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Abstract

The global shortage of radiologists is a ma-001
jor challenge. Radiology is vital for diagnos-002
ing and treating diseases, especially in the003
lungs and heart, using imaging like X-rays.004
To address this shortage and workload, we005
introduce Lightweight Region-Text Aligned006
BioMIC-BART (LRTA-BioMIC), which gen-007
erates Chest X-ray reports from X-ray images.008
LRTA-BioMIC is a computationally efficient,009
Domain Specific, Region Guided Text Aligned010
language model that integrates tagger informa-011
tion and X-ray embeddings from ViT through012
cross-attention at every layer of the BioMIC-013
BART Encoder to generate radiology reports014
(Findings and Impression). Our model achieves015
a notable improvement of 9.71% in BLEU-4016
and 0.9% in ROUGE-L compared to the previ-017
ous state-of-the-art, COMG and KGVL-BART,018
on the IU-Xray dataset. LRTA-BioMIC also019
demonstrates competitive performance on the020
MIMIC-CXR-JPG dataset, with a 1.60% in-021
crease in BLEU-4 and a slight 3.53% decrease022
in ROUGE-L compared to RECAP, the previ-023
ous state-of-the-art. We will make our codes024
and resources publicly available.025

1 Introduction026

VLMs have found huge application in radiology027

report generation, due to their ability to gener-028

ate text, coherent to image. However, all vision-029

language multimodal pipelines are plaqued by030

improper image-text alignment (Amirloo et al.,031

2024). Previous literature (Caffagni et al., 2024)032

shows integrating better image-text alignment can033

lead to better performance. Additionally, previ-034

ous VLMs for radiology report generation have035

used computationally heavy pre-trained vision036

encoders and language decoders. In lieu of037

computationally-intensive Vision-Language Mod-038

els (VLMs), we propose Lightweight Region-Text039

Aligned BioMIC-BART (LRTA-BioMIC), which040

generates Chest X-ray reports from X-ray images. 041

We enabled multimodal processing of chest X-ray 042

images and their corresponding reports on Bio- 043

BART (Yuan et al., 2022), as it alone lacks im- 044

age embedding knowledge, by training it on the 045

MIMIC-CXR-JPG dataset using the KM-BART ar- 046

chitecture (Xing et al., 2021). This resulted in 047

BioMIC-BART, which serves as the backbone of 048

LRTA-BioMIC, enhancing performance on both IU- 049

Xray and MIMIC-CXR-JPG. For region-guided fea- 050

ture extraction from MedCLIP (Wang et al., 2022), 051

we used the Region Selector from (Tanida et al., 052

2023) with cross-attention (CA1). Since MedCLIP 053

is trained on the cosine similarity between chest 054

X-rays and reports, CA1 enhances contextual chest 055

image embeddings. Its output is then passed to 056

cross-attention (CA2) at the start of each BioMIC- 057

BART layer, where it serves as keys and values, 058

with the tagger information as the query. This im- 059

proves textual and regional alignment before pro- 060

cessing through BioMIC-BART, a domain-specific 061

encoder-decoder model for chest X-rays. 062

Our contributions are as follows: 063

• LRTA-BioMIC, a computationally efficient, 064

region-guided, and text-aligned model, achiev- 065

ing 9.71% and 0.9% improvements in BLEU- 066

4 and ROUGE-L, respectively, over the previ- 067

ous SoTA. for chest X-ray report generation. 068

• BioMIC-BART, an extension of BioBART 069

trained on MIMIC-CXR-JPG to process mul- 070

timodal chest X-ray images and text, serving 071

as the backbone of LRTA-BioMIC. 072

2 Related Work 073

Early radiology report generation relied on CNN- 074

RNN architectures (Jing et al., 2020, 2017), but 075

recent advancements favor Transformer-based mod- 076

els (Vaswani, 2017). Region-selector Transform- 077

ers, such as (Tanida et al., 2023) for anatomical 078
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Figure 1: Architecture of LRTA-BioMIC. Chest X-ray images (PA & LL) are processed via ResNet-50 and
MedCLIP to extract visual features. A 29-region selector refines region-specific embeddings. Textual tags, along
with selected regions, aid image-text alignment in BioMIC-BART, which generates the final radiology report.

