
Large language models partially converge toward
human-like concept organization

Abstract

Large language models show human-like performance in knowledge extraction,
reasoning and dialogue, but it remains controversial whether this performance
is best explained by memorization and pattern matching, or whether it reflects
human-like inferential semantics and world knowledge. Knowledge bases such as
WikiData provide large-scale, high-quality representations of inferential semantics
and world knowledge. We show that large language models learn to organize
concepts in ways that are strikingly similar to how concepts are organized in such
knowledge bases. Knowledge bases model collective, institutional knowledge, and
large language models seem to induce such knowledge from raw text. We show
that bigger and better models exhibit more human-like concept organization, across
four families of language models and three knowledge graph embeddings.

1 Introduction

The artificial intelligence community is split on the question of whether large language models (LLM)
understand natural language in some non-trivial sense. Half of the community (51%) – according to
a recent survey [17] – are willing to attribute non-trivial understanding to LLMs. The other half of
the community (49%) argue that the illusion of understanding is the result of an Eliza effect.1 The
research question, as formulated by Mitchell and Krakauer [17], is:

"do these systems (or will their near-term successors) actually, even in the absence
of physical experience, create something like the rich concept-based mental models
that are central to human understanding, and, if so, does scaling these models create
even better concepts?"

We present a series of experiments designed to answer this question directly. Our findings suggest
(very strongly) that the models (representations) induced by larger and better LLMs become more
and more human-like.

1.1 Contributions

We present a series of experiments with four families of LLMs (21 models), as well as three
knowledge graph embedding algorithms. Using three different methods, we compare the vector
spaces of the LLMs to the vector spaces induced by the graph embedding algorithms. (This amounts
to a total of 220 experiments.) We find that the vector spaces of LLMs within each family become
increasingly structurally similar to those of knowledge graph embeddings. This shows that LLMs
partially converge on human-like concept organization, facilitating inferential semantics [20].2 The

1 One famous example of this view is an article by Emily Bender and colleagues [1], who argue that these
models are simply stochastic parrots that ‘haphazardly stitch together sequences of linguistic forms’ without
any true understanding of the world or context.

2 We use ‘converge’ in the sense of Caucheteux and King [7].
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Figure 1: A simplified sketch of our experimental protocol. A vocabulary of 20K words is encoded
using a language model and the corresponding entities are fetched from a pre-trained graph embed-
ding system. The resulting vector spaces are then aligned. After alignment we evaluate retrieval
performance in the target vector space. If retrieval performance is perfect, the spaces are (nearest
neighbor graph) isomorphic.

sample efficiency of this convergence seem to depend on a number of factors, including polysemy
and semantic category. Our findings have important implications. They vindicate the conjecture
in [20] that LLMs exhibit inferential semantics, strongly contributing to the research question
presented in [17], cited above. This means that LLMs partially converge toward human-like concept
representations and, thus, come to partially ‘understand language’, in a non-trivial sense. We speculate
that the human-like conceptual organization is also what facilitates out-of-distribution inferences in
LLMs.

2 Experiments

2.1 Language models

We evaluate the vector spaces induced by four well-known families of language models, conducting
experiments with a total of 20 different transformer-based models. The four families are OPT [34],
GPT-2 [21], and Pythia [2] (non-deduplicated version at model checkpoint step 143000) and BERT
[9].3 We also evaluated the vector space of GPT-3 [5], i.e., text-embedding-ada-002.4 Transformer-
based LLMs use multiple layers of self-attention [29] and can model complex interactions across
large context windows. Both left and right context can be considered. GPT, OPT and Pythia are
decoder-only autoregressive LLMs, however, and thus only consider left context, i.e., the words
preceding the next token. BERT is an encoder-only non-autoregressive LLM and considers both
left and right context of the masked token to be predicted. Transformers are in general considered
state-of-the-art for most NLP tasks [32]. For each of the language model families, we consider variants
with increasing size in terms of the number of model parameters. See Table 1 for a model overview.

