
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

NOISY SCRUBBER: UNLEARNING USING NOISY
REPRESENTATIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

Machine Unlearning (MU) aims to remove the influence of specific data points
from trained models, with applications ranging from privacy enforcement to de-
biasing and mitigating data poisoning. Although exact unlearning ensures com-
plete data removal via retraining, this process is computationally intensive, mo-
tivating the development of efficient approximate unlearning methods. Existing
approaches typically modify model parameters, which limits scalability, intro-
duces instability, and requires extensive tuning. We propose Noisy Scrubber, a
novel MU framework that learns to inject perturbations into the latent represen-
tations rather than modifying model parameters. To show Noisy Scrubber attains
approximate unlearning we theoretically establish bounds on the parameter gap
between original and exact unlearned model, as well as on the output discrepancy
between Noisy Scrubber and exact unlearning. Empirical results on CIFAR-10,
CIFAR-100, and AGNews demonstrate that Noisy Scrubber closely matches ex-
act unlearning while being significantly more efficient, reducing unlearning gaps
to 0.024, 0.129, and 0.006, respectively. Moreover, membership inference evalua-
tions confirm that Noisy Scrubber removes information comparably to retraining.
Our approach scales across model families in both vision and text, and introduces
a flexible, attachable noise module that enables on-demand and reversible unlearn-
ing.

1 INTRODUCTION

Deep learning models are increasingly deployed in real-world applications, achieving notable suc-
cess driven by advances in computational resources, data availability, and neural network architec-
tures. Training these models typically demands substantial compute and large-scale datasets, which
may accidentally include copyrighted content, private user data, biases, or other sensitive informa-
tion. Recent regulations, such as the General Data Protection Regulation (GDPR) and the California
Consumer Privacy Act (CCPA), grant users the right to request deletion of their data from machine
learning systems Nguyen et al. (2022); Wang et al. (2024). However, removing specific data points
from trained deep neural networks presents significant challenges. The highly non-convex nature of
neural networks makes it difficult to trace the influence of specific data points on model parameters.
Furthermore, learned representations are densely encoded in the model weights, where a single neu-
ron captures multiple unrelated concept phenomena known as polysemanticity Elhage et al. (2022).
This superposition complicates the removal of targeted information, as adjusting one neuron may
disrupt model utility. These challenges highlight the need for developing machine learning pipelines
that support strong performance while enabling efficient and reliable data deletion.

Machine Unlearning (MU) emerged as an area that aims to remove the influence of specific data
points from the trained model. One direct approach is exact unlearning, which involves retraining
the model on the data to be retained. While retraining the model from scratch provides strong
guarantees, it is computationally expensive. Therefore, recent research has focused on developing
efficient and fast approximation unlearning algorithms Fan et al. (2023); Jia et al. (2023); Izzo et al.
(2021); Thudi et al. (2022a); Neel et al. (2021). Although approximate unlearning methods provide
computational benefit, they do not provide provable guarantees of unlearning effectiveness, resulting
performance gap compared to exact unlearning Golatkar et al. (2020). While effectiveness cannot be
proven formally, it can be evaluated empirically through metrics such as accuracy on forget, retain,
and test sets and membership inference attack Shokri et al. (2017); Liu et al. (2022) without requiring

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

data, model, or algorithmic assumptions as in certified unlearning Guo et al. (2019). Therefore,
developing an approximate unlearning algorithm requires balancing the inherent trade-offs between
forgetting quality, model utility, and efficiency.

Despite the advantage over exact unlearning, prior approximation unlearning methods exhibit signif-
icant performance variance because of hyperparameter selection, stochasticity from model parame-
ter optimisation and evaluation metric selection Fan et al. (2023); Jia et al. (2023). These approaches
require direct modification of the trained model parameters, which limits scalability and demands
extensive hyperparameter tuning that can introduce instability, particularly in large models. In con-
trast, We present Noisy Scrubber, a MU framework that avoids direct modification of trained model
parameters. Instead, it employs a neural network to generate noise that is injected into the latent
representation space, aligning the model’s predictions with the exact unlearned model’s predictions.
We show Noisy Scrubber attains approximate unlearning by theoretically establishing bounds on the
parameter gap between original and exact unlearned model, as well as on the output discrepancy be-
tween Noisy Scrubber and exact unlearning.

We empirically demonstrate the effectiveness of Noisy Scrubber in classification tasks for both class-
wise and random data forgetting across text and vision modalities. Our results show that Noisy
Scrubber exhibits strong unlearning capabilities and outperforms several state-of-the-art unlearning
methods. Experiments conducted on models of varying scales highlight its effectiveness and ef-
ficiency, particularly for larger models. Membership inference attacks further confirm that Noisy
Scrubber achieves information removal comparable to exact unlearning, thereby reducing the risk of
leaked forget information. Additionally, we show that Noisy Scrubber remains effective even with
limited subset of retain and forget samples. We summarise our contributions as follows:

• We introduce Noisy Scrubber, a novel MU framework that achieves unlearning by injecting
perturbations into latent representations, avoiding direct parameter modification.

• We derive bounds on (i) the parameter difference between trained and retrained models, and
(ii) the output discrepancy between Noisy Scrubber and exact unlearning to show Noisy
Scrubber attains approximate unlearning.

• The noise module is lightweight, attachable, and independently training, enabling on-
demand and reversible unlearning.

• We demonstrate that Noisy Scrubber effectively approximates exact unlearning across
CIFAR-10, CIFAR-100, and AGNews, ranging from small CNNs to large architectures
such as ResNet-101, SWIN Transformer, and BERT. It achieves negligible membership
inference leakage, and outperforms state-of-the-art MU baselines under limited retain data.

2 MACHINE UNLEARNING AND EVALUATION

2.1 UNLEARNING PROBLEM FORMULATION

MU is the process of algorithmically removing the contribution of specific data points from a pre-
trained machine learning model Cao & Yang (2015); Bourtoule et al. (2021); Nguyen et al. (2022);
Wang et al. (2024). The objective is to produce an updated model that behaves as if it had never
been trained on that data. It is critical for applications such as enforcing privacy regulations, like
the right to be forgotten, and removing outdated or incorrect information from the model Nguyen
et al. (2022); Wang et al. (2024). Formally, let θ0 denote the initial model parameters. We define
the model as a composite function f : X × Rθ → Rk, f(x, θ) = g(h(x, θfeat), θcls), where h is
the feature extractor with parameters θfeat, g is the classification head with parameters θcls, and the
full parameter set is θ = (θfeat, θcls). A model is trained on a dataset D using a learning algorithm
A to yield the trained parameters θt = A(D, θ0). We partition the training set D into two disjoint
subsets: the forget set F ⊆ D, containing the data to be unlearned, and the retain set R = D \ F .
The primary goal of a MU algorithm is to find an unlearned model parameters, θu, using the trained
model parameters θt, the forget set F , and the retain set R, such that f(., θu) is a close approximation
of the retrained model f(., θr) where θr = A(R, θ0). In the context of classification, the choice of
the forget set F defines various unlearning scenarios Bourtoule et al. (2021); Graves et al. (2021).
Specifically, classwise forgetting refers to the removal of all training data associated with a particular
class, while random forgetting involves unlearning a randomly selected subset of training samples,
which may contain samples across all classes.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2.2 EXACT AND APPROXIMATE UNLEARNING

Unlearning algorithms are generally classified into two types: exact and approximate unlearning.
Exact unlearning algorithms produce a model parameters θu that is identical to the one obtained by
retraining θr. For neural networks, this usually means retraining from scratch or retraining a subset
of models affected by the data removal in the ensemble. However, exact methods entail a large com-
putational overhead, especially when training deep neural networks. For an unlearning algorithm
to be practical, the unlearning process must be significantly more computationally efficient than re-
training the model from scratch on the retain set. Therefore, approximate unlearning algorithms are
preferred in practice, as they are a proxy for full retraining, hence more computationally efficient.
These methods use the trained model parameters θt, the retain set R, and the forget set F to produce
an updated model parameters that behaves similarly to a retrained model parameters θr. However,
the gain in computational efficiency comes at the cost of reduced effectiveness in MU.

2.3 EVALUATING APPROXIMATE UNLEARNING

Unlearning evaluation can be divided into two categories: (i) assessing the extent of unlearning and
model utility, and (ii) evaluating the indistinguishability of the model and its outputs. An effec-
tive unlearning algorithm must balance the trade-off among forgetting quality, model utility, and
unlearning efficiency. The research community uses several empirical measures to capture these
trade-offs. Zhao et al. (2024) proposed the ”tug-of-war” (ToW) metric, which captures relative
accuracy differences between unlearned and retrained models across forget, retain, and test sets,
thereby quantifying the trade-off between forgetting quality and model utility. Privacy is typically
evaluated using Membership Inference Attacks (MIA), where an adversary attempts to distinguish
forget samples from unseen data. The MIA score is defined as the proportion of forget samples
identified as test data by the adversary and MIA-GAP quantifies the deviation of this score from the
retrained baseline. Computational efficiency is reflected in runtime efficiency (RTE), defined as the
relative speedup of an unlearning algorithm over full retraining. Finally, indistinguishability is eval-
uated both at the parameter level, using the ℓ2 norm of parameter differences, and at the output level,
via the Jensen–Shannon divergence (JSD) between predictions of unlearned and retrained models.
Together, these metrics provide a holistic view of effectiveness, privacy, scalability, and similarity
to exact unlearning. Further details of all evaluation metrics is provided in Appendix A.3.