region detection and (Li et al., 2023) with its Unify,079

Align, and then Refine (UAR) strategy, further im-080

proved image-report alignment. Assistive systems081

(Nicolson et al., 2024), organ-specific masks (Gu082

et al., 2024), and observation-guided reasoning083

(Hou et al., 2023b,a) have also enhanced disease084

identification and report generation. Knowledge085

graphs, highlighted by (Zhang et al., 2020) and086

formalized in (Kale et al., 2023), improve multi-087

modal learning, while prompt-based methods like088

(Jin et al., 2024) enhance rare disease representa-089

tion. Despite newer Transformer-driven innova-090

tions, established models such as CMCA (Song091

et al., 2022), KnowMat (Yang et al., 2022), and092

CMM-RL (Qin and Song, 2022) remain robust and093

effective in Chest X-ray report generation. LRTA-094

BioMIC leverages BioMIC-BART for efficient095

multimodal processing, unlike previous architec-096

tures that either relied on computationally expen-097

sive VLMs or ineffective fused embeddings. Addi-098

tionally, it incorporates selected image regions and099

text alignment, enhancing report quality.100

3 Methodology101

LRTA-BioMIC is trained by first developing102

BioMIC-BART, an extension of BART designed103

to process multimodal data, specifically chest X-104

ray images and medical text. The pretrained105

BioMIC-BART weights serve as the backbone106

for training our Lightweight Region-Text Aligned107

BioMIC-BART (LRTA-BioMIC), which incorpo- 108

rates region-level visual features and enhances text- 109

image alignment. 110

3.1 BioMIC-BART 111

We build upon BioBART-Large, a language model 112

trained on full-text PubMed articles (Yuan et al., 113

2022). While effective, its performance on Chest 114

X-ray report generation is constrained due to a 115

lack of radiology-specific training. To address this, 116

we augment it with multimodal supervision using 117

image-text pairs from MIMIC-CXR-JPG (Johnson 118

et al., 2019), inspired by methods from (Xing et al., 119

2021), which effectively model image-text contex- 120

tual relations. More detail is mentioned in Section 121

11. 122

3.2 Region-Guided Feature Extraction 123

To preprocess Chest X-rays, we extract multi-scale 124

visual embeddings using ResNet-50 (He et al., 125

2016) and MedCLIP-ResNet50 (Wang et al., 2022). 126

Given a chest X-ray I, we obtain: 127

FPA
res = ResNet(IPA) ∈ R1×2048,

FLL
res = ResNet(ILL) ∈ R1×2048.

(1) 128

FPA
clip = MedCLIP(IPA) ∈ R1×512,

FLL
clip = MedCLIP(ILL) ∈ R1×512.

(2) 129

For comprehensive feature fusion, we compute: 130

Fsum
res = FPA

res + FLL
res ∈ R1×2048, (3) 131
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Dataset Model NLG Metrics CE Metrics
B-1 B-2 B-3 B-4 MTR R-L P R F1

MIMIC
-CXR

RGRG 0.373 0.249 0.175 0.126 0.168 0.264 0.461 0.475 0.447
COMG 0.363 0.235 0.167 0.124 0.128 0.290 0.424 0.291 0.345
PROMPTMRG 0.398 − − 0.112 0.157 0.268 0.501 0.509 0.476
ORGAN 0.407 0.256 0.172 0.123 0.162 0.293 0.416 0.418 0.385
RECAP 0.429 0.267 0.177 0.125 0.168 0.288 0.389 0.443 0.393
LRTA-BIOMIC 0.418 0.261 0.179 0.127 0.171 0.283 0.496 0.481 0.459

IU
X-RAY

RGRG 0.266 − − 0.063 0.146 0.180 0.183 0.187 0.180
COMG 0.536 0.378 0.275 0.206 0.218 0.383 - - -
PROMPTMRG 0.401 − − 0.098 0.160 0.281 0.213 0.229 0.211
ORGAN 0.510 0.346 0.255 0.195 0.205 0.399 - - -
KGVL-BART 0.423 0.256 0.194 0.165 0.500 0.444 - - -
LRTA-BIOMIC 0.527 0.384 0.279 0.226 0.522 0.448 0.221 0.223 0.218

ABLN

LRTA-BIOMIC1 0.398 0.274 0.213 0.176 0.412 0.374 - - -
LRTA-BIOMIC2 0.483 0.359 0.275 0.211 0.510 0.427 - - -
LRTA-BIOMIC3 0.462 0.339 0.257 0.199 0.498 0.402 - - -
LRTA-BIOMIC 0.527 0.384 0.279 0.226 0.522 0.448 - - -

Table 1: Experimental Results of our model and baselines on the IU X-RAY dataset and the MIMIC-CXR-JPG
dataset. The best results are in boldface, and the underlined are the second-best results. We also include Ablation
study marked by "ABLN" performed on IU X-RAY dataset. A one-tailed t-test between LRTA-BioMIC and COMG
(best-performing baseline) on the BLEU-4 score yields p = 0.0138 (< 0.05), confirming LRTA-BioMIC’s statistically
significant improvement for chest X-ray report generation.

