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Abstract

The global shortage of radiologists is a ma-
jor challenge. Radiology is vital for diagnos-
ing and treating diseases, especially in the
lungs and heart, using imaging like X-rays.
To address this shortage and workload, we
introduce Lightweight Region-Text Aligned
BioMIC-BART (LRTA-BioMIC), which gen-
erates Chest X-ray reports from X-ray images.
LRTA-BioMIC is a computationally efficient,
Domain Specific, Region Guided Text Aligned
language model that integrates tagger informa-
tion and X-ray embeddings from ViT through
cross-attention at every layer of the BioMIC-
BART Encoder to generate radiology reports
(Findings and Impression). Our model achieves
a notable improvement of 9.71% in BLEU-4
and 0.9% in ROUGE-L compared to the previ-
ous state-of-the-art, COMG and KGVL-BART,
on the IU-Xray dataset. LRTA-BioMIC also
demonstrates competitive performance on the
MIMIC-CXR-JPG dataset, with a 1.60% in-
crease in BLEU-4 and a slight 3.53% decrease
in ROUGE-L compared to RECAP, the previ-
ous state-of-the-art. We will make our codes
and resources publicly available.

1 Introduction

VLMs have found huge application in radiology
report generation, due to their ability to gener-
ate text, coherent to image. However, all vision-
language multimodal pipelines are plaqued by
improper image-text alignment (Amirloo et al.,
2024). Previous literature (Caffagni et al., 2024)
shows integrating better image-text alignment can
lead to better performance. Additionally, previ-
ous VLMs for radiology report generation have
used computationally heavy pre-trained vision
encoders and language decoders. In lieu of
computationally-intensive Vision-Language Mod-
els (VLMs), we propose Lightweight Region-Text
Aligned BioMIC-BART (LRTA-BioMIC), which

generates Chest X-ray reports from X-ray images.
We enabled multimodal processing of chest X-ray
images and their corresponding reports on Bio-
BART (Yuan et al., 2022), as it alone lacks im-
age embedding knowledge, by training it on the
MIMIC-CXR-JPG dataset using the KM-BART ar-
chitecture (Xing et al., 2021). This resulted in
BioMIC-BART, which serves as the backbone of
LRTA-BioMIC, enhancing performance on both U-
Xray and MIMIC-CXR-JPG. For region-guided fea-
ture extraction from MedCLIP (Wang et al., 2022),
we used the Region Selector from (Tanida et al.,
2023) with cross-attention (C'A7). Since MedCLIP
is trained on the cosine similarity between chest
X-rays and reports, C'A; enhances contextual chest
image embeddings. Its output is then passed to
cross-attention (C'As) at the start of each BioMIC-
BART layer, where it serves as keys and values,
with the tagger information as the query. This im-
proves textual and regional alignment before pro-
cessing through BioMIC-BART, a domain-specific
encoder-decoder model for chest X-rays.
Our contributions are as follows:

* LRTA-BioMIC, a computationally efficient,
region-guided, and text-aligned model, achiev-
ing 9.71% and 0.9% improvements in BLEU-
4 and ROUGE-L, respectively, over the previ-
ous SoTA. for chest X-ray report generation.

¢ BioMIC-BART, an extension of BioBART
trained on MIMIC-CXR-JPG to process mul-
timodal chest X-ray images and text, serving
as the backbone of LRTA-BioMIC.

2 Related Work

Early radiology report generation relied on CNN-
RNN architectures (Jing et al., 2020, 2017), but
recent advancements favor Transformer-based mod-
els (Vaswani, 2017). Region-selector Transform-
ers, such as (Tanida et al., 2023) for anatomical



Findings: The cardiac silhouette is mildly enlarged. A lobulated opacity is identified superior to the heart in the anterior mediastinum on the lateral
view, possibly consistent with a tortuous/ectatic thoracic aorta versus an anterior mediastinal mass. The thoracic aorta is tortuous and calcified.
No focal areas of pulmonary consolidation are seen. The lungs are hyperexpanded with flattening of the bilateral hemidiaphragms. No
pneumothorax or pleural effusion is present. Severe degenerative changes are noted in the thoracic spine.

