
Prompting Vision-Language Models For Aspect-Controlled Generation of
Referring Expressions

Anonymous ACL submission

Abstract

Referring Expression Generation (REG) is the001
task of generating a description that unambigu-002
ously identifies a given target in the scene. Dif-003
ferent from Image Captioning (IC), REG re-004
quires learning fine-grained characteristics of005
not only the scene objects but also their sur-006
rounding context. Referring expressions are007
usually not singular; an object can often be008
uniquely referenced in numerous ways, for in-009
stance, by color, by location, or by relationship010
with other objects. Most prior works, how-011
ever, have not explored this ‘aspect-based mul-012
tiplicity’ of referring expressions. Hence, in013
this work, we focus on the Aspect-Controlled014
REG task, which requires generating a referring015
expression conditioned on the input aspect(s),016
where an aspect captures a style of reference.017
By changing the input aspect such as color,018
location, action etc., one can generate multi-019
ple distinct expressions per target region. To020
solve this new task, we first modify BLIP (Li021
et al., 2022a) for aligning image-regions and022
text-expressions. We achieve this through a023
novel approach for feeding the input by draw-024
ing a bounding box around the target image-025
region and prompting the model to generate026
the referring expression. Our base REG model027
already beats all prior works in CIDEr score.028
To tackle Aspect-Controlled REG, we append029
‘aspect tokens’ to the prompt and show that030
distinct expressions can be generated by just031
changing the prompt. Finally, to prove the high-032
quality and diversity of the data generated by033
our proposed aspect-controlled REG model, we034
also perform data-augmentation-based evalua-035
tion on the downstream Referring Expression036
Comprehension (REC) task. With just half of037
the real data augmented with the generated syn-038
thetic data, we achieve performance compara-039
ble to training with 100% of real data, using a040
SOTA REC model(Kamath et al., 2021).041

  
Image Captioning: Two birds on the tree 
Dense Captioning: A white bird 
Referring Expression Generation: Bird on 
the right 
Referring Expression Generation (shape): 
The larger bird. 
 

Image Captioning: People talking and having 
coffee 
Dense Captioning: Man in blue 
Referring Expression Generation: The man 
standing behind a man and woman 
Referring Expression Generation (action): 
The man looking at another man 

Figure 1: IC, DC, REG and aspect-controlled REG tasks

1 Introduction 042

Referring Expression Generation (REG) is the task 043

of generating a descriptive caption that uniquely 044

identifies a given target in the scene. REG is dif- 045

ferent from IC, which requires generating captions 046

for the whole image (Li et al., 2022a)(Yu et al., 047

2022). REG is also different from the Dense Cap- 048

tioning (DC), which is aimed at generating detailed 049

description for each salient region in the image but 050

the descriptions are not required to uniquely iden- 051

tify a target (Yin et al., 2019) (Johnson et al., 2016). 052

An example is shown in Figure 1. IC captures the 053

high-level summary of the image (“two birds on 054

the tree”). DC provides a brief description of the 055

target region (“A white bird”). REG, on the other 056

hand, generates a reference that allows the target to 057

be uniquely located (“Bird on the right”). 058

Before 2020, REG in Vision-Language (VL) do- 059

main was popular (Mao et al., 2016a; Yu et al., 060

2016a; Liu et al., 2017; Tanaka et al., 2019). Mod- 061

els could refer to a target using either spatial or 062

textual features. More recently, REG is often used 063

as a pretraining task when learning multimodal 064

representations (Yang et al., 2021; Lu et al., 2022; 065

Wang et al., 2022). In order to generate unique 066

object references, the model needs to understand 067

fine-grained features of not only the object but also 068

its situated context and ground those features in the 069
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generated expressions. This makes REG a good070

