Under review as a conference paper at ICLR 2026

ARMOR: HIGH-PERFORMANCE SEMI-STRUCTURED
PRUNING VIA ADAPTIVE MATRIX FACTORIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models (LLMs) present significant deployment challenges due to
their immense computational and memory requirements. While semi-structured
pruning, particularly 2:4 sparsity, offers a path to practical hardware acceler-
ation, existing methods often incur substantial performance degradation. To
bridge this gap, we introduce ARMOR: (Adaptive Representation with Matrix-
factORization), a novel one-shot post-training pruning algorithm. Instead of di-
rectly pruning weights, ARMOR factorizes each weight matrix into a 2:4 sparse
core wrapped by two low-overhead, block diagonal matrices. These wrappers act
as efficient pre- and post-transformation error correctors, offering greater flexibil-
ity to preserve model quality compared to conventional 2:4 pruning techniques.
The sparse core and block diagonal wrappers are chosen through a block coor-
dinate descent algorithm that minimizes a layer-wise proxy loss. We theoreti-
cally prove this optimization is guaranteed to converge to a solution with a proxy
loss less than or equal to state-of-the-art pruning algorithms. Experiments on
Llama (Touvron et al., 2023; Dubey et al., 2024) and Qwen (Yang et al., 2025)
model families demonstrate that ARMOR consistently and significantly outper-
forms state-of-the-art 2:4 pruning methods across a wide range of downstream
tasks and perplexity evaluations. ARMOR achieves this superior performance
while retaining the inference speedups and substantial memory usage reductions
of 2:4 pruning, establishing a more effective trade-off between model compression
and task accuracy.

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated remarkable capabilities (Park et al., 2023;
Huang & Yang, 2025), yet their immense computational and memory requirements pose significant
barriers to practical deployment. As a result, techniques for reducing model sizes and computa-
tional costs while retaining performance are of significant interest for the research community. A
particular area of focus are one-shot post training compression techniques, a highly efficient model
compression regime where already trained models are compressed in a single pass without itera-
tive fine-tuning. Pruning, the removal of model parameters is a particularly compelling avenue of
compression as it offers a direct path to inference acceleration via dedicated hardware support for
specific sparsity patterns (Kwon et al., 2022), and its benefits can be compounded with orthogonal
methods like quantization (Frantar et al., 2022; Lin et al., 2024; Li et al., 2025a). However, a critical
trade-off plagues existing pruning techniques. Methods capable of delivering tangible inference ac-
celeration do so by sacrificing significant model accuracy, while the most accurate techniques offer
largely theoretical speedups. Bridging this gap is the central focus of our work.

Pruning algorithms can be broadly divided into three categories: structured, unstructured, and semi-
structured pruning. Structured pruning removes entire weight structures, such as rows or columns of
weight matrices (Ashkboos et al., 2024), attention heads (Ma et al., 2023), or even full layers (Men
et al., 2024). This coarse-grained approach is highly compatible with existing hardware and soft-
ware, as it results in smaller, dense matrices that can be processed efficiently by standard libraries,
leading to direct improvements in inference speed (Ma et al., 2023). However, this rigidity comes
at a cost; by removing large, contiguous blocks, structured pruning can lead to a significant degra-
dation in model accuracy and often has a lower limit on the achievable sparsity before performance
collapses (Ashkboos et al., 2024).

Under review as a conference paper at ICLR 2026

Compressed Weight I/f/

Naive Approach

2:4 Sparse Core Pruned LLM
e
Individual a
Original LLM Qriginal Weights £
W' o M)
— W ARMOR Factorization
Block Diagonal 2:4 Sparse Core Block Diagonal Pruned LLM

0,
A W' o M)

Figure 1: Illustration of proposed ARMOR factorization. For a given LLM, each weight matrix W
is pruned individually. Instead of naively pruning the weight matrix, ARMOR wraps the sparse core
with a pair of block diagonal matrices and uses a unique optimization algorithm to find the optimal
structured pruning mask. M € {0, 1}9eut*din represents the 2:4 binary mask.

At the other end of the spectrum, unstructured pruning offers the highest flexibility by removing in-
dividual weights from any part of the model. Leading unstructured pruning algorithms have shown
that it is possible to remove up to 50% of the weights from an LLM with minimal loss in per-
formance (Frantar & Alistarh, 2023). However, the resulting irregular, sparse matrices disrupt the
parallel processing capabilities of modern hardware like GPUs, which are optimized for dense ma-
trix operations. Thus it is difficult to translate the theoretical model size reductions into practical
inference speedups is difficult (Xia et al., 2023).

To bridge the gap between hardware efficiency and model performance, semi-structured pruning
has emerged as a compelling compromise. A popular variant is N:M sparsity, which enforces a
regular pattern by ensuring that within any contiguous block of M weights, only N weights are non-
zero. This regularity is key, as it can be directly accelerated by specialized hardware. For instance,
NVIDIA’s Ampere and subsequent GPU architectures provide native support for 2:4 semi-structured
sparsity, which can theoretically double the throughput of matrix operations (Hu et al., 2024; Mishra
et al., 2021). However, the constraint of a fixed pruning pattern within each small block restricts the
algorithm’s ability to retain the most critical weights, leading to a significantly increased drop in
performance. For example, applying a state-of-the-art 2:4 pruning method to Llama-7B increases
Wikitext2 perplexity by nearly 59% over its 50% unstructured counterpart, creating an undesirable
choice between theoretical efficiency and practical accuracy (Sun et al., 2024).

In this work, we seek to close this performance gap by introducing ARMOR: (Adaptive
Representation with Matrix-factORization), an theoretically grounded one-shot model pruning al-
gorithm. We reframe semi-structured pruning as a matrix factorization problem. Instead of directly
pruning weights, our key insight is to factor each weight matrix into a constrained sparse core that
adheres to the 2:4 hardware pattern, pre- and post-multiplied by lightweight block diagonal matri-
ces, this factorization is illustrated in Figure 1. These block diagonal matrices, which are highly
parameter-efficient due to their sparse structure (containing only O(N) parameters compared to
O(N?) for a dense matrix), can be multiplied with activations efficiently on modern hardware. They
act as learned, low-overhead linear transformations that rotate the activation and weight spaces into
a basis where the 2:4 pruning constraint is less lossy, providing enhanced flexibility and preserving
model quality more effectively than naive 2:4 pruning algorithms.

Through extensive experiments on Llama (Dubey et al., 2024; Touvron et al., 2023) and Qwen (Yang
et al., 2025) family models, we show that ARMOR consistently and significantly outperforms exist-
ing 2:4 pruning methods on both perplexity and downstream tasks. For example, on Llama-2-13B,
ARMOR reduces the perplexity gap between the 2:4 pruned model and the dense original by al-
most 50%. We show that these accuracy gains are achieved while preserving the practical inference
speedups and memory reduction inherent to native 2:4 sparsity. Our work suggests that rethink-
ing the fundamental representation of weights, rather than simply removing them, is a promising
direction for future hardware-software co-design in efficient deep learning.

Under review as a conference paper at ICLR 2026

1.1 RELATED WORK

Existing one-shot unstructured/semi-structured pruning methods largely formulate the compressed
weight matrix W as the element-wise product of a dense matrix W’ and a binary mask M, where
W = W' ® M. Research within this paradigm focuses on two primary challenges: identifying
an optimal mask M (importance scoring) and updating the unpruned weights in W’ to compensate
for the removed connections. The simplest approaches are weight-update-free methods like Wanda,
which fix the unpruned weights to their original values (W’ = W) and focus on finding a good mask
M through element-wise metrics (Sun et al., 2024; Liu et al., 2025; Liu et al.; Dong et al., 2024; Das
et al., 2023; Zhang et al., 2024).

In contrast, more complex weight-update methods such as SparseGPT (Frantar & Alistarh, 2023)
aim for higher accuracy by iteratively pruning weights while simultaneously adjusting the remain-
ing ones to minimize a proxy reconstruction loss, often based on a Hessian sketch. While effec-
tive, this introduces significant computational overhead, such as the costly inversion of the Hessian
sketch matrix. Both methods suffer significantly increased performance loss when applied to 2:4
semi-structured pruning compared with their unstructured counterparts. This has motivated explo-
rations into alternative pruning formulations beyond simple element-wise masking. These include
factorization-based methods like DSF (BoZza & Macko, 2024), which represents the weight matrix
as a product of two sparse matrices, and decomposition-based methods like WRP (Tan et al., 2024),
which represents it as a sum of a semi-structured and an unstructured sparse matrix.

