(6?)
IVLp(6;) = VLp(O7)Il < IVLp(0;) — VLr(6}) + VLR(0]) — VLR(9;)||
< |VLp(0}) = VLr(O)| + IVLR(0]) — VLr(6])|

Now, we have two terms to be bounded
Term A : ||VLp(0!) — VLg(6?)| and
Term B : | VL (6)) — VLa(6])]
Bounding Term A:

IVLo(6]) = VLRI = lIhy Y VI(2,0)) — g Y Vi(x,6

zeD zER
= gy D Vi@, 00) + 5 D Vi, 08) — 1 > Vi, 00)]]
z€F T€ER TER

s Z Vi, 09)] + ||(ﬁ - ﬁ)(Z Vi, 7))l
TER
E (z,0%)

Upon applying triangular inequality, we get

ﬁ

mER

IVL(6) — VIR < b 3 Vil 09| + il 3 V(e )]
zeF Tz€ER
IR
< 151 > G+ mnm DG
zeF TER
_IFIG | |FIR]
=1 toiRG
_ 2AFl

D]

Bounding Term B:

IVLR(0!) — VRO = Itk > Vi, 68) — & > Vi, 67)]
TER TzER

| /\

i D IV, 00) = Vi, 07)|

TER
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Using the definition of M-smooth, we get

IVLR(O!) — VLROD)] < iy 3 M0 — 07
zER
1R 15
M|6¢]]
Therefore, upon substituting both the bounds, we get the final bound as follows
IVLo(6) - VLo (6] < 2F< + M
Therefore, we substitute the bound in eq. m to get

10s41ll < 18] + ad83]| + 22LHE

2G|F|
D

< (14 aM)

whent+1="1T,

67l < (1+ aM)jor— ]| + 2357

Similarly,

[or—1] < (1 +aM)]|

On substituting ||d7—1]| in |07 ||, we get

67| < (14 aM)[(1 + aM)||or_s| + 253 + 2

< (L+aM)?[5r— + 253 (1 + abr) + 225 E

Similarly, we substitute ||07_s]|

167]| < (14 aM)2[(1 + aM)||5_s|| + 22GEL) 4 22G1E1 (1 4 1) +

|D] [D]

< (1+ al)?[or—s]| + (1 + aM)? 2G4 (1 -+ adr) 25571
)

< (14 aM)||or sl + 251+ (14 aM) + (1 + aM)?]

Unrolling for T steps yields:

2aG|F)|
D]

ozl < (1 + am)T||éo + M+(1+am)+ (1 +am)?+--+

Sum of geometric progression:

a(r™ —1)
r—1 "7

Sp = a=1,7r= (14 am)

So the sum inside the bound becomes:
(14+am)T -1
am

Therefore,

20| F|G T_
1ozl < (1 + am)T o)) + 22F 1 aram™—1y

|D| alM
2|F|G
< (14 am) ool + 255 (14 am)” - 1
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Assuming [|6| = [|65 — 851 = 0. i.e. 65 = 65,

. o o 2EIG
167 — 07|l = [16° = 67|| < miD| [(1+am)” —1]
Since for z > 0,
2 3
(1+x)<1+x+m—+%+ e’
< e
As,a >0, m > 0= aM > 0 Therefore,
1+aM <M

(1 +am)T S eamT

Final bound:
2|F|G

t_ T <
o' -7l < S

(6amT _ 1)

Now assuming loss function [(x, 8) is u-strongly convex. Since the empirical risk Lp(6) is an
average of p-strongly convex functions, it is also p-strongly convex. For any two points 61, 62, the
following inequality holds for p-strongly convex function:

1
161 — 62| < EHVLle) — VLp(02)||
Setting #; = 6" and 6, = 0", and using the first-order optimality condition VL (6) = 0, we get:
1 1
16" — 07| < ;IIO = VLp(0")|| = EHVLD(HT)” (8)

IVLp(07)] <7
We expand this term using the dataset definition D = R U F*:

Vo) = (szmer +ZV[3:9T>

TER zEF

Since 0" is the minimizer of L (6), we know that >
sion to:

ser VI(z,0") = 0. This simplifies the expres-

VLp(07) _|D‘ZW$9T

zeF

Taking the norm, applying the triangle inequality, and using the gradient bound assumption:

|F|G
IVLp (6] < V(2,07 < G=
IDI Z IDI Z D[

Finally, substituting this result back into Equation equation 8] we arrive at our final bound:

1 (|F|G |F|G
ot — 9" <<> =2
| I< p\ D] 1| D|
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A.5 PROOF OF PROPOSITION[Z]

Consider a full dataset D partitioned into a retain set R and a forget set F' such that D = RU F
and RN F = (). We define two parameter vectors, #% and 6", which are the outputs of training on
the empirical risks Lp(6) and Lr(6), respectively. Both are obtained by running 7T iterations of
gradient descent with a learning rate o from a common initialisation 6.

Assume the following conditions hold:
1. The model f(x, ) is L-Lipschitz continuous with respect to its parameter 6 for all z € X'.

2. The per-sample loss function I(z, 8) is M-smooth with respect to 6.

3. The per-sample gradient is uniformly bounded, i.e., ||Vi(z, 0)|| < G.

Proof.

IIGI]%{II ”g( (.Z‘, efeat) + 67 ect‘ls) - g(h(a:, eﬁ:at)’ eéls)H = ”g(h(xv efeat) + €, ect‘ls) - g(h(l‘, egicat% L’,lS)H

for any ¢ € R? we have,

||g( ([I‘ e’reat) agzls) ( (x702?eat) cls)” < ||g( (:C oteat) éaagls)_g(h(x70€eat)a le)”

€ = 0 also satisfies the above inequality

||g( (I’ Gfeat) + ¢ 0Cl§) (h(‘r70treat)v :19)” < ||g( (I 0feat>7ecli) g(h(l’, 9{63[)79:‘;“)”

”g( (l‘ efeat) +e ecls) (h(x>9£cat) cls)” < ”f(']j et) f(x,HT)H
since, f is L-Lipschitz with respect to parameters, we have || f(z,0') — f(z,0")| < L||6* — 67|
Applying Proposition [I] this directly yields the stated bound. O

A.6 IMPLEMENTATION DETAILS
A.6.1 NOISE MODEL ARCHITECTURE

We implemented the noise model as depicted in Figure ] For all experiments, the noise model
architecture was fixed as follows: both the retain and forget neural networks are linear layers with
a hidden dimension of 512, while the selector network is a linear layer with a hidden dimension
of 64. The selector outputs a probability used to determine the weighted combination of the retain
(z1) and forget (22) network outputs, yielding the final noise value. The following is a PyTorch
implementation snippet for the model:

class NoisyLatchModel (nn.Module) :
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def _ _init_ (self, input_dim, hidden_dim, attn_hidden_dim, =args,
*xkwargs) :
super().__init__ (*args, =**kwargs)
self.un_model_forget = nn.Sequential (
nn.Linear (input_dim, hidden_dim),
nn.ReLU(),
nn.Linear (hidden_dim, input_dim),
)
self.un_model_retain = nn.Sequential (
nn.Linear (input_dim, hidden_dim),
nn.RelLU(),
nn.Linear (hidden_dim, input_dim),

)

self.attn_wts = nn.Sequential (
nn.Linear (input_dim, attn_hidden_dim),
nn.RelLU(),

nn.Linear (attn_hidden_dim, 2),

)

def forward(self, repr):
attn = torch.softmax(self.attn _wts(repr), dim=1)

retain = self.un_model_retain (repr)
forget = self.un_model_forget (repr)
z = torch.einsum("bn,bni->bi", attn,
torch.stack ((retain, forget), dim=1l))
repr_ = repr + z

return z, repr_, attn

A.6.2 TRAINING ORIGINAL MODELS

We trained four model architectures across five datasets: simple CNNs for MNIST and CIFAR10,
ResNet101 and SWIN Transformers for CIFAR100, and BERT for AGNews and DBPedia. Models
were trained with early stopping based on validation accuracy. For CNNs, we used the AdamW
optimiser with a weight decay of 1 x 10~° while for ResNet101, SWIN and BERT, a weight decay
of 1 x 10~2 was applied. A cosine annealing warmup restart (CSWR) learning rate scheduler was
used to tune the learning rate during training. The initial learning rate was set to 1 x 103 for CNN,
ResNet101, and SWIN, and 2 x 10~ for BERT.