LM Params LM Params LM Params LM Params
OPT-125M 125M GPT-2 small 117M Pythia-70M 70M BERT-TINY 4.4M
OPT-350M 350M GPT-2 medium 345M Pythia-160M 160M BERT-MINI 11.3M
OPT-1.3B 1.3B GPT-2 large 774M Pythia-410M 410M BERT-SMALL 29.1M
OPT-2.7B 2.7B GPT-2 xl 1.5B Pythia-1B 1B BERT-MEDIUM 41.7M
OPT-6.7B 6.7B GPT-3 Ada-002 175B Pythia-2.8B 2.8B BERT-BASE 110.1M

Pythia-6.9B 6.9B

Table 1: 21 transformer-based language models used in this experiment.

3 We also evaluated the T5 [22] LM series. T5 is trained with a multi-task objective, leading to mixed results.
4 https://platform.openai.com/docs/guides/embeddings/what-are-embeddings
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2.2 Knowledge graph embeddings

We experiment with three graph embedding algorithms and the vector spaces induced by running
these on large-scale knowledge bases.

2.2.1 BigGraph

The first vector space is that of the so-called BigGraph embeddings [15]. BigGraph is trained on
an input knowledge graph, i.e. a list of edges, identified by its’ source and target entities and a
relation type. The network output is a feature vector or embedding for every entity in the graph. An
inherent quality of this method is that adjacent entities are placed close to each other in the vector
space. The particular embeddings used in this work are obtained by pre-training on WikiData, a
well-known knowledge base5. Knowledge bases like Wikidata provide a structured representation of
the real-world [25] and encode implicit world knowledge. The BigGraph embeddings contain all
entities from the "truthy" Wikidata dump (2019-03-06) and thus includes URLs, dates etc; which are
not (directly) included in language model vocabularies. To ensure compatability between the vector
spaces, we limit ourselves to single word BigGraph entities. From these single word entities we pick
20, 000 common English words.6

2.2.2 GraphVite

Our second and third knowledge base-derived vector spaces were both obtained by the GraphVite
graph embedding algorithm [35]. We use the following pre-trained models; TransE [4] and ComplEx
[27], both of which are pre-trained on WikiData5m [31]. We use the same entities presented in §2.2.1.

2.3 Graph isomophism

An isomorphism from G1 = (V1, E1) to G2 = (V2, E2) is a bijection f : V1 → V2 such that any pair
of nodes a and b are joined by an edge iff f(a) and f(b) are joined by an edge. Near-isomorphism of
graphs refers to the situation where two graphs are not exactly isomorphic but exhibit strong structural
similarity. Note that if the nearest neighbor graphs of two embedding spaces are isomorphic, there
exists a vector space mapping with precision@1 of 1.0; see §2.7 for details on how to compute
precision@1. We will evaluate to what extent (the k-nearest neighbor graphs of the) LLM vector
spaces are isomorphic to the knowledge graph embeddings, by computing representational similarity
analysis scores, as well as by evaluating the precision@k of linear projections.

2.4 Linear projections

We present two distinct methods of mapping (or projecting) the vector space of an LLM to the vector
space of BigGraph (BG) and GraphVite (GV). Let MLM ∈ RV×de be a matrix of word embeddings
and MREF ∈ RV×dref a matrix of knowledge graph node embeddings, where V denotes the size of
the vocabulary, de the dimensionality of the word embeddings for a given language model and dref
refers to dimensionality of the knowledge graph embeddings, with dref = 200 for BG and dref = 512
for GV.

Our first approach is to use generalized Procrustes analysis [24] to align MLM with MREF. Since
this method enforces de = dref, we use PCA to reduce the dimensionality of MLM to the desired size.
The aim of Procrustes analysis is thus to find a transformation matrix Ω that minimizes the sum of
squared distance between each pair of word embeddings in MLM with MREF. This is achieved by
solving the following problem:

min
Ω=sA

||ΩMLM −MREF||2F

s ∈ R+, A ∈ Rde×de s.t. ATA = I

Where F denotes the Frobenius norm and we have that Ω can be computed using singular value
decomposition. In practice, we compute Ω using a subset of the full vocabulary; Vtrain.