3 RELATED WORK

In recent years, there has been significant interest in MU. The goal of MU is to modify trained mod-
els in order to remove the influence of particular data points, originally motivated to prevent privacy
breaches Ginart et al. (2019); Neel et al. (2021); Ullah et al. (2021); Sekhari et al. (2021). While
retraining the model from scratch (exact unlearning) provides strong guarantees, it is generally com-
putationally infeasible for large datasets and models. To address this challenge, recent research has
focused on developing efficient approximate unlearning algorithms. These methods seek to remove
the effects of targeted data without incurring the high computational costs of full retraining. Among
these, the foundational methods FT and GA were discussed in Appendix A.2. However, GA has
been observed to significantly degrade overall model utility. Building on these, NegGrad+ Kurmanji
et al. (2023) integrates both FT and GA in a joint optimisation framework: it minimises the loss on
the retain set R while maximising the loss on the forget set F . SCRUB Kurmanji et al. (2023), an
extension by the same authors, frames the problem as knowledge distillation Hinton et al. (2015).
Here, a student network is trained to imitate the teacher’s behaviour on R but disobey the teacher
on F . ℓ1-sparse unlearning Jia et al. (2023) introduces an ℓ1 penalty during fine-tuning, inspired by
model pruning, to promote sparsity in parameter updates. Other strategies leverage model sensitiv-
ity. Fisher Forgetting (FF) Becker & Liebig (2022); Golatkar et al. (2020) adds Gaussian noise to
model parameters, where the covariance is determined by the Fisher information matrix. However,
calculating the Fisher information at scale is computationally intensive and offers limited paralleliz-
ability on modern hardware. Influence Unlearning (IU) Izzo et al. (2021); Koh & Liang (2017) uses
influence functions to estimate how individual points affect model parameters, connecting this work
to ϵ-δ Guo et al. (2019) forgetting, but often relies on strong model and training assumptions Guo
et al. (2019). Additionally, re-labelling-based methods erase knowledge by reassigning labels to the
forget set F using samples from a prior distribution, for example, a uniform distribution used in the

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 1: Noisy Scrubber Framework

random-label method. Saliency Unlearning (SalUn) Fan et al. (2023) selectively updates only the
most relevant, or salient parameters, partitioning model weights into those affected by F and those
that are not. In contrast to prior works that require fine-tuning or updating model parameters, our
approach does not modify model parameters during unlearning, thereby avoiding the high compu-
tational cost and instability associated with updating the main model parameters. Instead, we train
a noise module that perturbs the model’s learned representations, selectively corrupting the repre-
sentations of forget samples while leaving the retain samples unaffected. To show Noisy Scrubber
attains approximate unlearning, we derived bounds on parameter difference between trained and
retrained models, and output discrepancy between Noisy Scrubber and exact unlearning.

4 NOISY SCRUBBER: ERASE WITH NOISY CORRUPTION

4.1 PROBLEM DEFINITION

We focus on the problem of approximate unlearning in the classification setting, considering both
classwise and random forgetting scenarios. Let the forget set be denoted as F ⊂ D, and the retain
set as R ⊂ D \ F . We consider a practical setting where, instead of using the entire set D \ F as
the retain set, we choose a representative subset R. This assumption is particularly relevant when
complete access to the training dataset is unavailable, and only a limited number of samples from the
training distribution are available. Our goal is to derive model parameters θu = U(F,R, θt) using
the unlearning algorithm U that closely approximates the ideal retrained model. For evaluation, this
retrained model parameters θr is defined as parameters obtained by training from scratch on the
complete set D \ F .

Proposition 1 (Parameter Difference Bound). Let D = R ∪ F be the full dataset, partitioned into
a retain set R and a forget set F , where R ∩ F = ∅. Let the empirical risk functions be defined as
LD(θ) = 1

|D|
∑
x∈D

l(x, θ) and LR(θ) =
1
|R|

∑
x∈R

l(x, θ). The corresponding optimal parameters are

defined as θt = argmin
θ

LD(θ) and θr = argmin
θ

LR(θ), both obtained by performing T steps of

gradient descent from the same initialisation θ0 with step size α.

Assume the loss function l(x, θ) satisfies the following properties:

1. It is continuously differentiable in θ for every x.

2. It is M -Lipschitz smooth with respect to θ.

3. The per-sample gradient is bounded, i.e., |∇l(x, θ)| ≤ G for some constant G > 0.

Then, the Euclidean distance between the optimal parameters is upper bounded as:

∥θt − θr∥ ≤ 2G|F |
M |D|

(eαMT−1 − 1)

Under assumption of µ-strong convexity of loss function l(x, θ) upper bound reduces to:

∥θt − θr∥ ≤ G|F |
µ|D|

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Proposition 1 establishes that the magnitude of the parameter perturbation induced by removing a
subset F scales linearly with the subset size |F | and decays at a rate inversely proportional to the
total dataset size |D|. This highlights that model parameters are more stable in well-conditioned
settings with large datasets, however remain sensitive to the removal of small subsets containing
high-influence samples. Further, imposing a strong convexity assumption leads to a significantly
tighter bound, indicating that strong convexity functions as an effective regularizer. In practice,
strong convexity can be introduced during training through the addition of L2 regularisation. The
complete proof of Proposition 1 is provided in the Appendix A.4.

4.2 UNLEARNING WITH NOISY SCRUBBER

Noisy Representations. We begin with motivating the rationale behind noisy representations for
MU. Prior work on data uncertainty has primarily focused on the noisy labels, noisy inputs, and
out-of-distribution (OOD) samples Li et al. (2021; 2022); Geng et al. (2021); Li et al. (2023). Mo-
tivated by data uncertainty, we consider the central question: Can we perturb the representations
of forget samples in a way that makes them highly uncertain, without affecting the representations
of retain samples? Targeting input representations is necessary, as the MU setting does not permit
prior assumptions about the presence of input or output noise. Given that the exact unlearned model
parameters θr produces highly uncertain outputs for forget samples, while maintaining retain set
performance, our objective is formulated as perturbing input representations so that they align with
the outputs of θr.
Noisy Scrubber formulation. Let θt be decomposed into two components: feature extractor param-
eters θtfeat and classifier parameters θtcls. θ

t
feat generates a representation vector x̂ = h(x, θtfeat) ∈ Rd

for a given input x, and θtcls maps the representation x̂ to a prediction over k classes, i.e.,
y = g(x̂, θtcls). Noisy Scrubber aims to inject noise vector ϵ into latent representations of θt, i.e.,
h(x, θtfeat) + ϵ such that its outputs align with outputs of θr. Mathematically our objective is defined
as finding a noise vector ϵ such that:

g(h(x, θtfeat) + ϵ, θtcls) ≈ g(h(x, θrfeat), θ
r
cls)

We can find ϵ by solving the following optimisation problem:

ϵ = argmin
ϵ̂∈Rd

∥g(h(x, θtfeat) + ϵ̂, θtcls)− g(h(x, θrfeat), θ
r
cls)∥ (1)

Deriving a closed-form solution for ϵ requires strong assumptions on g, such as invertibility, which
is generally intractable in the case of neural networks. Instead, we can use a gradient descent-based
algorithm to obtain the optimal value of ϵ.
Proposition 2 (Output Difference Bound). Consider a full dataset D partitioned into a retain set
R and a forget set F such that D = R ∪ F and R ∩ F = ∅. We define two parameter vectors,
θt and θr, which are the outputs of training on the empirical risks LD(θ) and LR(θ), respectively.
Both are obtained by running T iterations of gradient descent with a learning rate α from a common
initialisation θ0.

Assume the following conditions hold:

1. The model f(x, θ) is L-Lipschitz continuous with respect to its parameter θ for all x ∈ X .

2. The per-sample loss function l(x, θ) is M -smooth with respect to θ.

3. The per-sample gradient is bounded, i.e., |∇l(x, θ)| ≤ G for some constant G > 0.

Then, for any input x ∈ X and ϵ = argmin
ϵ̂∈Rd

∥g(h(x, θtfeat) + ϵ̂, θtcls) − g(h(x, θrfeat), θ
r
cls)∥, the

difference in the model’s output is upper bounded by:

∥g(h(x, θtfeat) + ϵ, θtcls)− f(x, θr)∥ ≤ 2GL|F |
M |D|

(eαMT − 1)

Proposition 2 shows that the perturbed model output is closer to the exact unlearned model com-
pared to the unperturbed case demonstrating approximate unlearning. The bound provides a formal
guarantee that output discrepancy can be controlled and reduced through the optimal perturbation ϵ.
The proof of Proposition 2 is provided in the Appendix A.5.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Noisy Scrubber. In order to perform unlearning we require to calculate optimal ϵ using Equation
(1). Directly solving Equation (1) for each sample requires access to the parameters of θr and
involves iteratively optimising per sample, which is computationally expensive. To address this,
we train a neural network p(., ϕ) to approximate the solution of this optimisation problem. The
network p(., ϕ), takes the intermediate representation x̂ = h(x, θtfeat), as input and generates a
noise vector z = p(x̂, ϕ). This noise vector is added to the model’s intermediate representation
ẑ = x̂+ z, and the resulting perturbed representation is subsequently processed by the downstream
layers for prediction ynoise = g(ẑ, θtcls). The combination of the original model parameters θt and
the noise module parameters ϕ constitutes the unlearned model parameters θu = [θt, ϕ]. Figure 1
shows the proposed MU pipeline. This noise module is independent of the model and can be easily
attached or detached, which also allows us to forget learned knowledge for a specific period of
time. Furthermore, this approach improves the efficiency of unlearning since only the noise module
requires training, which is significantly more efficient than updating all parameters of model.

