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Abstract

Induction head mechanism is a part of the computational circuits for in-
context learning (ICL) that enable large language models (LLMs) to adapt
to new tasks without fine-tuning. Most existing work explains the training
dynamics behind acquiring such a powerful mechanism. However, it is
unclear how a transformer extract information from long contexts and then
use it to coordinate with global knowledge acquired during pretraninig.
This paper considers weight matrices as associative memory to investigate
how an induction head functions over long contexts and balances in-context
and global bigram knowledge in next token prediction. We theoretically
analyze the representation of the learned associative memory in attention
layers and the resulting logits when a transformer is given prompts gener-
ated by a bigram model. In the experiments, we design specific prompts
to evaluate whether the outputs of the trained transformer align with the
theoretical results.

1 Introduction

In recent years, transformer-based models, such as BERT (Devlin et al., 2019) and GPT
(Radford, 2018; Radford et al., 2019; Brown et al., 2020), have achieved remarkable success
in natural language processing. Especially, in-context learning (ICL) (Brown et al., 2020;
Dong et al., 2024) has emerged as a groundbreaking capability within large language models
(LLMs), enabling them to adapt to new tasks without traditional fine-tuning. Instead,
these models leverage patterns from a prompt or input sequence, effectively learning
"in context" by interpreting examples or instructions provided in real-time (Liu et al.,
2022; Wu et al., 2023). During a phase change, models acquire the ability to complete
complex patterns through induction heads, suggesting that induction heads are a key
mechanistic basis of ICL (Olsson et al., 2022). It is known that the induction head mechanism,
which is a pattern of attention in a transformer that enables the model to copy and reuse
information from earlier in the context, can emerge in two-layer transformers (Elhage et al.,
2021), and many theoretical studies have focused on analyzing two-layer architectures
to understand how induction head develops (Edelman et al., 2024; Nichani et al., 2024;
Chen et al., 2024b). Among them, Bietti et al. (2024) demonstrated, both theoretically and
empirically, that training a transformer leads to weight matrices behaving as associative
memories, composing the induction head mechanism.

However, the effectiveness of the induction head mechanism tends to diminish for the latter
part of a sequence (Bietti et al., 2024), which does not align with the behavior observed in
real-world LLM. In addition, while the learning dynamics of the induction head have been
elucidated in the existing work, it remains unclear how in-context knowledge provided
in the prompt and global knowledge acquired during pretraining influence the output of
two-layer transformers. Understanding how a transformer predicts the next token is crucial,
as it allows us to model phenomena such as context hijacking (Jiang et al., 2024), in which
altering the context disrupts factual recall, causing the model to produce incorrect outputs
influenced by misleading in-context information.

In this paper, we theoretically and empirically show, from the perspective of associative
memory, how a two-layer transformer with relative positional encoding (RPE) can avoid
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Paper Model Objective Theoretical
analysis

Meng et al. (2022) GPT knowledge editing no
Cabannes et al. (2024a) linear model scaling laws yes
Cabannes et al. (2024b) linear model learning dynamics yes

Nichani et al. (2024) two-layer transformer causal structure yes
Friedman et al. (2023) modified transformer transformer programs no

Jiang et al. (2024) one-layer transformer concept association yes
Chen et al. (2024a) linear model noisy classification yes
Bietti et al. (2024) two-layer transformer learning dynamics yes

OURS two-layer transformer
length generalization

&
global v.s. in-context

yes

Table 1: Comparisons among related work and ours in terms of associative memory. The
concept of associative memory is widely adopted for theoretical analyses of various phe-
nomena.

failure in detecting patterns that appear in the latter part of a sequence. We also investigate
how the model prioritizes in-context knowledge versus global knowledge when predicting
the next token, using training data generated by a bigram model with triggered transitions.
To summarize, we make the following contributions:

• We theoretically show that the induction head learned by a transformer using RPE
can avoid neglect of patterns within the framework of associative memory.

• We experimentally confirmed that the model with RPE can comprehensively use
in-context knowledge for the bigram model. We also demonstrated its ability to
effectively infer on sequences where the transformer using absolute positional
encoding (APE) fails in next-token prediction.

• We investigated how the model prioritizes in-context knowledge versus global
knowledge when generating outputs, using both theoretical analysis and experi-
mental evaluation.

2 Related work

Associative memory Associative memory refers to the storage and retrieval of patterns,
and its computational model was designed to retrieve complete memories from sufficient
fragments of information in neuroscience (Amari, 1972; Hopfield, 1982; 1984). After the
emergence of modern Hopfield networks (Krotov & Hopfield, 2016), which store patterns
in an energy function and retrieve them using an updating rule. Moreover, many studies
employ the concept of associative memory in various ways. For instance, Zhang et al. (2024a)
propose a memory unit that estimates a conditional probability distribution with Gaussian
kernel smoothing. Some work considers attention blocks as memory because they read
and write information flowing through the residual stream (Nichani et al., 2024; Friedman
et al., 2023). Meng et al. (2022) locate factual association patterns in the weight matrix of an
MLP. Recently, it has become increasingly popular to regard a matrix as associative memory
from a theoretical perspective, as shown in Tab. 1. Previous studies examine scaling laws in
relation to model capacity (Cabannes et al., 2024a), learning dynamics of linear model in
terms of particle system (Cabannes et al., 2024b), and the effect of low-rank approximation
of weight matrix to classification involving a noisy token (Chen et al., 2024a) for a linear
model. Additionally, Jiang et al. (2024) demonstrate that a one-layer transformer can recover
latent concept from long enough context.

In-context learning and induction head Since Brown et al. (2020) introduced ICL, theoret-
ical understanding of this phenomenon has been a major interest within the community.
For example, Akyürek et al. (2023) showed that transformer can implement a learning
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algorithm that solves linear regression. Von Oswald et al. (2023) demonstrated that linear
self-attention layer can emulate gradient descent. Similarly, many studies (Ahn et al., 2023;
Mahankali et al., 2024; Zhang et al., 2024b; Dai et al., 2023) examined the theoretical con-
nections between ICL and gradient descent. Mechanistic interpretability, which aims to
understand the model behavior by reverse-engineering its internal components (Nanda
et al., 2023; Wang et al., 2023a; Conmy et al., 2023), is another perspective for analyzing ICL
(Olsson et al., 2022; Elhage et al., 2021). In particular, Elhage et al. (2021) discovered that
two-layer attention-only transformers understand the previous use of the token and look
for similar situations in the context. In addition, Olsson et al. (2022) provided empirical
evidence that induction heads are the mechanism behind ICL. Moreover, Bansal et al. (2023)
identified that many induction heads are also among the attention heads deemed critical
for ICL. The most relevant study to ours is by Bietti et al. (2024), who investigated the
learning dynamics of the induction head mechanism in two-layer transformers from the
perspective of associative memory. In contrast, our study focuses on the functionality of the
induction head mechanism and the influence of knowledge acquired during training and
that obtained in context on the final output.

3 Preliminaries

3.1 Transformer architecture

In this work, we focus on a two-layer transformer described below.

Calculation Given a sequence of tokens z1:T of length T ∈ N from the vocabulary set
V , each token zt is embedded into a d-dimensional vector and the calculation proceeds as
follows:

x(0)t := wE(zt) ∈ Rd,

x(1)t := Φ1x(0,v)
1:t σ((W1

Kx(0,k)
1:t )⊤W1

Qx(0,q)
t ) + x(0,v)

t ∈ Rd, (1)

x(2)t := W2
OW2

V x(1)1:t σ((W2
Kx(1)1:t )

⊤W2
Qx(1)t ) + x(1)t ∈ Rd, (2)

xt := W2(ReLU(W1x(2)t )) + x(2)t , (3)
ẑt+1 = arg max

v∈V
σ(WU xt)v, (4)

where WE ∈ Rd×|V| is an embedding matrix, σ : Rt → Rt is the softmax function,
x(0,k), x(0,q), and x(0,v) are the token embeddings, which may or may not include positional
information, Φ1 ∈ Rd×d represents W1

OW1
V , WU = (wU(v1), . . . , wU(v|V|))⊤ ∈ R|V|×d is an

unembedding matrix, and vi represents the i-th vocabulary in V . The feed-forward layer
consists of matrices W1 ∈ Rd×V and W2 ∈ RV×d.

Note that Bietti et al. (2024) incorporate absolute positional encoding:

x(0,k)
t = x(0,q)

t = x(0,v)
t = wE(zt) + pt,

where pt is the t-th absolute positional encoding. In contrast, we use a simplified relative
positional encoding:

x(0,k)
1:t = wE(z1:t) + R1−t:0, and x(0,q)

t = x(0,v)
t = wE(zt),

where positional information R1−t:0 = (r1−t, . . . , r−1, r0) ∈ Rd×t and r−i represents the
positional information of the i-th previous token zt−i from the current one zt.

3.2 Associative memory

Associative memory plays an important role in analyzing the behavior of memory recall
at induction head in the next section. Before defining associative memory, we first adopt a
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technical assumption commonly used in theoretical studies on transformers, that is, that
embeddings are high-dimensional random vectors, allowing them to be nearly orthogonal.
Mathematically, we impose the following assumption.

Assumption 1 (Near-orthogonality (Huang et al., 2024; Li et al., 2024; Bietti et al., 2024)).
The embeddings (ui)i are d-dimensional vectors with Gaussian entries, each having a unit norm
∥ui∥ = 1 and u⊤

i uj = 0 for i ̸= j. Also, W0ui forms a new vector that has a near-unit norm and
near-orthogonal to (ui)i if W0 ∈ Rd×d is a Gaussian random matrix with appropriate entries.

With the assumption, we define associative memory.

Definition 1 (Associative Memory). Suppose (ui)i and (vj)j are the embeddings satisfying
Assumption 1. Then, A matrix W is called associative memory if it can be expressed as a weighted
sum of outer products of ui and vj:

W = ∑
i,j

αi,juiv⊤j , (5)

where αi,j ∈ R is the score for the pair (ui, vj).

Thanks to orthogonality, we can derive the score αi,j for the pair (ui, vj) using the operation
u⊤

i Wvj. Henceforth, we consider the weight matrices in the attention layer and the feed-
forward network of the transformer as matrices that implement associative memory.

3.3 Induction head

Induction heads are a specific type of attention mechanism observed in transformer models,
responsible for detecting patterns in token sequences and utilizing previous occurrences
of the same token to improve predictions. The behavior of induction heads is particularly
relevant for tasks that require understanding and leveraging repeated patterns, such as in
language modeling.

In Fig. 2, we summarize the process by which the induction head identifies and outputs
repetitive patterns in the input. When the prompt ABC . . . A is given, the first-layer attention,
which is called previous token head, copies information from the previous token to the
current token. Consequently, the token B retains the information of A in the form of Φ1 A.
Then, in the second-layer attention, the associative memory W2

K matches the pair Φ1 A with
A, attending to the position of token B. As a result, the information of B is stored in the last
token A as W2

V B. Finally, the output matrix W2
O transforms W2

V B into WU(B), producing an
output that follows the repetitive pattern.

3.4 Bigram model with triggered transitions

This section describes the bigram model with triggered tokens used in Bietti et al. (2024).

In this bigram language model over a vocabulary of size V, we sample trigger tokens qk from
a distribution πq and output tokens ok from πo each time we generate a training sequence.
Output tokens always follow their corresponding trigger tokens in the generated sequences.

{
πb(j | i) if i /∈ {qk},
1{j = ok} if i = qk.

Motivation for the model In written texts centered on a particular theme, it is common
for identical patterns of tokens to recur multiple times. For instance, in texts about Harry
Potter or machine learning, the token "Avada" is often followed by "Kedavra," and "neural"
is typically followed by "network." The induction head is a computational mechanism
capable of detecting repeated patterns in context and facilitating the output of the tokens
that complete these patterns when a trigger token appears.
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The next token following a given token z is determined by conditional probabilities in a
pure bigram model. As a result, bigram sequences often lack consistent repeated patterns,
which prevents the induction head from emerging. In contrast, pairs of trigger and output
tokens in a sequence enable two-layer transformers to learn a circuit that leverages repeated
patterns, rather than relying solely on bigram conditionals.

4 Theoretical result

We analyze two key aspects of induction heads: the impact of positional encoding on
the neglect of patterns in a sequence, and the contributions of in-context information and
pretrained knowledge during inference.

4.1 Neglect of in-context patterns

In this section, we address the theoretical aspects of overlooking patterns in a sequence by
the induction head mechanism. We argue that the learning of the previous token head fails
for transformers with APE, and thus, the model cannot take patterns in the latter half of a
sequence into account for the prediction. Mathematically, we observe the representation of
the weight matrix W̃1

K when weight matrices are sequentially trained, in the order of W2
O,

W2
K, and W1

K, through one step of gradient descent. We refer to Theorem 3 from Bietti et al.
(2024):
Theorem 1 (Theorem 3, Bietti et al. (2024)). For any t > 1, the learned matrix achieves the
following associative memory:

p⊤t−1W̃1
K pt ≈

ηαα′(T − 1)
T2t

{
P(tq = t − 1)

(
1 − 1

t

)
+O

(
1
V

)}
, (6)

where pt is the absolute positional encoding for token position t, α, α′ ∈ R are constants,
and P(tq = t − 1) denote the probability that the first trigger token appears at position t − 1,

From Eq. 6, we can see that the score for the pair of pt−1 and pt is inversely proportional to
t. Therefore, as t increases – meaning as we move toward the latter part of the sequence –
the function of the associative memory diminishes.

In contrast, we prove that transformers employing RPE consistently direct the previous
token head to attend to the preceding token, regardless of the input sequence length. We
calculate how the transformer’s weight matrices are represented by following the same
learning procedure as when using a transformer with APE. We again present the training
outcome of the matrix W1

K as associative memory, which is the key component for the
previous token head. We provide the complete statement and proof in Appendix E.
Theorem 2 (informal). Under the setup described in Sec. E.2, a two-layer attention-only trans-
former with relative positional encoding learns the associations by one step of gradient descent for
any vocabulary v ∈ V :

r⊤−1W1
KwE(v) =

ηαα′

T

T

∑
t=1

P(tq = t − 1)
t

· O (1) +
ηαα′

T

T

∑
t=1

P(tq = t)
t2

{
O
(

1
V

)
+ O

(
1
T

)}
,

where η ∈ R is the learning rate, α, α′ ∈ R are constants, tq and T are the first and second occurrence
positions of trigger token, and V is the size of the vocabulary set V .

Theorem 2 suggests that the association between r−1 and wE(v) is independent of both the
vocabulary v and the token position t. Therefore, regardless of the input sequence length,
the previous token head will always attend to previous tokens with consistent strength.
Remark 1. A transformer using RPE learns to attend to the previous token regardless of its position
within the sequence. However, if the input sequence contains out-of-distribution tokens, the induction
head mechanism does not activate. In such cases, only a transformer with APE can effectively attend
to the previous token.
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We have seen that positional encodings have a significant effect on the induction head’s
ability to generalize to longer sequences, as shown in the comparison between APE and
RPE.

In the context of length generalization in transformers, models without positional encodings
(NoPE) are often discussed (Kazemnejad et al., 2024; Wang et al., 2024). To deepen our
understanding of NoPE settings, we show that a three-layer transformer without positional
encoding can implement the induction head mechanism.

Proposition 1. A construction exists for a three-layer transformer without positional encoding that
successfully achieves the induction head mechanism.