Fconcat
clip = concat(FPA

clip,F
LL
clip)

∈ R1×1024.
(4)132

Additionally, Fregion ∈ R1×1024 ( region-level133

embeddings) are extracted via 29-region selection134

(Tanida et al., 2023) and transformed using a multi-135

layer perceptron (MLP). The final visual represen-136

tation is refined using cross-attention CA1.137

Frg = softmax

(
QregionK

⊤
clip√

d

)
Vclip, (5)138

where:139

Qregion = Fregion,

Kclip = Fconcat
clip ,

Vclip = Fconcat
clip .

(6)140

Here, the query attends to preselected anatomical141

regions, ensuring that keys and values represent142

contextualized visual features. This enriched rep-143

resentation Frg encodes spatially guided semantic144

information for improved report generation.145

3.3 Region-Text Alignment via Cross146

Attention147

To align textual features with the region-guided em-148

beddings, we integrate an additional cross-attention149

(CA2) into each encoder of BioMIC-BART. Given 150

textual token embeddings HT ∈ RM×d from the 151

MeSH or NegBio tagger (Kale et al., 2023; Peng 152

et al., 2018), and region-guided image embeddings 153

Frg, CA2 is computed as: 154

A = softmax
(
HTWQ(FrgWK)⊤√

d

)
FrgWV ,

(7) 155

where WQ,WK ,WV ∈ Rd×d are trainable pro- 156

jection matrices. 157

This operation enhances textual representations 158

by grounding them in localized visual features, 159

ensuring alignment with relevant anatomical re- 160

gions. The enriched embeddings are then processed 161

through subsequent layers of BioMIC-BART, in- 162

cluding Multi-Head Self-Attention, Layer Normal- 163

ization, and Feed-Forward Networks, with residual 164

connections ensuring stability. The decoder then 165

generates the final report T̂, selecting the most 166

probable candidate sequence T′ from the distribu- 167

tion: 168

T̂ = argmax
T′

P (T′|HT ,Frg; θ), (8) 169

4 Experiments and Results 170

We evaluated LRTA-BioMIC with various archi- 171

tectural modifications and benchmarked it against 172

OpenAI’s GPT-4o (Achiam et al., 2023), Google’s 173
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Gemini (Team et al., 2023) (refer Section 10), and174