Before presenting the training details of the noise module parameters ϕ, we introduce Uniform-
Except-One (UEO) distribution Uk

c over k classes, where a specified class c ∈ {1, 2, .., k} are
assigned equal probability mass. For each class index i ∈ {1, . . . , k}, the probability mass function
is given by:

Uk
c (i) =

{
0 if i = c,
1

k−1 otherwise.

In the classification setting, we avoid relying on the model parameters θr to optimise Equation (1), by
assuming that an exact unlearned model output a UEO distribution for forget set samples reflecting
maximal uncertainty, while preserving the same output distribution as θt for retain samples. This
assumption captures the fact that the exact unlearned model has no exposure to the forgotten data,
and therefore assigning zero probability to the forgotten class or a uniform distribution over all
classes corresponds to the maximum-entropy distribution. Therefore, we train the noise module with
a KL-divergence based contrastive loss (KLC) (Equation 2), which encourages p(., ϕ) to generate
noisy representations ẑ such that g(., θtcls) preserves the original output distribution on retain samples
while aligning forget sample outputs with the UEO distribution.

KLC = (1− λ)KL(ynoisy, yclean) + λKL
(
ynoisy,Uk

argmax {yclean}

)
(2)

where, λ = 0 if x ∈ R and λ = 1 if x ∈ F , ynoisy is prediction by θt after noisy perturbation in
representation, yclean is prediction by θt without perturbation and Uk

c represents UEO distribution
where, k denotes the total number of classes in the classification task. During training, model pa-
rameters θt is frozen, intermediate representations of input x are passed to the noise module p(., ϕ),
which generates noisy representation ẑ. During the backward pass, only the noise module is updated
such that the KLC loss Equation (2) is minimised.
Distill Noisy Scrubber (Distill-NS). Unlike the retrained parameters θr, Noisy-Scrubber augments
the model with an additional noise module ϕ, yielding parameters θu = [θt, ϕ]. This distinct param-
eterization makes the two models distinguishable which makes evaluation of proximity between θu

and θr difficult, and increases susceptibility to inference attacks Yang et al. (2024). To address this
problem, we employ knowledge distillation Hinton et al. (2015) to obtain a single, unified model θu
that does not include the additional parameters from the noise module. Knowledge distillation is a
technique for transferring knowledge from a larger teacher model to a smaller student model. In our
approach, the unlearned parameters θu = θteacher = [{θtfeat, θ

t
cls}, ϕ] serves as the teacher. A separate

copy of the original trained model parameters θt acts as the student model θstudent = {θtfeat, θ
t
cls}. The

student model is trained to mimic the teacher using a knowledge distillation loss (KD) defined as:

KD = α KL(f(.θstudent), f(., θteacher)) + β MSE(ostudent, oteacher) + γ CE(argmax {f(., θstudent)}, y) (3)

where ostudent = h(., [θtfeat]student) denotes the student’s intermediate representation, oteacher =
h(., [ϕ(θtfeat)]teacher) is the noisy representation produced by the teacher, y represents the true class
label, CE denotes cross-entropy loss and MSE denotes mean square error. The student model is
trained to minimise KD-loss using both the forget set F and the retain set R. This yields a single
unlearned model parameters θu which excludes noise parameters ϕ.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Performance comparison of MU methods in the class-wise forgetting scenario. Results are
reported as a± b, denoting the mean a and standard deviation b over 5 independent trials.

Methods Metrics CIFAR10 CIFAR100 AGNews

Retrain RTE (sec) 137.27 234.61 3064.68

FT
ToW 0.983±0.00 0.308±0.00 0.748±0.02
MIA-Gap 0.002±0.00 0.556±0.00 0.006±0.09
RTE (sec) 8.757±0.15 46.912±2.46 199.404±19.87

GA
ToW 0.434±0.00 0.554±0.00 0.204±0.00
MIA-Gap 0.000±0.00 0.002±0.00 0.000±0.00
RTE (sec) 5.620±1.80 38.831±0.61 143.615±0.21

ℓ1-Sparse
ToW 0.976±0.00 0.316±0.00 0.871±0.01
MIA-Gap 0.000±0.00 0.546±0.00 0.035±0.00
RTE (sec) 9.352±1.26 48.989±1.88 201.630±11.21

IU
ToW 0.075±0.00 0.021±0.0 0.481±0.00
MIA-Gap 0.000±0.00 0.000±0.00 0.209±0.00
RTE (sec) 8.980±0.06 46.188±1.89 77.856±0.91

NegGrad+
ToW 0.894±0.00 0.756±0.00 0.955±0.00
MIA-Gap 0.000±0.00 0.002±0.00 0.000±0.00
RTE (sec) 8.162±0.31 26.373±0.15 136.951±1.59

Random-Label
ToW 0.921±0.00 0.346±0.00 0.738±0.13
MIA-Gap 0.000±0.00 0.433±0.00 0.001±0.00
RTE (sec) 11.035±0.39 49.457±1.172 244.402±3.35

SCRUB
ToW 0.786±0.00 0.469±0.0 0.902±0.00
MIA-Gap 0.002±0.00 0.332±0.0 0.000±0.00
RTE (sec) 9.400±0.53 49.069±0.58 241.720±3.18

SALUN
ToW 0.918±0.00 0.352±0.00 0.628±0.18
MIA-Gap 0.000±0.00 0.433±0.00 0.000±0.00
RTE (sec) 14.891±5.49 71.998±42.65 336.329±5.52

Noisy-Scrubber
ToW 0.976±0.00 0.871±0.00 0.994±0.00
MIA-Gap 0.000±0.00 0.000±0.00 0.000±0.00
RTE (sec) 15.658±0.13 24.710±0.45 95.002±1.19

Distill-NS
ToW 0.968±0.00 0.564±0.00 0.993±0.00
MIA-Gap 0.000±0.00 0.186±0.00 0.000±0.00
RTE (sec) 22.317±2.70 27.901±3.19 269.674±0.17

5 EXPERIMENT AND ANALYSIS

5.1 EXPERIMENT SETUPS

Dataset and Models: We evaluate unlearning using standard classification benchmark datasets
from both image and text domains, including MNIST LeCun et al. (2010), CIFAR10 and CI-
FAR100 Krizhevsky & Hinton (2009), AGNews Zhang et al. (2015b), and DBPedia Zhang et al.
(2015a). For the MNIST and CIFAR10 datasets, we utilize simple CNN LeCun et al. (1995)archi-
tectures, while for CIFAR100, we employ ResNet He et al. (2016) and SWIN transformer models
Liu et al. (2021). For AGNews and DBPedia, we utilized BERT Devlin et al. (2019) model.
Evaluation Metrics: We evaluate unlearning performance using the ToW metric (Equation 4),
MIA-GAP, and RTE. We implement MIA using prediction confidence attack based method Yeom
et al. (2018); Song & Mittal (2021). To evaluate indistinguishability, we used JSD (Equation 6) and
ℓ2 norm of model parameters. Further details of all evaluation metrics is provided in Appendix A.3.
Unlearning Setup: We investigate two unlearning scenarios: class-wise forgetting and random data
forgetting. For our experiments, the forget set F contains 1000 samples, while the retain set R
comprises 2000 samples. For class-wise forgetting, we randomly select 1000 samples from a single
class to form the forget set F , and 2000 samples randomly drawn from the remaining classes to
create the retain set R. For random forgetting, we select 1000 samples at random from the dataset
to form F , and 2000 samples from the remaining data to form R. We compare our approach against
baselines and the state-of-art, including FT, GA, NegGrad+, ℓ1-sparse, Random-label, SCRUB, and
SALUN, implementing each methods by following their official repositories. Hyperparameters for
these methods are tuned for each dataset, with the corresponding values detailed in the Appendix
A.6.3. All experiments were conducted on NVIDIA RTX 4070 (12GB) GPU.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: Indistinguishability of different MU methods in the class-wise forgetting scenario. Results
are reported as a ± b, with a representing the mean and b the standard deviation computed over 5
independent trials.