pretraining task for unified VL models. REG is071

also useful for cheaply generating synthetic train-072

ing datasets for downstream tasks such as REC.073

This helps reduce the high cost associated with col-074

lecting and human-annotating large scale datasets.075

This is one of the main motivations of our work.076

A distinct feature of referring expressions, which077

hasn’t been explored much in prior work, is its078

aspect-based multiplicity. In reality, there are al-079

most always multiple ways to refer to a target in080

the scene. For instance, as shown in Figure 1, the081

target bird can be referred by describing its ap-082

pearance (“the larger bird”), its location (“bird083

on the right”) or its action (“the bird cleaning its084

feather”). Similarly, the man in the red box on085

the right-side picture can be referred in numerous086

ways. Each description captures a unique aspect of087

the referring expression. In this paper, we propose088

an aspect-controlled REG model that can generate089

multiple valid expressions for referring the same090

target region. Moreover, the style of the expres-091

sions generated is controllable by an aspect (e.g.,092

color, location, action etc.) specified as natural093

language input. Aspect-Controlled REG has ap-094

plications in goal-oriented dialogue systems that095

are now-a-days ubiquitous and allow users to com-096

plete simple tasks like restaurant reservation, flight097

booking, shopping etc. For instance, when a cus-098

tomer asks “Can you show me a similar table but099

with different color?", the agent should focus on100

the color attribute and respond as “What about this101

one in brown?", rather than talking about other102

aspects like material (“the wooden one"). In addi-103

tion, an REG model capable of generating multiple104

aspect-controlled expressions has arguably a bet-105

ter understanding of this complex task as it has106

learned to cover all the unique properties of the ob-107

ject and capture the inherent diversity in referring108

expressions. This also leads to better utilization of109

multiple ground-truth references often available in110

standard REG datasets. Finally, this allows gener-111

ating richer and more diverse synthetic datasets for112

downstream tasks. Our main contributions are:113

• We explore the Aspect-Controlled REG task114

where an expression needs to be generated115

conditional on the provided aspect. By chang-116

ing the input aspect, we can generate multiple117

expressions for the same target region.118

• We modify BLIP (Li et al., 2022a) to119

align image-regions and corresponding text-120

expressions. We achieve this via a novel ap- 121

proach of feeding the input: by drawing a 122

bounding box around the target image-region 123

and prompting the model to describe the 124

marked region. Our REG method beats all 125

prior works in CIDEr score. 126

• To tackle Aspect-Controlled REG, we append 127

‘aspect tokens’ to the prompt and show that 128

by merely changing the prompt, we can fully 129

control the style of the generated expressions. 130

• Finally, we showcase the high-quality and 131

diversity of the synthetic data generated by 132

our proposed Aspect-Controlled REG model 133

by evaluating on the downstream task of 134

REC. With just 50% of real data augmented 135

with our synthetically generated data, we 136

achieve performance comparable to training 137

with 100% of real data using a SOTA REC 138

model(Kamath et al., 2021). 139

2 Related Works 140

2.1 REG and REC 141

Most previous REG models in the literature con- 142

sist of a visual encoder and text decoder, where 143

the focus is on REG and REC together (Mao et al., 144

2016a; Liu et al., 2017; Yu et al., 2017; Luo and 145

Shakhnarovich, 2017; Liu et al., 2020). Other 146

works in this area propose region specific modules 147

after the vision encoder to understand the higher 148

context between objects (Yu et al., 2016a), graph- 149

ical approaches (Kim et al., 2020), reinforcement 150

learning (Tanaka et al., 2019) to improve the di- 151

versity of generated expressions, and minimization 152

on the semantic distance between predictions and 153

ground truth (Panagiaris et al., 2020). 154

Most recent works do not focus solely on REG, 155

with a few exceptions e.g., (Sun et al., 2022; Kim 156

et al., 2021), and instead rely on expression gener- 157

ation as one of the many tasks in their multi-task 158

framework, (Lu et al., 2022; Yang et al., 2021; 159

Wang et al., 2022). REC is a foundational task for 160

most state-of-the-art unified VL models pretrained 161

on large datasets (Wang et al., 2022; Yang et al., 162

2021; Kamath et al., 2021). 163

2.2 CLIP and Contrastive Learning 164

Contrastive learning enables models to better learn 165

multi-modal feature alignment by forcing the mod- 166

els to distinguish similar and different data, all in a 167

non-supervised setting. It has been a mainstay in 168
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numerous VL models (Wang et al., 2021; Nan et al.,169