5
https://torchbiggraph.readthedocs.io/en/latest/pretrained_embeddings.html

6
https://github.com/first20hours/google-10000-english/blob/master/20k.txt
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Secondly, we propose utilizing dref ridge regression models fi for i = 1, 2, .., dref, with one predictor
for each dimension of the reference vector space. Each predictor fi is trained on a subset of the full
vocabulary Vtrain and learns a function fi : R

de → {R}j , for j = 1, 2, .., dref, where j indicates
the j’th dimension of the reference vector space. The ridge regression models are re-trained for
each language model as de varies across these. Once trained, the models can be used to project the
remaining vocabulary Vtest. The methodology of using a separate ridge regression model for each
dimension of the reference/target vector space has previously been used to decode linguistic meaning
from brain activation [19].

2.5 Representational Similarity Analysis

To further gauge the similarity of the vector spaces induced by LLMs and knowledge graph embed-
dings, we present experiments using Representational Similarity Analysis (RSA) [6]. For a given
language model we consider the matrix MLM of word embeddings alongside the corresponding matrix
MREF. We compute the representational dissimilarity matrices (RDMs); i.e. for each word embedding
in each of the matrices we compute the euclidean distance to all other word embeddings within that
respective matrix, thus generating two V × V RDMs. Once the RDMs has been computed (denote
them r1 and r2), they are then compared used cosine similarity:

cos(r1, r2) =
rT1 r2√
rT1 r1r

2
2r2

A cosine similarity close to 1.0 will indicate MLM more closely resembles MREF. Note that we flatten
the RDMs in practice, to get a single value as a final metric. Representational similarity analysis is a
well-known method within neuroscience, see for instance [14].

2.6 Analogies

Finally, we carry out experiments using the WiQueen analogy dataset [12]. The dataset consists of
quadruples <w1, w2, w3, w4> of analogies, e.g. <Hefei,Anhui,Guiyang,Guizhou> which corresponds
to the analogy "Hefei is to Anhui, as Guiyang is to Guizhou.". We encode the individual words from
the analogies using each of the language models, thus obtaining a new quadruple <e1, e2, e3, e4> of
word embeddings for each analogy and language model. We then proceed to "solve" the analogy
mathematically by computing e1 − e2 + e3 = enew [10]. Finally, we compare enew to e4, by checking
if enew and e4 are nearest neighbors in the WiQueen vector space. Note how for an LLM vector space
to solve the analogy task (completely) is equivalent to being (nearest neighbor graph) isomorphic to
the underlying knowledge base [18].

2.7 Evaluation

For the experiments in which we induce a linear mapping Ω and f(MLM) between the vector spaces
of LLMs and BigGraph/GraphVite, we evaluate how close MLMΩ and f(MLM) is to MREF using
precision@k as our performance metric.7 That is, for each word w in Vtest, we perform k-nearest
neighbors of the corresponding word embedding contained within the projection of MLM in the
reference vector space. If w is found among the k-nearest neighbors in the reference vector space,
we say that the precision at k (p@k) is 100%. The final precision is then scored as an average over
all words in Vtest. Note that for all values of k this will either be a "hit" or a "miss" as there is
only one relevant item to retrieve. The full vocabulary V contains 20,000 words and is split into
Vtrain and Vtest at 80%/20% respectively, which makes a random retrieval baseline P@1 = 1

4000 . In
practice, our linear projections are found to be significantly more precise, which in turn reflects the
growing resemblance between the vector spaces of increasingly larger language models and the vector
spaces of the knowledge graph embeddings induced by the BigGraph/GraphVite graph embedding
algorithms. Note that for the experiment involving analogies, we do not use a reference vector space,
but instead evaluate the retrieval directly using the WiQueen data set.

For the representational similarity analysis, we simply use the cosine similarity between the RDM of
each language model and the RDM of BigGraph/GraphVite as the performance metric.