Methods Metrics CIFAR10 CIFAR100 AGNews

FT JSD 0.3000±0.00 0.793±0.00 0.3350±0.02
ℓ2-Score 55.125±0.00 125.00±0.00 18.182±0.05

GA JSD 1.716±0.02 2.05±0.00 3.550±0.02
ℓ2-Score 54.67±0.00 124.99±0.00 12.99±0.00

ℓ1-Sparse JSD 0.249±0.00 0.777±0.00 0.263±0.00
ℓ2-Score 53.617±0.06 124.539±0.00 124.923±0.06

IU JSD 16.498±0.00 20.40±0.00 0.467±0.00
ℓ2-Score 150.37±0.00 134.955±0.00 11.225±0.00

NegGrad+ JSD 0.388±0.00 1.576±0.00 0.451±0.00
ℓ2-Score 54.705±0.00 125.09±0.00 14.478±0.02

Random-Label JSD 0.416±0.00 0.762±0.00 0.351±0.00
ℓ2-Score 56.534±0.00 125.132±0.00 19.532±0.14

SCRUB JSD 0.371±0.00 0.804±0.00 0.137±0.00
ℓ2-Score 55.228±0.00 125.060±0.00 14.721±0.09

SALUN JSD 0.404±0.00 0.756±0.00 0.323±0.00
ℓ2-Score 56.260±0.00 125.069±0.00 18.835±0.31

Distill-NS JSD 0.248±0.00 0.882±0.00 0.079±0.00
ℓ2-Score 56.092±0.00 124.946±0.00 11.256±0.00

Noisy Scrubber JSD 0.938±0.00 1.988±0.00 0.411±0.00

5.2 EXPERIMENTAL RESULTS

Noisy Scrubber scrubs away information from trained model. Table 1 presents a comprehensive
evaluation of our proposed method Noisy Scrubber and its distilled variant, Distill-NS. For reference,
the ideal ToW and MIA-Gap values are 1 and 0 for exact unlearning. Any approximate unlearning
algorithm that exhibit minimum deviation from these ideal values is considered superior. On CI-
FAR10, CIFAR100, and AGNews datasets, Noisy Scrubber achieves ToW gaps of 0.066, 0.129,
and 0.024 relative to retraining, demonstrating its strong ability to approximate the performance
of exact unlearning, outperforming all baselines and prior state-of-the-art unlearning techniques.
In terms of privacy leakage, measured by MIA-Gap, Noisy Scrubber obtains values very close to
zero in all three datasets, signifying negligible vulnerability to MIA and forget information leakage.
Additional results on datasets, models, and results on random forgetting scenarios are provided in
Appendix Sections A.8 and A.7. The Distill-NS yields a single unified unlearned model, enabling
the computation of a pseudo-distinguishability score for Noisy Scrubber. In terms of distinguisha-
bility, shown in Table 2 Distill-NS achieves highly competitive results on CIFAR10, CIFAR100,
and AGNews, while demonstrating effective unlearning. In terms of computational efficiency, both
Noisy Scrubber and Distill-NS achieve notable runtime improvements over conventional retraining
and surpass prior unlearning approaches in balancing speed and efficacy. Significant reductions
in runtime are achieved for large architectures, such as ResNet101 and Swin Transformer on CI-
FAR100 and BERT on AGNews. While improvements are less in CIFAR10 due to its smaller model
size, Noisy Scrubber still maintains competitive runtime efficiency. Although IU achieves the fastest
runtime on AGNews, its significantly lower unlearning effectiveness and privacy scores undermine
its practical utility. Overall, these result establish Noisy Scrubber as a scalable, privacy-preserving,
and effective machine unlearning solution across a range of modalities and model architectures.
Comparison with number of retain samples. We evaluate baseline and prior state-of-the-art un-
learning methods alongside Noisy Scrubber across varying retain set sizes, ranging from 10 to 2000
samples. This evaluation aims to assess the effectiveness of each method when limited amount of
retain data is available. Figure 2 demonstrates that increasing the number of retain samples on CI-
FAR10 leads to improved performance for Noisy-Scrubber, which converges at 500 samples and
outperforms both baselines and prior state-of-the-art methods. On CIFAR100, performance initially
rises with more retain samples but exhibits a sharp decline at 1000 samples. This is because the
forget set contains only 500 samples (representing a single class) and with 1000 retain samples, the
noise module becomes biased towards the retain set, resulting in higher forget set accuracy and drop

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

ToW (CIFAR100) MIA (CIFAR100) ToW (CIFAR10) MIA (CIFAR10)

Figure 2: Comparison of the impact of number of retain samples on ToW and MIA performance for
CIFAR10 and CIFAR100 datasets

ToW (CIFAR100) MIA (CIFAR100) ToW (CIFAR10) MIA (CIFAR10)

Figure 3: Comparison of the impact of number of forget samples on ToW and MIA performance for
CIFAR10 and CIFAR100 datasets.

in ToW. As the number of retain samples increases further, Noisy-Scrubber’s performance recovers,
contrasting with GA, NegGrad+, and IU, whose performance continues to deteriorate. It is also
noted that, for both CIFAR10 and CIFAR100, Noisy-Scrubber starts with lower ToW compared to
other methods when trained with very few retain samples, indicating that the noise module initially
requires few data samples for effective learning. Figure 2 also compare the MIA scores as the num-
ber of retain samples increases. Noisy Scrubber consistently maintains MIA scores close to 1 on
both CIFAR10 and CIFAR100, demonstrating its strong resilience against membership inference
attacks and forget information leakage.
Comparison with number of forget samples. This evaluation aims to assess the effectiveness of
baseline and prior state-of-the-art unlearning methods when limited amount of forget data is avail-
able. Figure 3 illustrates that increasing the number of forget samples leads to higher ToW scores
on both CIFAR10 and CIFAR100 datasets. For small number of forget samples, ToW values are
lower compared to other methods in both datasets, as the noise module requires a sufficient quantity
of forget samples for effective training. Beyond a certain threshold in number of forget samples, the
ToW metric saturates. Similarly, Figure 3 shows that the MIA scores of Noisy Scrubber improve
with an increasing number of forget samples. This improvement occurs because the noise module
becomes more proficient at corrupting forget sample representations, making them indistinguishable
from test data to membership inference attackers.

6 CONCLUSION

This work introduced Noisy Scrubber, a novel framework for machine unlearning that injects tar-
geted noise into latent representations rather than modifying model parameters. To show Noisy
Scrubber attains approximate unlearning we theoretically establish bounds on the parameter gap
between original and exact unlearned model, as well as on the output discrepancy between Noisy
Scrubber and exact unlearning. To bypass costly per-sample optimization for computing optimal
perturbations, we introduce a noise module trained with a KL divergence-based contrastive loss to
approximate these perturbations. Extensive experiments on CIFAR-10, CIFAR-100, and AGNews,
ranging from small CNNs to large architectures such as ResNet-101, SWIN Transformer, and BERT
demonstrate that Noisy Scrubber consistently approximates exact unlearning while outperforming
state-of-the-art baselines in accuracy retention, privacy protection, and runtime efficiency. These
findings highlight representation-level perturbations as a promising direction for scalable unlearn-
ing. Future research may explore extending Noisy Scrubber to continual unlearning, scenarios with
extremely limited forget/retain data, and large-scale foundation models.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Alexander Becker and Thomas Liebig. Evaluating machine unlearning via epistemic uncertainty.
arXiv preprint arXiv:2208.10836, 2022.

Lucas Bourtoule, Varun Chandrasekaran, Christopher A Choquette-Choo, Hengrui Jia, Adelin
Travers, Baiwu Zhang, David Lie, and Nicolas Papernot. Machine unlearning. In 2021 IEEE
symposium on security and privacy (SP), pp. 141–159. IEEE, 2021.

Yinzhi Cao and Junfeng Yang. Towards making systems forget with machine unlearning. In 2015
IEEE symposium on security and privacy, pp. 463–480. IEEE, 2015.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 conference of
the North American chapter of the association for computational linguistics: human language
technologies, volume 1 (long and short papers), pp. 4171–4186, 2019.

Nelson Elhage, Tristan Hume, Catherine Olsson, Nicholas Schiefer, Tom Henighan, Shauna Kravec,
Zac Hatfield-Dodds, Robert Lasenby, Dawn Drain, Carol Chen, et al. Toy models of superposi-
tion. arXiv preprint arXiv:2209.10652, 2022.

Chongyu Fan, Jiancheng Liu, Yihua Zhang, Eric Wong, Dennis Wei, and Sijia Liu. Salun: Em-
powering machine unlearning via gradient-based weight saliency in both image classification and
generation. arXiv preprint arXiv:2310.12508, 2023.

Yu Geng, Zongbo Han, Changqing Zhang, and Qinghua Hu. Uncertainty-aware multi-view repre-
sentation learning. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35,
pp. 7545–7553, 2021.

Antonio Ginart, Melody Guan, Gregory Valiant, and James Y Zou. Making ai forget you: Data
deletion in machine learning. Advances in neural information processing systems, 32, 2019.

Aditya Golatkar, Alessandro Achille, and Stefano Soatto. Eternal sunshine of the spotless net:
Selective forgetting in deep networks. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 9304–9312, 2020.

Laura Graves, Vineel Nagisetty, and Vijay Ganesh. Amnesiac machine learning. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 35, pp. 11516–11524, 2021.

Chuan Guo, Tom Goldstein, Awni Hannun, and Laurens Van Der Maaten. Certified data removal
from machine learning models. arXiv preprint arXiv:1911.03030, 2019.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2015.

Zachary Izzo, Mary Anne Smart, Kamalika Chaudhuri, and James Zou. Approximate data deletion
from machine learning models. In International conference on artificial intelligence and statistics,
pp. 2008–2016. PMLR, 2021.