previous models—RGRG (Tanida et al., 2023),175

COMG (Gu et al., 2024), PromptMRG (Jin et al.,176

2024), ORGan (Hou et al., 2023b), RECAP (Hou177

et al., 2023a), and KGVL-BART (Kale et al.,178

2023)—on both IU-Xray and MIMIC-CXR-JPG.179

LRTA-BioMIC outperformed the prior state-of-180

the-art, achieving 9.71% and 0.9% improvements181

in BLEU-4 and ROUGE-L on IU-Xray (compared182

to COMG and KGVL-BART). On MIMIC-CXR-183

JPG, it showed a 1.60% increase in BLEU-4 but184

a slight 3.53% drop in ROUGE-L (compared to185

RECAP and ORGan). Additionally, it achieved a186

3.32% improvement in the Clinical Efficacy (CE)187

F1-score (CheXbert (Smit et al., 2020)) on IU-Xray188

and performed best on MIMIC-CXR-JPG, except189

for a 3.70% decrease compared to PromptMRG.190

Evaluation metrics are detailed in Section 9, while191

model limitations are discussed in Section 13.192

LRTA-BioMIC performed relatively better on193

IU-Xray due to its backbone, BioMIC-BART, which194

is pre-trained on MIMIC-CXR-JPG, enriching it195

with medical terminology and multimodal process-196

ing capabilities. When fine-tuned on IU-Xray, it197

leverages prior exposure to a larger dataset, enhanc-198

ing performance. Inspired by KM-BART (Xing199

et al., 2021), BioMIC-BART details are in Section200

11. Below, we outline our architectural modifica-201

tions for ablation studies in report generation.202

• LRTA − BioMIC1: Removed the Region203

Guided Feature Extractor while retaining all204

other components.205

• LRTA − BioMIC2: Ablated Cross-206

Attention in the Encoder, using a direct ad-207

dition of embeddings from the Region Guided208

Feature Extractor and BERT Tagger embed-209

dings.210

• LRTA − BioMIC3: Removed BioMIC-211

BART and used the original BART from Face-212

book (Lewis, 2019).213

• LRTA−BioMIC: Our final report genera-214

tion architecture as shown in Figure 1.215

As shown in Table 1, removing the Region216

Guided Feature Extractor (LRTA − BioMIC1)217

led to an 22.12% and 16.52% decrease in BLEU-218

4 and ROUGE-L score from our SoTA model,219

LRTA−BioMIC, highlighting the importance220

of extracting features from 29 specific chest X-ray221

regions (Tanida et al., 2023). Replacing Cross- 222

Attention with a simple addition of embeddings 223

(LRTA − BioMIC2) reduced the BLEU-4 and 224

ROUGE-L score by 6.64% and 4.69%, this under- 225

scores the value of effective embedding integration. 226

In LRTA−BioMIC3, replacing BioMIC-BART 227

with Facebook’s original BART (Lewis, 2019) re- 228

sulted in a decline of 11.95% and 10.27% in 229

BLEU-4 and ROUGE-L, demonstrating the need 230

for domain-specific radiology context along with 231

diverse medical terminology through fine-tuning 232

on PubMed texts. All the other metrics also demon- 233

strated a consistent boost in our final architecture, 234

LRTA−BioMIC (c.f Table 2, Section 7). 235

4.1 Computational Resources 236

Experiments were conducted using A100 GPUs. 237

BioMIC-BART training required four A100 GPUs 238

(80GB each) and took approximately 26 hours. 239

LRTA-BioMIC fine-tuning on MIMIC-CXR-JPG 240

and IU-Xray was significantly lightweight, running 241

on a single GPU with just 6GB to 7GB of memory. 242

Fine-tuning took only 4.5 hours for MIMIC-CXR- 243

JPG and 1.5 hours for IU-Xray, highlighting its 244

efficiency (c.f. Section 12). 245

5 Conclusion and Future Work 246

In place of computationally intensive VLMs, we 247

propose LRTA-BioMIC, a computationally effi- 248

cient, domain-specific, region-guided, and text- 249

aligned language model with ViT, achieving SoTA 250

Chest X-ray report generation. We extend Bio- 251

BART, originally trained on full PubMed texts, 252

by further training it on MIMIC-CXR-JPG to en- 253

able efficient multimodal processing, naming it 254

BioMIC-BART. Our approach improves BLEU-4 255

and ROUGE-L by 9.71% and 0.9% on IU-Xray, 256

and by 1.60% in BLEU-4 on MIMIC-CXR-JPG, 257

with a slight 3.53% decrease in ROUGE-L com- 258

pared to prior SoTA models. In future work, we 259

will explore transfer learning, augmentation, and 260

in-context learning to improve adaptability to small, 261

long-tail imbalanced datasets and varying clini- 262

cal settings. Additionally, incorporating reports 263

from other radiology domains, such as CT, MRI, 264

and X-ray of different organs, may enhance the 265

model’s understanding of medical language and 266

structural patterns, leading to more accurate and 267

context-aware report generation. 268
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6 Limitations269