However, these alternative approaches face significant practical barriers that prevent theoretical
gains from translating into real-world inference efficiency. DSF, for instance, is incompatible with
hardware-accelerated 2:4 semi-structured sparsity, as the product of two 2:4 matrices yields no com-
pression over a dense equivalent. Similarly, WRP’s performance is bottlenecked by its reliance on
a highly unstructured sparse matrix component, for which no efficient matrix-multiplication kernels
exist. Consequently, a gap remains between achieving high compression rates and realizing tangible
speedups on modern hardware.

2 PROBLEM STATEMENT

To remain computationally tractable, one-shot compression pruning methods regularly adopt a layer-
by-layer framework. For a given linear layer with weight matrix W € Rdut*din the objective is
to find a compressed representation W that minimizes a data-aware proxy loss, Ly, X(W) This
loss quantifies the approximation error using a small calibration dataset X7 € R™*%n_ The exact
formulation of this proxy loss is a key design choice and varies across different pruning algorithms,
we define our proxy loss in Section 3.2.

We constrain W to leverage a 2:4 semi-structured sparse component to guarantee hardware acceler-
ation. This requires that the underlying binary mask M € {0, 1}dut*din defining this component’s
pattern has exactly two non-zero entries in every group of four consecutive columns per row. For-
mally we express this constraint as HMi’[k] H 0 =2, Vie [dout], k € [din/4] Where we adopt
M; (k) = M 4(k—1)+1:4% as shorthand. The general layer-wise optimization problem is therefore:

)

min _ Lwx(W) st [[Mypll,=2 Vi€ [dowl,k € [din/4]
params of W

Regardless of optimization algorithm, this layer-wise approach is inherently one-shot because the
compression is completed in a single pass over the network’s layers without any global retraining.

3 METHODS

In this section we introduce the ARMOR pruning process. Section 3.1 introduces the ARMOR
factorization and notation. In Section 3.2 we discuss the proxy loss optimization objective and
initialization. In Section 3.3 we introduce the ARMOR optimization algorithm to optimize the
ARMOR factorization. This algorithm consists of two alternating steps, the continuous parameter
update step, Section 3.3.1, and the sparse core update step, Section 3.3.2. Finally we introduce the
main theoretical result in 3.4.

Under review as a conference paper at ICLR 2026

3.1 ARMOR MATRIX FACTORIZATION

out X d

For each layer in an LLM, let the original weight matrix be W € R¢ i Qur approach seeks to
find a compressed matrix, W € R%ut*din with the following factorization:

W(A,B,W' M):=A- (W ©M)-B, (1)

where the goal is to optimize for the parameters A, B, W', and M. Specifically, W’ € RdoutXdin
is a dense matrix representing transformed weights, and M € {0, 1}%ut*din ig a binary mask that
imposes sparsity through element-wise multiplication (©). The matrices A € RutXdout and B €
Rdinxdin gre block-diagonal. The block size, dpjock, iS @ chosen hyperparameter, selected such that
it divides both do,; and d;,,. We refer to the set of all learnable parameters as ¢ = (A, B, W', M).

The key to ARMOR is the diagonal matrix wrappers, A and B, that surround the sparse “core”
W' ® M. Compared to the naive approach of directly pruning, these diagonal matrix wrappers
offer additional flexibility compared with the naive sparse-core-only approach, while having low
overhead and existing implementations on hardware for storage and inference. We can store A and
B as tensors of size (dout /dblock) X dblock X dblock and (din /dbiock) X dblock X dblock respectively.
Matrix multiplication at inference time can be performed as batched matrix multiplication. As a
result the overhead of storing A and B and performing inference grows with O((dout + din) dblock),
which is sublinear to the number of original parameters in the layer, dqu;din-

Notation We denote the individual blocks of A and B as A() ¢ RvloexXdbiock gnd BU) ¢
RvrockXdviock je: 4 = diag (A, A®), ..., Aldew/dvioa)) and likewise for B. More gener-
ally for any matrix ¢ € Ruw*din we denote the dpjock X dplock matrix blocks as Cd) | je

C) = C(i—l)dblock-'l-liidb]ock7(j—1)dblock+1:jdh10€k Vi € [dout/dblock]v J € [din/dblock}. A de-
tailed illustration of this notation can be found in appendix A.

3.2 OPTIMIZATION OBJECTIVE
We optimize 1474 by minimizing the NoWag layerwise proxy loss (Liu et al., 2025).
Lwx(0) = IW = WG augxxry = 2 > (Wi = Wig)?1 X513, 2)
i g

where W € RdutXdin jg the row and column normalized version of TW:

- 1

We adopt the NoWag objective function due to its data-aware nature and decomposable structure.
The diag (X X T) term weights the squared Frobenius norm by the magnitude of the corresponding
input activations, which focuses the optimization on preserving weights that are most influential for
the given calibration data. Furthermore, compared to Hessian sketch based methods, this objective
function requires less calibration data.

A key advantage of this objective is that the loss can be decomposed into independent element-
wise subproblems. While ARMOR factorization’s wrapper matrices prevent a direct element-wise
optimization, this structure is still critical as it allows for the problem to be broken down into in-
dependent block-level subproblems, which is a cornerstone of our greedy sparse core optimization
strategy. After optimizing, we scale W back by denormalizing, which is performed by pre-scaling
the rows and columns of A and B by (1) and r(?) respectively before inference.

3.3 OPTIMIZATION ALGORITHM

To optimize the ARMOR factorization, we utilize a block coordinate descent (Wright, 2015) al-
gorithm that alternates between updating the continuous parameters A, B, W’ and the sparse core
W' ® M. These alternating updates are performed for nje,s iterations. The overall algorithm is
outlined in Algorithm 1. A detailed technical description of the optimization algorithm can be found
in appendix B.

Under review as a conference paper at ICLR 2026

Algorithm 1 ARMOR Optimization Algorithm

Require: Original weight W, calibration data X, tolerance e.
Ensure: Optimized factorization parameters § = {A, B, W', M}.
o > Initialization
: W < Normalize(WW) > Using row and column normalization from NoWag
(0)o « Initialize(W, X) > Initialize according to Eq 3
fort=1,2,3, ..., Niters do L
(A)ta (B)ta (W/)t\cont — ContiHUOUSUpdate((A)tfla (B)tflv (Wl)tfla (M)tflv Wa X)
(W), (M) < SparseCoreUpdate((A)¢, (B)¢, (W')¢[cont (M)y—1, W, X)
end for
return A;, By, W/, M,

PR AR N

ARMOR Factorization

Block Diagonal 2:4 Sparse Core Block Diagonal Possible Masks Optimal Values

A WoMm B

Select

-0.31
Minimal
161 2.92

Block Wise Subproblem
AD W' o M) BY

-]
N
S

Figure 2: An illustration of the sparse core update step of the ARMOR optimization algorithm

Initialization We initialize our factorization (0)g = ((A)o, (B)o, (W")o, (M)o) as:

(A)O = Iv (B)O = Iv (W,)O = Wv
(Mij)o =T (Wi € topy (Wiq)) Vi € [dout), j € [din], (3)

where ¢ = [j/4] and I denotes the identity matrix of appropriate size. This initialization is chosen

as it is the optimal solution to equation 2 if W only consisted of the naive sparse core, and is
equivalent to the pruning result of NoWag-P pruning algorithm (Liu et al., 2025).

3.3.1 UPDATING OF CONTINUOUS PARAMETERS

This step uses sequential gradient descent to update A, B, and W' sequentially, with the learning
rate determined via local S-smoothness. Algorithm 2 depicts a single step in detail. In practice, we
replace these sequential steps with a joint Adam (Kingma & Ba, 2014) optimization that updates
A, B, and W’ simultaneously, a choice driven primarily by efficiency. This approach requires only
one forward/backward pass per iteration and eliminates the need to recalculate local 3-smoothness
at each step. While Adam introduces minor additional memory overhead, this is negligible since
we optimize each layer independently. We present the sequential gradient descent version here to
provide strict theoretical guarantees of convergence. In practice, however, joint Adam optimization
yields no significant differences compared to sequential gradient descent.

3.3.2 UPDATING THE SPARSE CORE

This step updates the sparse core W’ @ M to reduce the proxy loss. To avoid the exponential large
search space, we adopt a greedy approach, where we select and update a fraction of the elements of
the sparse core to reduce the proxy loss. An illustration of the algorithm is depicted in Figure 2 and
a mathematical description can be found in Appendix B.1. Below we elaborate the technical novelty
and efficiency of the procedure.