2021; Chen et al., 2022b,a), with increasing popu-170

larity after its usage in CLIP(Radford et al., 2021).171

In later work, BLIP(Li et al., 2022a) and CoCa(Yu172

et al., 2022) improve CLIP by applying a multitask173

pretraining scheme that minimizes contrastive loss174

and captioning loss together; GLIP(Li et al., 2022b)175

and (Zhang et al., 2021) align regions with object176

category words within the image captions.177

2.3 Aspect-Controlled Generation178

Controlled generation have been studied in many179

domains, e.g., natural language generation(Hu180

et al., 2017) and image generation(Karras et al.,181

2021). In closely related work for aspect-controlled182

image captioning, (Mathews et al., 2018; Guo et al.,183

2019) propose models to generate captions of a cer-184

tain style such as positive, negative, subjective and185

objective; (Chen et al., 2020, 2021) propose so-186

lutions to generate captions that contain specific187

objects or actions. In these work, the requested188

control can be fed through a text encoder and com-189

bined with visual features (Mathews et al., 2018;190

Guo et al., 2019; Chen et al., 2021); or the request191

can be provided as an input graph that contains ob-192

jects and relations (Chen et al., 2020). In our work,193

we leverage prompts on specific aspects (e.g., color,194

action) to achieve this control over the generated195

reference, where the model learns how to relate dif-196

ferent prompts to various aspects during training.197

3 Methodology198

To summarize our full method pipeline, we build199

upon the BLIP Multimodal Mixture of Encoder-200

Decoder (MED) model architecture (Li et al.,201

2022a), adapting it for aligning image-regions and202

text- expressions describing those regions. We in-203

troduce a novel and intuitive approach for feeding204

the input; by drawing a bounding box around the205

target region in the image and prompting the model206

to describe the marked region. To reinforce that the207

generated descriptions are unique referring expres-208

sions, we introduce a simple technique to craft neg-209

ative examples that are utilized during contrastive210

learning. Finally, we propose an intuitive yet novel211

approach for generating expressions conditioned212

on a given aspect (e.g. color, location etc.), by sim-213

ply appending the aspect tag to the input prompt.214

To effectively evaluate our model, we generate syn-215

thetic data for training models for the downstream216

task of REC and use the REC performance as the217

evaluation metric. This evaluation approach al- 218

lows handling multiple expressions (with various 219

aspects) generated per target, by our REG model. 220

The architecture and training setup of the model 221

is shown in Figure 2. We follow the general struc- 222

ture of BLIP(Li et al., 2022a) that consists of uni- 223

modal image and text encoder, an image-grounded 224

text encoder and an image-grounded text decoder. 225

Our additions, here, are the modified image, the 226

additional prompt input and new loss computations. 227

The overall system is first pre-trained in a multitask 228

manner, jointly minimizing region-expression con- 229

trastive loss, region-expression matching loss and 230

expression generation loss. Following this, image 231

encoder and text decoder are fine-tuned only with 232

the expression generation loss on larger images. In 233

the following sections, we detail each of these new 234

components of our proposed system. 235

3.1 Region-Expression Alignment 236

As mentioned in Section 2.2, most prior CLIP- 237

based models have focused on the image-caption 238

level. (Li et al., 2022b), (Zhang et al., 2021) and 239

(Zhong et al., 2022) are among a handful of works 240

that learn alignment between image regions and 241

text spans. However, their focus is on a single im- 242

age object and simple expressions. For instance, 243

matching the image-region containing cat to the 244

phrase “a photo of cat”. In this work, we allow 245

alignment of regions with more complex expres- 246

sions involving surrounding context (e.g. “a cat 247

next to a dog”) through two simple design choices: 248

• We draw a red rectangle on the input image 249

marking the bounding box of the target region. 250

• We add the prompt "Describe the red box in- 251

side the image:" prior to generating the target 252

expression. 253

As shown in the upper part of Figure 2, the mod- 254

ified image becomes the input to the image encoder. 255

During pre-training, the prompt is appended before 256

the ground-truth expression and fed to the two text 257

encoders (uni-modal and image-grounded). The 258

prompt is also used by the decoder to generate ex- 259

pressions. During inference, only the text decoder 260

is utilized to generate an expression following the 261

prompt. The rationale here is to provide a cue to 262

visual encoder, image-grounded text encoder and 263

decoder to focus on the target region of the im- 264

age. At the same time, since the whole scene is fed 265
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Figure 2: Pretraining model architecture and training objectives of the proposed REG system. We adapt BLIP
(Li et al., 2022a) that consists of uni-modal image and text encoders, an image-grounded text encoder and an
image-grounded text decoder. The target region is marked with a red bounding box in the original image and
fed to image encoder. The prompt is appended to the decoder input, and fed alongside the visual embedding
from the image encoder to the text decoder to generate the text. Simultaneously, we concatenate the prompt with
the ground-truth expression, and feed the combined tokens to uni-modal and multi-modal text encoders. The
encoders and the decoder are trained with a specific loss for each network: multi-modal text encoder is trained using
image-text matching loss; uni-modal text encoder is trained via contrastive loss; and the multi-modal text decoder
uses a generation loss.

as input, the model can also utilize the surround-266

ing context to generate a unique description of the267

marked region. These descriptions can involve268

other scene objects and relationships to them as269

shown in Figure 1. Using text prompt as additional270

input provides benefit of controlling the style of271

generations as discussed in Section 3.3. A similar272

idea has been tried by (Yao et al., 2021), where a273

colored mask is laid on the target and aligned with274

a color-based text prompt. Adding a color mask,275

however, can distort the features of the original im-276

age and mislead the generation model. Therefore,277

we use a bounding box marker to keep the original278

image largely unchanged.279

3.2 Hard Negatives Design 280

A referring expression needs to uniquely and un- 281

ambiguously identify the target object within the 282

image. This is a more challenging task as merely 283

describing the target region may not be sufficient. 284

For instance, in Figure 3, an expression such as “a 285

man drinking with a cup” is not sufficient to iden- 286

tify the person in the center, as there are two men 287

drinking with a cup in that image. To allow the 288

model to learn to generate distinct expressions, we 289

employ a contrastive learning approach. We create 290

hard region-expression negative pairs which are 291

utilized in the region-expression matching loss (ex- 292

plained in Section 3.4) during the pre-training stage. 293
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Positive Pair Negative Pairs 

“The man in the middle.” “The man in the middle.” “The man drinking with a 
white cup.” 

   
 

Figure 3: Hard negatives generation for contrastive
learning. We create negative samples by changing ei-
ther the bounding box or the reference in a positive pair,
keeping the other constant.