The IU Chest X-ray and MIMIC-CXR-JPG270

datasets (c.f Section 8) provide publicly available271

chest X-ray images paired with radiology reports,272

though access to MIMIC-CXR-JPG is restricted273

due to privacy regulations such as HIPAA. Annotat-274

ing medical reports is costly and requires domain275

expertise, limiting the availability of large-scale276

datasets for research. MIMIC-CXR-JPG primarily277

includes ICU patients, potentially skewing models278

toward severe disease cases. Another limitation279

is that our method evaluates chest X-rays in isola-280

tion, whereas clinical assessments often compare281

them with prior scans for a more comprehensive282

diagnosis. Moreover, MIMIC-CXR-JPG contains283

descriptions of non-anatomical objects, such as284

surgical clips, which are not addressed by our ap-285

proach. Lastly, while our framework is tailored286

for radiology report generation from chest X-rays,287

expanding it to other imaging modalities, such as288

CT or MRI, remains an important future direction.289

7 Ethical Considerations290

The authors of both the IU X-ray (Demner-291

Fushman et al., 2016) and the MIMIC-CXR-JPG292

(Johnson et al., 2019) dataset have implemented293

techniques for de-identifying patient information.294

Both datasets ensure that data is anonymized,295

which protects patient identity and adheres to ethi-296

cal standards in healthcare research. This compre-297

hensive de-identification process allows our model298

to operate without disclosing any sensitive informa-299

tion regarding individual patients. BioMIC-BART300

is trained over BART. While Pre-trained Language301

Models (PLMs) like BART are advantageous for302

various natural language processing tasks, they can303

introduce biases present in their training corpora304

(Gallegos et al., 2023; Navigli et al., 2023). Despite305

efforts to mitigate bias, it is challenging to com-306

pletely eliminate biased or discriminatory content307

in the model’s representations.308
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Appendix526

8 Dataset527

The MIMIC-CXR-JPG dataset (Johnson et al.,528

2019) and the IU-Xray dataset (Demner-Fushman529

et al., 2016) are among the most reliable and widely530

used benchmarks in radiology report generation531

research. These datasets have been extensively uti-532

lized in previous works due to their high-quality533

imaging studies and corresponding radiology re- 534

ports. MIMIC-CXR-JPG includes 227,835 imag- 535

ing studies from 65,379 patients treated at Beth 536

Israel Deaconess Medical Center’s Emergency De- 537

partment from 2011 to 2016, providing a total of 538

377,110 chest X-ray images along with free-text 539

de-identified radiology reports. IU-Xray, while 540

comparatively smaller in size with 7,470 chest X- 541

ray images and 3,825 patient reports, offers certain 542

advantages. Unlike MIMIC-CXR-JPG, which con- 543

tains unstructured free-text reports, IU-Xray fol- 544

lows a structured template consisting of two key 545

sections: Findings, which provides a detailed de- 546

scription of the radiograph, and Impression, which 547

serves as a summary or inference of the report. Ad- 548

ditionally, IU-Xray is balanced in terms of normal 549

and abnormal reports, making it a valuable dataset 550

for evaluating model performance across different 551

case distributions. Given their significance in the 552

field, we have utilized both datasets in our research 553

to ensure robustness and comparability with exist- 554

ing methods. 555

9 Evaluation Metrics 556

In our evaluation process, we employed several 557

metrics, including BLEU (Papineni et al., 2002), 558

CIDEr (Vedantam et al., 2015), METEOR (Baner- 559

jee and Lavie, 2005), BERTScore (Zhang et al., 560

2019), ROUGE-L (Lin, 2004), and Embedding- 561

Based Metrics (Rus and Lintean, 2012; Landauer 562

and Dumais, 1997; Forgues et al., 2014). BLEU 563

effectively measures translation quality by com- 564

paring n-grams from the generated outputs with 565

reference translations. CIDEr emphasizes captur- 566

ing the consensus between human judgments and 567

model predictions by quantifying n-gram overlaps. 568

METEOR improves robustness to lexical variations 569

by considering both precision and recall through 570

stemming and synonyms. BERTScore utilizes con- 571

textual embeddings to evaluate fluency and coher- 572

ence by assessing semantic similarities between 573

generated texts and references. ROUGE-L specifi- 574

cally evaluates summarization quality by measur- 575

ing the longest common subsequence (LCS) be- 576

tween generated summaries and reference sum- 577

maries. Embedding-Based Metrics assess semantic 578

similarities between generated and reference out- 579

puts. 580

While NLG metrics are widely used and reli- 581

able for report generation evaluation, they do not 582

capture all clinically relevant aspects of the gener- 583
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Model B-1 B-2 B-3 B-4 Cider MTR Dist-2 BertScore Rouge-L E-avg
GPT-4o 0.183 0.070 0.032 0.002 - 0.287 0.349 0.628 0.187 0.934
Gemini 0.176 0.072 0.027 0.001 - 0.204 0.383 0.582 0.173 0.916
LRTA−BioMIC1 0.398 0.274 0.213 0.176 0.888 0.412 0.317 0.812 0.374 0.946
LRTA−BioMIC2 0.483 0.359 0.275 0.211 0.974 0.510 0.339 0.902 0.427 0.962
LRTA−BioMIC3 0.462 0.339 0.257 0.199 0.934 0.498 0.324 0.871 0.402 0.963
LRTA−BioMIC 0.527 0.384 0.279 0.226 1.013 0.522 0.347 0.898 0.448 0.969