A.6.3 TRAINING DETAILS OF MACHINE UNLEARNING METHODS

We compared Noisy Scrubber with eight approximate unlearning methods as well as an exact un-
learning baseline based on retraining. Hyperparameters for each method were carefully selected for
each dataset and architecture. In contrast, Noisy Scrubber’s architecture and hyperparameters were
fixed across all experiments using values identified via tuning on MNIST, highlighting its stability
and minimal need for hyperparameter adjustment. FT and L1-sparse were trained for 10 epochs with
learning rates in the range [1 x 1072, 1 x 10~%], with L1-sparse using a regularisation coefficient
ain [1 x 107%,1 x 107°]. GA and NegGrad+ were trained for 8 epochs, with learning rates in
[5x 1074, 1 x 10~%] also, NegGrad+ additionally used a loss weighting factor « in [0.8,0.9]. TU
required tuning « in the WoodFisher Hessian inverse approximation from 1 to 10. Random-label
was trained for 10 epochs with learning rates in [1 x 1073, 1 x 10~#]. SCRUB was trained for 10
epochs, with 8 and v (KL divergence and classification loss weights) in [0.3, 0.7] and learning rates
in [1 x 1073, 1 x 10~*]. For SalUn, we used 10 epochs, learning rates of [1 x 1072, 1 x 10~%], and
sparsity ratios between 0.6 and 0.7. In Noisy-Scrubber, the noise module consists of two linear layers
within each of the selector (64-dimensional), forget (512-dimensional), and retain (512-dimensional)
neural networks. Training is performed for 10 epochs using a learning rate of 5 x 1074,
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Methods Metrics CIFAR10 CIFAR100 AGNews
Retrain RTE (sec) 102.45 161.66 2466.45
ToW 0.857+£0.00  0.5484+0.00  0.91940.00
FT MIA-Gap 0.123+0.00  0.31740.00  0.0284+0.00
RTE (sec) 8.738+0.21  47.789+3.50 196.669+1.09
ToW 0.035+0.00  0.66940.00  0.027+£0.00
GA MIA-Gap 0.17440.00  0.11040.00  0.141£0.00
RTE (sec) 6.19540.12  43.647+4.01 150.83440.40
ToW 0.87440.00  0.54740.00  0.92140.00
£1-Sparse MIA-Gap 0.109+0.00  0.316+0.00  0.02140.00
RTE (sec) 9.103+0.11  52.35542.36  198.373+0.59
ToW 0.0744+0.00  0.04740.0 0.62610.00
U MIA-Gap 0.033+0.00  0.04740.00  0.692+0.00
RTE (sec) 8.898+0.76  48.584+1.92 78.316£2.35
ToW 0.7774£0.00  0.602+0.00  0.91740.00

NegGrad+ MIA-Gap 0.145+£0.00  0.285+0.00  0.030+0.00
RTE (sec) 9.660+£0.58  27.3224+1.22 141.388+3.32

ToW 0.353+£0.00  0.640+0.00  0.02740.00
Random-Label MIA-Gap 0.422+0.07  0.24240.00  0.22640.01
RTE (sec) 10.343+0.08  53.796+3.89 249.117+0.54

ToW 0.794£0.00  0.589+0.0 0.406£0.10
SCRUB MIA-Gap 0.066£0.00  0.284+0.0 0.129+0.01
RTE (sec) 9.2514£0.64 523074251 238.013%£2.96
ToW 0.377£0.00  0.635+0.00  0.02740.00
SALUN MIA-Gap 0.565+£0.00  0.2444+0.00  0.55740.01
RTE (sec) 14.35440.34  80.628+76.90 335.899+0.07
ToW 0.907£0.00  0.687+0.00  0.96910.00

Noisy-Scrubber MIA-Gap 0.014£0.00  0.169+0.00  0.074%0.00
RTE (sec) 17.5214£1.78 25.5114£0.23  97.126£1.25

Table 3: Performance comparison of MU methods in the random forgetting scenario. Results are
reported as a & b, denoting the mean a and standard deviation b over 5 independent trials.