Under review as a conference paper at ICLR 2026

Leveraging the 2:4 Pattern If we freeze all of the sparse core beyond a single consecutive sparse
group, finding the optimal values for this sparse group can be performed as follows. Since there
are only (3) = 6 possible mask choices for a group, it is computationally tractable to consider each
possible mask. For a possible mask choice, finding the proxy loss minimizing values for the 2 non-
zero elements of the group is a least squares problem. Thus we can solve the least squares for all 6
possible mask choices and select the one with the smallest minimal proxy loss.

Leveraging the Elementwise Property of the Proxy Loss Updating a single 4 element sparse
group usually has minimal impact on the layerwise proxy loss, since 4 elements account for less than
0.2 x 1076 of the parameters of a typical LLM layer. To enable updates of more than 4 elements at a
time, we leverage the element wise property of the proxy loss. As discussed previously, this allows
us to break the optimization problem into broken independent block-level subproblems:

Lwx(0) =Y 67 (009)

i=1 j=1
2

=¥ HW@J) _ AW (W/(m') o M(m)) B(j)H)

e Ty(G)]
=11 F,diag(XXT)

where i € [dout/dblock), J € [din/dblock]. Thus we can optimize each block, (W49 @ M (#3)),
independently through the greedy least squares process outlined above. This allows for parallel
updates of (dindout)/ dzbloCk groups at a time, which for a standard LLM translates to on the order of
10® more elements updated at once.

Selecting The Sparse Group We select the sparse groups randomly, with their selection probabil-
ities weighted by their proxy loss gradient. For block (i, j), the probability pg,’j ,Z) of selecting group
i, kis:

(4,9)

Pir gy V i' € [dboc], K € [dblock/4].

V i ,u'f(i’j)
((WoM)EDEX)i’,[k] L

Such a selection heuristic results in more focus on the important sparse groups through proxy loss
gradient weighting. Additionally, the randomness helps prevent selecting the same group over and
over again. Empirically we observer that this leads to faster and better convergence of the proxy
loss, and thus better overall LLM performance retention. An ablation of this selection heuristic can
be found in Appendix E.1.

3.4 THEORETICAL RESULTS

In this section, we establish the following theorem to show that our algorithm guarantees conver-
gence

Theorem 3.1. (Convergence of the ARMOR optimization algorithm). The sequence
{Lw,x((8):) }1>0 converges and Ly, x ((0);) < Lw x((0)o) ¥ t>0.

The proof can be found in Appendix C. Since ARMOR factorization initialization is equivalent to
NoWag-P, Ly x ((0)o) is the proxy loss of NoWag-P. Thus ARMOR will perform at least equiva-
lently to NoWag-P a SOTA pruning algorithm, in terms of proxy loss.

4 RESULTS

Models and Experimental Setup We demonstrate the efficacy of our pruning method on two
contemporary model families: Qwen 2.5 (7B, 14B, 32B, and 72B) and Qwen 3 (8B and 14B) (Yang
et al., 2025). Our investigation targets foundational base models of 7B parameters and larger. This
focus on base models allows for a direct assessment of our algorithm’s effect on the core knowledge
acquired during pre-training, removing confounding variables introduced by instruction tuning or
other post-training modifications. Furthermore, we concentrate on dense architectures, excluding
Mixture-of-Experts (MoE) variants, as recent work suggests that MoE models benefit from special-
ized pruning strategies (Xie et al., 2024; Li et al., 2025b). For all pruning experiments, we config-
ured the block size, dpiock, to 128 and executed the proxy loss optimization for 20,000 iterations.
Additional implementation details are provided in Appendix G.

Under review as a conference paper at ICLR 2026

Task Accuracy (%) (1)
Method Sparsity MMLU GSMS8K BBH GPQA ARC-C Wino Hella
Dense (2.5-7B) 0 74.19 82.33 69.16 33.03 59.55 76.09 60.03
Dense (2.5-14B) 0 79.8 88.02 75.18 38.17 64.51 80.9 63.46
Dense (2.5-32B) 0 83.24 88.78 81.72 38.84 66.30 81.22 65.12
Dense (2.5-72B) 0 86.06 89.54 85.01 42.63 68.52 82.16 67.63
SparseGPT (2.5-7B) 2:4 56.91 36.69 46.31 29.69 43.43 68.35 47.04
Wanda (2.5-7B) 2:4 52.21 31.00 4139 2545 37.80 63.37 43.81
NoWag-P (2.5-7B) 2:4 53.51 28.28 39.98 27.23 39.16 64.01 44.33
ARMOR (2.5-7B) 2:4+4.95% 65.56 53.28 5511 3147 48.63 70.96 51.67
SparseGPT (2.5-14B) 2:4 64.21 46.55 56.44 3192 48.21 71.51 49.73
Wanda (2.5-14B) 2:4 59.98 49.36 54.51 29.91 46.16 69.38 48.24
NoWag-P (2.5-14B) 2:4 58.45 45.87 52.1 30.36 43.77 68.67 48.42
ARMOR (2.5-14B) 2:4+4.17% 70.55 67.17 67.24 33.48 53.75 74.82 55.18
SparseGPT (2.5-32B) 2:4 75.26 66.03 71.31 30.36 57.08 79.01 55.73
Wanda (2.5-32B) 2:4 75.45 72.93 70.17 35.27 55.72 77.82 55.71
NoWag-P (2.5-32B) 2:4 74.89 68.69 69.53 27.01 55.29 76.64 55.69
ARMOR (2.5-32B) 2:4+3.44% 78.18 78.77 76.56 39.51 60.15 79.32 59.78
SparseGPT (2.5-72B) 2:4 78.71 72.27 75.31 27.46 62.29 80.03 58.71
Wanda (2.5-72B) 2:4 79.61 75.66 75.96 23.88 62.37 80.19 5943
NoWag-P (2.5-72B) 2:4 78.93 75.13 76.04 28.35 60.84 79.08 59.31
ARMOR (2.5-72B) 2:4+2.4% 82.40 82.11 79.42 40.40 63.40 80.90 62.04

Table 1: Results of Qwen-2.5 7B/14B/32B/72B. The additional 0% for ARMOR pruned models
represent the relative overhead of the block diagonal matricies. ARC-C is short for ARC-Challenge,
Wino is short for WinoGrande, Hella is short for HellaSwag. (2.5-7B) denotes Qwen 2.5-7B, (2.5-
14B) denotes Qwen 2.5-14B, etc.

Evaluation To comprehensively assess performance degradation, we employed a two-pronged
evaluation strategy. First, to measure practical performance on downstream tasks, we evaluated the
pruned Qwen models on a suite of seven industry-standard benchmarks using the LM Eval Harness
(Gao et al., 2024). These benchmarks cover a range of capabilities, including commonsense and
complex reasoning, mathematical problem-solving, and world knowledge. A detailed description of
each benchmark is available in Appendix F. Second, to ensure comparability with the broader model
compression literature, which often relies on perplexity metrics, we conducted an additional set of
experiments. For this, we pruned models from the Llama-2 (7B, 13B, and 70B) (Touvron et al.,
2023) and Llama-3 (8B and 70B) (Dubey et al., 2024) families. We then evaluated their perplexity
on the test split of Wikitext2 (Merity et al., 2016) and a subset of the C4 validation split (Dodge
et al., 2021), following standard evaluation protocols in the field.

Baselines We compare ARMOR against 3 leading pruning methods, SparseGPT (Frantar & Alis-
tarh, 2023), Wanda (Sun et al., 2024), NoWag-P (Liu et al., 2025). Using NoWag-P is of particular
interest, since as discussed previously, ARMOR uses the same proxy loss and is initalized at NoWag-
P. Therefore comparing ARMOR against NoWag-P servers as an ablation to evaluate the empirical
effectiveness of the ARMOR factorization and optimization algorithm.