4.2 Global knowledge v.s. in-context knowledge

Here, we discuss how a two-layer transformer uses statistical information obtained from
the training data and the information provided in-context by calculating the logits.

Associative memory construction achieving induction head We first introduce the fol-
lowing lemma, which states that the induction head mechanism is achievable by setting the
appropriate weights for the matrices in a two-layer transformer with APE.

Lemma 1 (Bietti et al. (2024)). Define Q as the support of πq. The induction head can be achieved
by constructing matrices in the following manner.

W1
Q = W2

Q = I, W1
K =

T

∑
t=2

pt p⊤t−1,

W2
K = ∑

k∈Q
wE(k)(W1

OW1
VwE(k))⊤, W2

O =
V

∑
v=1

wU(v)(W2
VwE(v))⊤,

where I is the identity matrix, and the matrices W1
O, W1

V , and W2
O are a Gaussian random matrix.

It is straightforward to prove that a two-layer transformer with RPE also has associative
memory construction that achieves induction head by modifying W1

K = ∑k∈Q wE(k)r⊤−1.
Now, using the transformer with RPE architecture, we define an associative memory
transformer : a model that incorporates an induction head and a feed-forward network
storing knowledge learned through pretraining.

Definition 2 (associative memory transformer). A two-layer transformer with RPE is called
associative memory transformer if its weight matrices are set as in Lemma 1 except for

W1
K = ∑

k∈Q
wE(k)r⊤−1, W1 =


wE(v1)

⊤

wE(v2)
⊤

...
wE(vV)

⊤

 ,

W2 =

(
V

∑
u=1

log πb(u | v1)wU(u)
V

∑
u=1

log πb(u | v2)wU(u) . . .
V

∑
u=1

log πb(u | vV)wU(u)

)
,

This construction reveals that the feed-forward layer in Eq. 3 of Sec. 3.1 functions explicitly
as a key-value memory (Geva et al., 2021). Each row of W1 (key) acts as a detector for an
input pattern wE(v), and each column of W2 (value) encodes global knowledge, i.e., the
distribution πb over the output vocabulary. Appendix D discusses the difference from the
architecture of Bietti et al. (2024). Note that when the probability πb(u | v) approaches +0,
its logarithm log πb(u | v) diverges to −∞. If we admit log πb(u | v) = −∞, the transformer
never outputs u regardless of context. This does not align with the actual behavior of the
induction head. Also, due to the limitations of floating-point representation in computers, it
is not possible to represent ∞ directly. Thus, we consider ϵ as threshold and set πb(u | v) = ϵ.

6



Published as a conference paper at COLM 2025

Associative memory transformer on limited input sequences. We present the following
proposition, which focuses on two token patterns in the input sequence.
Proposition 2. Suppose a two-layer transformer is an associative memory transformer. Given a
length-T sequence z1:T where the last token is zT = q, let the t1-th token be zt1 = v1 following
zt1−1 = q, and let the t2-th token be zt2 = v2 following zt2−1 = q, where v1 ̸= v2 and (3 ≤)t1 < t2
without loss of generality. Also assume that there exists only one occurrence for each of v1 and v2 in
the context z1:T . Then, the logits ξv1 and ξv2 can be expressed as follows:

ξv1 =
e

e
t1+e−1

Z
+ log πb(v1 | q), ξv2 =

e
1+e

t2+e−1

Z
+ log πb(v2 | q), (7)

where Z is the normalization factor of the softmax function and e is Euler’s number.

We can observe a general trend from Eqs. 7. First, if the model contains global knowledge of
both tokens v1 and v2, the output token is influenced by the knowledge, in addition to the
in-context knowledge. In particular, the logits of tokens that rarely appear in the training
dataset become significantly low. In our associative memory transformer model, global
knowledge never promotes the output of any specific token; rather, it solely suppresses
inappropriate predictions, because we always have log πb(· | q) ≤ 0. Second, if token
patterns, such as q v1 and q v2, do not appear in the training data, global knowledge affects
the token logits to the same extent, due to the way WF is defined using the threshold ϵ in
Def. 2.

It is worth noting that an associative memory transformer exhibits a significant difference
in scale when handling global knowledge and in-context knowledge. For instance, if
πb(v | q) = 0.1, then log πb(v | q) ≈ −2.3. Even with the functionality of an induction
head, it is unlikely to predict the token patterns from the context. This is avoidable by
reformulating W2

O as in Def. 3 and adjusting the strength of induction head. We consider
this setting in the next paragraph, along with more general input sequences.

If neither token appears during training, the difference between the two logits before
applying the softmax function ξ ′v2

− ξ ′v1
is calculated as follows:

ξ ′v2
− ξ ′v1

=
e(t1 − t2) + t1 + e − 1
(t1 + e − 1)(t2 + e − 1)

. (8)

The result implies that the token v2 is more likely to be generated if t1 is large and the
distance between the tokens v1 and v2, i.e., t2 − t1 is small. This trend arises from the first
layer of the attention block, where the attention is not fully concentrated on the previous
token, resulting in a diffusion of attention across other tokens as well. In other words, the
more tokens that precede the current token, the lower the attention score assigned to the
current token.

Stronger associative memory on general input sequences. Next, we introduce a more
sophisticated analysis of in-context and global knowledge by relaxing assumptions in the
sequence z1:T . The transformer considered here has associative memory with larger scores,
characterized by a weighted sum of the individual terms of the weight matrices in Sec. 3.3,
where each term is scaled by an appropriate coefficient. We consider a special case in which
each term has the same coefficient τ1, τ2, τ3 ∈ R.
Definition 3 (stronger associative memory transformer). We redefine the following matrices
W1

K, W2
K and W2

O in Def. 2 for a stronger associative memory transformer

Ŵ1
K = τ1W1

K, Ŵ2
K = τ2W2

K, Ŵ2
O = τ3W2

O, (9)

with the parameters τ1, τ2, τ3 ∈ R+. The other weight matrices remain the same.
Proposition 3. Suppose a two-layer transformer is a stronger associative memory transformer.
Given a length-T sequence z1:T where the last token is zT = q, let f (v) be the number of token
pattern "q v" appearing in the sequence for vocabulary v ∈ V . For sufficiently large τ1 and τ2, the
logits ξv can be expressed as follows:

ξv ≈
τ1
τ2

log πb(v | q) + τ3 ·
f (v) + 1{v = q}1{z1 = q}(
∑V

v′=1 f (v′)
)
+ 1{z1 = q}

. (10)
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Figure 1: (a) Comparison of a two-layer transformer with APE (Thm. 1) and RPE (Thm. 2)
capturing previous token information. (b) Output behavior as the frequency of the token
pattern A B1 increases in the input sequence (Prop. 3).

It can be observed that the transformer equipped with a general associative memory is
affected by the proportions of each token pattern present in the context as well as by the
global knowledge. In this case, it can be concluded that the information regarding the
positions where token patterns are observed does not influence the final logit. We can easily
derive the following properties.

Corollary 1. Given a length-T sequence z1:T where the last token is zT = q and the only token
patterns q v1 and q v2 appear f (v1) and f (v2) times, respectively. The transformer outputs one of
the following: arg maxv∈V\{v1,v2} πb(v | q), v1, or v2.

For vocabulary v ̸= v1, v2, the logit ξv is determined only by log πb(v | q) and this means
that the candidate for the next token is arg maxv∈V\{v1,v2} πb(v | q). On the other hand, The
logits for v1 and v2 have the other term in Prop. 3, which makes them other candidates for
the next token. Overall, Corollary 1 states that the model output depends on the bigram
conditionals πb(· | q) and the frequency of token patterns qv1 and qv2 in the context.

5 Experiments

This section empirically examines how positional encoding affects the transformer’s abil-
ity to capture patterns in input sequences, as discussed in Thm. 1 and 2, and how the
transformer’s output changes depending on the proportion of pattern occurrences within
the context, as stated in Prop. 3. Henceforth, we denote by TFape and TFrpe two-layer
transformer with APE, RPE.

5.1 Neglect of in-context knowledge

Training process of previous token head We investigated whether the training of trans-
formers directs attention towards the previous token in the first attention layer. Specifically,
TFrpe and TFape were trained using sequences of length 256 generated according to the
sequence generation rule. Details regarding the hyperparameters and sequence generation
process are provided in Appendix G.
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For evaluation of the learned associative memory ∑(i,j)∈M uiv⊤j , we employed the memory
recall metric (Dar et al., 2023; Geva et al., 2023; Bietti et al., 2024):

R(W) =
1

∥M∥ ∑
(i,j)∈M

1{arg max
i′

u⊤
i′ Wvj = i}.

For TFrpe, we want each vocabulary wE(k) to be paired with the information of the previous
position r−1. Hence, R(W1

K) is computed as

1
∥Q∥ ∑

k∈Q
1{arg max

i′
r⊤i′ W1

KwE(k) = −1}.

Similarly, we have for TFape

1
T

T

∑
t=2

1{arg max
t′

p⊤t′ W1
K pt = t − 1},

where T is the maximum input length for the transformer.

In the RPE setting, the metric quantifies the amount of vocabulary tokens that are more
strongly associated with the relative position embedding r−1 than any other position em-
bedding in the learned associative memory. We can find in Fig. 1a that the recall approaches
1.0 as training progresses. This indicates that nearly all vocabulary items are successfully
paired with r−1, confirming the effectiveness of RPE for associative memory formation. In
contrast, for APE, we observe that memory recall is substantially higher for positions t <
128 compared to the full positions, even though they are trained with sequences of length
256. This supports our theoretical claim that it is harder to embed the relationship between
pt and pt−1 into associative memory when t is large, due to the diminishing alignment
between position embeddings at distant positions.

Discussion One of the worst-case scenarios for TFape occurs when a trigger token does
not appear by chance in the range t ≤ 128 and only appears for the first time at t >
128. Although such a sequence is contrived, its probability of occurrence is non-zero.
For such sequences, models with an incomplete previous token head fail to associate the
trigger token’s information with the output token, resulting in incorrect predictions without
leveraging in-context information. In contrast, TFrpe, which links words to their relative
positions, ensures that the in-context information is not overlooked, regardless of where the
trigger token first appears, thereby enabling correct predictions.

5.2 Global knowledge v.s. in-context knowledge

To validate the results derived from the theory, we conducted experiments using real data.

Analogical reasoning task We utilize the analogical reasoning task, one of the most
practical tasks for bigram analysis. Specifically, we focus on the "capital-world" analogy
type of questions from the Google Analogy Dataset (Mikolov et al., 2013), which contains
a total of 19,544 questions. This subset includes 232 unique vocabulary items. Denoting a
word A (e.g., Tokyo) and its corresponding analogy counterpart A∗ (e.g., Japan), the prompts
were constructed in the form A A∗ , B B∗ , C C∗ , . . . , with pairs separated by commas. Using
these generated prompts, we trained TFrpe. For details on the training and dataset setup,
please refer to Appendix G.

Collision of context information As shown in Corollary 1, the model predicts either a
token based on global knowledge or the token that appears in the context. To confirm this,
we randomly sampled A from the capitals in the Google Analogy Dataset and constructed
prompts using word pairs A B1 and A B2 that were not learned as global knowledge. The
resulting prompts were of the form A B1 , . . . , A B1 , A B2 , . . . , A B2 , A, which were then
used for predicting the next token. We generated 1,000 prompts and calculated the propor-
tion of cases where either B1 or B2 was predicted, while controlling the frequency of A B1
and A B2 in the context.
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The result is shown in Fig. 1b. As the number of token pattern A B1 increases, the model
predicts B1 as the next token more frequently. Furthermore, it can be observed that the
prediction trend reverses when the frequency of B1 and B2 in the context is nearly equal.
Additionally, we observe from global ratio that the model predicted some vocabulary B
from global knowledge. Especially, the figure illustrates that it is more likely to output
global knowledge when the number of B1 and B2 are the same, or when the number of B1
or B2 is almost maximum. Please refer to Appendix H.2 for further discussion on these
phenomena.

6 Conclusion

We analyzed the influence of interaction between global bigram and in-context knowledge
to the two-layer transformer through the lens of associative memory. We theoretically
and empirically verified that relative positional encoding empowers transformers with the
ability to capture information in longer sequences, and that how the next token prediction
is conducted within the transformer that was trained to store global knowledge and to have
induction head.
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Figure 2: The visualization of induction head mechanism. The first attention layer copies
the previous token information. Then, the current token matches the copied information to
find the probable next token.

A Limitations

Our study has certain limitations that should be acknowledged. First, the analysis presented
in this work is conducted using a two-layer transformer model. While this allows for a
controlled and interpretable exploration of the underlying mechanisms, the findings may
not directly generalize to LLMs, which typically involve significantly more layers and
complex interactions.

Second, while our focus on induction heads provides valuable insights into ICL, it is
important to note that ICL leverages additional computational circuits beyond induction
heads. As such, our explanation captures only part of the broader mechanisms underlying
ICL, leaving room for further investigation into other contributing factors.

B Ethics statement

This work is purely theoretical, supported by controlled experiments designed to validate
the proposed analyses. No personal or sensitive data were involved at any stage of this re-
search. All experiments were conducted using datasets that are publicly available, ensuring
compliance with ethical standards for data usage.

C Additional related work

In-context learning and induction head Bayesian inference is also a popular perspective
for comprehending ICL. Xie et al. (2022) and Wies et al. (2024) investigated how a pretrained
transformer implicitly discovers the underlying concept or latent task of a prompt by
leveraging a mixture of distributions. An alternative line of work (Zhang et al., 2023) relates
the Bayesian model averaging to the attention mechanism. Wang et al. (2023b) studies how
information is aggregated to label words in ICL. In terms of two-layer transformer, Chen et al.
(2024b) studied ICL on n-gram Markov chain, proving that gradient flow optimization under
the cross-entropy loss leads to a model that exhibits a generalized induction head mechanism.
Edelman et al. (2024) showed two-layer attention-only transformers learn induction heads
that estimate the next token’s conditional probability based on prior occurrences, enabling
near Bayes-optimal performance. Similarly, Nichani et al. (2024) showed that two-layer
transformers learn causal structure via gradient descent, suggesting that induction head is
a special case of this structure. Ren et al. (2024) discovered a more generalized version of
induction heads, which are referred to as semantic induction heads.
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Length generalization and positional encoding Although we point out the neglect of
in-context information by a transformer with APE, this can be considered as the failure of
length generalization. Since the introduction of the Transformer architecture (Vaswani, 2017),
there has been a wealth of research on positional encoding (Zhao et al., 2024). Originally,
Vaswani (2017) adopted sinusoidal positional encoding that transforms the tokens’ absolute
positions. Subsequently, Kiyono et al. (2021) and Likhomanenko et al. (2021) proposed
shifting absolute sinusoidal positional encoding during training to achieve shift invariance.
Wang et al. (2020) extends word embedding as continuous functions with respect to token
position, leading to smooth word representations. Meanwhile, it is demonstrated that RPE
is superior to APE for longer sequence generalization in various tasks (Neishi & Yoshinaga,
2019; Likhomanenko et al., 2021; Huang et al., 2020; Jelassi et al., 2023). Additionally, Sinha
et al. (2022) questioned whether models can learn the relative distance between words
when equipped with APE. The first RPE was formulated by Shaw et al. (2018), where a
trainable encoding is added to the key before computing the dot product with the query.
The transformer in our work also adopts this type of positional encoding, while we fix the
positional encodings to randomly initialized vectors. A variety of different RPE methods
were presented (Huang et al., 2020; Ke et al., 2021) until now, but DeBERTa (He et al., 2021),
RoPE (Su et al., 2024), T5-Bias (Raffel et al., 2020), and ALiBi (Press et al., 2021) are the
most popular choices. Ruoss et al. (2023) suggested that randomizing absolute and relative
positional encoding enhance the model’s ability to generalize to input sequences of lengths
not encountered during training, but they used the encoder-ony Transformer, which is
different from ours.