To create a negative pair, we start with a positive294

pair and modify it with one of the following two295

strategies: (1) we update the target image-region296

to a randomly sampled region outside the original297

target in the same image, keeping the target ex-298

pression as is; (2) we replace the target expression299

with one referring another object in the same scene,300

keeping the target image-region unchanged.301

This approach is particularly beneficial when302

there are multiple objects of the same category in a303

scene allowing the model to learn to contrast and304

distinguish each object. An example is shown in305

Figure 3. The first negative example will allow the306

model to understand the scene layout and thereby307

generate unique spatial references involving object308

locations in the image. The second negative pair309

will force the model to learn to understand the310

nuanced details of the content of the image regions311

so as to generate discriminative references.312

3.3 Aspect-Controlled Referring Expression313

Generation314

It is always possible to refer a target object in a315

scene in multiple ways with different referring ex-316

pressions capturing different aspects of the target317

object and its situated context. Such aspects can318

include descriptive properties like color, shape, pat-319

tern etc. of the target object, spatial properties such320

as the target object’s location in the scene (e.g., in321

the middle) and visual relationships like spatial322

(e.g. on top of), action (e.g. cutting), comparative323

(e.g., larger than) etc. capturing its interaction with324

other scene objects. An expression can also cap-325

ture a combination of these aspects (e.g., “a man326

in white waving a bat” as shown in Figure 4).327

In this work, we propose a simple approach to328

control the style of generated referring expressions329

along these aspect dimensions. This is achieved330

by providing the target-aspect(s) as additional in- 331

put to the model via the prompt. The target- 332

aspect is added at the end of the default prompt 333

i.e., “Describe the red box inside the image by 334

< aspect >”. For instance, as shown in Figure 335

4, when the target-aspect is specified as color, the 336

model generates the expression “the man in white”, 337

while when the aspect is action, the generated ex- 338

pression is “the man waving a bat”; both expres- 339

sions uniquely pointing to the hitter in the image. 340

In order to train the system, we first annotate the 341

aspects reflected in the training set referring expres- 342

sions through rule-based heuristics. Specifically, 343

we construct a pool of key words for each aspect 344

and perform keyword-search on expressions. This 345

rule-based process annotates ∼80% of the data. 346

We then train a BERT-based classifier on this rule- 347

labelled data and utilize it for annotating the rest 348

of the training set. Finally, the expression genera- 349

tor is trained as shown in Figure 2, with annotated 350

aspect(s) added to the end of the default prompt. 351

We consider four salient aspects of referring ex- 352

pressions in this work; color, shape, location and 353

action and all their possible combinations. This 354

was primarily motivated based on the structure of 355

expressions seen in popular referring expression 356

datasets. Our approach, however, is extensible to 357

any number of aspect dimensions. As we show in 358

Section 4.2, one of the main practical advantages 359

of the proposed controlled generation approach is 360

the capability to generate richer and more diverse 361

synthetic dataset for downstream tasks such as re- 362

ferring expression comprehension, reducing the 363

requirement of human-labeled data. Furthermore, 364

most referring expression datasets provide multiple 365

ground-truth expressions associated with the same 366

target image-region. When fed as independent 367

training examples with image and target-region 368

being the only input, this can potentially lead to 369

model confusion. In our approach, however, these 370

examples will be split because different prompts 371

will be associated with different ground-truth ex- 372

pressions, thereby, easing the training process. 373

3.4 Multitask Pretraining 374

We adapt the multitask training scheme in BLIP(Li 375

et al., 2022a) and COCA(Yu et al., 2022). Our 376

model is trained to minimize three losses: 377

• Region-Expression Contrastive Loss: It is the 378

middle part of the loss block in Figure 2. This 379

loss is computed on the outputs of uni-modal 380
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Figure 4: Decoding process of our aspect-controlled REG model. Any combination of the 4 aspects (color, location,
action, shape) can be utilized to construct the prompt. The target region is marked in the image with a box and
fed to image encoder to get visual embedding. The constructed prompt is fed to the text decoder along with this
embedding to generate the corresponding style of reference. The encoder and decoder are the same as Fig 2.