4.1 TASK BASED EVALUATIONS

Results of the task based evaluations on Qwen 2.5 (7B/14B/32B/72B) and Qwen 3 (8B/14B) models
are shown in Tables 1 and 2 respectively. Across all 7 tasks and all models evaluated, ARMOR
consistently and significantly outperforms the state-of-the-art pruning methods. For example, on
GPQA with the Qwen 2.5-32B model, ARMOR achieves a score of 39.51, outperforming even the
dense model’s performance (38.84) and vastly exceeding the next best pruning method, SparseGPT,
which scored a 30.36. The performance gains are especially pronounced in reasoning or domain
expertise heavy tasks like GSM8K, BBH, GQPA, demonstrating that our factorization approach is

Under review as a conference paper at ICLR 2026

Task Accuracy (%) (1)
Method Sparsity MMLU GSM8K BBH GPQA ARC-C Wino Hella
Dense (3-8B) 0 76.82 84.91 7742 42.86 63.65 76.87 5892
Dense (3-14B) 0 80.47 84.0 78.50 39.29 66.64 79.08 61.81
SparseGPT (3-8B) 2:4 55.77 33.36 5296 32.14 4454 6646 4474
Wanda (3-8B) 2:4 55.75 27.45 46.32 2946 41.55 6275 4292
NoWag-P (3-8B) 2:4 54.1 28.28 43.37 28.57 40.02 6148 4278
Ours (3-8B) 2:4+5.03% 66.22 50.8 60.13 33.93 50.34 68.59 49.55
SparseGPT (3-14B) 2:4 64.73 48.22 61.5 279 53.58 7127 50.22
Wanda (3-14B) 2:4 62.93 52.16 57.53 29.02 50.51 69.14 48.61
NoWag-P (3-14B) 2:4 61.69 46.63 56.11 27.46 48.89 6827 4842
Ours (3-14B) 2:4+3.89% 71.43 63.38 68.28 29.91 56.31 7435 53.77

Table 2: Results of Qwen-3 8B/14B Base. Same setup as the Qwen 2.5 results, Once again (3-8B)
denotes Qwen-3 8B etc

Wikitext 2 ({) C4(})
Method Sparsity | 2-7B 2-13B 2-70B 3-8B 3-70B | 2-7B 2-13B 2-70B 3-8B 3-70B
Dense 0% 5.12 4.57 3.12 5.54 2.58 6.63 6.05 4.97 7.10 5.78
SparseGPT 2:4 10.16 8.39 5.39 14.18 8.65 11.98 10.22 7.20 13.88 9.27
Wanda 2:4 11.35 8.36 5.20 22.42 8.29 13.80 10.96 7.19 21.63 9.63
NoWag-P 2:4 11.14 8.28 5.17 24.0 7.52 1391 11.05 7.23 235 9.18
ARMOR 2:4+0 7.21 6.37 4.55 10.10 5.95 9.36 8.59 6.44 11.22 7.50

Table 3: Wikitext 2 and C4 perplexities on Llama-2 7B/13B/70B and Llama-3 8B/70B. Perplexity
evaluations performed at 4096 and 8192 context length for Llama-2 and Llama-3 models respec-
tively. o denotes the relative overhead of the block diagonal matricies, which is 4.94%, 3.95%,
2.42% for the 7B, 13B, and 70B parameter models respectively. Following established notation 2-
7B denotes Llama-2 7B etc

more effective at preserving the complex capabilities of the model compared to simply removing
weights.

4.2 PERPLEXITY BASED EVALUATIONS

Results of perplexity based evaluations on Llama-2 (7B/13B/70B) and Llama-3 (8B/70B) models are
reported in Table 3. Closely reflecting the task based results, ARMOR consistently and significantly
outperforms the state-of-the-art pruning methods in retaining lower perplexity, a key indicator of lan-
guage modeling quality. For example, on Llama-2-13B evaluated on Wikitext2, ARMOR achieves
a perplexity of 6.37. This is a dramatic improvement over the next-best baseline (NoWag-P at 8.28)
and represents a reduction of nearly 50% in the perplexity gap relative to the original dense model.
We observe similar substantial gains across all evaluated Llama models and datasets, reinforcing
that the ARMOR factorization preserves model quality more effectively than existing 2:4 pruning
techniques.

4.3 INFERENCE EFFICIENCY

To quantify the real world performance efficiency benefits of ARMOR pruned models, we bench-
marked the generation speed, max VRAM, and model size of the original, 2:4 pruned, and ARMOR
pruned Qwen 2.5 7B and 14B parameter models. The results are shown in Table 4. Additionally, we
benchmarked the individual batched (batch size of §192) Matrix Vector timing for a standard layer
of Qwen 2.5-14B comparing a dense matrix, 2:4 sparse matrix, and ARMOR factorized. Both ex-
periments confirm that the ARMOR block diagonal matrices carry only a minor overhead, enabling
ARMOR to retrain the speedup, model size reduction, and max VRAM reduction of properties of
2:4 pruning.

Under review as a conference paper at ICLR 2026

Qwen 2.5 7B Qwen 2.5 14B Batched MatVec
Tokens/s Max VRAM Model Size Tokens/s Max VRAM Model Size (ms)
Dense 4461 32.84GB 14.23GB 2013 41.13GB 27.65GB 9.04
2:4 5430 (1.217x) 27.52GB 8.89GB 2157 (1.071x) 30.29GB 16.81GB 4.85 (1.86x)
ARMOR | 5090 (1.141x) 28.11GB 9.25GB 2096 (1.041x) 31.32GB 17.85GB 5.77 (1.57x)

Table 4: Inference speed, Max VRAM, and Model Size for Dense, naive 2:4 pruning, and ARMOR
pruned Qwen 2.5 7B/14B. Qwen2.5 7B and Qwen2.5 14B generation was performed at batch size
2048 and 512 respectively. Rightmost column lists the timings and speedup of batched Matrix Vector
multiplication between a batch of 8192 input activations and a dense, 2:4 pruned, and ARMOR
factorized matrix for a standard gate_proj layer of Qwen 2.5 14B.

Relative Avg Proxy Loss/Perplexity vs Iterations Relative C4 Perplexity vs Block Size

10

Relative C4 Perplexity

Relative Avg Proxy Loss/Perplexity

0 2500 5000 7500 10000 12500 15000 17500 20000 o 2 W
Iterations

60 80 100 120
Block Size

Figure 3: Left: Relative average Proxy Loss and C4 Perplexity of Llama-2 7B across 20,000 iter-
ations of the ARMOR Proxy Loss optimization algorithm with block size 128. Right: Relative C4
Perplexity for Lama-2 7B/13B, and Llama-3 8B across block sizes of 1, 8, 16, 32, 64, and 128. Each
block size was only optimized for 5000 iterations due to time constraints. Relative perplexity is with
respect to initial and optimal (dense) perplexities.

4.4 ABLATIONS

To validate our proxy loss choice, we track its relative value against the model’s relative C4 per-
plexity during 20,000 iterations of the ARMOR proxy loss optimization algorithm. The left plot
in Figure 3 shows a strong correlation between the two metrics; as the proxy loss decreases, so
does perplexity, confirming its utility as a surrogate for overall model performance. Furthermore,
we observe that the majority of the performance loss reduction was achieved within the first 2,500
iterations. We also performed an ablation study on block size to understand its impact on perplexity
(Figure 3, right). This ablation reveals a clear trend across all models: increasing the block size im-
proves performance by lowering perplexity in an exponential decaying manner. Additional ablations
are detailed in Appendix E.

5 CONCLUSION

In this work, we introduce ARMOR, a novel one-shot algorithm that addresses the significant per-
formance degradation of hardware-accelerated 2:4 pruning. Instead of simply removing weights,
ARMOR reframes the problem by factorizing each weight matrix into a 2:4 sparse core and adap-
tive, low-overhead block diagonal wrappers that act as error correctors. This approach is theoret-
ically guaranteed to converge to a solution with a proxy loss less than or equal to state-of-the-art
methods and is empirically validated on Llama and Qwen family models, where it consistently
and significantly outperforms existing 2:4 pruning techniques on both perplexity and downstream
tasks. Crucially, ARMOR achieves these accuracy gains while retaining the majority of the infer-
ence speedups and memory reduction of native 2:4 sparsity. Our work demonstrates that rethinking
weight representation is a powerful path toward establishing a more effective trade-off between the
performance and efficiency of large language models.

Under review as a conference paper at ICLR 2026

6 REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our results, the source code for this project is
currently being prepared for public release and will be made available soon. To facilitate replication,
we have also provided detailed descriptions of our model architecture, algorithms, hyperparameter
settings, and experimental setup in Appendix G.

REFERENCES

Saleh Ashkboos, Maximilian L Croci, Marcelo Gennari do Nascimento, Torsten Hoefler, and James
Hensman. Slicegpt: Compress large language models by deleting rows and columns. arXiv
preprint arXiv:2401.15024, 2024.

Vladimir Boza and Vladimir Macko. Two sparse matrices are better than one: Sparsifying neural
networks with double sparse factorization. arXiv preprint arXiv:2409.18850, 2024.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168,
2021.