Short summary of Bietti et al. (2024) The remarkable success of LLMs has increased the
need for a deeper understanding of their internal mechanisms and for enhancing their
reliability. Existing studies lack detailed insights into how reasoning abilities evolve during
the learning process based on contextual information. Bietti et al. (2024) explored the
dynamics of balancing in-context knowledge and global knowledge through a bigram
model, analyzing the development of these abilities as part of the training dynamics. They
conceptualized the weight matrices of transformers as associative memory and theoretically
demonstrated that the induction head mechanism can be trained by proposing the storage
of specific embedding pairs from training data. In their experiments, they trained a two-
layer transformer on a bigram model estimated from the tiny Shakespeare dataset. The
proximity of each weight matrix to the theoretically derived weights was measured using a
memory recall probe. They analyzed how these weights changed over the course of training.
Although this work is the most relevant to our research, we note that while they primarily
focus on the learning dynamics of induction heads in a two-layer transformer, our primary
emphasis lies on length generalization and the reasoning process.

D MLP as a key-value memory

Geva et al. (2021) discovered that the feed-forward layers in transformer-based language
models function as key-value memory. In a transformer, the feed-forward layer is typically
computed as

F(x) = W2(ReLU(W1x)),

where x ∈ Rd is the input vector, and W1 ∈ Rdh×d, W2 ∈ Rdo×dh . According to Geva et al.
(2021), the rows of W1 (keys) serve to detect specific patterns in the input sequence, while
the columns of W2 (values) have been shown to represent distributions over the output
vocabulary.

Bietti et al. (2024) uses a transformer architecture that uses a linear projection WF instead of
an MLP layer.

WF =
V

∑
v=1

V

∑
u=1

log πb(u | v)wU(u)wE(v)⊤.

Due to the near-orthogonality of the embedding vectors, this projection maps an input
x = wE(v) to the output ∑V

u=1 log πb(u | v)wU(u). This enables the matrix WF to function
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as an associative memory that stores the pairs of an embedding vector and corresponding
global knowledge.

Now, suppose we construct the matrices W1 and W2 as follows:

W1 =


wE(v1)

⊤

wE(v2)
⊤

...
wE(vV)

⊤

 , (11)

W2 =

(
V

∑
u=1

log πb(u | v1)wU(u)
V

∑
u=1

log πb(u | v2)wU(u) · · ·
V

∑
u=1

log πb(u | vV)wU(u)

)
,

(12)

Each row of W1 acts as a detector for an input pattern wE(v), such that only the correspond-
ing entry is activated when wE(vi) is provided as input. Each row of W2, in turn, encodes
global knowledge, i.e., the distribution πb over the output vocabulary conditioned on the
corresponding input token.

We can easily find that the resulting computation matches exactly that of the linear projection
WF under the near-orthgonality condition.

Therefore, this construction confirms that the feed-forward layer operates as a key-value
memory.

E Learning of ideal transformer

E.1 Notation table

We prepare tab. 2, which provides a concise summary of the notations used throughout the
appendices.

Symbol Description
d Dimensionality of the positional encoding
V Vocabulary set
V Vocabulary size
wE(zt) Embedding of token zt
rs−t Relative positional encoding expressing the relation between s-th token and current one
σ softmax function
Φ1 product of two randomly initialized matrices W1

O and W1
V

tq Index of the first trigger token
to Index of the output token corresponding to the first trigger token, to = tq + 1
T Index of the second trigger token, or the input length
[N] a set of natural number up to N, {1, 2, . . . , N}
l cross entropy loss function
η learning rate
τ constant, defined by Eto [∑

T
t=to 1/t]

α constant, α = η/VT
α′ constant, α = ητ/VT
q a variable representing the trigger token
πu a uniform distribution from which z1 is sampled.
πq a uniform distribution by which the trigger token is determined.
πo a uniform distribution by which the output token is determined.
πb a uniform distribution from which z2:T is sampled conditioned on the previous token.

Table 2: Table of Notations
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E.2 Setup

Here we consider a simplified setting to analyze the influence of relative positional encoding
in the training dynamics of our two-layer attention only transformer. Specifically,

1. Input Sequence We consider an input sequence z1:T ∈ VT which has one trigger
token q appearing twice, and ends with the trigger token. In other words, let tq
be the first occurrence position. Then, we have ztq = zT = q. From the bigram
generation rule in Sec.3.4, ztq+1 and zT+1 are the output token.

2. Probability Distribution Assumptions: The bigram is generated by uniform dis-
tributions over [V] for any index i, i.e., πu, πq, πo, and πb(· | i) are uniformly
distributed.

3. Simplification of Loss Function: Consider the loss only for sequences of length T
where the final input token zT is the second occurrence of the trigger token, and the
label y is zT+1, the corresponding output token.

4. Simplification for Learning Focus: Our approach involves sequentially training
WO

2 , WK
2 , and WK

1 from top to bottom. We employ zero-initialization and carry out
a single gradient descent step.

5. Initialization and Freezing: To achieve our goal of showing that W2
O, W2

K and
W1

K learn to be an associative memory, we zero-initialize the three matrices. For
other matrices such as W2

V , W1
V and W1

O are randomly initialized from Gaussian
distribution. We set W1

Q and W2
Q to identity matrix. All these matrices except for

W2
O, W2

K and W1
K are freezed during the training process.

E.3 Theoretical analysis of learning

Theorem 3 (formal). Under the setup described in Sec. E.2, a two-layer attention only transformer
with relative positional encoding learns associations of the associative memory transformer, i.e., the
memories W2

O, W2
K and W1

K can be written as the sum of the terms that constitute the associative
memory transformer.

W1
K = ∑

k∈Q
χ(k)wE(k)r⊤−1 + (W1

K)
′, (13)

W2
K = ∑

k∈Q
ψ(k)wE(k)(W1

OW1
VwE(k))⊤ + (W2

K)
′, (14)

W2
O =

V

∑
v=1

ω(v)wU(v)(W2
VwE(v))⊤ + (W2

O)
′, (15)

where χ, ψ : V → R and ω : N → R denotes the learned score of each association, and
(W1

K)
′, (W2

K)
′ and (W2

O)
′ are the other associations.

Proof. We will demonstrate that associative memory can be learned by performing one
gradient descent step in a top-down manner, starting with W2

O, followed by W2
K, and then

W1
K.

Step1: Training of W2
O

We begin with the dynamics of W2
O. The input to the second layer attention, x(1)t , is composed

of the sum of the values from the first layer attention, x(1,0)
t , and the values from the residual

connection, x(1,1)
t . Since W1

K is initialized to zero, the attention of the first layer is evenly
distributed across all the tokens z1:t and we have

x(1,0)
t =

1
t

t

∑
s=1

Φ1wE(zs),
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where Φ1 = W1
OW1

V . Additionally, the residual stream carries the token embedding:

x(1,1)
t = wE(zt).

Since the matrix W2
K is also zero-initialized, the value of the second layer attention can be

computed through

x(2)t = W2
V

(
1
t

t

∑
s=1

x(1)s

)
.

Now the logit prediction is given by WU(W2
Ox(2)T + x(1)T ) with the residual connec-

tion. We note that when d is large, thanks to the near-orthogonality, WU x(1)T =

WU

(
∑T

s=1 Φ1wE(zs)/T + wE(zT)
)

is negligible because x(1)T does not contain wU(v) for
any v ∈ V . This enables us to use Lemma 2 and one gradient step with learning-rate η yields

W2
O =

η

V

V

∑
k=1

wU(k)E[x(2)T | y = k]⊤ − η

V

V

∑
k=1

wU(k)E
[

p̂W(k | x)
p(y = k)

x(2)T

]⊤
=

η

V

V

∑
k=1

wU(k)(E[x(2)T | y = k]− E[x(2)T ])⊤. (16)

This transformation comes from the assumption that every token is sampled from a uniform
distribution (p(y = k) = 1/V) and all the logits are 0 when W2

O = Od×d, which means that
p̂W(k | x) = 1/V.

Given that y = k, it holds that the first output token zto = k. For zi (i ̸= to), the uniform
distribution can possibly generate any token, independently of the condition y = k. Since
we have

x(2)T =
1
T

T

∑
t=1

W2
V

(
wE(zt) +

1
t

t

∑
s=1

Φ1wE(zs)

)
,

the expression E
[

x(2)T | y = k
]
− E

[
x(2)T

]
leaves only the terms related to zto . This yields

E
[

x(2)T | y = k
]
− E

[
x(2)T

]
=

1
T

W2
V(E[wE(zto ) | y = k]− E[wE(zto )])

+
1
T
· E

[
T

∑
t=to

W2
V

1
t

Φ1wE(zto ) | y = k

]

− 1
T
· E

[
T

∑
t=to

W2
V

1
t

Φ1wE(zto )

]
(17)

=
1
T

W2
V(wE(k)− E[wE(zto )]) +

τ

T
W2

VΦ1(wE(k)− E[wE(zto )]), (18)

where τ := E
[
∑T

t=to
1
t

]
. Since each token is generated from a uniform distribution, the

expected value of wE(zto ), conditioned on nothing, is given by:

E [wE(zto )] =
1
V

V

∑
k=1

wE(k).

Combining eq. 16 and 17, the near-orthogonality of Gaussian vectors gives us

wU(k)⊤W2
OW2

VwE(j) ≈ η

VT
1(k = j) + O

( η

V2T

)
, (19)

wU(k)⊤W2
OW2

VΦ1wE(j) ≈ ητ

VT
1(k = j) + O

( ητ

V2T

)
. (20)
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This is the same result as in the proof from Bietti et al. (2024). So far, the weight matrix W2
O

is trained to perform as an associative memory so that

wU(k)⊤W2
OW2

VwE(zt) ≈ α1{zt = k}, (21)

with a constant α = η
TV .

Step2: Training of W2
K

Since the training of W2
O is finished, we have Eq. 19. When W1

K = W2
K = Od×d, Lemma 4

demonstrates that the next token prediction is distributed among all tokens, which means
that p̂(v | x) = 1/V for any vocabulary v. According to Lemma 5, one step of gradient
descent yields

W2
K =

η

TN ∑
k,t

E
[
wU(k)⊤Φ2x(1)t · (x(1)t − x̄(1))× (x(1)T )⊤ | y = k

]
− η

TN ∑
k,t

E
[
wU(k)⊤Φ2x(1)t · (x(1)t − x̄(1))× (x(1)T )⊤

]
, (22)

with x̄(1) = 1
T ∑T

t=1 x(0)t .

We simplify our transformer architecture by setting x(1,1)
t as the queries and values, and

x(1,0)
t as the keys. Furthermore, we add the condition that the trigger token ztq = j and

rewrite eq. 22. This conditioning leverages the fact that each token in ztq is sampled from a
uniform distribution. Now we have

W2
K =

η

TN ∑
k,t

1
N

N

∑
j=1

E
[
wU(k)⊤Φ2x(1,1)

t × (x(1,0)
t − x̄(1,0))(x(1,1)

T )⊤ | y = k, ztq = j
]

− η

TN ∑
k,t

1
N

N

∑
j=1

E
[
wU(k)⊤Φ2x(1,1)

t × (x(1,0)
t − x̄(1,0))(x(1,1)

T )⊤ | ztq = j
]
,

where x̄(1,0) = 1
T ∑T

t=1 x(1,0)
t . Using the formula 21, we obtain

W2
K ≈ αη

TN2

N

∑
j=1

N

∑
k=1

E

[
T

∑
t=1

1{zt = k} × (x(1,0)
t − x̄(1,0))wE(zT)

⊤ | y = k, ztq = j

]

− αη

TN2

N

∑
j=1

N

∑
k=1

E

[
T

∑
t=1

1{zt = k} × (x(1,0)
t − x̄(1,0))wE(zT)

⊤ | ztq = j

]

=
αη

TN2

N

∑
j=1

N

∑
k=1

∆k,jwE(j)⊤, (23)

where ∆k,j is defined by

∆k,j := E

[
T

∑
t=1

1{zt = k} × (x(1,0)
t − x̄(1,0)) | y = k, ztq = j

]

− E

[
T

∑
t=1

1{zt = k} ×(x(1,0)
t − x̄(1,0)) | ztq = j

]
.

The sum in ∆k,j can be partitioned into three distinct groups: (i) ∆o
k,j, where t is the index of

the output token; (ii) ∆q
k,j, where t corresponds to the indices of the trigger tokens; and (iii)

∆r
k,j, which includes all other cases. Mathematically, let to ≥ 2 be a random variable, and

tq = to − 1, we write

∆o
k,j := E

[
1{zto = k}(x(1,0)

to
− x̄(1,0)) | y = k, ztq = j

]
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− E
[
1{zto = k}(x(1,0)

to
− x̄(1,0)) | ztq = j

]
,

∆q
k,j := E

∑
t∈Tq

1{zt = k}(x(1,0)
t − x̄(1,0)) | y = k, ztq = j


− E

∑
t∈Tq

1{zt = k}(x(1,0)
t − x̄(1,0)) | ztq = j

 ,

∆r
k,j := E

[
∑

t∈Tr

1{zt = k}(x(1,0)
t − x̄(1,0)) | y = k, ztq = j

]

− E

[
∑

t∈Tr

1{zt = k}(x(1,0)
t − x̄(1,0)) | ztq = j

]
,

where Tq = {tq, T} and Tr = {1 ≤ i ≤ T | i ∈ N, i ̸= to, i ̸= tq, i ̸= T}.

First, we will take a look at ∆o
k,j. Note that E[1{zto = k} | y = k, ztq = j] = 1 and

E[1{zto = k} | ztq = j] = 1/N, so we find that

∆o
k,j =

(
1 − 1

N

)
E
[

x(1,0)
t − x̄(1,0) | y = k

]
=

N − 1
N

E

[
1
to

to

∑
s=1

Φ1wE(zs)−
1
T

T

∑
t=1

1
t

t

∑
s=1

Φ1wE(zs)

]

=
N − 1

N

N

∑
i=1

ak,j,iΦ1wE(i), (24)

where ak,j,i is the coefficient of Φ1wE(i) by calculating

E

[
1
to

to

∑
s=1

Φ1wE(zs)−
1
T

T

∑
t=1

1
t

t

∑
s=1

Φ1wE(zs)

]
.

The analysis of ak,j,i is done by the work (Bietti et al., 2024):

1
N

N

∑
k=1

ak,j,i ≈

O
(

1
N

)
, if i ̸= j,

Ω
(

1
T

)
, otherwise.

Thus, we have the following approximation:

(Φ1wE(i))⊤
(

1
N

N

∑
k=1

∆o
k,j

)
≈

O
(

1
N

)
, if i ̸= j,

Ω
(

1
T

)
, if i = j.

(25)

Similarly, we have ∆q
k,j = O

(
1
N

)
and ∆r

k,j = O
(

T
N

)
based on the discussion in Bietti et al.