7 This is the de facto standard performance metric in the word vector space alignment literature [26].

4



3 Results

3.1 Procrustes Analysis

We report alignment precision (p@k) for k ∈ {1, 10, 20, 50}, with our main results depicted in
Figure 2. The plots show the convergence results, i.e. the relationship between language model
size and alignment precision. For all four model families, we see a consistent trend, where larger
language models lead to better alignments with the reference vector spaces. Overall, GPT appears to
have the most pronounced convergence properties. Note that the different graph embeddings heavily
influence the precision, but that the trend is similar across graph embedding systems. For our best
performing model GPT-3 (ada-002) projected onto the vector space of GraphVite (TransE) using
Procrustes analysis, we observe a P@50 beyond 60%, which in turn means that more than 6/10 words
are mapped to a relatively small neighborhood of 50 words out of a total of 4000 words in Vtest. This,
in our view, constitutes strong evidence that LLMs learn human-like concept organizations.

Why do we think so? There are two ways to see this: One is to contrast the performance figures
with a random baseline. If the language model representations were orthogonal to knowledge base
representations, the likelihood of perfect alignment (p@1) would be 1

4000 = 0.00025. The random
baseline p@50 is thus 0.0125. Our best model, in contrast, scores 0.67. Another way to view this is by
considering what a p@50 score of 0.67 really means. It means, simply, that two in three knowledge
base nodes are aligned with a neighborhood of 50 words around the correct answer. That is, for two
in three concepts, we can find a 50-word realization of this concept based on our linear projection
only. What is a 50-word cluster in a language model? Typically, 50 words corresponds to a small
set of taxonomic siblings and their morphological inflections. Such as {car, cars, car’s, automobile,
automobiles, vehicle, truck, trucks, Mercedes, taxi, cab, . . .}. So a p@50 of 0.67 basically means
that we can take a knowledge base node and ask a language model (in an arbitrary language) for its
realization, and most of the time, we will get a fine-grained semantic class back.

3.2 Ridge Regression

As a secondary projection method we train dref ridge regression predictors, i.e. one for each dimension
of the reference vector space. These predictors are then used to project the remaining vocabulary of
word embeddings Vtest for a given language model to the reference vector space. After this, retrieval
can be conducted. The retrieval performance for k = {1, 10, 20, 50} and all four model families can
be found in Figure 3. The results share some characteristics with those presented in §3.1, but in some
cases performance drops for the families’ largest models (e.g. OPT-6.7B and Ada-002), presumably
because of poor signal-to-noise ratios in the extra dimensions, which, in Procrustes Analysis, are
removed through principal component analysis.

3.3 Analogies

Figure 4 shows the results of the four series of language models on the WiQueen data set. Again,
we observe a consistent upward trend for all four model families. Note that this experiment more
closely resembles a real-world task for a language model, as analogies play a central role in human
commonsense reasoning [28]. The trends shown in Figure 4 are in tune with those presented in
§3.1-3.2 and thus expands the evidence to support our arguments to more realistic use cases of
language models.

3.4 Representational Similarity Analysis

The results of the representational similarity analysis for all four language model families can be
found in the supplementary material. The partial convergence results are similar to those obtained
with linear projection.
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Figure 2: Plot labels: k = 1, k = 10, k = 20, k = 50. Projection onto the
vector space of BigGraph (1st row), ComplEx (2nd row) and TransE (3rd row) using generalized
Procrustes analysis and retrieval performance p@k at k = {1, 10, 20, 50} for 4 language model
families. We see results up to p@50∼0.7, and strong, positive convergence (almost) across the board.
Baseline p@50 is 0.0125.