Impression: 1. Lobulated anterior mediastinal opacity on the lateral view, possibly consistent with a tortuous/ectatic thoracic aorta versus an
anterior mediastinal mass. 2. Mild cardiomegaly with findings of chronic obstructive pulmonary disease (COPD).
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Figure 1: Architecture of LRTA-BioMIC. Chest X-ray images (PA & LL) are processed via ResNet-50 and
MedCLIP to extract visual features. A 29-region selector refines region-specific embeddings. Textual tags, along
with selected regions, aid image-text alignment in BioMIC-BART, which generates the final radiology report.

region detection and (Li et al., 2023) with its Unify,
Align, and then Refine (UAR) strategy, further im-
proved image-report alignment. Assistive systems
(Nicolson et al., 2024), organ-specific masks (Gu
et al., 2024), and observation-guided reasoning
(Hou et al., 2023b,a) have also enhanced disease
identification and report generation. Knowledge
graphs, highlighted by (Zhang et al., 2020) and
formalized in (Kale et al., 2023), improve multi-
modal learning, while prompt-based methods like
(Jin et al., 2024) enhance rare disease representa-
tion. Despite newer Transformer-driven innova-
tions, established models such as CMCA (Song
et al., 2022), KnowMat (Yang et al., 2022), and
CMM-RL (Qin and Song, 2022) remain robust and
effective in Chest X-ray report generation. LRTA-
BioMIC leverages BioMIC-BART for efficient
multimodal processing, unlike previous architec-
tures that either relied on computationally expen-
sive VLMs or ineffective fused embeddings. Addi-
tionally, it incorporates selected image regions and
text alignment, enhancing report quality.

3 Methodology

LRTA-BioMIC is trained by first developing
BioMIC-BART, an extension of BART designed
to process multimodal data, specifically chest X-
ray images and medical text. The pretrained
BioMIC-BART weights serve as the backbone
for training our Lightweight Region-Text Aligned

BioMIC-BART (LRTA-BioMIC), which incorpo-
rates region-level visual features and enhances text-
image alignment.

3.1 BioMIC-BART

We build upon BioBART-Large, a language model
trained on full-text PubMed articles (Yuan et al.,
2022). While effective, its performance on Chest
X-ray report generation is constrained due to a
lack of radiology-specific training. To address this,
we augment it with multimodal supervision using
image-text pairs from MIMIC-CXR-JPG (Johnson
et al., 2019), inspired by methods from (Xing et al.,
2021), which effectively model image-text contex-
tual relations. More detail is mentioned in Section
11.

3.2 Region-Guided Feature Extraction
To preprocess Chest X-rays, we extract multi-scale
visual embeddings using ResNet-50 (He et al.,
2016) and MedCLIP-ResNet50 (Wang et al., 2022).
Given a chest X-ray I, we obtain:

FP4 = ResNet(Ipy) € R1*2048,

res

(1)
Fl;% = ResNet(Iyy) € R1x2048
FP = MedCLIP(Ipy) € RPP12, N
Fli = MedCLIP(I;.) € R™%12,

For comprehensive feature fusion, we compute:

Fsum — FPA _|_ FLL (3)

1x2048
res res res € R ’



Model NLG Metrics CE Metrics
Dataset B-1 B-2 B-3 B-4 MTR R-L P R Fy
RGRG 0.373 0.249 0.175 0.126 0.168 0.264 | 0.461 0.475 0.447
COMG 0.363 0.235 0.167 0.124 0.128 0.290 | 0.424 0.291 0.345
MIMIC | PROMPTMRG 0.398 — — 0.112 0.157 0.268 | 0.501 0.509 0.476
-CXR | ORGAN 0.407 0.256 0.172 0.123 0.162 0.293 | 0.416 0.418 0.385
RECAP 0.429 0.267 0.177 0.125 0.168 0.288 | 0.389 0.443 0.393
LRTA-BIOMIC | 0.418 0.261 0.179 0.127 0.171 0.283 | 0.496 0.481 0.459
RGRG 0.266 — — 0.063 0.146 0.180 | 0.183 0.187 0.180
COMG 0.536 0.378 0.275 0.206 0.218 0.383 - - -
IU PROMPTMRG 0.401 — — 0.098 0.160 0.281 | 0.213 0.229 0.211
X-RAY | ORGAN 0.510 0.346 0.255 0.195 0.205 0.399 - - -
KGVL-BART 0.423 0.256 0.194 0.165 0.500 0.444 - - -
LRTA-BIOMIC | 0.527 0.384 0.279 0.226 0.522 0.448 | 0.221 0.223 0.218
LRTA-BIOMIC; | 0.398 0.274 0.213 0.176 0.412 0.374 - - -
LRTA-BIOMIC, | 0.483 0.359 0.275 0.211 0.510 0.427 - - -
ABLN | LRTA-BIOMIC3 | 0.462 0.339 0.257 0.199 0.498 0.402 - - -
LRTA-BIOMIC 0.527 0.384 0.279 0.226 0.522 0.448 - - -