(2024). By combining these analysis with Eq. 25, we multiply (Φ1wE(i))⊤ from left and
wE(j) from right to Eq. 23 and we establish that

(Φ1wE(i))⊤W2
KwE(j) ≈ αη

TN

{
Ω
(

1
T

)
1{i = j}+ O

(
T
N

)}
(26)

Step3: Training of W1
K

So far, the gradient descent step as to W2
O and W2

K gives them the ability to behave as an
associative memory:

wU(k)⊤W2
OW2

VwE(zt) = α1{zt = k}, (27)
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(Φ1wE(zt))
⊤W2

KwE(zT) = α′1{zt = zT}. (28)

From Lemma 3, we admit that the model predicts the next token almost randomly, i.e.,
p̂(v | x) = 1/V for any vocabulary v, when W0

K = Od×d. This enables us to employ Lemma 5
and W1

K after one gradient descent step gives the following:

W1
K

=
η

V

N

∑
k=1

E

[
1
T

T

∑
t=1

wU(k)⊤Φ2wE(zt)
1
t

t

∑
s=1

(Φ1wE(zs))
⊤W2

KwE(zT)qs,twE(zt)
⊤ | y = k

]

− η

V

N

∑
i=k

E

[
1
T

T

∑
t=1

wU(k)⊤Φ2wE(zt)
1
t

t

∑
s=1

(Φ1wE(zs))
⊤W2

KwE(zT)qs,twE(zt)
⊤
]

− η

V

N

∑
k=1

E

[(
wU(k)⊤Φ2 x̄1:T

) 1
T

T

∑
t=1

1
t

t

∑
s=1

(Φ1wE(zs))
⊤W2

KwE(zT)qs,twE(zt)
⊤ | y = k

]

+
η

V

N

∑
k=1

E

[(
wU(k)⊤Φ2 x̄1:T

) 1
T

T

∑
t=1

1
t

t

∑
s=1

(Φ1wE(zs))
⊤W2

KwE(zT)qs,twE(zt)
⊤
]

,

with qs,t = (wE(zs) + rs−t)− (w̄E(z1:t) + r̄1−t:0) and w̄E(z1:t) =
1
t ∑t

i=1 wE(zi). Now, fix an
arbitrary vocabulary v ∈ V . Given that

wU(k)⊤Φ2wE(zt) = α1{zt = k}

and that
(Φ1wE(zs))

⊤W2
KwE(zT) = α′1{zs = zT},

which equals α′ when s = tq or s = T, we manipulate the expression:

W1
K

=
η

V

V

∑
k=1

E

[
1
T

T

∑
t=1

α1{zt = k}α′

t
(1{tq ≤ t}qtq ,t + 1{t = T}qT,T)wE(zt)

⊤ | y = k

]

− η

V

V

∑
k=1

E

[
1
T

T

∑
t=1

α1{zt = k}α′

t
(1{tq ≤ t}qtq ,t + 1{t = T}qT,T)wE(zt)

⊤
]

− η

V

V

∑
k=1

E

[
1
T

T

∑
t′=1

1{z′t = k} 1
T

T

∑
t=1

α′

t
(1{tq ≤ t}qtq ,t + 1{t = T}qT,T)wE(zt)

⊤ | y = k

]

+
η

V

V

∑
k=1

E

[
1
T

T

∑
t′=1

1{z′t = k} 1
T

T

∑
t=1

α′

t
(1{tq ≤ t}qtq ,t + 1{t = T}qT,T)wE(zt)

⊤
]

.

With the near-orthogonality of the token embeddings, we write

W1
KwE(v) =

ηαα′

VT

V

∑
k=1

T

∑
t=1

1
t
(At,k − Bt,k − Ct,k + Dt,k)

+
ηαα′

VT2

V

∑
k=1

(A′
T,k − B′

T,k − C′
T,k + D′

T,k). (29)

where, we define each term as follows:

At,k = E
[
1{zt = k}1{tq ≤ t}qtq ,t1{zt = v} | y = k

]
,

Bt,k = E
[
1{zt = k}1{tq ≤ t}qtq ,t1{zt = v}

]
,

Ct,k = E

[
1
T

T

∑
t′=1

1{z′t = k}1{tq ≤ t}qtq ,t1{zt = v} | y = k

]
,
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Dt,k = E

[
1
T

T

∑
t′=1

1{z′t = k}1{tq ≤ t}qtq ,t1{zt = v}
]

,

A′
T,k = E [1{zT = k}qT,T1{zT = v} | y = k] ,

B′
T,k = E [1{zT = k}qT,T1{zT = v}] ,

C′
T,k = E

[
1
T

T

∑
t′=1

1{z′t = k}qT,T1{zT = v} | y = k

]
,

D′
T,k = E

[
1
T

T

∑
t′=1

1{z′t = k}qT,T1{zT = v}
]

.

We will further split these four terms based on relative positional encoding and token
embedding that are contained in qtq ,t. For example, we decompose At,k into AR

t,k and Az
t,k by

defining

AR
t,k = E

[
1{zt = k}1{tq ≤ t}

(
rtq−t − r̄1−t:0

)
1{zt = v} | y = k

]
,

Az
t,k = E

[
1{zt = k}1{tq ≤ t}

(
wE(ztq)− w̄E(z1:t)

)
1{zt = v} | y = k

]
.

(i) when v = k
We begin with AR

t,k:

AR
t,k = E

[
1{zt = k}1{tq ≤ t}

(
rtq−t − r̄1−t:0

)
1{zt = v} | y = k

]
=

t

∑
s=1

P(tq = s | y = k)E
[
1{zt = k} | y = k, tq = s

]
(rs−t − r̄1−t:0)

= P(tq = t − 1)(r−1 − r̄1−t:0) + 1{t = T}P(tq = t)(r0 − r̄1−t:0)

+
1{t = T}

V ∑
s∈[t−2]∪{t}

P(tq = s)(rs−t − r̄1−t:0)

= P(tq = t − 1)(r−1 − r̄1−t:0) + 1{t = T}P(tq = t)(r0 − r̄1−t:0) + O
(

1
V

)
.

Here, we used Lemma 6 and 7 for the calculation of the expectation E[1{zt = k} | ·].
Similarly, we will examine BR

t,k, CR
t,k and DR

t,k as well.

BR
t,k = E

[
1{zt = k}1{tq ≤ t}

(
rtq−t − r̄1−t:0

)
1{zt = v}

]
=

t

∑
s=1

P(tq = s)E[1{zt = k} | tq = s](rs−t − r̄1−t:0)

=
t

∑
s=1

P(tq = s)
V

(rs−t − r̄1−t:0)

= O
(

1
V

)
.

For the term CR
t,k, we make use of Lemma 8 and 9.

CR
t,k

= E

[
1
T

T

∑
t′=1

1{zt′ = k}1{tq ≤ t}
(

rtq−t − r̄1−t:0

)
1{zt = v} | y = k

]

=
1
T

t

∑
s=1

P(tq = s)(rs−t − r̄1−t:0)E

[(
T

∑
t′=1

1{zt′ = k}
)

1{zt = v} | y = k, tq = s

]
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=
P(tq = t − 1)

T
(r−1 − r̄1−t:0)

{
(1 + 1{t = T}) + (T − 3) · 1{t ̸= T}

V − 1

}
+

2P(tq = t)
T

(r0 − r̄1−t:0) +
t−2

∑
s=1

P(tq = s)
T

O
(

1
V

)
=

1
T

{
P(tq = t − 1) (1 + 1{t = T}) (r−1 − r̄1−t:0) + 2P(tq = t) (r0 − r̄1−t:0) + O

(
1
V

)}
.

As for DR
t,k, the condition y = k does not exist, and zt follows a uniform distribution.

Therefore, we obtain

DR
t,k = E

[
1
T

T

∑
t′=1

1{zt′ = k}1{tq ≤ t}
(

rtq−t − r̄1−t:0

)
1{zt = v}

]

=
t

∑
s=1

P(tq = s)
T

(rs−t − r̄1−t:0)E

[
T

∑
t′=1

1{zt′ = k}1{zt = v} | y = k, tq = s

]

= O
(

1
V

)
.

Next, we will examine Az
t,k, Bz

t,k, Cz
t,k and Dz

t,k in this order. Using lemma 10 and 11, we
obtain.

Az
t,k = E

[
1{zt = k}1{tq ≤ t}(xtq − x̄1:t)1{zt = v} | y = k

]
= E

[
1{zt = k}1{tq ≤ t}xtq | y = k

]
− E

[
1{zt = k}1{tq ≤ t}x̄1:t | y = k

]
= P(tq = t − 1)1{t = T}wE(k) + P(tq = t)1{t = T − 1})wE(k)

−
P(tq = t − 1)

t
(1 + 1{t = T})wE(k)−

1{t = T − 1})P(tq = t)
t

wE(k) + O
(

1
V

)
.

We also get

Bz
t,k = E

[
1{zt = k}1{tq ≤ t}(xtq − x̄1:t)1{zt = v}

]
= E

[
1{zt = k}1{tq ≤ t}xtq

]
− E

[
1{zt = k}1{tq ≤ t}x̄1:t

]
= P(zt = k)E[1{tq ≤ t}xtq | zt = k]− P(zt = k)E

[
1{tq ≤ t}x̄1:t | zt = k

]
= O

(
1
V

)
.

Now we move to Cz
t,k. From lemma 12 and 13, it follows that

Cz
t,k = E

[
1
T

(
T

∑
t′=1

1{zt′ = k}
)

1{tq ≤ t}(xtq − x̄1:t)1{zt = v} | y = k

]

= E

[
1
T

(
T

∑
t′=1

1{zt′ = k}
)

1{tq ≤ t}xtq 1{zt = k} | y = k

]

− E

[
1
T

(
T

∑
t′=1

1{zt′ = k}
)

1{tq ≤ t}x̄1:t1{zt = k} | y = k

]

= wE(k)
{

2P(tq = t − 1)
T

1{t = T}+
2P(tq = t)

T
1{t = T − 1}

−
P(tq = t − 1)

T
4 · 1{t = T}+ 1{t ̸= T}

t
−

P(tq = t)
T

2 · 1{t = T − 1}
t

}
+

1
T
· O
(

1
V

)
.
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For Dz
t,k, we have

Dz
t,k = E

[
1
T

(
T

∑
t′=1

1{zt′ = k}
)

1{tq ≤ t}(xtq − x̄1:t)1{zt = v}
]

= P(zt = v)E

[
1
T

(
T

∑
t′=1

1{zt′ = k}
)

1{tq ≤ t}(xtq − x̄1:t) | zt = v

]

= O
(

1
V

)
,

because of the term 1{zt = v} under no condition. So far, we have calculated At,k, Bt,k, Ct,k
and Dt,k for v = k. Now, we turn our attention to v ̸= k.
(ii) when v ̸= k
In this case, it is guaranteed that 1{zt = k} ̸= 1{zt = v}, and thus, we have At,k = Bt,k =
0. We only need to examine Ct,k and Dt,k. We use the fact that the token zt has to be
sampled uniformly from a potentially reduced vocabulary space with some words excluded
depending on the position of t, we obtain

Ct,k = E

[
1
T

T

∑
t′=1

1{z′t = k}1{tq ≤ t}qtq ,t1{zt = v} | y = k

]

= P(zt = v | y = k)E

[
1
T

T

∑
t′=1

1{z′t = k}1{tq ≤ t}qtq ,t | y = k, zt = v

]

= O
(

1
V

)
,

and

Dt,k = E

[
1
T

(
T

∑
t′=1

1{zt′ = k}
)

1{tq ≤ t}(xtq − x̄1:t)1{zt = v}
]

= P(zt = v | y = k)E

[
1
T

(
T

∑
t′=1

1{zt′ = k}
)

1{tq ≤ t}qtq ,t1{zt = v}
]

= O
(

1
V

)
.

So far, we have seen the content of At,k, Bt,k, Ct,k and Dt,k. Now, we will shift our focus to
A′

T,k, B′
T,k, C′

T,k and D′
T,k. We recall that

qs,t = (wE(zs) + rs−t)− (w̄E(z1:t) + r̄1−t:0).

By substituting s = T and t = T, we have

qT,T = (wE(zT) + r0)− (w̄E(z1:T) + r̄1−T:0).

Also, 1{zT = v} implies that the trigger token is v. we use Lemma 14 and obtain the
following:

A′
T,k = E [1{zT = k}qT,T1{zT = v} | y = k]

=

{
P(tq = T − 1) (r0 − r̄1−T:0) + P(tq = T − 1) T−2

T wE(k) + O
(

1
V

)
if v = k,

0 otherwise.

Similarly to the argument of Bt,k and Dt,k, the trigger token is chosen uniformly, and thus,
we have P(zT = v) = 1

V . This gives

B′
T,k = E [1{zT = k}qT,T1{zT = v}]
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=

{
O
(

1
V

)
if v = k,

0 otherwise,

and

D′
T,k = E

[
1
T

T

∑
t′=1

1{zt′ = k}qT,T1{zT = v}
]

=

{
O
(

1
V

)
if v = k,

0 otherwise,

Finally, according to Lemma 15, it is established that

C′
T,k = E

[
1
T

T

∑
t′=1

1{zt′ = k}qT,T1{zT = v} | y = k

]

=


2P(tq=T−1)

T (r0 − r̄1−T:0) +
2P(tq=T−1)

T
T−2

T wE(k) + 1
T · O

(
1
V

)
if v = k,

1
T O
(

1
V

)
otherwise.

To sum up, we get the following associative memory behaviors by examining Eq. 29. We
point out that r̄1−t:0 also contains r−1 and r0.

r−1W1
KwE(v) =

ηαα′

T

T

∑
t=1

P(tq = t − 1)
t

(
1 − 1 + 1{t = T}

T

)(
1 − 1

t

)

− ηαα′

T

T

∑
t=1

P(tq = t)
t2

(
1{t = T} − 2

T

)

− ηαα′

VT2

V

∑
k=1

P(tq = T − 1)
t

(
1 − 2

T

)
,

and

r0W1
KwE(v) =

ηαα′

T

T

∑
t=1

P(tq = t)
t

(
1{t = T} − 2

T

)(
1 − 1

t

)

− ηαα′

T

T

∑
t=1

P(tq = t − 1)
t2

(
1 − 1 + 1{t = T}

T

)

+
ηαα′

VT2

V

∑
k=1

P(tq = T − 1)
(

1 − 2
T

)
.

Also, for any j ∈ V , we have

wE(j)W1
KwE(v) = O

(
1
V

)
.

The proof is finished.

F Other lemmas and proofs

Lemma 2 (Lemma 2, Bietti et al. (2024)). Given a data distribution p over pairs (x, y) ∈ Rd × [V]
and a fixed matrix WU ∈ Rd×d, minimizing the loss L(W) = E(x,y)∼p [ℓ (y, WUWx)] gives the
following gradient:

∇W L(W) =
V

∑
v=1

p(y = v)wU(v)(µ̂v − µv)
⊤,

where µk = E[x | y = v] and µ̂v = Ex[
p̂W (v|x)
p(y=v) x], and p̂W(v | x) is the probability of generating v.
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Lemma 3. Consider a two-layer attention only transformer that meets the initialization condition
in Sec. E.2, and the input sequence of length T ends with the trigger token zT = q at its second
occurrence. Even after the gradient descent step of W2

O and W2
K, the prediction p̂(v | z1:T) = 1/V

for any v ∈ V .