4 Analysis

4.1 LLMs and graph embeddings

We first analyzed the robustness of our partial convergence results across various settings8, fitting a
linear trend line y = mx + b to each convergence line using linear least squares regression. We
saw that TransE and BigGraph had more convergence results than ComplEx: Whereas 0.969 of the
convergence plots had positive slopes for TransE and BigGraph, only 0.875 of the convergence plots
had positive slopes for ComplEx. We also saw that OPT and Pythia had the most robust convergence
properties of the LLMs (with 1.0 of the convergence plots having positive slopes), compared to about
0.80 for GPT and 0.90 for BERT. Furthermore, we observe that when utilizing ridge regression as the
projection method, the retrieval performance experiences a significant decline at the largest model in
some cases. The largest models also correspond to those with the highest dimensional embeddings,
which may suggest that this projection method encounters difficulties when the dimensionality of the
input embeddings exceeds d = 2048.

We notice the significantly large share of converge lines having positive slopes. In almost
all of our experiments, LLMs become more and more human-like in their concept-organization.

8 96 total settings: 4 values of k, 3 reference vector spaces, 4 LM families and 2 projection methods.
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Figure 3: Plot labels: k = 1, k = 10, k = 20, k = 50. Projection onto the vector
space of BigGraph (1st row), ComplEx (2nd row) and TransE (3rd row) using ridge regression and
retrieval performance p@k at k = {1, 10, 20, 50} for 4 language model families. We see partial
convergence, except for the GPT-3 results.
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Figure 4: Plot labels: k = 1, k = 10, k = 20, k = 50. The figure presents the
results of how well the language models solve the analogies from the WiQueen dataset and retrieve
the correct the word. We report retrieval performance p@k at k = {1, 10, 20, 50} for 4 language
model families.

4.2 Polysemy and semantic category

We investigate the effect of polysemy and semantic category of the target words. Previous work
on bilingual dictionary induction from cross-lingual vector space projections found high variance
in retrieval scores across similar dimensions [13, 16]. Table 2 provides an overview of our results.
Polysemy refers to the level of lexical ambiguity for target words, distinguishing between words
with one, two to three and four or more distinct meanings. We obtain polysemy counts for our
target words (see §2.2.1) from NLTK’s WordNet interface [3]. For semantic categories, we compare
our experiments with common (frequent) words (see §2.2.1) to using only places (geographic
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locations/places etc.) or names (anthroponyms). The names were found in 9 and the geographic
locations were found in. 10

Polysemy To investigate potential sources of error, we present statistics for three bins of polysemy
counts in Table 2. Our findings suggests that performance drops as the polysemy counts grows to
more than four. This is intuitive because words with multiple meaning can be mapped to vastly
different positions in the induced vector space, which might lead to a performance drop when retrieval
is carried out in the reference vector space. These findings align well with those presented in [16],
particularly that non-polysemous words tend to yield higher precision scores, but also that for some
models (e.g. GPT-2), using words with two to three meanings results in better performance - these
observations remain to be investigated in future work.

Semantic category Furthermore, we investigate the impact of semantic categories. We repeat the
experiments across all settings using both the vocabulary of anthroponyms and world cities. The
statistics presented in Table 2 suggests that such semantic categories has an noticeable impact on
performance. Specifically that anthroponyms have a relatively low max slope coefficient, suggesting
slow convergence properties while the language model size grows. In addition to this, we observe
that the places (i.e. world cities) has a substantially higher positive rate, than other categories
considered, which indicates that large language models might have better internal representations of
some concepts compared to others.

Polysemy Semantic category
Variable % positive Max coeff. SD Variable % positive Max coeff. SD
1
2-3
4+

0.812
0.792
0.771

0.172
0.145
0.129

0.038
0.032
0.028

Common
Places
Names

0.938
1.0
0.917

0.151
0.105
0.061

0.029
0.020
0.013

Table 2: The effect of polysemy and word classes on the convergence trend. Common refer to
common english words (i.e. those presented in §2.2.1).