Rocktim Jyoti Das, Mingjie Sun, Liqun Ma, and Zhigiang Shen. Beyond size: How gradients shape
pruning decisions in large language models. arXiv preprint arXiv:2311.04902, 2023.

Jesse Dodge, Maarten Sap, Ana Marasovi¢, William Agnew, Gabriel Ilharco, Dirk Groeneveld, and
Matt Gardner. Documenting the english colossal clean crawled corpus. ArXiv, abs/2104.08758,
2021. URL https://api.semanticscholar.org/CorpusID:233296858.

Peijie Dong, Lujun Li, Zhenheng Tang, Xiang Liu, Xinglin Pan, Qiang Wang, and Xiaowen Chu.
Pruner-zero: Evolving symbolic pruning metric from scratch for large language models. arXiv
preprint arXiv:2406.02924, 2024.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv e-prints, pp. arXiv—2407, 2024.

Elias Frantar and Dan Alistarh. Sparsegpt: Massive language models can be accurately pruned in
one-shot. In International conference on machine learning, pp. 10323-10337. PMLR, 2023.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. Gptq: Accurate post-training
quantization for generative pre-trained transformers. arXiv preprint arXiv:2210.17323, 2022.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Fos-
ter, Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muen-
nighoff, Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang
Sutawika, Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. The language model
evaluation harness, 07 2024. URL https://zenodo.org/records/12608602.

Sylvain Gugger, Lysandre Debut, Thomas Wolf, Philipp Schmid, Zachary Mueller, Sourab Man-
grulkar, Marc Sun, and Benjamin Bossan. Accelerate: Training and inference at scale made sim-
ple, efficient and adaptable. https://github.com/huggingface/accelerate, 2022.

Dan Hendrycks, Collin Burns, Steven Basart, Andrew Critch, Jerry Li, Dawn Song, and Jacob
Steinhardt. Aligning ai with shared human values. Proceedings of the International Conference
on Learning Representations (ICLR), 2021a.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding. Proceedings of the Interna-
tional Conference on Learning Representations (ICLR), 2021b.

10

https://api.semanticscholar.org/CorpusID:233296858
https://zenodo.org/records/12608602
https://github.com/huggingface/accelerate

Under review as a conference paper at ICLR 2026

Yuezhou Hu, Kang Zhao, Weiyu Huang, Jianfei Chen, and Jun Zhu. Accelerating transformer pre-
training with 2: 4 sparsity. arXiv preprint arXiv:2404.01847, 2024.

Yichen Huang and Lin F Yang. Gemini 2.5 pro capable of winning gold at imo 2025. arXiv preprint
arXiv:2507.15855, 2025.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Woosuk Kwon, Sehoon Kim, Michael W Mahoney, Joseph Hassoun, Kurt Keutzer, and Amir Gho-
lami. A fast post-training pruning framework for transformers. Advances in Neural Information
Processing Systems, 35:24101-24116, 2022.

Xinlin Li, Osama Hanna, Christina Fragouli, and Suhas Diggavi. Icquant: Index coding enables
low-bit llm quantization. arXiv preprint arXiv:2505.00850, 2025a.

Zichong Li, Chen Liang, Zixuan Zhang, Ilgee Hong, Young Jin Kim, Weizhu Chen, and Tuo Zhao.
Slimmoe: Structured compression of large moe models via expert slimming and distillation. arXiv
preprint arXiv:2506.18349, 2025b.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen Wang, Guangxuan
Xiao, Xingyu Dang, Chuang Gan, and Song Han. Awq: Activation-aware weight quantization
for on-device 1lm compression and acceleration. Proceedings of machine learning and systems,
6:87-100, 2024.

Lawrence Liu, Inesh Chakrabarti, Yixiao Li, Mengdi Wang, Tuo Zhao, and Lin F Yang. Nowag:
A unified framework for shape preserving compression of large language models. arXiv preprint
arXiv:2504.14569, 2025.

Lian Liu, Xiandong Zhao, Guanchen Li, Dong Li, Mengdi Wang, Yinhe Han, Xiaowei Li, et al.
Bawa: Automatic optimizing pruning metric for large language models with balanced weight and
activation. In Forty-second International Conference on Machine Learning.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. Llm-pruner: On the structural pruning of large
language models. Advances in neural information processing systems, 36:21702-21720, 2023.

Xin Men, Mingyu Xu, Qingyu Zhang, Bingning Wang, Hongyu Lin, Yaojie Lu, Xianpei Han, and
Weipeng Chen. Shortgpt: Layers in large language models are more redundant than you expect.
arXiv preprint arXiv:2403.03853, 2024.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models, 2016.

Asit Mishra, Jorge Albericio Latorre, Jeff Pool, Darko Stosic, Dusan Stosic, Ganesh Venkatesh,
Chong Yu, and Paulius Micikevicius. Accelerating sparse deep neural networks. arXiv preprint
arXiv:2104.08378, 2021.

Joon Sung Park, Joseph O’Brien, Carrie Jun Cai, Meredith Ringel Morris, Percy Liang, and
Michael S Bernstein. Generative agents: Interactive simulacra of human behavior. In Proceedings
of the 36th annual acm symposium on user interface software and technology, pp. 1-22, 2023.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Di-
rani, Julian Michael, and Samuel R Bowman. Gpqa: A graduate-level google-proof q&a bench-
mark. In First Conference on Language Modeling, 2024.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adver-
sarial winograd schema challenge at scale. Communications of the ACM, 64(9):99-106, 2021.

Daria Soboleva, Faisal Al-Khateeb, Robert Myers, Jacob R Steeves, Joel Hes-
tness, and Nolan Dey. SlimPajama: A 627B token cleaned and dedu-
plicated version of RedPajama. https://www.cerebras.net/blog/
slimpajama—-a-627b-token-cleaned-and-deduplicated-version-of-redpajama,
2023. URL https://huggingface.co/datasets/cerebras/SlimPajama-627B.

11

https://www.cerebras.net/blog/slimpajama-a-627b-token-cleaned-and-deduplicated-version-of-redpajama
https://www.cerebras.net/blog/slimpajama-a-627b-token-cleaned-and-deduplicated-version-of-redpajama
https://huggingface.co/datasets/cerebras/SlimPajama-627B

Under review as a conference paper at ICLR 2026

Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico Kolter. A simple and effective pruning approach
for large language models. In The Twelfth International Conference on Learning Representations,
2024. URL https://openreview.net/forum?id=PxoFut 3dWW.

Mirac Suzgun, Nathan Scales, Nathanael Schirli, Sebastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc V Le, Ed H Chi, Denny Zhou, et al. Challenging big-bench tasks
and whether chain-of-thought can solve them. arXiv preprint arXiv:2210.09261, 2022.

Zhendong Tan, Xingjun Zhang, and Zheng Wei. Wrp: Weight recover prune for structured sparsity.
In Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pp. 6433-6443, 2024.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Stephen J Wright. Coordinate descent algorithms. Mathematical programming, 151(1):3-34, 2015.

Haojun Xia, Zhen Zheng, Yuchao Li, Donglin Zhuang, Zhongzhu Zhou, Xiafei Qiu, Yong Li, Wei
Lin, and Shuaiwen Leon Song. Flash-llm: Enabling cost-effective and highly-efficient large gen-
erative model inference with unstructured sparsity. arXiv preprint arXiv:2309.10285, 2023.

Yanyue Xie, Zhi Zhang, Ding Zhou, Cong Xie, Ziang Song, Xin Liu, Yanzhi Wang, Xue Lin, and
An Xu. Moe-pruner: Pruning mixture-of-experts large language model using the hints from its
router. arXiv preprint arXiv:2410.12013, 2024.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint
arXiv:2505.09388, 2025.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-
chine really finish your sentence? arXiv preprint arXiv:1905.07830, 2019.

Yingtao Zhang, Haoli Bai, Haokun Lin, Jialin Zhao, Lu Hou, and Carlo Vittorio Cannistraci. Plug-
and-play: An efficient post-training pruning method for large language models. 2024.

A NOTATION IN DEPTH

As established in section 3.1, for a block diagonal matrix D € R4*4 with block size dpjock, We
denote the individual blocks as:

DM 0o ... 0
0 D® 0
D =
0 0 c D(dbl(ick)

where D) € RéviockXdviocic 4 € [1,d/dpoc]. More generally for a matrix C' € R%142 we
denote the dpjock X dblock Matrix blocks as:

0(171) 0(112) “ee C(Ldb{ffck)
C =

(i) olatiad) .. olatienis)
'\ dblock’ '\ dblock’ ..+« ('\'dblock * dblock

B ARMOR OPTIMIZATION ALGORITHM IN DEPTH

In section B.1, we elaborate on the sparse core update step more formally. Additionally we provided
pseudo code for both the sparse core update and the continuous parameter update steps in B.2.