Table 1: Experimental Results of our model and baselines on the IU X-RAY dataset and the MIMIC-CXR-JPG
dataset. The best results are in boldface, and the underlined are the second-best results. We also include Ablation
study marked by "ABLN" performed on IU X-RAY dataset. A one-tailed t-test between LRTA-BioMIC and COMG
(best-performing baseline) on the BLEU-4 score yields p = 0.0138 (< 0.05), confirming LRTA-BioMIC'’s statistically
significant improvement for chest X-ray report generation.

(CA») into each encoder of BioMIC-BART. Given
textual token embeddings Hy € RM*? from the
MeSH or NegBio tagger (Kale et al., 2023; Peng
et al., 2018), and region-guided image embeddings
F.,, C' Az is computed as:

FCOHC&H

PA LL
clip F

= concat(FChp, Chp)

c R1x1024. )

Additionally, Fregion € R1X1024 ( region-level
embeddings) are extracted via 29-region selection
(Tanida et al., 2023) and transformed using a multi-
layer perceptron (MLP). The final visual represen-
tation is refined using cross-attention C'A;.

HrWo(FeWpg) T
A—softmax( rWo(Fry W) )FrgW%

Vd
(N

where W, Wi, Wy, € R4 are trainable pro-
jection matrices.

Q KT . . .
Fiq — softmax region B ¢jip Ve, () This ope.ratlon enh?nces te?itual rf:presentatlons
Vd by grounding them in localized visual features,
ensuring alignment with relevant anatomical re-
where: gions. The enriched embeddings are then processed
P through subsequent layers of BioMIC-BART, in-
Qregion = regi""t’ cluding Multi-Head Self-Attention, Layer Normal-
Keiip = Fiﬁ%” ) (6)  ization, and Feed-Forward Networks, with residual
Vip = Fgg‘;m, connections ensuring stability. The decoder then

generates the final report T, selecting the most
probable candidate sequence T’ from the distribu-
tion:

Here, the query attends to preselected anatomical
regions, ensuring that keys and values represent
contextualized visual features. This enriched rep-
resentation F';; encodes spatially guided semantic

T = arg max P(T'|Hy, Fyo; 6
information for improved report generation. &N (T'Hr, Frgi 6),

(®)

3.3 Region-Text Alignment via Cross
Attention

To align textual features with the region-guided em-
beddings, we integrate an additional cross-attention

4 Experiments and Results

We evaluated LRTA-BioMIC with various archi-
tectural modifications and benchmarked it against
OpenAl’s GPT-40 (Achiam et al., 2023), Google’s



Gemini (Team et al., 2023) (refer Section 10), and
previous models—RGRG (Tanida et al., 2023),
COMG (Gu et al., 2024), PromptMRG (Jin et al.,
2024), ORGan (Hou et al., 2023b), RECAP (Hou
et al., 2023a), and KGVL-BART (Kale et al.,
2023)—on both IU-Xray and MIMIC-CXR-JPG.
LRTA-BioMIC outperformed the prior state-of-
the-art, achieving 9.71% and 0.9 % improvements
in BLEU-4 and ROUGE-L on IU-Xray (compared
to COMG and KGVL-BART). On MIMIC-CXR-
JPG, it showed a 1.60% increase in BLEU-4 but
a slight 3.53% drop in ROUGE-L (compared to
RECAP and ORGan). Additionally, it achieved a
3.32% improvement in the Clinical Efficacy (CE)
F1-score (CheXbert (Smit et al., 2020)) on IU-Xray
and performed best on MIMIC-CXR-JPG, except
for a 3.70% decrease compared to PromptMRG.
Evaluation metrics are detailed in Section 9, while
model limitations are discussed in Section 13.
LRTA-BioMIC performed relatively better on
IU-Xray due to its backbone, BioMIC-BART, which
is pre-trained on MIMIC-CXR-JPG, enriching it
with medical terminology and multimodal process-
ing capabilities. When fine-tuned on /U-Xray, it
leverages prior exposure to a larger dataset, enhanc-
ing performance. Inspired by KM-BART (Xing
et al., 2021), BioMIC-BART details are in Section
11. Below, we outline our architectural modifica-
tions for ablation studies in report generation.