Proof. From the way the transformer is initialized, we have W1
K = Od×d. Therefore, the

output of the first attention block for any t is:

x(1)t = wE(zt) +
1
t

t

∑
s=1

Φ1wE(zs).

In the second layer, the key matrix is trained such that (Φ1wE(zt))⊤W2
KwE(zT) = α′1{zt =

zT}. Thus, we have

σ
(
(x(1)1:T)

⊤(W2
K)

⊤W2
Qx(1)T

)
= σ





(wE(z1) + Φ1wE(z1))
⊤(

wE(z2) + ∑2
i=1

Φ1wE(zi)
2

)⊤
...(

wE(zT−1) + ∑T−1
i=1

Φ1wE(zi)
T−1

)⊤(
wE(zT) + ∑T

i=1
Φ1wE(zi)

T

)⊤


×
(

∑
k∈Q

(Φ1wE(k))wE(k)⊤
)

Ix(1)T

)

= σ





(wE(z1) + Φ1wE(z1))
⊤(

wE(z2) + ∑2
i=1

Φ1wE(zi)
2

)⊤
...(

wE(zt−1) + ∑t−1
i=1

Φ1wE(zi)
t−1

)⊤(
wE(zt) + ∑t

i=1
Φ1wE(zi)

t

)⊤


Φ1wE(q)



= σ


ητ

TV



0
...
0

1/(to − 1)
1/to

...
1/(T − 1)

1/T




.

When V is large enough, the attention is spread across the whole sequence evenly, and we
obtain

x(2)T ≈ 1
T

T

∑
t=1

W2
OW2

V x(1)t + x(1)T (30)

=
1
T

T

∑
t=1

W2
OW2

V

(
wE(zt) +

1
t

t

∑
s=1

Φ1wE(zs)

)
+ wE(zT) +

1
T

T

∑
s=1

Φ1wE(zs)

=wU

α

T

T

∑
t=1

wU(zt),
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where we focus on the terms represented by wU(v) for vocabulary v by =wU . Taking the
expectation over z1:T while keeping the trigger token zT = zto−1 = q fixed yields

E[x(2)T ] =wU

V

∑
j=1

E
[

x(2)T | q = j
]

=
α

T

V

∑
j=1

 T − 2
V − 1 ∑

1≤v≤V
v ̸=j

wU(v) + 2wU(j)


The coefficients of wU(v) are the same for any v ∈ V and this concludes the proof.

Lemma 4. Consider a two-layer attention only transformer that meets the initialization condition
in Sec. E.2, and the input sequence of length T ends with the trigger token zT = q at its second
occurrence. After the gradient descent step of W2

O, the prediction p̂(v | z1:T) = 1/V for any v ∈ V .

Proof. Since W2
K = Od×d, it is guaranteed that we have Eq. 30 as an equation. Thus, the

result follows directly from Lemma 3.

Lemma 5. Suppose the loss function is given by

L(W) = E(X,y)[l(y, ξ(X))]

ξ(X) = WUΦ2Xσ̄(Z(W)⊤W2xT),

where Z(W) = (z1(W), . . . , zT(W)) with zt(W) = ∑t
s=1 Φ1xsσ((x1:t + R1−t:0)

⊤ Wxt)s, and
σ̄(u1:T)t =

1
T (1 + ut − 1

T ∑T
s=1 us) is the linearization of the softmax function around 0. Then the

gradient at W = 0 has the following form.

∇W L(W) =
N

∑
i=1

E

[
1
T

T

∑
t=1

wU(i)⊤Φ2xt
1
t

t

∑
s=1

(Φ1xs)
⊤W2

KxTqs,tx⊤t | y = i

]

−
N

∑
i=1

E

[
1
T

T

∑
t=1

wU(i)⊤Φ2xt
1
t

t

∑
s=1

(Φ1xs)
⊤W2

KxTqs,tx⊤t

]

−
N

∑
i=1

E

[
wU(i)⊤Φ2 x̄1:T

1
T

T

∑
t=1

1
t

t

∑
s=1

(Φ1xs)
⊤W2

KxTqs,tx⊤t | y = i

]

+
N

∑
i=1

E

[
wU(i)⊤Φ2 x̄1:T

1
T

T

∑
t=1

1
t

t

∑
s=1

(Φ1xs)
⊤W2

KxTqs,tx⊤t

]
,

where qs,t = (xs + rs−t)− (x̄1:t − r̄1−t:0) and x̄1:t =
1
t ∑t

s=1 xs.

Proof. The result is obtained by replacing p⊤1:t with (x1:t + R1−t:0)
⊤ and pt with xt in zt from

the proof of Lemma 5 from Bietti et al. (2024).

It is worth noting that xi = x(0)i = wE(zi) and that if we directly follows the transformer
architecture the vector in the linearized version of softmax σ̄ should be Z′(W)⊤W2z′T(W),
where Z′(W) = (z′1(W), . . . , z′T(W)) with z′t(W) = xt + ∑t

s=1 Φ1xsσ((x1:t + R1−t:0)
⊤ Wxt)s.

Since W2
K is learned so that it only cares the ordered pair of Φ1wE(zt) and wE(zt), the loss

function is simplified and ignores the other terms. This also applies to ξ(X), where

ξ ′(X) = WUΦ2Z′σ̄(Z′(W)⊤W2z′T)

is the authentic form of the output. Since we know W2
O (and therefore Φ2) is already trained,

we can simplify the expression.
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F.1 Supporting lemmas

This section provides useful lemmas to show the learning of matrices, especially for W1
K.

Lemma 6. Given a sequence z1:T that satisfies Sec. E.2. For any t ∈ [1, T], and any vocabulary
k ∈ V , we have

E[1{zt = k} | y = k, tq = t − 1] = 1.

Proof. Since the trigger token is ztq = zt−1, the next token zt is the output token. The
condition y = k gives us zt = k. Therefore, 1{zt = k} = 1 and the equation holds.

Lemma 7. Given a sequence z1:T that satisfies Sec. E.2. Fix some t ∈ [1, T] ⊂ N. For any
s ∈ [1, t − 2] ∪ {t}, and vocabulary k ∈ V , we have

E[1{zt = k} | y = k, tq = s] =


1 if s = t and t = T − 1,

1
V−1 if s ≤ t − 2 and t ̸= T,
0 otherwise,

(31)

Proof. First, consider the case s = t. Under the condition tq = s, we have tq = s = t, and
thus, zt is the trigger token. The only possible case allowing the same token for trigger and
output is when tq = T − 1. This yields zT−1 = zT = k because zT not only works as trigger,
but also output. Therefore, when s = t, we have

E[1{zt = k} | y = k, tq = s] =
{

1 if t = T − 1,
0 otherwise.

(32)

Next, we focus on s ≤ t − 2. Suppose we are given t = T. The token zt is then the second
trigger token, and 1{zt = k} = 1 implies that ztq = k. However, since the first trigger
position is tq = s ≤ t − 2 and the output token is also y = k, zT(= k) cannot be the second
trigger occurrence. Hence, it suffices to consider t ̸= T. We now have s ≤ t − 2 < T − 2.
Assuming ztq = k will also lead to contradiction because the trigger token k appears more
than twice at positions s, s + 1 and T. With this in mind, we obtain

E[1{zt = k} | y = k, tq = s] = P(zt = k | y = k, tq = s)

= ∑
q∈V\{k}

P(zt = k, ztq = q | ·)

= ∑
q∈V\{k}

P(zt = k | ·, ztq = q)P(ztq = q | ·)

= ∑
q∈V\{k}

1
V − 1

1
V − 1

=
1

V − 1
. (33)

Here we use P(ztq = q | y = k, tq = s) = 1/(V − 1) because the trigger token is uniformly
sampled from V \ {k}. Also, we have P(zt = k | y = k, tq = s, ztq = q) = 1/(V − 1) because
zt for t ̸= T is neither the trigger token nor the output token, and thus, sampled from
V \ {q}. These give us the following when s ≤ t − 2:

E[1{zt = k} | y = k, tq = s] =
{ 1

V−1 if t ̸= T,
0 otherwise.

(34)

Combining Eq. 32 and 34, we obtain the result.

Lemma 8. Given a sequence z1:T that satisfies Sec. E.2. For any vocabulary k ∈ V , we have

E

[
1
T

(
T

∑
t′=1

1{zt′ = k}
)

1{zt = k} | y = k, tq = t − 1

]
=

{ 2
T if t = T,
1
T

(
1 + T−3

V−1

)
otherwise.

(35)

30



Published as a conference paper at COLM 2025

Proof. By the linearity of expectation, we can decompose the expectation as follows:

E

[(
T

∑
t′=1

1{zt′ = k}
)

1{zt = k} | ·
]
= E[1{ztq = k}1{zt = k} | ·]

+ E[1{ztq+1 = k}1{zt = k} | ·]
+ 1{t ̸= T}E[1{zT = k}1{zt = k} | ·]

+ E

 ∑
t′ ̸=tq ,tq+1,T

1{zt′ = k}

 1{zt = k} | ·

 ,

where we abbreviate the conditions of the expectations to enhance readability.
Note that we always have 1{zt = k} = 1 when tq = t − 1 and y = k. In the case of t = T, the
trigger token appears at positions T − 1 and T given tq = t − 1. With the condition y = k, it
follows that

1{ztq = k}1{zt = k} = 1,

1{ztq+1 = k}1{zt = k} = 1.

In the above, we point out that we have tq + 1 = T in this situation. Additionally, we get

E

 ∑
t′ ̸=tq ,tq+1,T

1{zt′ = k}

 1{zt = k} | ·

 = 0,

where the final equation follows from the fact that zt′ is not a trigger token k.

For the case where t ̸= T, the trigger token is not k because otherwise there will be more
than two triggers in the input sequence at positions tq, tq + 1 and T. Thus, we have

E[1{ztq = k}1{zt = k} | ·] = 0,

E[1{ztq+1 = k}1{zt = k} | ·] = 1,

E[1{zT = k}1{zt = k} | ·] = 0.

Following the same argument in Eq. 33, we also have

E

 ∑
t′ ̸=tq ,tq+1,T

1{zt′ = k}

 1{zt = k} | ·

 = E

 ∑
t′ ̸=tq ,tq+1,T

1{zt′ = k} | ·


=

T − 3
V − 1

.

We prove the statement by combining these results.

Lemma 9. Given a sequence z1:T that satisfies Sec. E.2. Fix some t ∈ [1, T] ⊂ N. For any
s ∈ [1, t − 2] ∪ {t}, and vocabulary k ∈ V ,

E

[(
T

∑
t′=1

1{zt′ = k}
)

1{zt = k} | y = k, tq = s

]
=


2 if s = t and t = T − 1,

2
V−1 + T−4

(V−1)2 if s ≤ t − 2 and t ̸= T,

0 otherwise.
(36)

Proof. First, we look at the scenario s = t. Since tq = s = t, the input sequence z1:T
will contain more than two trigger tokens unless t = T − 1, which does not satisfy the
condition of input sequence, we examine the case of t = T − 1. This condition ensures that
1{zT−1 = k} = 1{zT = k} = 1, and therefore, we can use the instance t = T from Lemma 8.

E

[(
T

∑
t′=1

1{zt′ = k}
)

1{zt = k} | ·
]
= 2.
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Next, we require s ≤ t − 2. It is impossible to have t = T because this violates the input
sequence condition, where the trigger token only appears twice. Now, by the linearity of
expectation, we can decompose the expectation as follows:

E

[(
T

∑
t′=1

1{zt′ = k}
)

1{zt = k} | ·
]
= E[1{ztq = k}1{zt = k} | ·]

+ E[1{ztq+1 = k}1{zt = k} | ·]
+ E[1{zt = k}1{zt = k} | ·]
+ E[1{zT = k}1{zt = k} | ·]

+ E

 ∑
t′ ̸=tq ,tq+1,t,T

1{zt′ = k}

 1{zt = k} | ·

 .

Since tq = s ≤ t − 2 and t ̸= T, the token zt is neither trigger nor output. This yields the
following:

E[1{ztq = k}1{zt = k} | ·] = 0,

E[1{zT = k}1{zt = k} | ·] = 0.

Given y equals k, we have 1{ztq+1 = k} = 1. Therefore, from Lemma 7, we get

E[1{ztq+1 = k}1{zt = k} | ·] = E[1{zt = k} | ·]

=
1

V − 1
,

E[1{zt = k}1{zt = k} | ·] = E[1{zt = k} | ·]

=
1

V − 1
.

Finally, for t′ ̸= tq, tq + 1, t and T, the tokens zt′ and zt are independent. With Lemma 7, we
obtain

E

 ∑
t′ ̸=tq ,tq+1,t,T

1{zt′ = k}

 1{zt = k} | ·

 =
T − 4

(V − 1)2 .

Integrating the equations above allows us to arrive at the conclusion.

Lemma 10. Given a sequence z1:T that satisfies Sec. E.2. For any vocabulary k ∈ V , and t ∈
[1, T] ⊂ N, we have

E
[
1{zt = k}1{tq ≤ t}xtq | y = k

]
= P(tq = t − 1)1{t = T}wE(k)

+ P(tq = t)1{t = T − 1}wE(k) + O
(

1
V

)
.

Proof. We split 1{tq ≤ t} into 1{tq = t − 1} + 1{tq = t} + 1{tq ≤ t − 2}. Then, the
expectation can be decomposed as:

E
[
1{zt = k}1{tq ≤ t}xtq | y = k

]
= E

[
1{zt = k}1{tq = t − 1}xtq | y = k

]
+ E

[
1{zt = k}1{tq = t}xtq | y = k

]
+ E

[
1{zt = k}1{tq ≤ t − 2}xtq | y = k

]
.

Note that when tq = t − 1, zt is the output token. In addition, if we have t = T, zt works as
the second output token as well, which means that zt = k and xtq = wE(k). If we find t ̸= T,
the trigger token is not k. Thus, we derive

E
[
1{zt = k}1{tq = t − 1}xtq | y = k

]
= P(tq = t − 1)E

[
1{zt = k}xtq | y = k, tq = t − 1

]
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= P(tq = t − 1)1{t = T}wE(k)

+ P(tq = t − 1)1{t ̸= T} ∑
j∈V\{k}

wE(j)
V − 1

.

Next, we discuss tq = t. Since tq is the first trigger position, we always observe that
tq ≤ T − 1. If two trigger tokens are adjacent to each other, i.e., tq = T − 1, we can state that
zT−1 = zT = k because of the equation y = k. Otherwise, the trigger token must belong to
V \ {k}, and 1{zt = k} = 0. This gives

E
[
1{zt = k}1{tq = t}xtq | y = k

]
= P(tq = t − 1)1{t = T}wE(k).

For tq ≤ t − 2, we again analyze the cases of t = T and t ̸= T. Provided that t = T,
1{zt = k} = 1 implies that the trigger token is decided to be k, while the output token is
also k. This leads to more than two occurrences of trigger token, which violates the input
sequence condition. Now, we assume t ≤ T − 1. This time, the trigger token ztq is not k, and
zt is not a trigger token, which yields

E
[
1{zt = k}1{tq ≤ t − 2}xtq | y = k

]
= P(tq ≤ t − 2)E[wE(ztq) | y = k, tq ≤ t − 2]E[1{zt = k} | ztq , y = k, tq ≤ t − 2]

= P(tq ≤ t − 2) ∑
q∈V\{k}

wE(q)
V − 1

E[1{zt = k} | ztq = q, y = k, tq ≤ t − 2]

= P(tq ≤ t − 2) ∑
q∈V\{k}

wE(q)
(V − 1)2 .