12

https://openreview.net/forum?id=PxoFut3dWW

Under review as a conference paper at ICLR 2026

B.1 THE SPARSE CORE UPDATE STEP IN DEPTH

Decomposing equation 2 into independent subproblems at the block matrix level:

Lwx(0) = > 36 (000) = 3OS ||Wn - a® (W @) o) ng XXT)

i=1 j=1 i=1 j=1
&)

where ¢ € [dout/dblock] and j € [din/dblock]. We optimize each block subproblem in parallel,
for the remainder of this section we will consider block (4, j). Optimizing these subproblems still
requires a sweep over a exponential search space, so we adopt a greedy approach that optimizes a
single sparse group for each subproblem.

Optimizing the Sparse Group After selecting group i',k, we freeze all values beyond

WoeoM)(i’j) i7.(k> Which we optimize with the 2:4 constraint. This is computationally feasible

since we only have to sweep over (3) = 6 possible mask choices. Let us consider one such mask

m € {0,1}* s.t. |ml|lo = 2, which has unmasked indices i1, is € [4] ie m;, = m;, = 1. Letus
denote the unmasked elements for this mask as w,,R?, and k¥’ = 4(k — 1). For this mask choice,
the corresponding best-case proxy loss is given by:

E%’j)()= mln

(1d) _ 4@ Gd) &) _ 4@ 0 B H
‘W AOW DB — AL wn B ki | ey

(6)

where TW"/(::7) represents the frozen remainder of the sparse core:

s 0 ifn=d kK +1<p<k +4
WTILI,(;J) = { - =P= V' n,p € [dblock]

M, ,(fp]) Wé(;,]) otherwise

Equation 6 can be arranged into a linear least squares problem with a closed form solution. For

ease of notation, let AW = W) — AOQW"@HBU) B = B{(:jk)'-‘r y La =AY and
] i1,k'+i2},: 0
DU) = diag (X X T) @), Solving the least squares problem results in an optimal £,
L (gpoawTa) (B'pWBT) (B DWAWT
= 1AW 3 o) —W(BD AW a) (BD B) (BD AW a>)
2

The first term is independent of the mask choice m for the group, thus when sweeping over the
possible masks, we only compute the second term for efficiency. The optimum is achieved with
unmasked weights w,:

w = (B D(J)B’T) (B’D(j)AWTa) (8)

" e Hz

After sweeping over all 6 possible masks, we select the mask m*, with nonzero values at 7, 49, that
achieves the minimum best-case proxy loss as given by equation 7. We substitute the corresponding

optimal w7, . given by equation 8 into W to fully update sparse core, i.e. we set (,’lﬁjwj)) =
i k' +1

w1 and (rll(elv’vj)) = W2.
i ki
The 2:4 semi-structured sparsity allows for efficient calculation of equations 7 and 8. Since there

are only 2 unmasked values for each group (B DU B’ T) and (B’ DUOAWTq) are of shape 2 x 2

and 2 x 1. Thus the computational cost for solving for (B’ D(J)B’T) (B'DYAWTq) are neg-
ligible. Rather, calculating equations 7 and 8 are dominated by calculating (B’ D(j)B’T) and
(B'DWAWTa), which scale with d?,, ... We update all dindout/df,. blocks at once, thus the
overall computational complexity is O(dindoyt), scaling linearly with parameter size.

13

Under review as a conference paper at ICLR 2026

B.2 ALGORITHM PSEUDOCODE

Algorithm 2 Continuous Optimization via Sequential Gradient Descent

Require: Current parameters A, B, W', mask M, normalized weight W, calibration data X.
Ensure: Updated continuous parameters A, B, W’'.

1: function CONTINUOUSUPDATE(A, B,W', M, W, X)

2 W« AW o M)B

3 L |[W-W| | F,diag(x XT) > Compute proxy loss from Eq. 2
4: > Update block diagonal matrix A
5: 14 < ComputeLearningRate(A, L) > Based on local smoothness, Eq. 9
6: A+ A—naVaL
7 > Update block diagonal matrix B
8: np < ComputeLearningRate(B, L) >Eq. 10
9: B+ B - nBVBL
10: > Update underlying weight matrix W’
11: nw- + ComputeLearningRate(W’, L) > Eq. 11

12: W'« W' —nqwVw L
13: return A, B, W’
14: end function

Algorithm 3 Greedy Sparse Core Update

Require: Current parameters A, B, W', mask M, normalized weight W, calibration data X.
Ensure: Updated sparse core parameters W'/, M.
1: function SPARSECOREUPDATE(A, B,W' M, W, X)

2: for each block (4, j) in parallel do
3: > Select a single 2:4 sparse group to update within the block
4: for each sparse group (7', k) in block (i, j) do
5: pgz;?z) x HV(MQW’)“’”w,[k]g(i)j) H1 > Calculate selection probability
6: end for
7: Select group (i"*, k*) based on probabilities p(*7).
8: > Find the best mask and weights for the selected group
9: Let M be the set of all () = 6 possible masks for a group of 4.
10: lbest — o0
11: for each candidate mask m € M do
12: Calculate the resulting loss [}, using Eq. 7
13: if I} < lpest then
14: lpest < 1,
15: m* +—m
16: end if
17: end for
18: Calculate optimal weights w},, for the unmasked entries using Eq. 8
19: > Update the mask M and weights W’ for the chosen group
20: Update mask for group (7'*, k*) in M -7 with m*.
21: Update corresponding weights in W'(»7) with w?¥,.

22: end for
23: return W', M
24: end function

C PROOFS

PROOF FOR PROPOSITION 1

Proposition 1. The proxy loss is bounded below by 0 and is convex with respect to A, B, and W'
individually. A formal proof is provided in Appendix C

14

Under review as a conference paper at ICLR 2026

Proof. The proxy loss is defined as:
Lw,x(0) = W — W\|2F,diag(XXT) = Z(Wij - Wz‘j)QHXjH%
(2]

where W = A(W' © M)B.

1. Bounded Below by 0: For each term in the summation, (Wij —Wi j)2 > O asitis asquared
real number. The weighting term || X |3 is the squared Euclidean norm of a vector, which

is also non-negative. A sum of non-negative terms is non-negative. Thus, Ly, x (W) > 0.

2. Convexity with respect to A: When B, W', and M are held fixed, let S = (W' ©® M)B.
The proxy loss function can be written as a function of A:

Lw.x(A) = |IW — AS|[%p
where D = diag(X XT). This is a weighted least squares objective. The function
f(A) = W — AS is an affine (linear) transformation of A. The function g(Z) = ||Z||%
is a squared weighted Frobenius norm, which is a convex function. The composition of

a convex function with an affine transformation is convex. Therefore, the proxy loss is
convex with respect to A.

3. Convexity with respect to B: Similarly, when A, W', and M are held fixed, let S’ =
AW’ ® M). The proxy loss function can be written as a function of B:

Lw,x(B) =W - S'Bl[&p
This is also a weighted least squares objective. Using the same reasoning as for A, the

function is a composition of a convex function (squared norm) with an affine transformation
of B, and thus is convex with respect to B.

4. Convexity with respect to 1/': When A, B, and M are held fixed, the reconstructed weight
matrix W = A(W' ® M)B is a linear function of the elements of W'. Let w’ = vec(W’),

the vector of elements in W’. Then vec(W) is a linear transformation of w’. The objective

function Ly, x (W) is a quadratic function of the elements of W, and therefore a quadratic
function of the elements of W’. Specifically, it is a positive semidefinite quadratic form,
which is convex. Therefore, the proxy loss is convex with respect to W'.

This completes the proof. O

PROOF FOR LEMMA C.1

Lemma C.1. The continuous parameter update step results in a equal or lower proxy loss:

Lo (W ((A)es1s B)esrs W etieonss (M)1)) < Luvx (W (A)ss (B (W, (M)y))

Proof. The paper states that the continuous optimization step updates the parameters A, B, and W’
using sequential gradient descent (Algorithm 2). The process is iterative:

1. Update A: (A)¢y1 = (A)r —naVaLlwx ((A)s, (B)e, (W)t (M):)

2. Update B: (B)41 = (B): — 18VBLw,x ((A)t+1, (B)t, (W), (M),)

3. Update W’: (W')i111cont = (W')e — nw Vs Lw, x ((A)e41, (B)eg1, (W), (M)y)
From Proposition 1, the loss function Ly, x is convex with respect to each of A, B, and W' indi-

vidually. As Algorithm 2 states, the learning rate 7 is determined via local 5-smoothness, which are
calculated in D.