encoders to maximize the alignment between en-381

coded image-region and text expression features382

of positive pairs while minimizing it for negative383

pairs. We use the Image-Text Contrastive (ITC)384

loss from (Li et al., 2021).385

• Region-Expression Matching Loss: It is the386

left part of the loss block in Figure 2. This is the387

binary classification loss computed on the output388

of image-grounded text encoder.389

• Expression Generation Loss: It is the right390

part of the loss block in Figure 2. As found391

by COCA(Yu et al., 2022), pre-training with cap-392

tioning task helps the model learn fine-grained393

region-level features. We, therefore, also add the394

expression generation task during pre-training.395

An important modification in our setup is that396

we conduct contrastive learning at two levels; inter-397

image and intra-image. For the region-expression398

contrastive loss, we create region-expression nega-399

tive pairs across different images. For the region-400

expression matching loss, negative pairs are created401

from the same image as discussed in Section 3.2.402

The first task is relatively easier because region fea-403

tures from different images usually vary widely. It404

allows the uni-modal encoders to train fast, capture405

and align higher-level features of the image and406

expression (e.g., differentiating a cat from a car).407

The second task is harder because features from the408

same image will often be similar, e.g., having the409

same environment or belonging to the same object410

category. This task, therefore, enables the models411

to learn more detailed multimodal representations 412

to distinguish between closely matching inputs. 413

We use the above three losses for pretraining on 414

smaller-size images. Then we fine-tune the models 415

on larger images using only the generation loss. 416

3.5 REG Evaluation via Data Augmentation 417

for Referring Expression Comprehension 418

In order to evaluate the generative models, a com- 419

mon practice is to compute n-gram overlap met- 420

rics such as CIDEr(Vedantam et al., 2015). These 421

metrics measure similarity between predicted and 422

ground-truth text sequences. However, these only 423

capture similarity to a single ground-truth expres- 424

sion and are not well-suited to evaluate the diversity 425

inherent in our proposed aspect-controlled REG 426

task. Furthermore, it is not possible to determine 427

which aspect(s) of the expression is present in the 428

test set for any given example, without looking at 429

the labels. Therefore, to show the full potential 430

of our approach, besides intrinsic evaluation with 431

the above mentioned automatic metrics, we also 432

perform extrinsic evaluation on the downstream 433

task of REC. We first generate synthetic data with 434

the proposed REG model, then train SOTA REC 435

models (such as MDETR(Kamath et al., 2021)) 436

using the generated data, and finally evaluate the 437

REC model w.r.t. accuracy on standard expression 438

comprehension benchmarks. This approach allows 439

us to utilize multiple expressions generated by our 440

REG model and the computed REC accuracy is 441

comparable with those reported in prior works. 442
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RefCOCOg RefCOCO+ RefCOCO
test testA testB testA testB

(Liu et al., 2017) 0.639 0.512 0.704 0.710 1.257
(Yu et al., 2017) 0.742 0.579 0.798 0.804 1.358

(Tanaka et al., 2019) 0.763 0.663 0.812 0.859 1.375
(Liu et al., 2020) 0.645 0.585 0.692 0.802 1.301
(Sun et al., 2022) 0.749 0.722 0.758 0.877 1.333

Ours 1.069 1.039 0.966 1.119 1.527

Table 1: Comparison of our proposed model with SOTA REG models on CIDEr metric. We do not apply any
aspect-control here and use the default prompt.

4 Experiments443

For intrinsic evaluation, we train and test our model444

on RefCOCO (Yu et al., 2016b), RefCOCO+ (Yu445

et al., 2016b) and RefCOCOg (Mao et al., 2016b)446

separately. We use CIDEr as metric. For extrinsic447

evaluation, we train existing REC models on refer-448

ences generated by our REG model, and examine449

the REC performance on RefCOCO/g/+ test sets450

using Acc@0.5 as the metric. We use our REG451

model trained on RefCOCOg and select MSCOCO452

images that do not overlap with any of the Ref-453

COCO/g/+ datasets to generate the synthetic data454

for training comprehension models.455

4.1 Intrinsic Evaluation456

We use AdamW optimizer. The whole system is457

first pre-trained at 1e-5 learning rate. Then, the458

image encoder and text decoder are fine-tuned with459

1e-6 learning rate. The image size is 224× 224 for460

pretraining and 384 × 384 for fine-tuning. Note461

that, we use the term ‘default prompt’ to refer to the462

prompt - (“Describe the red box inside the image”),463

where no aspect is specified.464

Table. 1 shows the performance of our expres-465

sion generation model in comparison to prior works466

on RefCOCO/g/+ test sets. For fair comparison, we467

use only the default prompt in this experiment and468

generate only one expression per input region. Our469

proposed system outperforms all previous works470

by a large margin on CIDEr score.471

Next, we apply aspect-controlled prompts. Table472

2 shows the results under different prompt setups.473

We experiment with 3 main settings: (1) default474

prompt at both training and testing, (2) prompt with475

annotated aspect(s) at training and a fixed-aspect476

prompt during testing, and (3) prompts with all as-477

pects (“Describe the red box inside the image by478

location, color, shape and action") at both training479

Train Prompt Test Prompt CIDEr

Default Default 1.069
Annotated Default 0.917
Annotated Action 0.898
Annotated Color 0.946
Annotated Location 0.971
Annotated Shape 0.985

All All 1.039

Table 2: Comparison of different prompt selection strate-
gies at training and testing. Experiments are on Ref-
COCOg dataset. ‘Annotated’ means the prompts are
constructed by the rule + BERT classifier. ‘Default’
refers to the prompt “Describe the red box inside the im-
age:", ‘All’ refers to the prompt “Describe the red box
inside the image by color, location, action and shape:".

and testing. Because the ground-truth expressions 480

and their aspects are unknown at test time, we ex- 481

periment with feeding prompts with each aspect, 482

one at a time. In setting 3, we provide prompts with 483

all aspects to the model. As shown in the table, set- 484

ting 1 and 3 have higher CIDEr scores compared to 485

any experiment under setting 2. This is because, in 486

these two settings, the training and testing prompts 487

are consistent, unlike in setting 2 where the fixed 488

test prompts may not match the training prompts. 489

For setting 2, we find that changing the aspect in 490

prompt largely does not affect the score. This is 491

likely because n-gram overlap metrics like CIDEr 492

do not capture the nuances in different styles of 493

generated expressions, reinforcing our strategy to 494

further evaluate on downstream REC task as ex- 495

plained in Sec. 3.5. In Fig. 5, we show our model’s 496

predictions on two examples. In both cases, chang- 497

ing the aspect(s) leads to corresponding change in 498

the style of the generated expression. More exam- 499

ples can be found in Appendix. 500
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RefCOCOg RefCOCO+ RefCOCO
test testA testB testA testB

MDETR 80.89 84.09 70.62 89.58 81.41

Only Syn 76.38 77.49 61.36 82.94 72.88
+10%Real 78.86 81.44 66.17 87.50 78.49
+30%Real 80.43 82.04 68.38 87.89 79.84
+50%Real 80.54 83.08 69.97 88.63 80.33

Table 3: Impact of replacing real training data with synthetic data generated by our Aspect-Controlled REG model
for REC. We use MDETR(Kamath et al., 2021) as the REC model and Acc@50 as the metric. The first row is
MDETR trained on all real data. Only Syn refers to only using synthetic data. +x% refers to additional x% real data.