Models Polysemy BigGraph

P@50
TransE

P@50
ComplEx

P@50
Semantic
category

BigGraph

P@50
TransE

P@50
ComplEx

P@50

OPT-6.7b
1
2-3
4+

0.595
0.490
0.385

0.748
0.680
0.610

0.590
0.483
0.435

Common
Places
Names

0.203
0.299
0.210

0.529
0.382
0.264

0.444
0.325
0.222

ADA-002
1
2-3
4+

0.610
0.520
0.423

0.813
0.760
0.675

0.618
0.528
0.450

Common
Places
Names

0.276
0.373
0.285

0.651
0.465
0.329

0.478
0.367
0.250

Pythia-6.9b
1
2-3
4+

0.495
0.373
0.323

0.538
0.488
0.348

0.478
0.410
0.310

Common
Places
Names

0.126
0.190
0.145

0.235
0.204
0.150

0.228
0.188
0.139

BERT-BASE
1
2-3
4+

0.533
0.425
0.320

0.785
0.688
0.538

0.578
0.505
0.448

Common
Places
Names

0.239
0.350
0.259

0.508
0.359
0.228

0.393
0.322
0.198

Table 3: Effect of polysemy and semantic category on the largest model from each model family.
Procrustes is used as the projection method. Note that a low level of lexical ambiguity leads to better
performance and that the best performing semantic category varies across the reference vector spaces.

9 US common names
10 World cities
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4.3 Analogies

Ushio et al. [28] investigated how well LLMs such as GPT are able to solve analogies. They obtained
the best results using GPT. This aligns well with our finding that GPT-{2,3} has solid convergence
properties and obtained the overall best results; see Figure 4.

5 Discussion

We have seen that language models partially converge on human-like concept organizations. How
surprising is this? Given the contentious debate around whether large language models ‘understand’
[17], including whether they induce models of knowledge, our result is important. Large language
models do not only learn to use patterns in context, but as a result, they induce compressed models
of knowledge. In retrospect, it is also clear, however, that some results, e.g., the near-isomorphism
of word vector spaces across languages [30] or the near-isomorphism with representations from
computer vision [16], already pointed in this direction. Language models for different languages
likely learn similar concept geometries, because they induce models of (our knowledge of) the world.
Language and computer vision models, in a similar way, share one reference, namely, the world we
live in, and what we know about it.

5.1 Practical implications

There has already been considerable work on grounding language models in knowledge bases. This
work often has focused on algorithms for joint language and graph embedding [33]. Our work
suggests that similar results can be obtained with ‘retro-fitting´ [11], i.e., fine-tuning the language
models to improve existing similarities. See, for example, the approach taken by [12]. Our results
also suggest, however, that in the limit, perhaps grounding in knowledge bases will become redundant.
The systematicity of human-like conceptual organization in language models seemingly facilitates
out-of-distribution capacities, e.g., enabling analogical inference.

5.2 Philosophical implications

Our results clearly show that language models induce inferential semantics [23, 20]. This, we believe,
is an important contribution to the debate about the capacities of large language models [17]. Our
results also, however, question the divide between syntax and semantics [8]. Semantics, in a way,
seems to fall out of syntax. Clearly, our results have no bearing on intentionality (the aboutness of
mental tokens), but they do suggest one way syntactic tokens acquire semantics.

6 Limitations

We have experimented with three families of autoregressive language models and one non-
autoregressive family. We have compared the word vector spaces induced by such models with three
vector spaces induced by graph embedding algorithms over large knowledge bases. All our experi-
ments have been limited to English. This, of course, is a major limitation. Language characteristics
may effect the quality of word vector spaces, and morpho-syntactic properties may influence how
corpora and knowledge bases align. Finally, while we do error analysis over polysemy and semantic
categories, we acknowledge that the set of variables that covary with performance, is probably much
larger.

7 Conclusion

This paper weighs in on the debate around understanding in large language models and show how
large language models converge toward human-like concept organization, building implicit models of
the world (as we know it). Over 220 experiments, we show how language models partially converge
toward human-like concept organization, with particularly strong similarities in how monosemous
and common words are encoded. Our observations have important practical and philosophical
implications, providing a possible explanation for the out-of-distribution capacities of large language
models and making an important contribution to the debate above.
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8 Computational requirements

A Google Colab Pro+ subscription or similar (≥ 52GB RAM) is required in order to reproduce our
experiments. We used an NVIDIA V100 and A100 Tensor Core GPU, provided by Google Colab.
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