e LRTA — BioMIC1: Removed the Region
Guided Feature Extractor while retaining all
other components.

e LRTA — BioMICsy: Ablated Cross-
Attention in the Encoder, using a direct ad-
dition of embeddings from the Region Guided
Feature Extractor and BERT Tagger embed-
dings.

e LRTA — BioMIC5: Removed BioMIC-
BART and used the original BART from Face-
book (Lewis, 2019).

e LRTA — BioMIC" Our final report genera-
tion architecture as shown in Figure 1.

As shown in Table 1, removing the Region
Guided Feature Extractor (LRT A — BioMICh)
led to an 22.12% and 16.52% decrease in BLEU-
4 and ROUGE-L score from our SoTA model,
LRTA — BioMIC, highlighting the importance
of extracting features from 29 specific chest X-ray

regions (Tanida et al., 2023). Replacing Cross-
Attention with a simple addition of embeddings
(LRT A — BioMI1(C5) reduced the BLEU-4 and
ROUGE-L score by 6.64% and 4.69 %, this under-
scores the value of effective embedding integration.
In LRT A — BioM ICs, replacing BioMIC-BART
with Facebook’s original BART (Lewis, 2019) re-
sulted in a decline of 11.95% and 10.27% in
BLEU-4 and ROUGE-L, demonstrating the need
for domain-specific radiology context along with
diverse medical terminology through fine-tuning
on PubMed texts. All the other metrics also demon-
strated a consistent boost in our final architecture,
LRTA — BioMIC (c.f Table 2, Section 7).

4.1 Computational Resources

Experiments were conducted using A/00 GPUs.
BioMIC-BART training required four A100 GPUs
(80GB each) and took approximately 26 hours.
LRTA-BioMIC fine-tuning on MIMIC-CXR-JPG
and /U-Xray was significantly lightweight, running
on a single GPU with just 6GB to 7GB of memory.
Fine-tuning took only 4.5 hours for MIMIC-CXR-
JPG and 1.5 hours for IU-Xray, highlighting its
efficiency (c.f. Section 12).

5 Conclusion and Future Work

In place of computationally intensive VLMs, we
propose LRTA-BioMIC, a computationally effi-
cient, domain-specific, region-guided, and text-
aligned language model with ViT, achieving SoTA
Chest X-ray report generation. We extend Bio-
BART, originally trained on full PubMed texts,
by further training it on MIMIC-CXR-JPG to en-
able efficient multimodal processing, naming it
BioMIC-BART. Our approach improves BLEU-4
and ROUGE-L by 9.71% and 0.9% on IU-Xray,
and by 1.60% in BLEU-4 on MIMIC-CXR-JPG,
with a slight 3.53% decrease in ROUGE-L com-
pared to prior SOTA models. In future work, we
will explore transfer learning, augmentation, and
in-context learning to improve adaptability to small,
long-tail imbalanced datasets and varying clini-
cal settings. Additionally, incorporating reports
from other radiology domains, such as CT, MRI,
and X-ray of different organs, may enhance the
model’s understanding of medical language and
structural patterns, leading to more accurate and
context-aware report generation.



6 Limitations

The IU Chest X-ray and MIMIC-CXR-JPG
datasets (c.f Section 8) provide publicly available
chest X-ray images paired with radiology reports,
though access to MIMIC-CXR-JPG is restricted
due to privacy regulations such as HIPAA. Annotat-
ing medical reports is costly and requires domain
expertise, limiting the availability of large-scale
datasets for research. MIMIC-CXR-JPG primarily
includes ICU patients, potentially skewing models
toward severe disease cases. Another limitation
is that our method evaluates chest X-rays in isola-
tion, whereas clinical assessments often compare
them with prior scans for a more comprehensive
diagnosis. Moreover, MIMIC-CXR-JPG contains
descriptions of non-anatomical objects, such as
surgical clips, which are not addressed by our ap-
proach. Lastly, while our framework is tailored
for radiology report generation from chest X-rays,
expanding it to other imaging modalities, such as
CT or MRI, remains an important future direction.