Table 2: Performance comparison of LRTA − BioMIC against multiple Ablation architecture (c.f section 4),
GPT-4o and Gemini across multiple evaluation metrics. LRTA−BioMIC achieves the highest scores in most
metrics, outperforming state-of-the-art vision-language models. B-i represents BLEU scores with i-gram overlap,
ROUGE-L denotes the longest common subsequence measure, MTR refers to the METEOR score, Dist-2 indicates
distinct bigram diversity, and E-avg represents the average embedding-based metric.

ated reports. To address this limitation, we adopt584

CheXbert (Smit et al., 2020) to label the generated585

reports and compare them with the disease labels586

from the reference reports. Due to space constraints587

and the fact that previous works have omitted sev-588

eral NLG metrics, we provide a detailed break-589

down of all NLG metric results in the appendix590

to facilitate further comparison of ablation studies,591

mentioned in the Table 2.592

10 Comparision with GPT-4o and Gemini593

We evaluated our model with various architectural594

modifications and benchmarked it against Ope-595

nAI’s GPT-4o (Achiam et al., 2023) and Google’s596

Gemini (Team et al., 2023). The prompt provided597

was: "The bot is given a chest X-ray image and598

must generate a report consisting of Findings and599

Impression. Findings provide a detailed descrip-600

tion of the radiograph, while Impression serves as601

a summary or inference of the report."602

The results are presented in Table 2. We ob-603

served an improvement of 139.57%, 158.96% in604

ROUGE-L and 42.99%, 54.30% in BERTScore605

when comparing LRTA-BioMIC to GPT-4o and606

Gemini. Although the BLEU score is signif-607

icantly lower for GPT-4o and Gemini, their608

BERTScore remains decent. Notably, Gemini609

achieved an 10.37% higher Distinct-2 score than610

LRTA-BioMIC; however, a better Distinct-2 score611

does not necessarily indicate superior performance.612

In medical report generation, excessive diversity613

can lead to incoherence, inconsistency, and poten-614

tial loss of medical accuracy, as reports often re-615

quire standardized phrasing and necessary repeti-616

tions. In the future, we would like to see more617

studies exploring few-shot learning and in-context618

learning with additional experiments.619

11 BioMIC-BART 620

Figure 2 illustrates the architecture of our BioMIC- 621

BART, which is built upon BioBART (Yuan et al., 622

2022), a model trained on full PubMed texts. While 623

BioBART is rich in general medical contexts, it 624

lacks specialized, refined knowledge of chest X- 625

rays and their associated conditions. To address 626

this limitation, we draw inspiration from (Xing 627

et al., 2021), which extended the BART model to 628

process multimodal data comprising images and 629

text. Their dataset includes Conceptual Captions 630

(Sharma et al., 2018), SBU (Ordonez et al., 2011), 631

COCO (Lin et al., 2014), and Visual Genome (Kr- 632

ishna et al., 2017). We give the details of our visual 633

feature extractor, What are the tokens we use and 634

the encoder decoder. 635

11.1 Visual Feature Extractor 636

Following previous work on Vision Transform- 637

ers, we use MedCLIP (Wang et al., 2022), pre- 638

trained on the MIMIC-CXR-JPG chest X-ray im- 639

age and report pair dataset, to extract visual em- 640

beddings. These embeddings are then fed into the 641

Transformer-based cross-modal encoder. We in- 642

clude both the Posteroanterior (PA) and Lateral 643

(LL - Lateral View) images, if available, to provide 644

BioMIC-BART with contextual information from 645

multiple perspectives. The PA view is the standard 646

frontal chest X-ray, while the LL view offers a side 647

perspective, helping to better assess the depth and 648

localization of abnormalities. Using both views 649

enhances the model’s understanding of anatomical 650

structures and improves diagnostic accuracy. 651

11.2 Token Embeddings 652

We utilize CXR-BERT-general (Boecking et al., 653

2022), a domain-specific language model tailored 654

on chest X-ray (CXR) reports. It is pretrained 655
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Figure 2