Jinghan Jia, Jiancheng Liu, Parikshit Ram, Yuguang Yao, Gaowen Liu, Yang Liu, Pranay Sharma,
and Sijia Liu. Model sparsity can simplify machine unlearning. Advances in Neural Information
Processing Systems, 36:51584–51605, 2023.

Pang Wei Koh and Percy Liang. Understanding black-box predictions via influence functions. In
International conference on machine learning, pp. 1885–1894. PMLR, 2017.

Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images. Tech-
nical report, University of Toronto, 2009.

Meghdad Kurmanji, Peter Triantafillou, Jamie Hayes, and Eleni Triantafillou. Towards unbounded
machine unlearning. Advances in neural information processing systems, 36:1957–1987, 2023.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Yann LeCun, Yoshua Bengio, et al. Convolutional networks for images, speech, and time series.
The handbook of brain theory and neural networks, 3361(10):1995, 1995.

Yann LeCun, Corinna Cortes, and CJ Burges. Mnist handwritten digit database. ATT Labs [Online].
Available: http://yann.lecun.com/exdb/mnist, 2010.

Junnan Li, Caiming Xiong, and Steven CH Hoi. Learning from noisy data with robust representation
learning. In Proceedings of the IEEE/CVF international conference on computer vision, pp. 9485–
9494, 2021.

Xiaotong Li, Yongxing Dai, Yixiao Ge, Jun Liu, Ying Shan, and Ling-Yu Duan. Uncertainty mod-
eling for out-of-distribution generalization. arXiv preprint arXiv:2202.03958, 2022.

Xiaotong Li, Zixuan Hu, Jun Liu, Yixiao Ge, Yongxing Dai, and Ling-Yu Duan. Modeling uncertain
feature representation for domain generalization. arXiv preprint arXiv:2301.06442, 2023.

Lan Liu, Yi Wang, Gaoyang Liu, Kai Peng, and Chen Wang. Membership inference attacks against
machine learning models via prediction sensitivity. IEEE Transactions on Dependable and Secure
Computing, 20(3):2341–2347, 2022.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the
IEEE/CVF international conference on computer vision, pp. 10012–10022, 2021.

Seth Neel, Aaron Roth, and Saeed Sharifi-Malvajerdi. Descent-to-delete: Gradient-based methods
for machine unlearning. In Algorithmic Learning Theory, pp. 931–962. PMLR, 2021.

Thanh Tam Nguyen, Thanh Trung Huynh, Zhao Ren, Phi Le Nguyen, Alan Wee-Chung Liew,
Hongzhi Yin, and Quoc Viet Hung Nguyen. A survey of machine unlearning. arXiv preprint
arXiv:2209.02299, 2022.

German I Parisi, Ronald Kemker, Jose L Part, Christopher Kanan, and Stefan Wermter. Continual
lifelong learning with neural networks: A review. Neural networks, 113:54–71, 2019.

Ayush Sekhari, Jayadev Acharya, Gautam Kamath, and Ananda Theertha Suresh. Remember what
you want to forget: Algorithms for machine unlearning. Advances in Neural Information Pro-
cessing Systems, 34:18075–18086, 2021.

Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. Membership inference at-
tacks against machine learning models. In 2017 IEEE symposium on security and privacy (SP),
pp. 3–18. IEEE, 2017.

Liwei Song and Prateek Mittal. Systematic evaluation of privacy risks of machine learning models.
In 30th USENIX security symposium (USENIX security 21), pp. 2615–2632, 2021.

Anvith Thudi, Gabriel Deza, Varun Chandrasekaran, and Nicolas Papernot. Unrolling sgd: Un-
derstanding factors influencing machine unlearning. In 2022 IEEE 7th European Symposium on
Security and Privacy (EuroS&P), pp. 303–319. IEEE, 2022a.

Anvith Thudi, Hengrui Jia, Ilia Shumailov, and Nicolas Papernot. On the necessity of auditable
algorithmic definitions for machine unlearning. In 31st USENIX security symposium (USENIX
Security 22), pp. 4007–4022, 2022b.

Enayat Ullah, Tung Mai, Anup Rao, Ryan A Rossi, and Raman Arora. Machine unlearning via
algorithmic stability. In Conference on Learning Theory, pp. 4126–4142. PMLR, 2021.

Weiqi Wang, Zhiyi Tian, Chenhan Zhang, and Shui Yu. Machine unlearning: A comprehensive
survey. arXiv preprint arXiv:2405.07406, 2024.

Alexander Warnecke, Lukas Pirch, Christian Wressnegger, and Konrad Rieck. Machine unlearning
of features and labels. arXiv preprint arXiv:2108.11577, 2021.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Ziqi Yang, Yiran Zhu, Jie Wan, ChuXiao Xiang, Tong Tang, Yilin Wang, Ruite Xu, Lijin Wang,
Fan Zhang, Jiarong Xu, et al. Defending data inference attacks against machine learning mod-
els by mitigating prediction distinguishability. IEEE Transactions on Dependable and Secure
Computing, 2024.

Samuel Yeom, Irene Giacomelli, Matt Fredrikson, and Somesh Jha. Privacy risk in machine learn-
ing: Analyzing the connection to overfitting. In 2018 IEEE 31st computer security foundations
symposium (CSF), pp. 268–282. IEEE, 2018.

Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level convolutional networks for text clas-
sification. In C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett (eds.), Advances in
Neural Information Processing Systems, volume 28. Curran Associates, Inc., 2015a.

Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level convolutional networks for text clas-
sification. In Advances in Neural Information Processing Systems, 2015b.

Kairan Zhao, Meghdad Kurmanji, George-Octavian Bărbulescu, Eleni Triantafillou, and Peter Tri-
antafillou. What makes unlearning hard and what to do about it. Advances in Neural Information
Processing Systems, 37:12293–12333, 2024.

A APPENDIX

A.1 BROADER IMPACT

Machine Unlearning (MU) research holds significant promise for enabling users to request deletion
of their data from trained models, enhancing model safety by removing inappropriate or obsolete in-
formation. In this work, we develop a scalable approximate unlearning method that achieves strong
data forgetting, maintains high utility, and preserves generalisation. This is particularly relevant as
model and dataset sizes continue to grow, and in practical scenarios where models may be iteratively
retrained by third parties, often without access to the original training data. Additionally, updating
all parameters in a large model is unstable and requires a lot of tuning. We tried to address all these
issues in this work.

A.2 BASELINE APPROXIMATION UNLEARNING

We next review two baseline approximation unlearning techniques.
♣ Fine-tuning (FT): FT Golatkar et al. (2020); Warnecke et al. (2021) fine-tunes the original model
θt on the retain set R for small number of training epochs to yield θu. It leverages the concept of
catastrophic forgetting from continual learning Parisi et al. (2019), where training on R initiates the
model θt to forget information related to F .
♣ Gradient Ascent (GA): GA Graves et al. (2021); Thudi et al. (2022a) fine-tunes the original
model θt on the forget set F with the objective of maximizing the loss for samples in F to yield θu.

A.3 UNLEARNING EVALUATION

Prior studies have examined MU performance Golatkar et al. (2020) Thudi et al. (2022a) Graves
et al. (2021), however, using a single evaluation metric may not fully reflect the performance of MU
Thudi et al. (2022b). Based on our review of prior evaluation methods, we focus on the following
evaluation methods and metrics used in our experimental investigation.
♣ Accuracy-based metric: In classification tasks, model utility is typically measured by accuracy
on the retain and test sets, where higher accuracy denotes better utility. Forgetting quality is empir-
ically evaluated by the accuracy on the forget set, with lower accuracy implying better unlearning.
Ideally, post-unlearning accuracy on the forget and retain sets should closely match that of a model
retrained from scratch. Zhao et al. (2024) introduced the ”tug-of-war” (ToW) metric (Equation 4),
which computes the relative accuracy differences between unlearned and retrained models on forget,
retain, and test sets.

ToW(θu, θr, F,R,Dtest) = (1− da(θu, θr, F)) · (1− da(θu, θr, R)) · (1− da(θu, θr, Dtest)) (4)

where a(θ,D) denotes accuracy on D of model θ and da(θu, θr, D) = |a(θu, D) − a(θr, D)|
is absolute difference between accuracy of model θu and θr on D. ToW favours models whose

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

accuracy closely matches that of retrained models across forget, retain and test sets. ToW values
range from 0 to 1, where higher scores indicate better unlearning.
♣ Membership Inference Attack Score (MIA Score): In privacy literature, MIA Shokri et al.
(2017) assesses whether a given sample is part of the training dataset or not by examining model
outputs (e.g. confidence, loss values). MIA can be utilised to assess forgetting quality. To calculate
MIA we define an attacker that attempts to distinguish between samples in the forget set from the
samples in the never-seen distribution (test set not part of the training process). The failure of the
attacker in distinguishing never-seen samples from the forget set acts as a measure of forgetting
quality. MIA is calculated as TNF

|F | where, TNF denote number of true negative predicted by MIA
model on forget set and |F | denote number of samples in forget set. MIA score ranges from 0 to
1, where a higher value signifies that more forget set samples are predicted as non-training data,
reflecting better unlearning. Ideally, the MIA score of the unlearned model should closely match
that of a model retrained from scratch. MIA-GAP is defined to compare MIA performance between
the unlearned model and the retrained model, which is the absolute difference between MIA scores
of the unlearned model and the retrained model. Zhao et al. (2024) proposed the ToW-MIA metric
(Equation 5), which measures forget quality using MIA instead of accuracy.