7 Ethical Considerations

The authors of both the IU X-ray (Demner-
Fushman et al., 2016) and the MIMIC-CXR-JPG
(Johnson et al., 2019) dataset have implemented
techniques for de-identifying patient information.
Both datasets ensure that data is anonymized,
which protects patient identity and adheres to ethi-
cal standards in healthcare research. This compre-
hensive de-identification process allows our model
to operate without disclosing any sensitive informa-
tion regarding individual patients. BioMIC-BART
is trained over BART. While Pre-trained Language
Models (PLMs) like BART are advantageous for
various natural language processing tasks, they can
introduce biases present in their training corpora
(Gallegos et al., 2023; Navigli et al., 2023). Despite
efforts to mitigate bias, it is challenging to com-
pletely eliminate biased or discriminatory content
in the model’s representations.
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Appendix
8 Dataset

The MIMIC-CXR-JPG dataset (Johnson et al.,
2019) and the IU-Xray dataset (Demner-Fushman
etal., 2016) are among the most reliable and widely
used benchmarks in radiology report generation
research. These datasets have been extensively uti-
lized in previous works due to their high-quality

imaging studies and corresponding radiology re-
ports. MIMIC-CXR-JPG includes 227,835 imag-
ing studies from 65,379 patients treated at Beth
Israel Deaconess Medical Center’s Emergency De-
partment from 2011 to 2016, providing a total of
377,110 chest X-ray images along with free-text
de-identified radiology reports. IU-Xray, while
comparatively smaller in size with 7,470 chest X-
ray images and 3,825 patient reports, offers certain
advantages. Unlike MIMIC-CXR-JPG, which con-
tains unstructured free-text reports, [lU-Xray fol-
lows a structured template consisting of two key
sections: Findings, which provides a detailed de-
scription of the radiograph, and Impression, which
serves as a summary or inference of the report. Ad-
ditionally, IU-Xray is balanced in terms of normal
and abnormal reports, making it a valuable dataset
for evaluating model performance across different
case distributions. Given their significance in the
field, we have utilized both datasets in our research
to ensure robustness and comparability with exist-
ing methods.

9 Evaluation Metrics

In our evaluation process, we employed several
metrics, including BLEU (Papineni et al., 2002),
CIDEr (Vedantam et al., 2015), METEOR (Baner-
jee and Lavie, 2005), BERTScore (Zhang et al.,
2019), ROUGE-L (Lin, 2004), and Embedding-
Based Metrics (Rus and Lintean, 2012; Landauer
and Dumais, 1997; Forgues et al., 2014). BLEU
effectively measures translation quality by com-
paring n-grams from the generated outputs with
reference translations. CIDEr emphasizes captur-
ing the consensus between human judgments and
model predictions by quantifying n-gram overlaps.
METEOR improves robustness to lexical variations
by considering both precision and recall through
stemming and synonyms. BERTScore utilizes con-
textual embeddings to evaluate fluency and coher-
ence by assessing semantic similarities between
generated texts and references. ROUGE-L specifi-
cally evaluates summarization quality by measur-
ing the longest common subsequence (LCS) be-
tween generated summaries and reference sum-
maries. Embedding-Based Metrics assess semantic
similarities between generated and reference out-
puts.

While NLG metrics are widely used and reli-
able for report generation evaluation, they do not
capture all clinically relevant aspects of the gener-



Model B-1 B-2 B-3 B-4 | Cider | MTR | Dist-2 | BertScore | Rouge-L. | E-avg
GPT-40 0.183 | 0.070 | 0.032 | 0.002 - 0.287 | 0.349 0.628 0.187 0.934
Gemini 0.176 | 0.072 | 0.027 | 0.001 - 0.204 | 0.383 0.582 0.173 0.916
LRTA — BioMICy | 0398 | 0.274 | 0.213 | 0.176 | 0.888 | 0.412 | 0.317 0.812 0.374 0.946
LRTA — BioMIC5 | 0.483 | 0.359 | 0.275 | 0.211 | 0.974 | 0.510 | 0.339 0.902 0.427 0.962
LRTA — BioMIC3 | 0.462 | 0.339 | 0.257 | 0.199 | 0.934 | 0.498 | 0.324 0.871 0.402 0.963
LRTA — BioMIC | 0.527 | 0.384 | 0.279 | 0.226 | 1.013 | 0.522 | 0.347 0.898 0.448 0.969