from a randomly initialized BERT model using656

Masked Language Modeling (MLM) on PubMed657

abstracts and clinical notes from the publicly avail-658

able MIMIC-III and MIMIC-CXR-JPG datasets.659

This model extracts token embeddings, where the660

tokens are expert-annotated medical tags inherent661

to the dataset. Combined with X-ray image em-662

beddings from MedCLIP, these token representa-663

tions enhance the model’s ability to capture a richer664

contextual understanding of multimodal radiology665

Chest X-ray data.666

11.3 Encoder-Decoder667

The model architecture consists of 12 encoder-668

decoder layers designed to effectively process and669

integrate multimodal data. The encoder receives670

both image embeddings, extracted from Posteroan-671

terior (PA) and Lateral (LL) chest X-ray views672

using MedCLIP, and token embeddings, derived673

from chest X-ray tags using CXR-BERT-general.674

The entire model is trained on the official MIMIC-675

CXR-JPG train split. The model parameters are676

updated based on the loss calculated during train-677

ing, which measures the discrepancy between the678

predicted and actual diagnostic outcomes. This loss679

is backpropagated through the network, adjusting680

the weights of both the encoder and decoder to min-681

imize error and improve the model’s performance.682

Although a simple model like this alone can-683

not produce meaningful radiology reports on un-684

seen data, transferring the contextual multimodal685

understanding of BioMIC-BART to our architec-686

ture, LRTA-BioMIC, as illustrated in Figure 1,687

enhances performance compared to using BART688

alone (Lewis, 2019) (refer to Section 4). 689

12 Parameter and Computational 690

Resources 691

We divide our experiments into two parts. The 692

first set of experiments involves BioMIC-BART, 693

while the second focuses on LRTA-BioMIC using 694

both the MIMIC-CXR-JPG and IU-Xray datasets. 695

Experiments with BioMIC-BART are computation- 696

ally expensive, whereas all experiments with LRTA- 697

BioMIC our final architecture, a domain-specific 698

region-guided language model combined with ViT 699

are computationally efficient. The common param- 700

eters across both experiments include the GELU 701

activation function and the Adam optimizer. Addi- 702

tionally, a weight decay of 0.001 was applied for 703

regularization. All experiments were conducted 704

using one or more A100 GPUs. 705

12.1 BioMIC-BART 706

We conducted a grid search to determine the op- 707

timal hyperparameters. Among the tested learn- 708

ing rates (3e-4, 3e-5, and 3e-6), we found 3e-5 to 709

yield the best performance. Similarly, we evaluated 710

batch sizes of 48 and 64, with a batch size of 48 711

performing better over 20 epochs. The training 712

split followed the official MIMIC-CXR-JPG par- 713

tition, which we further subdivided into a 90-10 714

split: 90% of the training data was used for pretrain- 715

ing BioMIC-BART, while the remaining 10% was 716

allocated for fine-tuning the LRTA-BioMIC archi- 717

tecture with a random seed of 42. The experiments 718

were conducted on four A100 GPUs, each with 719
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80GB of memory. Each training run took approxi-720