Default: A woman in a white shirt. 
By color: A woman in a white shirt. 

 

By location: The woman in the middle. 
By action: A woman holding a glass of wine. 
By action and color: A woman in a white shirt 
holding a glass of wine. 
Ground truth: This is a woman holding a 
wineglass and is wearing a white tshirt. / A 
woman in a white blouse holding a glass of 
wine. 

  
Default: The cat on the left. 
By color: A black cat. 

 

By location: The cat on the left. 
By action: Cat looking at another cat. 
By action and color: A black cat looking at 
another cat. 
Ground truth: Shorter cat on left side. / A cat 
whose tail is hiding behind the curtain. 
 

 

Figure 5: Qualitative examples showing the behavior of
prompts with different aspects for REG.

Lastly, we conduct a preliminary study on the501

faithfulness of our aspect-controlled generation.502

We report these results in the Appendix.503

4.2 Extrinsic Evaluation504

We select MDETR(Kamath et al., 2021) to evaluate505

the quality of the data generated by our REG model.506

It is has SOTA REC performance on RefCOCO/g/+507

datasets. We use the same setting as provided in its508

paper. We select 158,367 annotations from 47,801509

MSCOCO images which do not belong to any of510

RefCOCO/g/+ datasets to generate our synthetic511

data. For each annotation, we randomly sample a512

set of aspects (from the four categories) to construct513

the prompt and then generate an expression for it.514

We first train the model only on synthetic data of515

the same size as the training sets, then add real516

data.517

Table 3 shows the results on the three datasets.518

Row 1 reports numbers when MDTER is fine-tuned519

on real RefCOCO/g/+ training sets and tested on520

corresponding test set. We report these numbers di-521

rectly from original paper. In subsequent rows, we522

fine-tune MDTER on only synthetic data and syn-523

thetic data mixed with varying proportions of real524

data from the corresponding training set. Note that,525

our synthetic sets neither contain images from the 526

original RefCOCO/g/+ datasets, nor any human- 527

written references. As seen in the table, trained 528

purely on this generated data, MDETR already 529

achieves performance close to its original reported 530

value that used 100% human-annotated data. As we 531

add real data ranging from 10% to 50% to the syn- 532

thetic dataset, the performance quickly approaches 533

to that with 100% real data. Consequently, our 534

proposed REG model can be used to significantly 535

cut down annotation budget. Lastly, we use up all 536

real and synthetic data, the performance is further 537

improved, reported in Appendix. 538

Our controlled expression generation approach 539

provides greater benefit for downstream tasks be- 540

cause it produces a more diverse set of references 541

compared to traditional beam search method, given 542

the same amount of data. In Appendix, we compare 543

our approach with beam searching and the result 544

shows our method generates expressions of various 545

styles while beam search generates highly-similar 546

ones. 547

Lastly, in Appendix, we conduct the aforemen- 548

tioned experiments using VL-T5 (Cho et al., 2021), 549

another joint VL model published in 2021. We 550

observe similar results as MDETR. We also gener- 551

ate synthetic data using (Tanaka et al., 2019) and 552

compare with ours. Our model shows better perfor- 553

mance. Besides, we include an analysis of compre- 554

hension errors in the Appendix. 555

5 Conclusion 556

We present a model to generate referring expres- 557

sions for a given object in arbitrary ways, where we 558

use a prompt to guide our decoder. Our approach, 559

compared to traditional beam search, provides syn- 560

thetic data of higher quality as evidenced in its di- 561

versity and ability to achieve higher accuracy with 562

the same amount of training data. 563
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6 Limitations564

A limitation of our method would be the use of565

red box. It may fail in specific images such as the566

images that have red boxes inside.567

Moreover, our study only covers 4 aspects, while568

more aspects could be included.569

By now, there is not a dataset to test the perfor-570

mance of aspect-controlled generation directly. In571

the future, it would be good to build such a dataset572

that measures if models can generate references573

following the prompts.574
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A Appendix753

A.1 Experiment Settings754

We adapt the same model settings and training set-755

tings of BLIP for our generation model. 4 Nividia756

V100 GPUs are used. The training time in total757

is around 24 hours. For MDETR and VL-T5, we758

follow their original settings.759

A.2 Ablation Study760

To quantify the importance of our design choices,761

we perform ablation study on RefCOCOg test set762

and report the results in Table 4. First, we directly763

utilize vanilla BLIP for REG. Low scores in row764

1 clearly indicate that the original design of BLIP765

is not suitable for REG. Next, we study the effect766

of incorporating different loss functions in 3.4. For767

practical reasons, we perform these comparisons768

at the pretraining stage. As seen in row 2-4, no-769

table increase on CIDEr is gained by adding each770

loss. Finally, the last row shows that fine-tuning771

our model with generation loss provides further772

improvement over the model pretrained with all 3773

losses.