Table 2: Performance comparison of LRT' A — BioM IC against multiple Ablation architecture (c.f section 4),
GPT-40 and Gemini across multiple evaluation metrics. LRT' A — BioM IC achieves the highest scores in most
metrics, outperforming state-of-the-art vision-language models. B-i represents BLEU scores with i-gram overlap,
ROUGE-L denotes the longest common subsequence measure, MTR refers to the METEOR score, Dist-2 indicates
distinct bigram diversity, and E-avg represents the average embedding-based metric.

ated reports. To address this limitation, we adopt
CheXbert (Smit et al., 2020) to label the generated
reports and compare them with the disease labels
from the reference reports. Due to space constraints
and the fact that previous works have omitted sev-
eral NLG metrics, we provide a detailed break-
down of all NLG metric results in the appendix
to facilitate further comparison of ablation studies,
mentioned in the Table 2.

10 Comparision with GPT-40 and Gemini

We evaluated our model with various architectural
modifications and benchmarked it against Ope-
nAI’'s GPT-40 (Achiam et al., 2023) and Google’s
Gemini (Team et al., 2023). The prompt provided
was: "The bot is given a chest X-ray image and
must generate a report consisting of Findings and
Impression. Findings provide a detailed descrip-
tion of the radiograph, while Impression serves as
a summary or inference of the report.”

The results are presented in Table 2. We ob-
served an improvement of 139.57%, 158.96 % in
ROUGE-L and 42.99%, 54.30% in BERTScore
when comparing LRTA-BioMIC to GPT-40 and
Gemini. Although the BLEU score is signif-
icantly lower for GPT-40 and Gemini, their
BERTScore remains decent. Notably, Gemini
achieved an 10.37 % higher Distinct-2 score than
LRTA-BioMIC; however, a better Distinct-2 score
does not necessarily indicate superior performance.
In medical report generation, excessive diversity
can lead to incoherence, inconsistency, and poten-
tial loss of medical accuracy, as reports often re-
quire standardized phrasing and necessary repeti-
tions. In the future, we would like to see more
studies exploring few-shot learning and in-context
learning with additional experiments.

11 BioMIC-BART

Figure 2 illustrates the architecture of our BioMIC-
BART, which is built upon BioBART (Yuan et al.,
2022), a model trained on full PubMed texts. While
BioBART is rich in general medical contexts, it
lacks specialized, refined knowledge of chest X-
rays and their associated conditions. To address
this limitation, we draw inspiration from (Xing
et al., 2021), which extended the BART model to
process multimodal data comprising images and
text. Their dataset includes Conceptual Captions
(Sharma et al., 2018), SBU (Ordonez et al., 2011),
COCO (Lin et al., 2014), and Visual Genome (Kr-
ishna et al., 2017). We give the details of our visual
feature extractor, What are the tokens we use and
the encoder decoder.

11.1 Visual Feature Extractor

Following previous work on Vision Transform-
ers, we use MedCLIP (Wang et al., 2022), pre-
trained on the MIMIC-CXR-JPG chest X-ray im-
age and report pair dataset, to extract visual em-
beddings. These embeddings are then fed into the
Transformer-based cross-modal encoder. We in-
clude both the Posteroanterior (PA) and Lateral
(LL - Lateral View) images, if available, to provide
BioMIC-BART with contextual information from
multiple perspectives. The PA view is the standard
frontal chest X-ray, while the LL view offers a side
perspective, helping to better assess the depth and
localization of abnormalities. Using both views
enhances the model’s understanding of anatomical
structures and improves diagnostic accuracy.