For a convex and $-smooth function f(z), the gradient descent update 1 = x, — nV f () with
astep size 0 < n < 1/ guarantees that f(zj+1) < f(zg).

Applying this property to each step of the sequential update:

15

Under review as a conference paper at ICLR 2026

1. The update of A ensures that
Lw,x (A)41, (B)e, W), (M)e) < L, x (A)e, (B)e, (W)e, (M):)

2. The update of B, starting from the new A, ensures that
Lw,x(A)er1, (B)egr, (Wi, (M):) < Lw,x (A)eg1, (B)e, (W), (M)¢)

3. The update of W', starting from the new A and B, ensures that
Lw,x((A)ig1, (B)ir1, W es1jcont, (M)e) < Lw,x (A)eg1, (B)egr, (Wi, (M)y)

Chaining these inequalities together, we get:

Lw,x((A)ig1, (B)ir1, W es1jcont, (M)e) < Lw,x (A)eg1, (B)eg1, (W)e, (M)y)
< Lw,x (A)eg1, (B)e, W), (M)y) < Lw,x ((A)e, (B)g, (W), (M)y)

Thus, each continuous optimization step is guaranteed to not increase the proxy loss. O

PROOF FOR LEMMA C.2

Lemma C.2. The sparse core update step results in a equal or lower proxy loss:

Lw.x (W (A g1, (B)eg1, W)y, (M)t+1)) < Lw,x (W (A g1, (B) g1, W) t411comt (M)t)) :

Proof. The discrete optimization step (Algorithm 3) seeks to improve the sparse core W’ @ M.
The total proxy loss is decomposable into independent subproblems for each matrix block (3, j), as
shown in Equation 5:

dout /dblock din/dblock (i)
— (4§ i y)
Lw.x(0) = Z Z W — Al)((W/ © M)(’j))B(J)H%,diag(XXT)(j)
i=1 j=1

The algorithm updates a single 2:4 sparse group (i’, k) within each block (4, j). Let’s focus on one
such update. Let the loss before the update for this specific group be lpe fore. The current mask for

this group is mq, which is one of the (3) = 6 possible masks.

The algorithm proceeds as follows:

1. For each of the 6 possible masks m in the set of valid masks M, it calculates the opti-
mal weights w}, that minimize the loss for that group, assuming that mask m is chosen
(Equation 8). This results in the best possible loss [, for that mask choice (Equation 7).

2. It then selects the mask m* that yields the minimum loss among all 6 possibilities: lpcs¢ =
ming,em l),.

3. The algorithm updates the mask for group (', k) to m* and its corresponding weights in
W’ to wi,..

The loss with the original mask m;q and its weights before the update is lyc fore. The optimized
loss for this original mask, I7;, ., must be less than or equal t0 lpe fore, Since Equation 7 finds the
optimal weights for any given mask.

l;knold § lbefore
By definition, the selected mask m* is the one that minimizes this optimal loss across all 6 choices.

Therefore, its 10ss [yes¢ must be less than or equal to the optimal loss for the old mask [, .

lbest S l;knold

or maintain the proxy loss. Since this holds for the update in each block, and the block losses are
additive, the total proxy loss after the discrete optimization step is guaranteed to be less than or equal
to the loss before the step. O

Combining these, we have lpest < lpefore. The update for the selected group can only decrease

16

Under review as a conference paper at ICLR 2026

PROOF FOR THEOREM 3.1 (CONVERGENCE OF THE ARMOR OPTIMIZATION ALGORITHM)

Theorem 3.1. (Convergence of the ARMOR optimization algorithm). The sequence
{Lw,x((8)¢) }r>0 converges and Ly, x ((8):) < Lw.x((0)o) ¥ t>0.

Proof. Let Ly = Ly, x((0):) be the value of the proxy loss at the end of iteration ¢. Each iteration
of the ARMOR optimization algorithm consists of a continuous optimization step followed by a
discrete optimization step.

From Lemma C.1, the continuous step does not increase the loss. Let the loss after the continuous
step at iteration ¢ be Ly 1|con¢- We have:

Lt+1|cont S Lt
From Lemma C.2, the sparse core step, which follows the continuous step, also does not increase
the loss. Let the loss after the discrete step be L. We have:
Lt+1 S Lt+1\cont

Combining these two results gives:

Lyt < Ly
This shows that the sequence of proxy losses {L;}:>¢ is monotonically non-increasing. By induc-
tion, this implies that for any ¢ > 0, L; < L.

Furthermore, from Proposition 1, the proxy loss is bounded below by 0. Therefore, {L;}:>¢ is
a monotonically non-increasing sequence that is bounded below. By the Monotone Convergence
Theorem, any such sequence must converge to a limit.

Therefore, the sequence {Lw, x ((6):)}+>0 converges, and its value is always less than or equal to
its initial value. O

D BETA SMOOTHNESS OF PROXY LOSS

In this section we present the proofs that the proxy loss is 5-smooth with respect to each of the
parameters A, B, W’. And using them, derive the learning rates for the sequential gradient descent
based continous optimization step.

D.1 PROXY L0OSS 3-SMOOTH WITH RESPECT TO A

First let us consider the S-smoothness of the proxy loss for block (i,) with respect to A®). We
have that:

209 (gu,j)) _ HWu,j) _ AD(MED @ W)y B(j)HQ
X Fdiag(X XT)()

Where 0(47) = (A® BU) W3 M) We have that:
V a4 (g(zm) —oA® (§(i3) pli) S(iaj)T) _ oy d) pi) g6 T

Where S0 = (M) o W'@D)BU) and DU = diag (XXT)(j). Consdier two

A(1)_7A(2) € RviockXdblock - et us denote 98’;) = (Ag))7B(j),W/(ifj),M(iJ)) and 98»)1‘) —
(AE;)), BW) W'3) M(53)). Then we have that: Then we have that:

(,9) (p(2:5) (4,5) (9(2:3) _ (4) /(%) i,j i) q(i,d)T

HVA“-)eXJ (60) — V 4 €57 (037)HF - 2H<A(1) fA(Q)) (S<) pi) §d))

(i) 1(3)
<2 |[Ag) - 45

|-

‘ 5 p) Sm)TH

F ‘ F

Where the inequality follows from the submultiplicativity of the Frobenius norm. Thus we have that
the proxy loss ég?”(ﬁ(i’j)) is -smooth with respect to A() with BX’]) =2 ||S(i’j)D(j)S(i*j)T||F.

17

Under review as a conference paper at ICLR 2026

We now consider the overall proxy loss, for some A(j), Az € Rewxdin et 6y =
(Aqy, B,W', M) and 05y = (A(2y, B, W', M). Then we have that:

dout diu
dplock 9block

||VA£W,X(9(1)) — VAEW’X(G(z))HF = Z Z VA(z‘)ﬁg?j)(gg-r)j)) - VA(UZ%J)(QE;;))

i=1 gj=1
F
dout din
dplock 9block
< Z Z Va7 98)]) VA<>€”)(9(”)) h
i=1 j=1

dout din
dplock 9block

< 2|40 — Al Z Z

Where the first inequality follows from the triangle inequality and the second follows from the
previous result. Therefore the overall loss Ly, x(0) is S-smooth with respect to A with 84 =

dout d]ni
2 block Z;g‘f“k | S(3) pa) §G)T ||F This leads us to a learning rate of:

SN D J)TH
F

1 1
NA=— = - ph &)

Ba 3 e Zfi? |S@) DO SENT|

D.2 PROXY LOSS 3-SMOOTH WITH RESPECT TO B

Once again, we start by considering the 3-smoothness of the proxy loss for block (i, j) with respect
to BY), Reusing the notation we introduced in section, we have that:

Vo 597 (90 = 25'G:NT 500 B pli) — 95Ty (9 pi)
Where $'(09) = A@OMGE) o WD) and DY = diag (XXT)(j). Consdier two

B(1),B(2)_ € Rvioexxdviock et us denote 08’)” = (A(i),B(({i,W/(i,j),M(iJ)) and 9((;;) _
(A®), Bg;, W'(3) M (59)). Then we have that:

V50”05 - VP0G, =2

GDT o) (RD) @)\ HG)
5T gl (B(BY)DJH

§2\

srsea, Joy -t |91

Where the inequality follows from the submultiplicativity of the Frobenius norm. Thus
we have that the proxy loss é%’j)(é("’j)) is B-smooth with respect to B() with ﬁg’j)