A.6.4 MEMBERSHIP INFERENCE ATTACK (MIA) IMPLEMENTATION DETAILS

We used prediction confidence scores for membership inference attacks (MIA). An SVM-based
attack model is trained using equal partitions from the retain and test sets, where the SVM receives
the model’s prediction confidences as input and predicts whether a sample was present in the training
data. The attack model is defined as follows:

attack_model = SVC(C=3, gamma="auto", kernel="rbf")

After training the attack model, we use it to assess the membership of all samples in the forget set.
Effective unlearning is indicated when these forget samples are classified as non-training data by the
attack model. We measure performance as the ratio of true negatives (the number of forget samples
correctly identified as non-training) to the total number of forget samples.

TNp

MIA Performance =
|F|

9)

A.6.5 ENVIRONMENT DETAILS

All experiments were conducted on a machine with the following configuration: NVIDIA RTX 4070
GPU (12GB), Intel 17-13700 13th Gen processor (5.1 GHZ), 32 GB of RAM, and running Ubuntu
24.04.2 LTS. We set up a Python virtual environment using conda 24.11.3 configured with Python
3.11.11, PyTorch 2.6.0, scikit-learn 1.6.1, and CUDA 11.8.

A.7 RANDOM FORGETTING PERFORMANCE
Table [3] provides a comprehensive evaluation for the random forgetting scenario. On CIFARI0,

CIFAR100, and AGNews, Noisy Scrubber achieves ToW gaps of 0.093, 0.313, and 0.031 versus
retraining, demonstrating its ability to closely approximate exact unlearning. Furthermore, Noisy
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Methods Metrics MNIST DbPedia CIFAR100 (SWIN)
Retrain RTE (sec) 251.011 18104.17 758.76
ToW 0.944+0.00  0.404+0.16  0.32440.00
FT MIA-Gap 0.00£0.00 0.52740.14  0.41740.00
RTE (sec) 4.176+0.00  202.5240.52 120.97+£11.30
ToW 0.07974+0.00 0.0124+0.00  0.096+0.00
GA MIA-Gap 0.114£0.00  0.00+£0.00 0.00£0.00
RTE (sec) 2.56+0.29 149.7134£2.60 89.4742.48
ToW 0.920+£0.00  0.714+0.02  0.32140.00
£1-Sparse MIA-Gap 0.00+0.00 0.049+0.00  0.42140.00
RTE (sec) 5.683+1.23  201.9484+4.71 119.15£2.69
ToW 0.8924+0.00  0.03640.0 0.12540.00
U MIA-Gap 0.038+0.00  0.0040.00 0.00+0.00
RTE (sec) 4.1914+0.54 74.1440.07 148.78+14.99
ToW 0.9714£0.00  0.993+0.00  0.978+0.00

NegGrad+ MIA-Gap 0.003£0.00  0.00£0.00 0.00=£0.00
RTE (sec) 5.610£0.06  210.33140.62 141.388+3.32

ToW 0.987+£0.00  0.983+0.00  0.88140.00
Random-Label MIA-Gap 0.00£0.00 0.00£0.00 0.00£0.00
RTE (sec) 5.93£0.06 224.46740.84 128.410+17.95

ToW 0.991£0.00  0.992+0.0 0.927+0.00
SCRUB MIA-Gap 0.00=£0.00 0.00£0.0 0.0040.00

RTE (sec) 4.920+£0.21  219.30841.27 134.198+24.57

ToW 0.988+£0.00  0.993+0.00  0.87940.00
SALUN MIA-Gap 0.0040.00 0.0040.00 0.0040.00

RTE (sec) 6.976+£0.03  261.424+35.51 172.006+158.80

ToW 0.986+0.00  0.9984+0.00  0.92940.00

Noisy-Scrubber MIA-Gap 0.0010.00 0.004-0.00 0.00=£0.00
RTE (sec) 22.5440.09  80.86+£0.17  46.108+3.61

Table 4: Performance comparison of MU methods in the class-wise forgetting scenario. Results are
reported as a & b, denoting the mean a and standard deviation b over 5 independent trials.