This concludes the proof.

Lemma 11. Given a sequence z1:T that satisfies Sec. E.2. For any vocabulary k ∈ V , and t ∈
[1, T] ⊂ N, we have

E
[
1{zt = k}1{tq ≤ t}x̄1:t | y = k

]
=

P(tq = t − 1)
t

(1 + 1{t = T})wE(k)

+
1{t = T − 1}P(tq = t)

t
wE(k) + O

(
1
V

)
. (37)

Proof. As in the proof of Lemma 10, we analyze each scenario depending on the value of tq.
Firstly, let us consider tq = t − 1. This leads to the fact that zt is the output token. Given
y = k, we have zt = k.

E
[
1{zt = k}1{tq = t − 1}x̄1:t | y = k

]
= P(tq = t − 1)E

[
x̄1:t | y = k, tq = t − 1

]
.

In the event that t = T is valid, xtq = xT = wE(k) holds and the other T − 2 tokens are not k.
Thus, it gives

E [x̄1:T | y = k] =
1
T

2wE(k) + (T − 2) ∑
j∈V\{k}

wE(j)
V − 1

 .

When t ̸= T holds, we can say that xtq ̸= wE(k), while xtq+1 = wE(k) because of y = k. This
gives us

E[xtq | y = k, tq = t − 1] = ∑
q∈V\{k}

wE(j)
V − 1

,

E[xtq+1 | y = k, tq = t − 1] = wE(k).

Also, we can derive the following equations for i ∈ [1, t] \ {tq, tq + 1}:

E[xi | y = k, tq = t − 1] = ∑
j∈V

P(zi = j | ·)wE(j)
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=
V

∑
q=1

V

∑
j=1

P(zi = j, ztq = q | ·)wE(j)

= ∑
q∈V\{k}

∑
j∈V\{q}

P(zi = j, ztq = q | ·)wE(j)

= ∑
q∈V\{k}
j∈V\{q}

P(zi = j, | ztq = q, ·)P(ztq = q | ·)wE(j)

= ∑
q∈V\{k}

∑
j∈V\{q}

wE(j)
(V − 1)2 .

In the above, we use the fact that P(xi = j, xtq = q) = 0 if j = q or q = k holds. To
summarize, we have

E
[
x̄1:t | y = k, tq = t − 1

]
=



2wE(k)
t + t−2

t ∑j∈V\{k}
wE(j)
V−1 if t = T,

1
t

{
wE(k) + ∑q∈V\{k}

wE(q)
V−1

}
+ t−2

t

{
∑q∈V\{k}

j∈V\{q}

wE(j)
(V−1)2

}
otherwise.

(38)

=


2
T wE(k) + O

(
1
V

)
if t = T,

1
t wE(k) + O

(
1
V

)
otherwise.

Next, assume tq = t. In this case, t = T implies tq = T which is a contradiction. Furthermore,
tq = t < T − 1 implies tq < tq+1 < T. Under this condition, we cannot have zt = k, because
it produces three appearances of the trigger token. Hence, it suffices to consider t = T − 1.
If tq = t = T − 1 is true, we can state that xt = k, leading to the formulation below:

E[1{zt = k}x̄1:t | y = k, tq = t] = E[x̄1:t | y = k, tq = t]

=
1
t

wE(k) + (T − 2) ∑
1≤j≤V

j ̸=k

wE(j)
V − 1


=

1
T − 1

wE(k) + O
(

1
V

)
,

where the second equation follows from the same argument in the instance t = T in Eq. 38,
but this time xT is not contained in x1:t.

Lastly, we focus on tq = s ≤ t − 2. We argue that the trigger token ztq = zT is not k, due to
the condition of the number of trigger token in the input sequence. This means that t ̸= T
and zt does not serve as a trigger token. Now, we split x̄1:t into 1

t (xtq + xtq+1 + xt + ∑t′ xt′)
and obtain

E[1{zt = k}xtq | y = k, tq = s] = ∑
q∈V\{k}

P(zt = k, ztq = q | ·)wE(q)

= ∑
q∈V\{k}

wE(q)
(V − 1)2 ,

E[1{zt = k}xtq+1 | y = k, tq = s] = P(zt = k | ·)wE(k)

= ∑
q∈V\{k}

P(zt = k, ztq = q | ·)wE(k)

= ∑
q∈V\{k}

wE(k)
(V − 1)2 ,
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=
wE(k)
V − 1

,

E[1{zt = k}xt | y = k, tq = s] = P(zt = k | y = k, tq = s)wE(k)

=
wE(k)
V − 1

,

E[1{zt = k}xt′ | y = k, tq = s] = ∑
q∈V\{k}
j∈V\{q}

P(zt = k, zt′ = j, ztq = q | ·)wE(j)

= ∑
q∈V\{k}

P(ztq = q | ·)

× ∑
j∈V\{q}

P(zt = k, zt′ = j | ztq = q, ·)wE(j)

= ∑
q∈V\{k}

1
V − 1 ∑

j∈V\{q}

wE(j)
(V − 1)2 .

In short, we have

E[1{zt = k}x̄1:t | y = k, tq = s] = O
(

1
V

)
.

Summing up all the related terms leads to Eq. 37, which finishes the proof.

Lemma 12. Given a sequence z1:T that satisfies Sec. E.2. For any vocabulary k ∈ V , and t ∈
[1, T] ⊂ N, we have

E

[
1
T

T

∑
t′=1

1{zt′ = k}1{tq ≤ t}xtq 1{zt = k} | y = k

]
=

2wE(k)
T

1{t = T}P(tq = t − 1)

+
2wE(k)

T
1{t = T − 1}P(tq = t)

+
1
T
· O
(

1
V

)
. (39)

Proof. We consider the following cases:

Case 1: tq = t − 1.
If t = T holds, this gives ztq = zT = y = k and 1{zt−1 = k} = 1{zt = k} = 1. Thus, we have

E
[
1{zt−1 = k}xtq 1{zt = k} | y = k, tq = t − 1

]
= E

[
xtq | y = k, tq = t − 1

]
= wE(k),

E
[
1{zt = k}xtq 1{zt = k} | y = k, tq = t − 1

]
= E

[
xtq | y = k, tq = t − 1

]
= wE(k).

Since zt′ for t′ ̸= tq, tq + 1 is not a trigger token, it follows that 1{zt′ = k} = 0, and we have

E

[
∑

t′ ̸=t−1,t
1{zt′ = k}xtq 1{zt = k} | ·

]
= 0.

Otherwise, when t ̸= T, ztq = zT is not k, yielding

E
[
1{zt−1 = k}xtq 1{zt = k} | ·

]
= 0.

E
[
1{zT = k}xtq 1{zt = k} | ·

]
= 0.

Also, ztq is sampled from V \ {k}, we get

E
[
1{zt = k}xtq 1{zt = k} | y = k, tq = t − 1

]
= E

[
xtq | y = k, tq = t − 1

]
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= ∑
j∈V\{k}

wE(j)
V − 1

.

For the rest of t′, we note that ztq ̸= k and obtain

E

[
∑

t′ ̸=t,t−1,T
1{zt′ = k}xtq 1{zt = k} | ·

]
= ∑

t′
q∈V\{k}

P(zt′ = k, ztq = q | ·)wE(q)

= (T − 3) ∑
q∈V\{k}

wE(q)
(V − 1)2 . (40)

In summary, we find that

E

[
T

∑
t′=1

1{zt′ = k}1{tq = t − 1}xtq 1{zt = k} | y = k

]

=P(tq = t − 1)1{t = T}2wE(k) + P(tq = t − 1)1{t ̸= T}O
(

1
V

)
. (41)

Case 2: tq = t.
For this scenario, 1{zt = k} = 1 holds only when tq = t = T − 1. Thus, we can state that

E[1{ztq = k}xtq 1{zt = k} | y = k, tq = t] = E[xtq | y = k, tq = t]

= wE(k),
E[1{zT = k}xtq 1{zt = k} | y = k, tq = t] = E[xtq | y = k, tq = t]

= wE(k).

For the other t′, we have 1{zt′ = k} = 0 because these tokens are not a trigger token. This
means that

E

[
∑

t′ ̸=t,T
1{zt′ = k}xtq 1{zt = k} | y = k, tq = t

]
= 0.

In short, we have

E

[
1
T

T

∑
t′=1

1{zt′ = k}1{tq = t}xtq 1{zt = k} | y = k

]
=

1{t = T − 1}P(tq = t)
T

2wE(k). (42)

Case 3: tq ≤ t − 2.
We first let t = T. If 1{zt = k} = 1 holds, then the trigger token becomes k, but we find that
ztq = ztq+1 = zT = k, meaning the trigger token appears more than two times. Therefore,
we only consider t ̸= T. Given ztq(= zT) = k, it also fails to satisfy the required conditions
for the sequence, hence it follows that

E[1{zs = k}xtq 1{zt = k} | y = k, tq = s] = 0,

E[1{zT = k}xtq 1{zt = k} | y = k, tq = s] = 0,

where 1 ≤ s ≤ t − 2.
Similarly to Eq. 40, we can derive that

E[1{zt = k}xtq 1{zt = k} | y = k, tq = s] = E[xtq 1{zt = k} | y = k, tq = s]

= ∑
q∈V\{k}

wE(q)
(V − 1)2 ,

E[1{zs+1 = k}xtq 1{zt = k} | y = k, tq = s] = E[xtq 1{zt = k} | y = k, tq = s]
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= ∑
q∈V\{k}

wE(q)
(V − 1)2 .

In addition, we have

E


∑

t′ ̸=s
t′ ̸=s+1

t′ ̸=t
t′ ̸=T

1{zt′ = k}xtq 1{zt = k} | y = k, tq = s


= ∑

t′
q∈V\{k}

P(zt′ = k, zt = k, ztq = q | ·)wE(q)

= ∑
t′

q∈V\{k}

P(zt′ = k, zt = k, | ztq = q, ·)P(ztq = q | y = k, tq = s)wE(q)

= (T − 4) ∑
q∈V\{k}

wE(q)
(V − 1)3 .

These equations give us that for 1 ≤ s ≤ t − 2,

E

[
T

∑
t′=1

1{zt′ = k}1{tq = s}xtq 1{zt = k} | y = k

]
= O

(
1

V2

)
. (43)

Gathering all the equations of 1 ≤ tq ≤ t leads to Eq. 39 and we have proven the statement.

Lemma 13. Given a sequence z1:T that satisfies Sec. E.2. For any vocabulary k ∈ V , and t ∈
[1, T] ⊂ N, we have

E

[
1
T

T

∑
t′=1

1{zt′ = k}1{tq ≤ t}x̄1:t1{zt = k} | y = k

]

=
4 · 1{t = T}+ 1{t ̸= T}

Tt
P(tq = t − 1)wE(k) +

2 · 1{t = T − 1}P(tq = t)
Tt

wE(k)

+ O
(

1
VT

)
. (44)

Proof. Considering the linearity of expectation, we focus on each term xi contained in x̄1:t.
We consider the following cases:

Case 1: tq = t − 1.
We already have the result as to xtq in Eq. 41:

E

[
1
T

T

∑
t′=1

1{zt′ = k}1{tq = t − 1}xtq 1{zt = k} | y = k

]

=
P(tq = t − 1)

T
1{t = T}2wE(k) +

P(tq = t − 1)
T

1{t ̸= T}O
(

1
V

)
.

We can also use Lemma 8 for xt = k, i.e.,

E

[
1
T

T

∑
t′=1

1{zt′ = k}xt1{zt = k} | y = k

]

= E

[
1
T

T

∑
t′=1

1{zt′ = k} | y = k, tq = t − 1

]
P(tq = t − 1)wE(k)
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=


P(tq=t−1)

T 2wE(k) if t = T,
P(tq=t−1)

T

(
1 + T−3

V−1

)
wE(k) otherwise.

Now we deal with xi for 1 ≤ i ≤ t − 2. Note that zi ̸= k for these i under the conditions
t = T and y = k.

E

[
T

∑
t′=1

1{zt′ = k}xi1{zt = k} | y = k, tq = t − 1

]
= E [1{zt = k}xi1{zt = k} | ·]

+ E
[
1{ztq = k}xi1{zt = k} | ·

]
+ E [1{zi = k}xi1{zt = k} | ·]
+ ∑

t′
E [1{zi = k}xi1{zt = k} | ·]

=


∑j∈V\{k}

wE(j)
V−1 + ∑j∈V\{k}

wE(j)
V−1 if t = T,

∑j∈V\{k}
wE(j)
V−1 + wE(k)

V−1 + (T − 3)∑q∈V\{k}
j∈V\{q}

wE(j)
(V−1)3 otherwise

= O
(

1
V

)
Case 2: tq = t.
For this scenario, we have seen that tq = t = T − 1 is the only possible way for the
expectation to take non-zero value. For xtq , we can observe Eq. 42 and obtain

E

[
1
T

T

∑
t′=1

1{zt′ = k}1{tq = t}xtq 1{zt = k} | y = k

]
=

1{t = T − 1}P(tq = t)
T

2wE(k).

The other terms related to xi for 1 ≤ i ≤ t − 1 can be calculated

E

[
1
T

T

∑
t′=1

1{zt′ = k}xi1{zt = k} | y = k, tq = t

]

=
1
T

E [1{zt = k}xi1{zt = k} | ·]

+
1
T

E [1{zT = k}xi1{zt = k} | ·]

+
1
T ∑

t′ ̸=t
E [1{zt′ = k}xi1{zt = k} | ·] .

=
1
T

 ∑
j∈V\{k}

wE(j)
V − 1

+ ∑
j∈V\{k}

wE(j)
V − 1

+ 0


=

1
T
· O
(

1
V

)
.

We note that 1{zt = k} = 1 and 1{zt′ = k} = 0 for t′ < tq = t because of the input sequence
condition.

Case 3: tq = s ≤ t − 2.
Again, we have the result for xtq in Eq. 43.

E

[
1
T

T

∑
t′=1

1{zt′ = k}1{tq = s}xtq 1{zt = k} | y = k

]
= O

(
1

V2

)
.
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We have xtq+1 = k under y = k, and Lemma 9 tells us that

E

[
1
T

T

∑
t′=1

1{zt′ = k}1{tq = s}xtq+11{zt = k} | y = k

]

= E

[
T

∑
t′=1

1{zt′ = k}1{zt = k} | y = k, tq = s

]
P(tq = s)

T
wE(k)

=

{
P(tq=s)

T

(
2

V−1 + T−4
(V−1)2

)
wE(k) if t ̸= T,

0 otherwise.

Next, we consider xt. Note that t = T forces xtq to be wE(k) for the expectation to take
non-zero value, which contradicts the input sequence condition. Hence we assume t ̸= T so
that ztq = zT ̸= k.

E

[
1
T

T

∑
t′=1

1{zt′ = k}xt1{zt = k} | y = k, tq = s

]
=

1
T

{
E
[
1{ztq = k}xt1{zt = k} | ·

]
+ E [1{zT = k}xt1{zt = k} | ·]

+ E
[
1{ztq+1 = k}xt1{zt = k} | ·

]
+ E [1{zt = k}xt1{zt = k} | ·]

+ ∑
t′

E [1{zi = k}xt1{zt = k} | ·]
}

=
1
T

(
2wE(k)
V − 1

+ ∑
t′

wE(k)
(V − 1)2

)

=
1
T
· O
(

1
V

)
.