25" GNT 5 @D ||DW| . Following the same procedure as the A case, consider some
B(l),B(Q) € R%nxdin et 9(1) = (A,B(l),W/,M) and 9(2) = (A,B(2)7W/7M). Then we
have that for the overall proxy loss:

dout din
dblock 9block

IVsLwx(0) = VoLwx (0e) | < 2By = Bl Y. Y. |
=1 j—=1

S/@,j)TS(i,j)H H D(j)”
F F

Therefore the overall loss Ly x(f) is [-smooth with respect to B with fp =
dout din L. L. .
2y ek 37 otoek || 51T G| || DW|| L. This leads us to a learning rate of:

1 1
=g = (10)

B 2Zdblock Zdblock HS/(i,j)TS(i,j)HF HD(]‘)HF

18

Under review as a conference paper at ICLR 2026

D.3 PRrROXY L0SSs 3-sMOOTH WITH RESPECT TO W'

Finally, we consider the 3-smoothness of the proxy loss with respect to W’. We have that:
Vi Lw,x(0) = (2AT AW’ © M)Bdiag (XXT) B — 2A"Wdiag (XX™) B") o M

Consdier two W/,), W, € RoueXdin et us denote 6y = (A, B,W(;), M) and (5 =

(A, B, W(’Q)7 M). Then we have that:

[V wrLwox(8) = Vw Lwox Ozl = 2| (A7A (W) = Wiy) © M) Bdiag (XXT) B”) @ M]|
<2[ama (W}, - W) © M) Bdiag (XX7) BTHF
< 2| AT A|| .|| Bdiag (XXT) BT .|| (Wi, — W) @ M|
< 2| AT A|| .|| Bdiag (XXT) BT, [Wi, - Wiy ||,

Where the first and third inequalities follow from the property that ||V © M|, < | M|, IV
for any matrices V, M of the same shape, and the second follows from the submultiplicativity of the
Frobenius norm. Thus we have that the proxy loss Ly, x (0) is 8-smooth with respect to W’ with
Bwr =2 HATAHF HBdiag (XXT) BTHF. This leads us to a learning rate of:

1 1
™' By, T 2][ATA[l, [Bdiag (XXT) BT|,

(1)

E ABLATIONS

E.1 SELECTION HEURISTIC

We investigated four choices for the sparse group selection heuristic used in the Discrete Optimiza-
tion steps:

* Uniform Random Selection (Random). We select a sparse group from the available
d?,,4./4 sparse groups within a sparse core block.

* L1 Greedy Selection, We directly select the sparse group based on which group has the
maximum L1 gradient norm.

* L2 Random Selection, We draw a sparse group with probability that is based on the L.2
norm of the gradient, instead of the L1 norm:

pg::?]z) 0.8 HV(ZWQW/)(L”H,[Hg*()’éd)HQ v i/ S [dblockL k S [dblock/4]-

¢ L1 Random Selection, This is the selection heuristic discussed in the main text and that
we use.

The results of this ablation is listed in table 5. L1 random and L2 random perform roughly equiva-
lently.

Wikitext 2 (]) c4 ()
Method 2-7B 2-13B | 2-7B 2-13B
Random 817 705 | 1049 948

L1 Greedy 8.46 7.28 10.87 9.72
L2 Random | 7.95 7.00 10.27 9.38
L1 Random | 7.99 6.99 10.30 9.39

Table 5: C4 and Wikitext 2 perplexities of ARMOR pruned Llama-2-7B/13B for different sparse
group selection heuristics. Block size of 128 was used, and ARMOR optimization was ran for 2000
iterations to expedite runtime.

19

Under review as a conference paper at ICLR 2026

Dataset Wikitext2 ({) | C4 ({)
RedPajama-Data-1T 7.59 9.89
SlimPajama-627B 7.68 9.88

Table 6: Perplexity of ARMOR pruned Llama-2-7B on Wikitext2 and C4 Datasets when using
RedPajama-Data-1T vs SlimPajama-627B for our calibration dataset. ARMOR is minimally sensi-
tive to the choice of dataset, so long as it is representative of the pre-training dataset. Block size of
128 was used, and ARMOR optimization was ran for 5000 iterations.

E.2 CALIBRATION DATASET
F FEwW SHOT TASK DESCRIPTIONS

ARMOR prund Qwen2.5 and Qwen 3 models were evaluated on an industry standard suite of 7 few
shot task benchmarks. The results were reported in Tables 2 and 1. A detailed description of each
task is included below. HuggingFace accelerate (Gugger et al., 2022) was used for parallel process-
ing, and the EleutherAl LM evaluation harness was used (Gao et al., 2024). max_model_len =
4096 for all benchmarks for speedup.

1. MMLU (Hendrycks et al., 2021b;a) — The Massive Multitask Language Understanding
(MMLU) benchmark is a 57-subject multiple-choice benchmark spanning STEM, human-
ities, social sciences, and professional domains that evaluates broad knowledge and basic
reasoning. We report the 5-shot accuracy. (acc, none).

2. GSMS8K (Cobbe et al., 2021) — Grade School Math 8K (GSMS8K) is a dataset of 8.5K
high quality linguistically diverse grade school math word problems. Problems require no
concepts beyond the level of early Algebra, and solutions are provided in natural language.
We report the 8-shot strict match: (exact_match, strict-match).

3. ARC-c (Clark et al., 2018) — The challenge subset of the AI2 Reasoning Challenge
(ARC), which is composed of grade-school science questions authored for human tests.
The challenge subset is composed of questions that baseline algorithms have failed on. We
report the 25-shot accuracy. (acc, none).

4. HellaSwag (Zellers et al., 2019) — The HellaSwag challenge dataset has models choose
the most commonsense continuation of everyday scenarios among four options. The bench-
mark is intentionally challenging for models. We report the 0-shot acurracy acc, none.

5. BBH (Suzgun et al., 2022) — BIG-Bench Hard (BBH) is a suite of 23 especially chal-
lenging tasks from the Beyond the Imitation Game benchmark (BIG-Bench). These tasks
require multi-step reasoning and compositional generalization. We report the 3 shot match
(exact_match, get-answer).

6. WinoGrande (Sakaguchi et al., 2021) — WinoGrande is a large dataset of 44k problems
inspired by those of the Winograd Schema Challenge, systematically designed to mini-
mize bias. The questions are of a 2-choice fill in the blank format that tests commonsense
reasoning. We report the 5-shot accuracy (acc, none).

7. GPQA (Main Set) (Rein et al., 2024) — The Graduate-Level Google-Proof Q& A bench-
mark (GPQA) main set is a multiple-choice benchmark of 448 graduate-level biology,
physics, and chemistry questions authored by experts. The main set excludes questions that
are likely to be not objective and difficult. We report the 5-shot accuracy (acc, none).

G IMPLEMENTATION DETAILS

We used a block size of 128 for all models. For optimization, we used a learning rate of 104
for ADAM, and ran for 20,000 iterations. We used 128 samples of the SlimPajama-627B dataset
(Soboleva et al., 2023) as our calibration dataset. Each sample had a context length of 4096 for
Llama-2 family models, and 8192 for Llama-3, Qwen 2.5, and Qwen 3 family models. Inference
benchmarks were performed on a 48GB 4090.

20

Under review as a conference paper at ICLR 2026

H LLM USAGE

We used LLMs to polish and refine our language. Some icons, such as the robot in Figure 1 and
the fire and snowflake icon in Figure 2 were generated with generative models. Furthermore, we
used LLMs to conduct some literature review to supplement and double check our manual literature
review.

21

	Introduction
	Related Work

	Problem Statement
	Methods
	ARMOR Matrix Factorization
	Optimization Objective
	Optimization Algorithm
	Updating of Continuous Parameters
	Updating the Sparse Core

	Theoretical Results

	Results
	Task Based Evaluations
	Perplexity Based Evaluations
	Inference Efficiency
	Ablations

	Conclusion
	Reproducibility Statement
	Notation in Depth
	ARMOR Optimization Algorithm in Depth
	The Sparse Core Update Step in Depth
	Algorithm Pseudocode

	Proofs
	Beta Smoothness of Proxy Loss
	Proxy Loss -smooth With Respect to A
	Proxy Loss -smooth With Respect to B
	Proxy Loss -smooth With Respect to W'

	Ablations
	Selection Heuristic
	Calibration Dataset

	Few Shot Task Descriptions
	Implementation Details
	LLM Usage