Experiment Settings Stage CIDEr

Vanilla BLIP Pretrain 0.584

Gen loss Pretrain 0.946
Gen + Ctr loss Pretrain 0.963

Gen + Ctr + Mtc loss Pretrain 0.999

Gen loss Fine-tune 1.069

Table 4: Ablation study on model design and training
strategies. Experiments are on RefCOCOg dataset. Row
1: Vanila BLIP applied for REG. Row 2-4: Our model
pretrained with various losses (Gen: generation loss,
Ctr: contrastive loss, Mtc: matching loss). Row 5: Our
model fine-tuned on gen loss (Pretrained with all losses).

774

A.3 REG Faithfulness775

We performed a preliminary study on the faithful-776

ness of our aspect-control strategy. For RefCOCOg777

test set, we generated expressions conditioned on a778

single aspect and computed the % of expressions779

containing that aspect. The result is included in780

Table 5. Note that, an aspect (in isolation) may not781

be sufficient to uniquely refer every target region.782

This is, however, not accounted in this analysis as783

we run the model on every example. In addition,784

sometimes an aspect cannot be used to describe an785

object, e.g., the action of a chair, the shape of a ze-786

bra. They are likely the reasons for low faithfulness 787

w.r.t action and shape coupled with the fact that 788

there are very few ground-truth expressions with 789

that aspect.

color location action shape

87% 79% 49% 5%

Table 5: Faithfulness of the proposed aspect-control
REG model.

790

A.4 REC Error Analysis 791

We examine the test errors for the task of REC with 792

MDETR trained on 100% synthetic data. We col- 793

lect the error cases and categorize them across the 794

4 types of references. The statistics is shown in 795

Table 6. Location based references are the hardest 796

ones. They account for ∼45% of all errors. This is 797

expected because resolving a reference by location 798

requires the model to understand the relationship 799

between the target and its environment, while for 800

other types of references, the model mostly needs 801

to look at the features of the target. In addition, 802

the proportion of the 4 types of references in our 803

synthetic data is almost equal as the prompts are 804

randomly sampled. However, in real data, the dis- 805

tribution may not be uniform. For instance, in 806

RefCOCOg training set, there are ∼38.5% ground- 807

truth references by location but only 6% by shape. 808

This observation suggests that a better sampling 809

strategy can be employed such that difficult exam- 810

ples (e.g. references by location) are generated 811

more frequently so as to create a better synthetic 812

training set for downstream tasks. We leave further 813

investigation in this direction for future work. 814

Loc Color Action Shape

% of errors 44.53% 36.68% 13.32% 5.86%

Table 6: Error distribution on RefCOCOg test set with
MDETR trained on 100% synthetic data.

A.5 REC with All Data 815

We use up all our 158,637 synthetic data and real 816

training data to train MDETR and test its perfor- 817

mance. As shown in Table 7, by using up all data, 818

the performance of MDETR exceeds the one using 819

all real data. Given that our model can generate 820

synthetic data with low cost, one may expect that in 821

the future the performance can be further improved 822
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Beam Search Decoding: 

 

a white and black cat laying on a man's lap. 
a white and black cat lying on a man's lap. 
a white and black dog laying on a man's lap. 
Prompt-controlled Generation: 
a black and white cat. 
a cat being held by a man. 
a black and white cat laying on a man's lap. 

 
Beam Search Decoding: 

 

a bottle of wine. 
a bottle of wine 
a bottle of wine with a white label. 
Prompt-controlled Generation: 
a bottle of wine sitting next to a glass of water. 
a bottle of wine. 
a large bottle of white wine. 

Figure 6: Examples of referring expression variations
generated from controlling aspect via prompt vs beam
search decoding (k=3). The control words are randomly
sampled.

by including more synthetic data from external raw823

images.824

A.6 Comparison with Beam Searching825

We hypothesize that our controlled expression gen-826

eration approach will provide greater benefit for827

downstream tasks because it produces a more di-828

verse set of references compared to traditional829

beam search method, given the same amount of830

data. To test this hypothesis, we run the following831

experiment. Starting with a fixed number of images,832

we generate expressions 1) using our generation833

model with default prompt and beam search de-834

coding with beam size = 3 and 2) using the aspect-835

controlled variant of our generation model with 3836

randomly sampled prompts utilized during decod-837

ing. These two settings lead to the same amount838

of synthetic data. With the two datasets, we train839

MDETR model and test on RefCOCOg test set.840

We run experiments varying the number of images841

used for training. The results are shown in Table 8.842

Our prompt-controlled generation has obvious ad-843

vantage over the beam search decoding, especially844

when the number of input images is small. As the845

model trained on more images, the gap becomes846

narrower.847

Figure 6 shows two sets of references; one gen-848

erated by beam search and the other by prompt849

control. The result from the top three beams are850

quite similar to each other. On the other hand, the851

results generated by varying prompts are more di-852

verse and can refer the target in different ways.853

A.7 REC with VL-T5854

As mentioned in Sec 4.2, we perform the same855

REC experiments on VL-T5. The results are in856

Table 9 and 10. Similar to MDETR, trained purely857

By color: A white car. 