Lastly, regarding xi for i ̸= t, tq, tq + 1, we also consider t ̸= T and it follows that

E

[
1
T

T

∑
t′=1

1{zt′ = k}xi1{zt = k} | y = k, tq = s

]

=
1
T

{
E
[
1{ztq = k}xi1{zt = k} | ·

]
+ E [1{zT = k}xi1{zt = k} | ·]

+ E
[
1{ztq+1 = k}xi1{zt = k} | ·

]
+ E [1{zt = k}xi1{zt = k} | ·]

+ ∑
t′

E [1{zi = k}xi1{zt = k} | ·]
}

=
1
T

0 + 0 + 2 ∑
q∈V\{k}

1
V − 1 ∑

j∈V\{q}

wE(j)
(V − 1)2 + ∑

t′
∑

q∈V\{k}

1
V − 1 ∑

j∈V\{q}

wE(j)
(V − 1)3


=

1
T
· O
(

1
V

)
.

Thus, we obtain Eq. 44.

Lemma 14. Given a sequence z1:T that satisfies Sec. E.2. Then, we have

E [1{zT = k}qT,T1{zT = v} | y = k] =


P(tq = T − 1) (r0 − r̄1−T:0)

+P(tq = T − 1) T−2
T wE(k) + O

(
1
V

)
if v = k,

0 otherwise,

39



Published as a conference paper at COLM 2025

where qT,T = (wE(zT) + r0)− (w̄E(z1:T) + r̄1−T:0).

Proof. The inequality v ̸= k produces 1{zT = k}1{zT = v} = 0, and thus, we focus on v = k.
Since zT is the second trigger token, we have ztq = zT = k. This is achievable only when
tq = T − 1.

E [1{zT = k}qT,T1{zT = v} | y = k]
= E [1{zT = k}qT,T | y = k]
= P(zT = k | y = k)E [qT,T | y = k, zT = k] (45)

=
T

∑
i=1

P(zT = k, tq = i | y = k)E [qT,T | y = k, zT = k]

= P(tq = T − 1 | y = k)P(zT = k | y = k, tq = T − 1)E [qT,T | y = k, zT = k]

= P(tq = T − 1)

wE(k) + r0 − r̄1−T:0 −
1
T

2wE(k) + ∑
1≤j≤V

j ̸=k

(T − 2)
V − 1

wE(j)




= P(tq = T − 1)
(

r0 +
T − 2

T
wE(k)− r̄1−T:0

)
+ O

(
1
V

)
.

Lemma 15. Given a sequence z1:T that satisfies Sec. E.2. Then, we have

E

[
1
T

T

∑
t′=1

1{zt′ = k}qT,T1{zT = v} | y = k

]
=



2P(tq=T−1)
T {r0 − r̄1−T:0}

+
2P(tq=T−1)

T
T−2

T wE(k)
+ 1

T · O
(

1
V

)
if v = k,

1
T O
(

1
V

)
otherwise.

where qT,T = (wE(zT) + r0)− (w̄E(z1:T) + r̄1−T:0).

Proof. We first consider the case v = k. If the second trigger token zT = v = k and the
output token is also k, it is impossible to have tq < T − 1 because it produces more than two
trigger tokens in the input sequence. This means that we have, for t′ ∈ [T − 2], that

E
[
1{z′t = k}1{zT = k} | y = k

]
= 0.

We can use Lemma 14 for t′ = T:

E [1{zT = k}qT,T1{zT = v} | y = k] = P(tq = T − 1)
(

r0 +
T − 2

T
wE(k)− r̄1−T:0

)
+ O

(
1
V

)
.

Finally, for t′ = T − 1, we note that the two conditions y = k and zT = k imply zT−1 = k.

E [1{zT−1 = k}qT,T1{zT = k} | y = k]
= P(zT = k | y = k)E [1{zT−1 = k}qT,T | y = k, zT = k]
= P(zT = k | y = k)E [qT,T | y = k, zT = k]
= E [1{zT = k}qT,T1{zT = v} | y = k]

= P(tq = T − 1)
(

r0 +
T − 2

T
wE(k)− r̄1−T:0

)
+ O

(
1
V

)
,
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where the second-to-last expression follows from Eq. 45.
Now, we look at the case v ̸= k. Different from v = k, we have

E [1{zT−1 = k}qT,T1{zT = v} | y = k] = 0,
E [1{zT = k}qT,T1{zT = v} | y = k] = 0.

Furthermore, the trigger token is uniformly distributed, we have

E[1{zT = v} | y = k] = P(zT = v | y = k)

=
T

∑
i=1

P(zT = v, tq = i | y = k)

=
T−2

∑
i=1

P(zT = v | y = k, tq = i)P(tq = i | y = k)

=
P(tq ≤ T − 2)

V − 1

= O
(

1
V

)
.

This leads to the following expression for t′ ∈ [T − 2]

E [1{zt′ = k}qT,T1{zT = v} | y = k] = E [1{zT = v}E [1{zt′ = k}qT,T | y = k, zT ] | y = k]
= P(zT = v | y = k)E [1{zt′ = k}qT,T | y = k, zT = v]

= O
(

1
V

)
.

This concludes the proof.

F.2 global v.s. in-context

Proposition 4 (Restated). Suppose a two-layer transformer is an associative memory transformer.
Given a length-T sequence z1:T where the last token is zT = q, let the t1-th token be zt1 = v1
following zt1−1 = q, and let the t2-th token be zt2 = v2 following zt2−1 = q, where v1 ̸= v2 and
(3 ≤)t1 < t2 without loss of generality. Also assume that there exist only one v1 and v2 in the
context z1:T . Then, the logit ξv1 and ξv2 can be expressed as follows:

ξv1 = σ

(
e

t1 + e − 1

)
+ log πb(v1 | q),

ξv2 = σ

(
1 + e

t2 + e − 1

)
+ log πb(v2 | q),

where σ(·) represents the softmax function.

Proof. We consider the output of the first layer of attention for zt. Since we use the associative
memory transformer, we substitute W1

Q = I and W1
K = ∑k∈Q wE(k)r⊤−1 into Eq. 1, we have

x(1)t = Φ1wE(z1:t)σ

(
(wE(z1:t) + R1−t:0)

⊤
(

∑
k∈Q

r−1wE(k)⊤
)

IwE(zt)

)
+ wE(zt)

= Φ1wE(z1:t)σ




(wE(z1) + r1−t)

⊤

(wE(z2) + r2−t)
⊤

...
(wE(zt−1) + r−1)

⊤

(wE(zt) + r0)
⊤

 r−1wE(zt)
⊤wE(zt)

+ wE(zt)
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= Φ1wE(z1:t)σ




0
0
...
1
0


+ wE(zt) (46)

= wE(zt) +
e(Φ1wE(zt−1))

t + e − 1
+ ∑

1≤i≤t
i ̸=t−1

Φ1wE(zi)

t + e − 1
, (47)

where e is Euler’s number. In the transformation above, Eq. 46 follows from the near-
orthogonality among the relative positional encodings and the embedding vectors Next, we
calculate the output of the second layer attention block. We first consider softmax values
and then attention head W2

OW2
V . Similarly to the first attention layer, we use Eq. 47 and ideal

matrices W2
Q = I and W2

K = ∑k∈Q wE(k)(Φ1wE(k))⊤ to calculate softmax. For any t, we can

express (x(1)1:t )
⊤(W2

K)
⊤W2

Qx(1)t as

(wE(z1) + Φ1wE(z1))
⊤(

wE(z2) +
e(Φ1wE(z1))

e+1 + ∑ Φ1wE(zi)
e+1

)⊤
...(

wE(zt−1) +
e(Φ1wE(zt−2))

t+e−2 + ∑ Φ1wE(zi)
t+e−2

)⊤(
wE(zt) +

e(Φ1wE(zt−1))
t+e−1 + ∑ Φ1wE(zi)

t+e−1

)⊤


(

∑
k∈Q

(Φ1wE(k))wE(k)⊤
)

Ix(1)t ,

where the summation in the t-th row is given by ∑1≤i≤t
i ̸=t−1

. Since x(1)T = wE(q)+
e(Φ1wE(zT−1))

T+e−1 +

∑1≤i≤T
i ̸=T−1

Φ1wE(zi)
T+e−1 , and thanks to the near-orthogonality, we have

σ
(
(x(1)1:T)

⊤(W2
K)

⊤W2
Qx(1)T

)
= σ (p) ,

where each entry of p ∈ RT is

pt =



0 if t < t1 − 1,
1/(t1 + e − 2) if t = t1 − 1,
e/(t1 + e − 1) if t = t1,
1/(i + e − 1) if t1 < t < t2 − 1,
2/(t2 + e − 2) if t = t2 − 1,
(1 + e)/(t2 + e − 1) if t = t2,
2/(i + e − 1) if t2 < t < T,
3/(T + e − 1) if t = T.

Back to Eq. 2, we can now write x(2)T with W2
O = ∑V

v=1 wU(v)(W2
VwE(v))⊤

x(2)T =
T

∑
t=1

W2
OW2

Vσ(pt)x(1)t + x(1)T

=
T

∑
t=1

σ(pt)
V

∑
v=1

wU(v)(W2
VwE(v))⊤

× W2
V

wE(zt) +
e(Φ1wE(zt−1))

t + e − 1
+ ∑

1≤i≤t
i ̸=t−1

Φ1wE(zi)

t + e − 1

+ x(1)T
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=
T

∑
t=1

σ(pt)wU(zt) + wE(q) +
e(Φ1wE(zT−1))

T + e − 1
+ ∑

1≤i≤t
i ̸=T−1

Φ1wE(zi)

T + e − 1

Finally, the feed-forward network in the second layer is applied to x(2)T , and we obtain the
following:

xT = MLP(x(2)T ) + x(2)T

= W2

ReLU




wE(v1)
⊤

wE(v2)
⊤

...
wE(vV)

⊤


(

wE(q) +
T

∑
t=1

σ(pt)wU(zt) + C

)
+ x(2)T

= W2


ReLU



0
...
0
1
0
...
0




+ x(2)T

=

(
V

∑
u=1

log πb(u | v1)wU(u) . . .
V

∑
u=1

log πb(u | vV)wU(u)

)


0
...
0
1
0
...
0


+ x(2)T

=
V

∑
u=1

log πb(u | q)wU(u) + x(2)T

=
V

∑
u=1

log πb(u | q)wU(u) +
T

∑
t=1

σ(pt)wU(zt) + wE(q) + C,

where C = e(Φ1wE(zT−1))
T+e−1 + ∑ 1≤i≤t

i ̸=T−1

Φ1wE(zi)
T+e−1 .

We can compute the logits ξv for v ∈ V after the unembedding layer. Since the row vectors
of WU are also near-orthogonal to each other, it is sufficient to look at the coefficients of
wU(v1) and wU(v2). Since v1 and v2 appear only once at t = t1 and t = t2 respectively in
the context z1:T , the logits are calculated as follows:

ξv1 = σ

(
e

t1 + e − 1

)
+ 1{v1 ∈ Uq} log πb(v1 | q),

ξv2 = σ

(
1 + e

t2 + e − 1

)
+ 1{v2 ∈ Uq} log πb(v2 | q).

Proposition 5 (Restated). Suppose a two-layer transformer is a stronger associative memory
transformer as in Def. 3. Given a length-T sequence z1:T where the last token is zT = q, let f (v) be
the number of token pattern "qv" appearing in the sequence for vocabulary v ∈ V . For large enough
τ1 and τ2, the logits ξv can be expressed as follows:

ξv ≈
τ1
τ2

log πb(v | q) + τ3 ·
f (v) + 1{v = q}1{z1 = q}(
∑V

v′=1 f (v′)
)
+ 1{z1 = q}

. (48)
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Proof. The proof proceeds in the same manner as in Prop. 2. With the associative memory
Ŵ1

K, the attention values for zt is expressed as

x(1)t = Φ1wE(z1:t)σ((wE(z1:t) + R1−t:0)
⊤
(

τ1 ∑
k∈Q

r−1wE(k)⊤
)

IwE(zt)) + wE(zt)

= Φ1wE(z1:t)σ

τ1


(wE(z1) + r1−t)

⊤

(wE(z2) + r2−t)
⊤

...
(wE(zt−1) + r−1)

⊤

(wE(zt) + r0)
⊤

 r−1wE(zt)
⊤wE(zt)

+ wE(zt)

= Φ1wE(z1:t)σ




0
0
...

τ1
0


+ wE(zt)

≈
τ1

Φ1wE(zt−1) + wE(zt).

Now the second layer attention has the form

σ
(
(x(1)1:t )

⊤(Ŵ2
K)

⊤W2
Qx(1)t

)

≈
τ1

σ




(wE(z1) + Φ1wE(z1))

⊤

(wE(z2) + Φ1wE(z1))
⊤

...
(wE(zt−1) + Φ1wE(zt−2))

⊤

(wE(zt) + Φ1wE(zt−1))
⊤


(

τ2 ∑
k∈Q

(Φ1wE(k))wE(k)⊤
)

Ix(1)t

 .

We note that x(1)T = wE(q) + Φ1wE(zT−1), and consider the case t = T in the above equation.
Then, we will have

σ
(
(x(1)1:T)

⊤(Ŵ2
K)

⊤W2
Qx(1)T

)

≈
τ1

σ




(wE(z1) + Φ1wE(z1))

⊤

(wE(z2) + Φ1wE(z1))
⊤

...
(wE(zT−1) + Φ1wE(zT−2))

⊤

(wE(zT) + Φ1wE(zT−1))
⊤


(

τ2 ∑
k∈Q

(Φ1wE(k))wE(k)⊤
)

Ix(1)T



= σ


τ2



(wE(z1) + Φ1wE(z1))
⊤

(wE(z2) + Φ1wE(z1))
⊤

...
(wE(a) + Φ1wE(q))

⊤

...
(wE(b) + Φ1wE(q))

⊤

...
(wE(zT) + Φ1wE(zT−1))

⊤


Φ1wE(q)


= σ

 ∑
i∈Iq∪I1

τ2ei

 ,
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where Iq = {t | x(1)t = wE(v′) + Φ1wE(q), ∃v′ ∈ V} is the index set of x(1)t containing
Φ1wE(q), and I1 = {1} if z1 = q and I1 = ∅ otherwise. Also, ei denote the unit vector
where only the i-th component is 1, and all other components are 0. Note that |Iq ∪ I1| =(

∑V
v=1 f (v)

)
+ 1{z1 = q}.

Going back to the output of the whole attention block including Ŵ2
O and W2

V , we have from
Eq. 2 that

x(2)T ≈
τ1

T

∑
t=1

Ŵ2
OW2

Vσ
(

∑
i∈Iq∪I1

τ2ei
)

tx
(1)
t + x(1)T

≈
τ1
τ2

1
|Iq ∪ I1| ∑

i∈Iq∪I1

Ŵ2
OW2

V x(1)i + x(1)T

=
1

|Iq ∪ I1|
V

∑
v=1

τ3wU(v)(W2
VwE(v))⊤

{
f (v)

(
W2

V(wE(v) + Φ1wE(q))
)}

+ 1{z1 = q}
(

W2
V(wE(q) + Φ1wE(q))

)
+ x(1)T

=
V

∑
v=1

f (v) + 1{v = q}1{z1 = q}(
∑V

v′=1 f (v′)
)
+ 1{z1 = q}

· τ3wU(v) + wE(q) + Φ1wE(zT−1)

:=
V

∑
v=1

g(v) · wU(v) + wE(q) + Φ1wE(zT−1).