mately 26 hours to complete.721

12.2 LRTA-BioMIC722

We conducted a grid search to determine the opti-723

mal hyperparameters. Among the tested learning724

rates (3e-4 and 3e-5), we found 3e-5 to yield the725

best performance. Similarly, we evaluated batch726

sizes of 4, 8, and 12 over 20 epochs and found that a727

batch size of 4 performed the best. For fine-tuning728

on the MIMIC-CXR-JPG dataset, we randomly se-729

lected 10% of the official training split using a730

seed of 42, while the official test split was used for731

evaluation. For fine-tuning on the IU-Xray dataset,732

since there is no official train-validation-test distri-733

bution, we partitioned the data into 80%, 10%, and734

10% splits, respectively, using a random seed of 42.735

Fine-tuning on MIMIC-CXR-JPG required 7GB736

of GPU memory, whereas IU-Xray required 6GB,737

both with a batch size of 4. The additional 1GB of738

GPU memory for MIMIC-CXR-JPG was due to its739

larger training set. Training on MIMIC-CXR-JPG740

took approximately 4.5 hours, while training on IU-741

Xray was significantly faster, requiring only about742

1.5 hours.743

13 Error Analysis744

We conducted an analysis to identify weaknesses745

in LRTA-BioMIC. We identified two key weak-746

nesses: Numerical Discrepancies (Weakness-A).747

In Table 3, we observe that the gold report men-748

tions an 8mm nodule, whereas the generated report749

states a 1cm nodule. Although the difference is750

small, in a sensitive domain like healthcare, even751

minor inaccuracies can be critical. Similarly, in752

the second gold report under the same limitation,753

our model, LRTA-BioMIC, correctly identified the754

spatiality by mentioning healed left rib fractures755

but failed to specify the 9th rib fracture, which756

was explicitly mentioned in the gold report. In-757

complete Transfer of Findings to Impression758

(Weakness-B): In Table 3, at first glance, it may ap-759

pear that our model underperforms due to missing760

details in the impression section. However, upon761

closer inspection, we observe that LRTA-BioMIC762

correctly generates the relevant observations and in-763

cludes them in the findings section but omits them764

in the impression. This behavior is influenced by765

the inherent bias in the MIMIC-CXR-JPG and IU-766

Xray datasets, where findings are typically detailed,767

while impressions tend to be concise. Due to the768

brevity of the impression section, the model some- 769

times hallucinates by omitting crucial conclusions 770

that should be included in the impression while 771

only mentioning them in the findings. 772
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Weaknesses GOLD REPORT GENERATED REPORT

Weakness-A
Findings: The cardiac and mediastinal con-
tours are within normal limits. The lungs are
well-inflated and clear. There is an 8mm nod-
ule in the left lower lobe, XXXX calcified
granuloma. There is no pneumothorax or effu-
sion. Bony structures of the thorax are intact
with minimal early degenerative change. Im-
pression: 1. No evidence of acute cardiopul-
monary process. 2. 8mm nodule in the left
lung base, XXXX calcified granuloma.

Findings: Heart size and pulmonary vascular-
ity appear within normal limits. The lungs are
free of focal airspace disease. No pleural ef-
fusion or pneumothorax is seen. In the left
lower lobe, there has been development of
a 1 cm diameter nodule. This appears some-
what XXXX from the prior study. Mild de-
generative changes are present in the XXXX.
Impression: 1 cm of left lung base nodule.
XXXX since the previous study.

Findings: Stable cardiomediastinal silhouette.
Pulmonary vascularity is within normal lim-
its. Hyperlucent apices. Negative for focal
airspace disease or consolidation. Negative
for pneumothorax or pleural effusion. Healed
remote left 9th rib fracture. Right shoulder:
Negative for fracture or dislocation. Impres-
sion: Chest. Right shoulder. 1. No acute
cardiopulmonary abnormality. 2. Negative for
right shoulder fracture or dislocation.

Findings: The lungs are clear bilaterally.
Specifically, no evidence of focal consolida-
tion, pneumothorax, or pleural effusion. Car-
diomediastinal silhouette is unremarkable. Sta-
ble apical hyperlucency. Visualized osseous
structures of the thorax are without acute ab-
normality. Healed left rib fractures are
noted. Impression: No acute cardiopulmonary
abnormality.

Weakness-B
Findings: The heart is normal in size. The me-
diastinum is stable. Left-sided chest XXXX is
again visualized with tip at cavoatrial junction.
There is no pneumothorax. Numerous bilat-
eral pulmonary nodules have increased in size
and number XXXX compared to prior study.
The dominant nodule/mass in the left midlung
is also mildly increased. There is no pleural ef-
fusion. Impression: Interval increase in size
and number of innumerable bilateral pul-
monary nodules consistent with worsening
metastatic disease.

Findings: Heart size within normal limits, sta-
ble mediastinal and hilar contours. Left-sided
subclavian central venous catheter. No focal
alveolar consolidation, no definite pleural effu-
sion seen. There are multiple bilateral pul-
monary nodules. Prominent left midlung
nodule may be secondary to overlapping
structures. No typical findings of pulmonary
edema. Impression: No acute findings

Findings: There is a calcified granuloma in the
left upper lobe. Lungs otherwise are believed
to be clear. The heart is normal. There are cal-
cified left hilar and mediastinal lymph XXXX.
The skeletal structures show some senescent
changes. Impression: Old granulomatous
disease. No acute pulmonary disease.

Findings: There is a calcified granuloma in
the left upper lobe. There are calcified left
hilar and mediastinal lymph XXXX, consistent
with prior granulomatous disease. The lungs
are otherwise clear without evidence of acute
infiltrate or effusion. Impression: No acute
cardiopulmonary abnormalities.

Table 3: Table highlighting model weaknesses by presenting two examples per weakness, comparing the gold
reports with the generated reports.
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