11.2 Token Embeddings

We utilize CXR-BERT-general (Boecking et al.,
2022), a domain-specific language model tailored
on chest X-ray (CXR) reports. It is pretrained
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from a randomly initialized BERT model using
Masked Language Modeling (MLM) on PubMed
abstracts and clinical notes from the publicly avail-
able MIMIC-III and MIMIC-CXR-JPG datasets.
This model extracts token embeddings, where the
tokens are expert-annotated medical tags inherent
to the dataset. Combined with X-ray image em-
beddings from MedCLIP, these token representa-
tions enhance the model’s ability to capture a richer
contextual understanding of multimodal radiology
Chest X-ray data.

11.3 Encoder-Decoder

The model architecture consists of 12 encoder-
decoder layers designed to effectively process and
integrate multimodal data. The encoder receives
both image embeddings, extracted from Posteroan-
terior (PA) and Lateral (LL) chest X-ray views
using MedCLIP, and token embeddings, derived
from chest X-ray tags using CXR-BERT-general.
The entire model is trained on the official MIMIC-
CXR-JPG train split. The model parameters are
updated based on the loss calculated during train-
ing, which measures the discrepancy between the
predicted and actual diagnostic outcomes. This loss
is backpropagated through the network, adjusting
the weights of both the encoder and decoder to min-
imize error and improve the model’s performance.

Although a simple model like this alone can-
not produce meaningful radiology reports on un-
seen data, transferring the contextual multimodal
understanding of BioMIC-BART to our architec-
ture, LRTA-BioMIC, as illustrated in Figure 1,
enhances performance compared to using BART

alone (Lewis, 2019) (refer to Section 4).

12 Parameter and Computational
Resources

We divide our experiments into two parts. The
first set of experiments involves BioMIC-BART,
while the second focuses on LRTA-BioMIC using
both the MIMIC-CXR-JPG and [U-Xray datasets.
Experiments with BioMIC-BART are computation-
ally expensive, whereas all experiments with LRTA-
BioMIC our final architecture, a domain-specific
region-guided language model combined with ViT
are computationally efficient. The common param-
eters across both experiments include the GELU
activation function and the Adam optimizer. Addi-
tionally, a weight decay of 0.001 was applied for
regularization. All experiments were conducted
using one or more A/00 GPUs.

12.1 BioMIC-BART

We conducted a grid search to determine the op-
timal hyperparameters. Among the tested learn-
ing rates (3e-4, 3e-5, and 3e-6), we found 3e-5 to
yield the best performance. Similarly, we evaluated
batch sizes of 48 and 64, with a batch size of 48
performing better over 20 epochs. The training
split followed the official MIMIC-CXR-JPG par-
tition, which we further subdivided into a 90-10
split: 90% of the training data was used for pretrain-
ing BioMIC-BART, while the remaining /0% was
allocated for fine-tuning the LRTA-BioMIC archi-
tecture with a random seed of 42. The experiments
were conducted on four A100 GPUs, each with



80GB of memory. Each training run took approxi-
mately 26 hours to complete.

12.2 LRTA-BioMIC

We conducted a grid search to determine the opti-
mal hyperparameters. Among the tested learning
rates (3e-4 and 3e-5), we found 3e-5 to yield the
best performance. Similarly, we evaluated batch
sizes of 4, 8, and 12 over 20 epochs and found that a
batch size of 4 performed the best. For fine-tuning
on the MIMIC-CXR-JPG dataset, we randomly se-
lected /0% of the official training split using a
seed of 42, while the official test split was used for
evaluation. For fine-tuning on the /U-Xray dataset,
since there is no official train-validation-test distri-
bution, we partitioned the data into 80%, 10%, and
10% splits, respectively, using a random seed of 42.
Fine-tuning on MIMIC-CXR-JPG required 7GB
of GPU memory, whereas /U-Xray required 6GB,
both with a batch size of 4. The additional /GB of
GPU memory for MIMIC-CXR-JPG was due to its
larger training set. Training on MIMIC-CXR-JPG
took approximately 4.5 hours, while training on /U-
Xray was significantly faster, requiring only about
1.5 hours.