TOW-MIA(θu, θr, F,R,Dtest) = (1− dm(θu, θr, F)) · (1− da(θu, θr, R)) · (1− da(θu, θr, Dtest)) (5)

where m(θ,D) denotes MIA on D of model θ and the first term dm(θu, θr, F) = |m(θu, F) −
m(θr, F)| represents the absolute MIA performance difference between unlearned and retrained
models. Unlike ToW, which measures forgetting quality via accuracy, ToW-MIA assesses it using
the MIA score. Similar to ToW, ToW-MIA also ranges from 0 and 1, where a higher score indicates
better unlearning.
♣ Run-time efficiency (RTE): It evaluates the runtime efficiency of the unlearning algorithm (U)
by comparing it to the retraining baseline. Specifically, the time required by the retrained model is
used as a reference, and the speedup achieved by the approximate unlearning algorithm is measured
relative to this baseline.
♣ Indistinguishability measures: The indistinguishability measures similarity between unlearned
model θu and retrained model θr. One standard approach is to compute the ℓ2 norm of the difference
between θu and θr, given by ∥θu − θr∥. A smaller ℓ2 norm indicates higher similarity between the
two models. Additionally, the indistinguishability of the model’s outputs can be quantified using the
Jensen-Shannon divergence (JSD) (Equation 6) between the prediction on data samples D by model
θu and θr.

JSD(θu, θr, D) =
1

2

(
KL(θu(D)∥Q) + KL(θr(D)∥Q))

)
(6)

where Q = 1
2 (θ

u(D) + θr(D)) and KL denotes the Kullback-Leibler divergence. Lower JS di-
vergence values indicate that the outputs of the unlearned and retrained models are more difficult to
distinguish.

A.4 PROOF OF PROPOSITION 1

Let D = R ∪ F be a dataset, where R ∩ F = ∅. Let the empirical risk functions be defined as
LD(θ) = 1

|D|
∑

x∈D l(x, θ) and LR(θ) =
1
|R|
∑

x∈R l(x, θ).The corresponding optimal parameters
are defined as θt = argmin

θ
LD(θ) and θr = argmin

θ
LR(θ), both obtained by performing T steps

of gradient descent from the same initialisation θ0 with step size α.

Assume the loss function l(x, θ) satisfies the following properties:

1. It is continuously differentiable in θ for every x.
2. It is M -Lipschitz smooth with respect to θ.
3. The gradient norm is bounded for any single sample, i.e., ∥∇l(x, θ)∥ ≤ G for some con-

stant G > 0.

If both parameters θt, θr are updated using GD, let us denote the updates as follows:

θti+1 = θti − α∇LD(θti)

θri+1 = θri − α∇LR(θ
r
i)

Let δi = θti − θri , then find ∥δT ∥ = ∥θtT − θrT ∥

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

let θt converges at T1 ie.., θt = θtT1
, θr converges at T2 ie.., θr = θrT2

we assume T rounds such that T > T1 & T > T2,
which still implies: θt = θtT and θr = θrT as ∇LD(θ) = 0 and ∇LR(θ) = 0, ∀ steps > T1 & T2

Proof. We start with

δi+1 = θti+1 − θri+1

= θti − α∇LD(θti)− θri + α∇LR(θ
r
i)

= (θti − θri)− α(∇LD(θti)−∇LR(θ
r
i))

∥δi+1∥ = ∥(θti − θri)− α(∇LD(θti)−∇LR(θ
r
i))∥

≤ ∥θti − θri ∥+ α∥∇LD(θti)−∇LR(θ
r
i))∥

After applying the triangular inequality:

∥δi+1∥ ≤ ∥δi∥+ α∥∇LD(θti)−∇LR(θ
r
i)∥ (7)

Find ∥∇LD(θti)−∇LD(θri)∥ ≤?

Add & Subtract ∇LR(θ
t
i)

∥∇LD(θti)−∇LD(θri)∥ ≤ ∥∇LD(θti)−∇LR(θ
t
i) +∇LR(θ

t
i)−∇LR(θ

r
i)∥

≤ |∇LD(θti)−∇LR(θ
t
i)∥+ ∥∇LR(θ

t
i)−∇LR(θ

r
i)∥

Now, we have two terms to be bounded
Term A : ∥∇LD(θti)−∇LR(θ

t
i)∥ and

Term B : ∥∇LR(θ
t
i)−∇LR(θ

r
i)∥

Bounding Term A:

∥∇LD(θti)−∇LR(θ
t
i)∥ = ∥ 1

|D|

∑
x∈D

∇l(x, θti)− 1
|R|

∑
x∈R

∇l(x, θti)∥

= ∥ 1
|D|

∑
x∈F

∇l(x, θti) +
1

|D|

∑
x∈R

∇l(x, θti)− 1
|R|

∑
x∈R

∇l(x, θti)∥

= ∥ 1
|D|

∑
x∈F

∇l(x, θti)∥+ ∥(1
|D| −

1
|R|)(

∑
x∈R

∇l(x, θti))∥

= ∥ 1
|D|

∑
x∈F

∇l(x, θti)∥+ ∥(|R|−|D|
|D||R|)

∑
x∈R

∇l(x, θti)∥

Upon applying triangular inequality, we get

∥∇LD(θti)−∇LR(θ
t
i)∥ ≤ ∥ 1

|D|

∑
x∈F

∇l(x, θti)∥+
|F |

|D||R|

∑
x∈R

∥∇l(x, θti)∥

≤ 1
|D|

∑
x∈F

G+ |F |
|D||R|

∑
x∈R

G

= |F |G
|D| + |F ||R|

|D||R|G

= 2|F |
|D| G

Bounding Term B:

∥∇LR(θ
t
i)−∇LR(θ

r
i)∥ = ∥ 1

|R|

∑
x∈R

∇l(x, θti)− 1
|R|

∑
x∈R

∇l(x, θri)∥

≤ 1
|R|

∑
x∈R

∥∇l(x, θti)−∇l(x, θri)∥

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Using the definition of M-smooth, we get

∥∇LR(θ
t
i)−∇LR(θ

r
i)∥ ≤ 1

|R|

∑
x∈R

M∥θti − θri ∥

= M
|R| |R|∥δt∥

= M∥δt∥

Therefore, upon substituting both the bounds, we get the final bound as follows

∥∇LD(θti)−∇LD(θri)∥ ≤ 2|F |G
D +M∥δi∥

Therefore, we substitute the bound in eq. 7, to get

∥δi+1∥ ≤ ∥δi∥+ αM∥δi∥+ α2|F |G
|D|

≤ (1 + αM)∥δi∥+ α2G|F |
|D|

when i+ 1 = T ,

∥δT ∥ ≤ (1 + αM)∥δT−1∥+ α2G|F |
|D|

Similarly,

∥δT−1∥ ≤ (1 + αM)∥δT−2∥+ 2αG|F |
|D|

On substituting ∥δT−1∥ in ∥δT ∥, we get

∥δT ∥ ≤ (1 + αM)[(1 + αM)∥δT−2∥+ 2αG|F |
|D|] + 2αG|F |

|D|

≤ (1 + αM)2∥δT−2∥+ 2αG|F |
|D|](1 + αM) + 2αG|F |

|D|

Similarly, we substitute ∥δT−2∥

∥δT ∥ ≤ (1 + αM)2[(1 + αM)∥δT−3∥+ 2αG|F |
|D|] + 2αG|F |

|D| (1 + αM) + 2αG|F |
|D|

≤ (1 + αM)3∥δT−3∥+ (1 + αM)2 2αG|F |
|D| + (1 + αM) 2αG|F |

|D| + 2αG|F |
|D|

≤ (1 + αM)3∥δT−3∥+ 2αG|F |
|D| [1 + (1 + αM) + (1 + αM)2]

Unrolling for T steps yields:

∥δT ∥ ≤ (1 + αm)T ∥δ0∥+
2αG|F |
|D|

[1 + (1 + αm) + (1 + αm)2 + · · ·+ (1 + αm)T−1]

Sum of geometric progression:

Sn =
a(rn − 1)

r − 1
, a = 1, r = (1 + αm)

So the sum inside the bound becomes:

(1 + αm)T − 1

αm

Therefore,

∥δT ∥ ≤ (1 + αm)T ∥δ0∥+
2α|F |G
|D|

[(1+αm)T−1
αM]

≤ (1 + αm)T ∥δ0∥+
2|F |G
m|D|

[(1 + αm)T − 1]

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Assuming ∥δ0∥ = ∥θt0 − θr0∥ = 0, i.e. θt0 = θr0,

∥θtT − θrT ∥ = ∥θt − θr∥ ≤ 2|F |G
m|D|

[
(1 + αm)T − 1

]
Since for x > 0,

(1 + x) ≤ 1 + x+
x2

2!
+

x3

3!
+ · · · = ex

≤ ex

As, α ≥ 0, m ≥ 0⇒ αM ≥ 0 Therefore,

1 + αM ≤ eαM

(1 + αm)T ≤ eαmT

Final bound:

∥θt − θr∥ ≤ 2|F |G
m|D|

(eαmT − 1)

Now assuming loss function l(x, θ) is µ-strongly convex. Since the empirical risk LD(θ) is an
average of µ-strongly convex functions, it is also µ-strongly convex. For any two points θ1, θ2, the
following inequality holds for µ-strongly convex function:

∥θ1 − θ2∥ ≤ 1

µ
∥∇LD(θ1)−∇LD(θ2)∥

Setting θ1 = θt and θ2 = θr, and using the first-order optimality condition ∇LD(θ) = 0, we get:

∥θt − θr∥ ≤ 1

µ
∥0−∇LD(θr)∥ =

1

µ
∥∇LD(θr)∥ (8)

∥∇LD(θr)∥ ≤?