Lastly, through the feed-forward network, we obtain the outcome.

xT

= MLP(x(2)T ) + x(2)T

≈
τ1
τ2

(
V

∑
u=1

log πb(u | v1)wU(u) . . .
V

∑
u=1

log πb(u | vV)wU(u)

)


0
...
0
1
0
...
0


+ x(2)T

=
V

∑
u=1

log πb(u | q)wU(u) + x(2)T

=
V

∑
u=1

log πb(u | q)wU(u) +

(
V

∑
v=1

g(v)wU(v)

)
+ wE(q) + Φ1wE(zT−1)

=
V

∑
v=1

1{v ∈ Uq} log πb(v | q) + τ3 ·
f (v) + 1{v = q}1{z1 = q}(
∑V

v′=1 f (v′)
)
+ 1{z1 = q}

 · wU(v)

+ wE(q) + Φ1wE(zT−1).

The proof concludes by examining the coefficients of wU(v).

F.3 Induction head without positional encoding

In this section, we provide the construction of a three-layer transformer with no positional
encoding that achieves the induction head mechanism.

We first introduce the following theorem(Kazemnejad et al., 2024) stating that transformer
can implement APE using one transformer block.
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Theorem 4 (Theorem 1, (Kazemnejad et al., 2024)). Let z1:T+1 be an input sequence of length
T + 1, where z1 = ⟨bos⟩. Then, there exist a transformer block consisting of an attention block and
feed-froward network that recovers absolute positions [1, 2, . . . T + 1] and writes in the hidden state
H(1).

In the proof, they prepare extra 3 dimensions for word embeddings to effectively reconstruct
the positional information:

WE =



1 1 1 · · · 1
1 0 0 · · · 0
0 0 0 · · · 0

ae
1,1 ae

1,2 ae
1,3 · · · ae

1,V
...

...
...

. . .
...

ae
d,1 ae

d,2 ae
d,3 · · · ae

d,V

 ,

where ⟨bos⟩ is represented by the first column without loss of generality.

Theorem 4 states that the hidden state H(1) has the following form after the appropriate
transformer block:

H(1) =



1 1 1 · · · 1
1 0 0 · · · 0
1 2 3 · · · T + 1

a1,1 a1,2 a1,3 · · · a1,T+1
...

...
...

. . .
...

ad,1 ad,2 ad,3 · · · ad,T+1

 ,

Now we show that a three-layer transformer with no positional encoding can implement
induction head mechanism.

Proposition 6 (Restated). There exists construction of a three-layer transformer without positional
encoding that achieves induction head mechanism.

Proof. The first layer of the transformer block is given by the construction in Theorem 4,
which gives us the hidden state:

H(1) =



1 1 1 · · · 1
1 0 0 · · · 0
1 2 3 · · · T + 1

a1,1 a1,2 a1,3 · · · a1,T+1
...

...
...

. . .
...

ad,1 ad,2 ad,3 · · · ad,T+1

 ,

where each entry denoted by a∗,∗ is a Gaussian random value to guarantee near-
orthogonality.

Then, for the second transformer block, we use the following matrix weights.

W2
Q =


1 0 0 · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0

 ,

W2
K =


0 0 C · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0

 ,
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W2
V =



0 0 0 0 · · · 0
0 0 0 0 · · · 0
0 0 0 0 · · · 0
0 0 0 wv

1,1 · · · wv
1,d

...
...

...
...

. . .
...

0 0 0 wv
d,1 · · · wv

d,d

 ,

W2
O =



0 0 0 0 · · · 0
0 0 0 0 · · · 0
0 0 0 0 · · · 0
0 0 0 wo

1,1 · · · wo
1,d

...
...

...
...

. . .
...

0 0 0 wo
d,1 · · · wo

d,d

 ,

where C ∈ R+ is a constant value, and w∗
∗,∗ denotes the Gaussian entry to guarantee the

near-orthogonality. With these matrix, the query and key vectors are represented by

qt = (1, 0, . . . , 0)⊤,

ki = (C · i, 0, . . . 0)⊤.

Thus, the block outputs

t−1

∑
i=1

σ(⟨ki, qt⟩)W2
OW2

Vh(1)i ≈ W2
OW2

Vh(1)t−1, (49)

where the approximation holds for sufficiently large C and h(1)t−1 is the t − 1-th column of
H(1). Here, we assume that the attention block uses strict causal attention, which attends
only to positions in {1, 2, . . . , t − 1} for the token at position t.

Eq. 49 implies that the attention block attends only to the previous token, thus forming a
previous token head. With the residual connection, the hidden state H(2) is represented as:

H(2) =



1 1 1 · · · 1
1 0 0 · · · 0
1 2 3 · · · T + 1

a1,1 a1,2 a1,3 · · · a1,T+1
...

...
...

. . .
...

ad,1 ad,2 ad,3 · · · ad,T+1

+

0 0 0 · · · 0
0 0 0 · · · 0
0 0 0 · · · 0
0 Φ2a1 Φ2a2 · · · Φ2aT

 ,

where ai = (a1,i, . . . , ad,i)
⊤ and Φ2 is the bottom right sub-matrix from (W2

OW2
V)4:d+3,4:d+3.

Finally, in the third transformer block, we set the following attention matrix weights:

W3
Q =



0 0 0 0 0 · · · 0
0 0 0 0 0 · · · 0
0 0 0 0 0 · · · 0
0 0 0 1 0 · · · 0
0 0 0 0 1 · · · 0
...

...
...

...
...

. . .
...

0 0 0 0 0 · · · 1


,

W3
K =



0 0 0 0 · · · 0
0 0 0 0 · · · 0
0 0 0 0 · · · 0
0 0 0 wk′

1,1 · · · wk′
1,d

...
...

...
...

. . .
...

0 0 0 wk′
d,1 · · · wk′

d,d


,
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W3
V =



0 0 0 0 · · · 0
0 0 0 0 · · · 0
0 0 0 0 · · · 0
0 0 0 wv′

1,1 · · · wv′
1,d

...
...

...
...

. . .
...

0 0 0 wv′
d,1 · · · wv′

d,d


,

W3
O =



0 0 0 0 · · · 0
0 0 0 0 · · · 0
0 0 0 0 · · · 0
0 0 0 wo′

1,1 · · · wo′
1,d

...
...

...
...

. . .
...

0 0 0 wo′
d,1 · · · wo′

d,d


,

where wv′
∗,∗ denotes the Gaussian entry to guarantee the near-orthogonality, and the sub-

matrices in the bottom right of W3
K and W3

O are constructed the same way as W2
K and W2

O in
Lemma 1. The result of this calculation is the same as in Lemma 1 except for the first three
rows. Thus, the induction head mechanism is implemented in the three-layer transformer
with no positional encoding.

G Experimental setup

G.1 Example of Bigram Sequence Generation with Trigger-Output Pairs

To illustrate the sequence generation procedure in our modified bigram language model,
we provide a concrete example with a small vocabulary V = A, B, C, D. The generation
proceeds in discrete steps as follows:

Step 0: Sample trigger-output pair

A new trigger-output pair (qk, ok) is sampled from πq and πo. For example, suppose
(q1, o1) = (A, C).

Step 1: Sample the first token

The first token z1 is sampled from a predefined distribution over V, e.g., uniformly. Suppose
z1 = B.

Step 2: Trigger check and transition

If z1 = q1, then set z2 := o1. Otherwise, sample z2 ∼ πb(· | z1). Since z1 ̸= q1, we sample
z2 = A.

Step 3: Trigger condition applies

Since z2 = q1 = A, we set z3 := o1 = C.

Step 4: Normal bigram transition

Since z3 ̸= q1, sample z4 ∼ πb(· | z3) and suppose z4 = D. These steps result in the
sequence BACD.

Step 5: Re-sample trigger-output pair

Return to Step 0 and sample a new (qk, ok) from πq and πo to generate a new sequence.

G.2 Neglect of in-context knowledge

We conducted our experiments using the following setup, carefully designed to evaluate
the performance of a transformer model with APE and RPE.
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Sequence generation Following Bietti et al. (2024), we define πu and πb as unigram and
bigram character-level distributions estimated from the Tiny Shakespeare dataset (Karpathy,
2015). We sample triggers from πq = πu, and corresponding outputs ok are also sampled
uniformly for each sequence generation. The vocabulary size |V| is 65.

Data Arguments The model was trained on sequences with length of 256 tokens for the
previous token head experiment and 128 tokens for the generalization experiment. The
number of trigger tokens was set to 5, and we did not fix trigger tokens, i.e., all trigger
tokens were sampled uniformly.

Model Configuration The transformer model used for the experiments had the following
configuration:

• Model dimension: 256
• Vocabulary size: 65
• Input sequences were capped at a maximum length of 256 tokens.

• The embedding layer WE and unembedding layer WU were frozen during training.

• The model did not use WF in the second layer to focus on the role of induction head.

• The model has 0.5M parameters.

Optimization Setup The optimization process was conducted using the following hyper-
parameters:

• Optimizer: Stochastic Gradient Descent (SGD) with momentum

• Batch size: 512
• Learning rate: 0.2
• Momentum: 0.9
• Weight decay: 0.0001

Training Strategy

• The model was trained for a total of 1000 iterations, which takes 0.5 hours of A100
GPU time.

• Loss computation was restricted to output tokens.

G.3 Global vs in-context

We conducted our experiments using the following setup for the evaluation of performance
of a transformer model with RPE trained on The Google analogy dataset.

Data Arguments The model was trained on sequences with a maximum length of 256
tokens.

Since The Google analogy dataset offers analogy pairs, such as (Tokyo, Japan), the bigram
conditionals will mostly be in the form like πb(Japan | Tokyo) = 1. We constructed new
bigram conditionals by adding some randomenss.

We first sample 10 fake target words, such as USA, China for each source word. Then, the
conditionals will be calculated as follows:

1. count the number cA(B) of analogical pair (A, B).
2. sample pA ∈ [0.01, 0.1] for each source word A.

3. consider the analogical pair (A, Bi) appear prcA(B) times, where Bi is the fake target
words for source word A.
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4. calculate the bigram conditionals based on the number of appearance of analogical
pairs.

Everytime we generate an input sequence, we sample 5 trigger tokens from the set of all
source words, and uniformly selects the corresponding output tokens from all vocabulary.
we start from a source word that is sampled uniformly from the set of source words. Then,
we transition with either the bigram conditionals or to the output token if the current token
is the trigger token. Then we place comma, and sample uniformly a new word from the
set of source words for the next token, and repeat this process until the maximum length is
achieved.

Model Configuration The transformer model used for the experiments had the following
architecture and configuration:

• Model dimension: 512
• Vocabulary size: 233
• Input sequences were capped at a maximum length of 256 tokens.
• The embedding and output layers were frozen during training.
• The model has 2M parameters.

Optimization Setup The optimization process was conducted using the following hyper-
parameters:

• Optimizer: Stochastic Gradient Descent (SGD) with momentum
• Batch size: 512
• Learning rate: 0.1
• Momentum: 0.9
• Weight decay: 0.0001

Training Strategy

• The model was trained for a total of 100,000 iterations, which required 9 hours of
A100 GPU time.

• Loss computation was applied to all tokens except for commas.

G.4 About datasets

The Tiny Shakespeare dataset is licensed under the Apache License, Version 2.0, and we
can freely use the content as long as we comply with the terms of the license. Similarly,
the Google Analogy dataset is licensed under CC BY-NC 4.0, allowing use of the content
for non-commercial purposes with appropriate attribution. Our use of these datasets is
consistent with their intended purposes. Furthermore, there is no explicit measure that
should be taken to check for personal information or offensive content.

H Other experimental results and analyses

H.1 Generalization to longer sequence

To evaluate the generalization ability of TFape and TFrpe, we trained these two types of
transformers with sequences of length 128 generated from the bigram model. Details
regarding the training procedure are provided in the Appendix G. We measured the accuracy
of TFAPE and TFRPE with respect to the second and subsequent occurrences of the output
tokens. In addition, We present the memory recall to examine the generalization.

The results are shown in Tab. 3. In terms of accuracy, transformer with RPE raises its
accuracy even when the input sequence length increased to 256, while transformer with
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(a) Attention patterns of TFAPE
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(b) Attention patterns of TFRPE

Figure 3: Two-layer transformers with APE and RPE that are trained on sequences of length
128 show different first-layer attention patterns for length-256 sequences. The previous
token head of TFAPE do not function well for positions t > 100, while TFRPE attends to
previous tokens regardless of the positions.

acc. (t < 128) acc. (t < 256) score (t < 128) score (t < 256)
TFAPE 0.8278 ± 0.0000 0.7925 ± 0.0000 0.5460 ± 0.0007 0.1979 ± 0.0001
TFRPE 0.8727 ± 0.0000 0.8974 ± 0.0000 0.9513 ± 0.0000 0.9337 ± 0.0001

Table 3: The evaluation results under the change in sequence length from 128 during training
to 256 during evaluation. Transformer with APE degrades its accuracy and attention score
as the sequence length grows, while transformer with RPE shows a stable accuracy and
score.

APE dropped its accuracy to 79.25%. Although the difference may seem trivial, it is worth
noting that the accuracy for t < 256 is computed through the whole sequence including
t < 128. This means that transformer with APE is more likely to fail to predict output tokens
at positions 128 < t < 256. Looking at the attention scores, we can confirm that TFAPE is
incapable of attending to previous tokens, even for positions t < 128. In contrast, TFRPE is
trained to have a previous attention head that keeps its performance no matter how long
the sequence is.

In fact, the attention pattern heatmaps in Fig. 3 in Appendix H tell us that the attention is
no longer directed to the previous token after t > 100 for TFAPE, while TFRPE continues to
attend to the previous token. These experimental results match our theoretical result, where
RPE is better suited for length generalization. It can be seen from Fig. 3b that the first-layer
attention head of TFRPE sometimes attends to the current token. This phenomenon is also
explainable from the proof of Theorem 3, which shows that the attention matrix W1

K not
only learns the associations between wE(v) and r−1, but also the pair of wE(v) and r0.

H.2 Discussion of collision of context information

We discuss the result shown in Fig. 1b. The figure illustrates that it is more likely to output
global knowledge when the number of B1 and B2 are the same, or when the number of
B1 or B2 is almost maximum. Using Proposition 2, we can explain these phenomena by
considering inequalities using the global knowledge log πb(· | A) and the strength of in-
context knowledge τ3. Using Proposition 2, we can explain these phenomena as follows.
If we have the relationships log πb(B∗ | A) + τ3 > log πb(B | A) > log πb(B∗ | A) + τ3/2,
where B∗ represents B1 and B2, the model outputs global knowledge B when AB1 and AB2
occur equally frequently in the prompt. On the other hand, if we have log πb(B2 | A) + τ3 >
log πb(B | A) > log πb(B1 | A) + τ3 and log πb(B | A) > log πb(B2 | A), the prediction of
the model changes to B2 to B as the number of B1 increases.
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