13 Error Analysis

We conducted an analysis to identify weaknesses
in LRTA-BioMIC. We identified two key weak-
nesses: Numerical Discrepancies (Weakness-A).
In Table 3, we observe that the gold report men-
tions an 8mm nodule, whereas the generated report
states a 1cm nodule. Although the difference is
small, in a sensitive domain like healthcare, even
minor inaccuracies can be critical. Similarly, in
the second gold report under the same limitation,
our model, LRTA-BioMIC, correctly identified the
spatiality by mentioning healed left rib fractures
but failed to specify the 9th rib fracture, which
was explicitly mentioned in the gold report. In-
complete Transfer of Findings to Impression
(Weakness-B): In Table 3, at first glance, it may ap-
pear that our model underperforms due to missing
details in the impression section. However, upon
closer inspection, we observe that LRTA-BioMIC
correctly generates the relevant observations and in-
cludes them in the findings section but omits them
in the impression. This behavior is influenced by
the inherent bias in the MIMIC-CXR-JPG and [U-
Xray datasets, where findings are typically detailed,
while impressions tend to be concise. Due to the

10

brevity of the impression section, the model some-
times hallucinates by omitting crucial conclusions
that should be included in the impression while
only mentioning them in the findings.



Weaknesses

GOLD REPORT

GENERATED REPORT

Weakness-A

Findings: The cardiac and mediastinal con-
tours are within normal limits. The lungs are
well-inflated and clear. There is an 8mm nod-
ule in the left lower lobe, XXXX calcified
granuloma. There is no pneumothorax or effu-
sion. Bony structures of the thorax are intact
with minimal early degenerative change. Im-
pression: 1. No evidence of acute cardiopul-
monary process. 2. 8mm nodule in the left
lung base, XXXX calcified granuloma.

Findings: Heart size and pulmonary vascular-
ity appear within normal limits. The lungs are
free of focal airspace disease. No pleural ef-
fusion or pneumothorax is seen. In the left
lower lobe, there has been development of
a 1 cm diameter nodule. This appears some-
what XXXX from the prior study. Mild de-
generative changes are present in the XXXX.
Impression: 1 cm of left lung base nodule.
XXXX since the previous study.

Findings: Stable cardiomediastinal silhouette.
Pulmonary vascularity is within normal lim-
its. Hyperlucent apices. Negative for focal
airspace disease or consolidation. Negative
for pneumothorax or pleural effusion. Healed
remote left 9th rib fracture. Right shoulder:
Negative for fracture or dislocation. Impres-
sion: Chest. Right shoulder. 1. No acute
cardiopulmonary abnormality. 2. Negative for
right shoulder fracture or dislocation.

Findings: The lungs are clear bilaterally.
Specifically, no evidence of focal consolida-
tion, pneumothorax, or pleural effusion. Car-
diomediastinal silhouette is unremarkable. Sta-
ble apical hyperlucency. Visualized osseous
structures of the thorax are without acute ab-
normality. Healed left rib fractures are
noted. Impression: No acute cardiopulmonary
abnormality.

Weakness-B

Findings: The heart is normal in size. The me-
diastinum is stable. Left-sided chest XXXX is
again visualized with tip at cavoatrial junction.
There is no pneumothorax. Numerous bilat-
eral pulmonary nodules have increased in size
and number XXXX compared to prior study.
The dominant nodule/mass in the left midlung
is also mildly increased. There is no pleural ef-
fusion. Impression: Interval increase in size
and number of innumerable bilateral pul-
monary nodules consistent with worsening
metastatic disease.

Findings: Heart size within normal limits, sta-
ble mediastinal and hilar contours. Left-sided
subclavian central venous catheter. No focal
alveolar consolidation, no definite pleural effu-
sion seen. There are multiple bilateral pul-
monary nodules. Prominent left midlung
nodule may be secondary to overlapping
structures. No typical findings of pulmonary
edema. Impression: No acute findings

Findings: There is a calcified granuloma in the
left upper lobe. Lungs otherwise are believed
to be clear. The heart is normal. There are cal-
cified left hilar and mediastinal lymph XXXX.
The skeletal structures show some senescent
changes. Impression: Old granulomatous
disease. No acute pulmonary disease.

Findings: There is a calcified granuloma in
the left upper lobe. There are calcified left
hilar and mediastinal lymph XXXX, consistent
with prior granulomatous disease. The lungs
are otherwise clear without evidence of acute
infiltrate or effusion. Impression: No acute
cardiopulmonary abnormalities.

Table 3: Table highlighting model weaknesses by presenting two examples per weakness, comparing the gold
reports with the generated reports.
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