We expand this term using the dataset definition D = R ∪ F :

∇LD(θr) =
1

|D|

(∑
x∈R

∇l(x, θr) +
∑
x∈F

∇l(x, θr)

)

Since θr is the minimizer of LR(θ), we know that
∑

x∈R ∇l(x, θr) = 0. This simplifies the expres-
sion to:

∇LD(θr) =
1

|D|
∑
x∈F

∇l(x, θr)

Taking the norm, applying the triangle inequality, and using the gradient bound assumption:

∥∇LD(θr)∥ ≤ 1

|D|
∑
x∈F

∥∇l(x, θr)∥ ≤ 1

|D|
∑
x∈F

G =
|F |G
|D|

Finally, substituting this result back into Equation equation 8, we arrive at our final bound:

∥θt − θr∥ ≤ 1

µ

(
|F |G
|D|

)
=

|F |G
µ|D|

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Forget Neural
Net

Selector Neural
Net

Retain Neural
Net

Figure 4: Noise Model

A.5 PROOF OF PROPOSITION 2

Consider a full dataset D partitioned into a retain set R and a forget set F such that D = R ∪ F
and R ∩ F = ∅. We define two parameter vectors, θt and θr, which are the outputs of training on
the empirical risks LD(θ) and LR(θ), respectively. Both are obtained by running T iterations of
gradient descent with a learning rate α from a common initialisation θ0.

Assume the following conditions hold:

1. The model f(x, θ) is L-Lipschitz continuous with respect to its parameter θ for all x ∈ X .

2. The per-sample loss function l(x, θ) is M -smooth with respect to θ.

3. The per-sample gradient is uniformly bounded, i.e., ∥∇l(x, θ)∥ ≤ G.

Proof.

min
ϵ̂∈Rd

∥g(h(x, θtfeat) + ϵ̂, θtcls)− g(h(x, θrfeat), θ
r
cls)∥ = ∥g(h(x, θtfeat) + ϵ, θtcls)− g(h(x, θrfeat), θ

r
cls)∥

for any ϵ̂ ∈ Rd we have,

∥g(h(x, θtfeat) + ϵ, θtcls)− g(h(x, θrfeat), θ
r
cls)∥ ≤ ∥g(h(x, θtfeat) + ϵ̂, θtcls)− g(h(x, θrfeat), θ

r
cls)∥

ϵ̂ = 0 also satisfies the above inequality

∥g(h(x, θtfeat) + ϵ, θtcls)− g(h(x, θrfeat), θ
r
cls)∥ ≤ ∥g(h(x, θtfeat), θ

t
cls)− g(h(x, θrfeat), θ

r
cls)∥

∥g(h(x, θtfeat) + ϵ, θtcls)− g(h(x, θrfeat), θ
r
cls)∥ ≤ ∥f(x, θt)− f(x, θr)∥

since, f is L-Lipschitz with respect to parameters, we have ∥f(x, θt) − f(x, θr)∥ ≤ L∥θt − θr∥
Applying Proposition 1, this directly yields the stated bound.

A.6 IMPLEMENTATION DETAILS

A.6.1 NOISE MODEL ARCHITECTURE

We implemented the noise model as depicted in Figure 4. For all experiments, the noise model
architecture was fixed as follows: both the retain and forget neural networks are linear layers with
a hidden dimension of 512, while the selector network is a linear layer with a hidden dimension
of 64. The selector outputs a probability used to determine the weighted combination of the retain
(z1) and forget (z2) network outputs, yielding the final noise value. The following is a PyTorch
implementation snippet for the model:

class NoisyLatchModel(nn.Module):

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

def __init__(self, input_dim, hidden_dim, attn_hidden_dim, *args,
**kwargs):

super().__init__(*args, **kwargs)
self.un_model_forget = nn.Sequential(

nn.Linear(input_dim, hidden_dim),
nn.ReLU(),
nn.Linear(hidden_dim, input_dim),

)
self.un_model_retain = nn.Sequential(

nn.Linear(input_dim, hidden_dim),
nn.ReLU(),
nn.Linear(hidden_dim, input_dim),

)
self.attn_wts = nn.Sequential(

nn.Linear(input_dim, attn_hidden_dim),
nn.ReLU(),
nn.Linear(attn_hidden_dim, 2),

)

def forward(self, repr):
attn = torch.softmax(self.attn_wts(repr), dim=1)
retain = self.un_model_retain(repr)
forget = self.un_model_forget(repr)
z = torch.einsum("bn,bni->bi", attn,

torch.stack((retain, forget), dim=1))
repr_ = repr + z
return z, repr_, attn

A.6.2 TRAINING ORIGINAL MODELS

We trained four model architectures across five datasets: simple CNNs for MNIST and CIFAR10,
ResNet101 and SWIN Transformers for CIFAR100, and BERT for AGNews and DBPedia. Models
were trained with early stopping based on validation accuracy. For CNNs, we used the AdamW
optimiser with a weight decay of 1× 10−5 while for ResNet101, SWIN and BERT, a weight decay
of 1 × 10−2 was applied. A cosine annealing warmup restart (CSWR) learning rate scheduler was
used to tune the learning rate during training. The initial learning rate was set to 1× 10−3 for CNN,
ResNet101, and SWIN, and 2× 10−5 for BERT.

A.6.3 TRAINING DETAILS OF MACHINE UNLEARNING METHODS

We compared Noisy Scrubber with eight approximate unlearning methods as well as an exact un-
learning baseline based on retraining. Hyperparameters for each method were carefully selected for
each dataset and architecture. In contrast, Noisy Scrubber’s architecture and hyperparameters were
fixed across all experiments using values identified via tuning on MNIST, highlighting its stability
and minimal need for hyperparameter adjustment. FT and L1-sparse were trained for 10 epochs with
learning rates in the range [1 × 10−2, 1 × 10−4], with L1-sparse using a regularisation coefficient
α in [1 × 10−4, 1 × 10−5]. GA and NegGrad+ were trained for 8 epochs, with learning rates in
[5 × 10−4, 1 × 10−4] also, NegGrad+ additionally used a loss weighting factor α in [0.8, 0.9]. IU
required tuning α in the WoodFisher Hessian inverse approximation from 1 to 10. Random-label
was trained for 10 epochs with learning rates in [1 × 10−3, 1 × 10−4]. SCRUB was trained for 10
epochs, with β and γ (KL divergence and classification loss weights) in [0.3, 0.7] and learning rates
in [1× 10−3, 1× 10−4]. For SalUn, we used 10 epochs, learning rates of [1× 10−3, 1× 10−4], and
sparsity ratios between 0.6 and 0.7. In Noisy-Scrubber, the noise module consists of two linear layers
within each of the selector (64-dimensional), forget (512-dimensional), and retain (512-dimensional)
neural networks. Training is performed for 10 epochs using a learning rate of 5× 10−4.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Methods Metrics CIFAR10 CIFAR100 AGNews

Retrain RTE (sec) 102.45 161.66 2466.45

FT
ToW 0.857±0.00 0.548±0.00 0.919±0.00
MIA-Gap 0.123±0.00 0.317±0.00 0.028±0.00
RTE (sec) 8.738±0.21 47.789±3.50 196.669±1.09

GA
ToW 0.035±0.00 0.669±0.00 0.027±0.00
MIA-Gap 0.174±0.00 0.110±0.00 0.141±0.00
RTE (sec) 6.195±0.12 43.647±4.01 150.834±0.40

ℓ1-Sparse
ToW 0.874±0.00 0.547±0.00 0.921±0.00
MIA-Gap 0.109±0.00 0.316±0.00 0.021±0.00
RTE (sec) 9.103±0.11 52.355±2.36 198.373±0.59

IU
ToW 0.074±0.00 0.047±0.0 0.626±0.00
MIA-Gap 0.033±0.00 0.047±0.00 0.692±0.00
RTE (sec) 8.898±0.76 48.584±1.92 78.316±2.35

NegGrad+
ToW 0.777±0.00 0.602±0.00 0.917±0.00
MIA-Gap 0.145±0.00 0.285±0.00 0.030±0.00
RTE (sec) 9.660±0.58 27.322±1.22 141.388±3.32

Random-Label
ToW 0.353±0.00 0.640±0.00 0.027±0.00
MIA-Gap 0.422±0.07 0.242±0.00 0.226±0.01
RTE (sec) 10.343±0.08 53.796±3.89 249.117±0.54

SCRUB
ToW 0.794±0.00 0.589±0.0 0.406±0.10
MIA-Gap 0.066±0.00 0.284±0.0 0.129±0.01
RTE (sec) 9.251±0.64 52.307±2.51 238.013±2.96

SALUN
ToW 0.377±0.00 0.635±0.00 0.027±0.00
MIA-Gap 0.565±0.00 0.244±0.00 0.557±0.01
RTE (sec) 14.354±0.34 80.628±76.90 335.899±0.07

Noisy-Scrubber
ToW 0.907±0.00 0.687±0.00 0.969±0.00
MIA-Gap 0.014±0.00 0.169±0.00 0.074±0.00
RTE (sec) 17.521±1.78 25.511±0.23 97.126±1.25

Table 3: Performance comparison of MU methods in the random forgetting scenario. Results are
reported as a± b, denoting the mean a and standard deviation b over 5 independent trials.