Table 5: Accuracy of Noisy Scrubber in the class-wise forgetting scenario. Results are reported as
a £ b, with a representing the mean and b the standard deviation computed over 5 independent trials.
Full set represent full test dataset, forget and retain set represent forget and retain dataset extracted
from test dataset.

MNIST CIFAR10 CIFAR100 CIFAR100 AGNews DBPedia
CNN CNN ResNet SWIN BERT BERT
Before 99.06 79.45 59.91 61.15 94.41 99.24
Full Test Set After 88.8710.02 74.61+£0.062  59.51+0.115  60.73£0.064  70.040.060 92.254+0.008
Retrained  88.96 72.26 59.39 57.45 70.01 92.25
Before 99.93 57.30 17.67 49.0 98.95 97.98
Forget Test Set  After 1.07£0.210 0.0£0.0 0.0£0.0 0.34+0.471 0.47£0.239 0.0£0.0
Retrained 0.0 0.0 0.0 0.0 0.0 0.0
Before 99.07 81.91 60.34 61.27 92.89 99.34
Retain Test Set  After 98.95+0.019  82.85£0.079  59.52£0.115  61.34£0.067  93.18+£0.080  99.35+0.008
Retrained ~ 99.15 82.51 59.99 58.03 93.35 99.35

Scrubber consistently outperforms all baselines and prior state-of-the-art methods in ToW, attain-
ing the highest scores on CIFAR10 (0.907), CIFAR100 (0.687), and AGNews (0.969). Privacy
leakage, assessed by MIA-Gap, remains minimal (maximum 0.169) across all datasets, suggest-
ing strong resistance against membership inference attacks. Among approximate methods, Noisy
Scrubber achieves superior forget quality, utility, and generalisation. In terms of computational ef-
ficiency, Noisy Scrubber delivers significant runtime improvements over retraining, particularly on
large models like ResNet (CIFAR100) and BERT (AGNews).
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ToW (CIFAR100) MIA (CIFAR100) ToW (MNIST) MIA (MNIST)

Figure 5: Comparison of the impact of number of retain samples on ToW and MIA performance for
CIFAR100 (SWIN) and MNIST datasets

A.8 CLASS-WISE FORGETTING PERFORMANCE

Table [] presents a comprehensive evaluation on the CIFAR100 (SWIN), MNIST, and DBPedia
datasets. The results demonstrate that Noisy Scrubber enables efficient unlearning, supporting the
findings discussed in the experimental results section of the paper. Table [5] summarises the results
on the forget and retain subsets derived from the test set, which indicates that the method closely
matches the retrained model’s behaviour across the forget, retain, and test sets, demonstrating effec-
tive unlearning.

A.9 COMPARISON: NUMBER OF RETAIN SAMPLES

Figure [5shows that on CIFAR100, increasing the number of retain samples initially improves ToW
performance, followed by a decline when the retain set reaches 1,000 samples. This drop occurs
because the forget set consists of only 500 samples from a single class. As the retain set grows,
the noise module becomes biased, raising accuracy on the forget set and reducing ToW. With fur-
ther increases in retain samples, Noisy Scrubber’s performance recovers. For MNIST Figure [5
Noisy-Scrubber starts with lower ToW compared to other methods when trained with very few retain
samples, indicating that the noise module initially requires few data samples for effective learning.
Additionally, both figures indicate that Noisy Scrubber consistently maintains MIA scores close to 1
across datasets, confirming its robustness to membership inference attacks and its ability to prevent
information leakage.

A.10 USE OF LARGE LANGUAGE MODELS(LLMS)

We used LLMs solely for non-technical assistance in preparing this paper. Specifically, LLMs were
used for polishing grammar and improving readability of text, identifying related works during the
literature survey and summarizing them. No LLMs were used for generating novel research ideas,
designing experiments. All scientific contributions are original to the authors.
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