A.6.4 MEMBERSHIP INFERENCE ATTACK (MIA) IMPLEMENTATION DETAILS

We used prediction confidence scores for membership inference attacks (MIA). An SVM-based
attack model is trained using equal partitions from the retain and test sets, where the SVM receives
the model’s prediction confidences as input and predicts whether a sample was present in the training
data. The attack model is defined as follows:

attack_model = SVC(C=3, gamma="auto", kernel="rbf")

After training the attack model, we use it to assess the membership of all samples in the forget set.
Effective unlearning is indicated when these forget samples are classified as non-training data by the
attack model. We measure performance as the ratio of true negatives (the number of forget samples
correctly identified as non-training) to the total number of forget samples.

MIA Performance =
TNF

|F |
(9)

A.6.5 ENVIRONMENT DETAILS

All experiments were conducted on a machine with the following configuration: NVIDIA RTX 4070
GPU (12GB), Intel i7-13700 13th Gen processor (5.1 GHZ), 32 GB of RAM, and running Ubuntu
24.04.2 LTS. We set up a Python virtual environment using conda 24.11.3 configured with Python
3.11.11, PyTorch 2.6.0, scikit-learn 1.6.1, and CUDA 11.8.

A.7 RANDOM FORGETTING PERFORMANCE

Table 3 provides a comprehensive evaluation for the random forgetting scenario. On CIFAR10,
CIFAR100, and AGNews, Noisy Scrubber achieves ToW gaps of 0.093, 0.313, and 0.031 versus
retraining, demonstrating its ability to closely approximate exact unlearning. Furthermore, Noisy

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Methods Metrics MNIST DbPedia CIFAR100 (SWIN)

Retrain RTE (sec) 251.011 18104.17 758.76

FT
ToW 0.944±0.00 0.404±0.16 0.324±0.00
MIA-Gap 0.00±0.00 0.527±0.14 0.417±0.00
RTE (sec) 4.176±0.00 202.52±0.52 120.97±11.30

GA
ToW 0.0797±0.00 0.012±0.00 0.096±0.00
MIA-Gap 0.114±0.00 0.00±0.00 0.00±0.00
RTE (sec) 2.56±0.29 149.713±2.60 89.47±2.48

ℓ1-Sparse
ToW 0.920±0.00 0.714±0.02 0.321±0.00
MIA-Gap 0.00±0.00 0.049±0.00 0.421±0.00
RTE (sec) 5.683±1.23 201.948±4.71 119.15±2.69

IU
ToW 0.892±0.00 0.036±0.0 0.125±0.00
MIA-Gap 0.038±0.00 0.00±0.00 0.00±0.00
RTE (sec) 4.191±0.54 74.14±0.07 148.78±14.99

NegGrad+
ToW 0.971±0.00 0.993±0.00 0.978±0.00
MIA-Gap 0.003±0.00 0.00±0.00 0.00±0.00
RTE (sec) 5.610±0.06 210.331±0.62 141.388±3.32

Random-Label
ToW 0.987±0.00 0.983±0.00 0.881±0.00
MIA-Gap 0.00±0.00 0.00±0.00 0.00±0.00
RTE (sec) 5.93±0.06 224.467±0.84 128.410±17.95

SCRUB
ToW 0.991±0.00 0.992±0.0 0.927±0.00
MIA-Gap 0.00±0.00 0.00±0.0 0.00±0.00
RTE (sec) 4.920±0.21 219.308±1.27 134.198±24.57

SALUN
ToW 0.988±0.00 0.993±0.00 0.879±0.00
MIA-Gap 0.00±0.00 0.00±0.00 0.00±0.00
RTE (sec) 6.976±0.03 261.42±35.51 172.006±158.80

Noisy-Scrubber
ToW 0.986±0.00 0.998±0.00 0.929±0.00
MIA-Gap 0.00±0.00 0.00±0.00 0.00±0.00
RTE (sec) 22.54±0.09 80.86±0.17 46.108±3.61

Table 4: Performance comparison of MU methods in the class-wise forgetting scenario. Results are
reported as a± b, denoting the mean a and standard deviation b over 5 independent trials.

Table 5: Accuracy of Noisy Scrubber in the class-wise forgetting scenario. Results are reported as
a±b, with a representing the mean and b the standard deviation computed over 5 independent trials.
Full set represent full test dataset, forget and retain set represent forget and retain dataset extracted
from test dataset.

MNIST CIFAR10 CIFAR100 CIFAR100 AGNews DBPedia

CNN CNN ResNet SWIN BERT BERT

Full Test Set
Before 99.06 79.45 59.91 61.15 94.41 99.24
After 88.87±0.02 74.61±0.062 59.51±0.115 60.73±0.064 70.0±0.060 92.25±0.008
Retrained 88.96 72.26 59.39 57.45 70.01 92.25

Forget Test Set
Before 99.93 57.30 17.67 49.0 98.95 97.98
After 1.07±0.210 0.0±0.0 0.0±0.0 0.34±0.471 0.47±0.239 0.0±0.0
Retrained 0.0 0.0 0.0 0.0 0.0 0.0

Retain Test Set
Before 99.07 81.91 60.34 61.27 92.89 99.34
After 98.95±0.019 82.85±0.079 59.52±0.115 61.34±0.067 93.18±0.080 99.35±0.008
Retrained 99.15 82.51 59.99 58.03 93.35 99.35

Scrubber consistently outperforms all baselines and prior state-of-the-art methods in ToW, attain-
ing the highest scores on CIFAR10 (0.907), CIFAR100 (0.687), and AGNews (0.969). Privacy
leakage, assessed by MIA-Gap, remains minimal (maximum 0.169) across all datasets, suggest-
ing strong resistance against membership inference attacks. Among approximate methods, Noisy
Scrubber achieves superior forget quality, utility, and generalisation. In terms of computational ef-
ficiency, Noisy Scrubber delivers significant runtime improvements over retraining, particularly on
large models like ResNet (CIFAR100) and BERT (AGNews).

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

ToW (CIFAR100) MIA (CIFAR100) ToW (MNIST) MIA (MNIST)

Figure 5: Comparison of the impact of number of retain samples on ToW and MIA performance for
CIFAR100 (SWIN) and MNIST datasets

A.8 CLASS-WISE FORGETTING PERFORMANCE

Table 4 presents a comprehensive evaluation on the CIFAR100 (SWIN), MNIST, and DBPedia
datasets. The results demonstrate that Noisy Scrubber enables efficient unlearning, supporting the
findings discussed in the experimental results section of the paper. Table 5 summarises the results
on the forget and retain subsets derived from the test set, which indicates that the method closely
matches the retrained model’s behaviour across the forget, retain, and test sets, demonstrating effec-
tive unlearning.

A.9 COMPARISON: NUMBER OF RETAIN SAMPLES

Figure 5 shows that on CIFAR100, increasing the number of retain samples initially improves ToW
performance, followed by a decline when the retain set reaches 1,000 samples. This drop occurs
because the forget set consists of only 500 samples from a single class. As the retain set grows,
the noise module becomes biased, raising accuracy on the forget set and reducing ToW. With fur-
ther increases in retain samples, Noisy Scrubber’s performance recovers. For MNIST Figure 5,
Noisy-Scrubber starts with lower ToW compared to other methods when trained with very few retain
samples, indicating that the noise module initially requires few data samples for effective learning.
Additionally, both figures indicate that Noisy Scrubber consistently maintains MIA scores close to 1
across datasets, confirming its robustness to membership inference attacks and its ability to prevent
information leakage.

A.10 USE OF LARGE LANGUAGE MODELS(LLMS)

We used LLMs solely for non-technical assistance in preparing this paper. Specifically, LLMs were
used for polishing grammar and improving readability of text, identifying related works during the
literature survey and summarizing them. No LLMs were used for generating novel research ideas,
designing experiments. All scientific contributions are original to the authors.

21

	Introduction
	Machine Unlearning and Evaluation
	Unlearning problem formulation
	Exact and Approximate Unlearning
	Evaluating approximate unlearning

	Related Work
	Noisy Scrubber: Erase with noisy corruption
	Problem Definition
	Unlearning with Noisy Scrubber

	Experiment and Analysis
	Experiment Setups
	Experimental Results

	Conclusion
	Appendix
	Broader impact
	Baseline Approximation unlearning
	Unlearning Evaluation
	Proof of Proposition 1
	Proof of Proposition 2
	Implementation details
	Noise Model Architecture
	Training original models
	Training details of machine unlearning methods
	Membership Inference Attack (MIA) implementation details
	Environment Details

	Random forgetting performance
	Class-wise forgetting performance
	Comparison: number of retain samples
	Use of Large Language Models(LLMs)