 

By location: A white car parked on the side of 
the road. 
By action: A white car driving down the 
street. 
By action and color: A white car driving 
down the street. 
Ground truth: A parked white Ford SUV. 

  
By color: A baby wearing a red and black 
sweater. 
By location: A small child sitting at a table. 

 

By action: A child eating. 
By action and color: A young boy in a red 
and black sweater holding a cup. 
Ground truth: The baby boy wearing a red 
shirt and gray bib. / a baby wearing a red 
sweater. 
 

 

Figure 7: More examples showing the behavior of de-
fault prompt (“Describe the red box inside the image:")
and prompts appended with different aspects like color,
location, action for generating referring expressions.

Beam Search Decoding: 

 

a man in a tan shirt and sunglasses riding on a red 
motorcycle. 
a man in a tan shirt and sunglasses riding on a 
motorcycle. 
a man in a tan shirt and sunglasses riding on a red 
bike. 
Prompt-controlled Generation: 
a man riding a motorcycle. 
a man wearing sunglasses. 
a man riding a motorcycle in front of another man. 

 
Beam Search Decoding: 

 

a small silver car 
a small silver car parked on the side of the road 
a small silver car parked on the side of the street 
Prompt-controlled Generation: 
a small silver car. 
the car in the middle. 
a small silver car driving down the street. 

Figure 8: More examples comparing referring expres-
sions generated using beam search decoding vs by vary-
ing prompt. The ‘aspect tokens’ in the prompt are ran-
domly sampled.

on our generated data, it already achieves perfor- 858

mance close to its original reported value that used 859

100% real training data. As we add annotated data 860

ranging from 10% to 50% to the synthetic dataset, 861

the performance readily approaches the value with 862

100% real data. Lastly, when using up all data, it 863

outperforms the original VL-T5 by a large gap. 864

A.8 Comparison with Other REG Models for 865

Synthetic Data Generation 866

We also use another REG model (Tanaka et al., 867

2019), to generate synthetic data, and conduct our 868

extrinsic evaluation on RefCOCO/g/+ datasets. We 869

only test the accuracy of MDETR where 100% 870

synthetic data is used for training. The result is 871

shown in Table 11. Our model outperforms (Tanaka 872

et al., 2019) by a large gap. 873
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RefCOCOg RefCOCO+ RefCOCO
test testA testB testA testB

MDETR 80.89 84.09 70.62 89.58 81.41

All 81.50 84.46 71.86 89.85 82.39

Table 7: MDETR trained on all our synthetic data and real data. The first row is MDETR trained on all real data.
All means using up all real and full set of 158,367 synthetic examples from non-overlapping COCO images.

# of Images # of References Beam Approach Aspect Prompt

3,000 25,013 72.68 76.58 (+3.90)
6,000 49,806 74.65 77.61 (+2.96)

12,000 99,876 75.23 76.85 (+1.62)

Table 8: Comparison of synthetic data quality generated with beam search decoding vs aspect-controlled REG.
Using the synthetic data, we train MDTER model for REC and evaluate on the RefCOCOg test set by Acc@50.

RefCOCOg RefCOCO+ RefCOCO
test testA testB testA testB

Reference 71.2 76.09 59.21 85.89 72.68

Only Syn 67.39 65.12 49.76 72.88 59.92
+10%Real 69.27 73.21 54.65 80.94 68.97
+30%Real 70.07 75.20 57.19 83.24 70.87
+50%Real 71.14 76.02 57.58 84.15 71.89

All 73.22 79.39 62.36 85.93 73.03

Table 9: Impact of replacing real training data with varying amounts of synthetic data generated by our Aspect-
Controlled REG model for the task of REC. We use VL-T5 as the REC model and Acc@50 as the metric. ‘Reference’
is the accuracy reported in the VL-T5 paper. Only Syn refers to model trained purely on synthetic data. +x% refers
to additional x% real training data. All means using up all real and synthetic data. VL-T5 does not report its results
on RefCOCO and RefCOCO+. We compute those numbers ourselves.

# of Images # of References Beam Approach Aspect Prompt

3,000 25,013 66.56 67.20
6,000 49,806 66.50 66.65
12,000 99,876 66.64 67.52

Table 10: Comparison between beam search decoding and prompt-controlled generation in terms of Acc@50 on
RefCOCOg test set for the task of REC using VL-T5 model.

RefCOCOg RefCOCO+ RefCOCO
test testA testB testA testB

(Tanaka et al., 2019) 69.48 69.73 56.06 71.82 58.53
Our REG 76.38 77.49 61.36 82.94 72.88

Table 11: Performance of MDETR trained on synthetic data generated from (Tanaka et al., 2019) and our REG.

A.9 Aspect Annotation874

Table 12 shows statistics on annotated aspects. As875

seen from the table, this approach labels majority876

of the data leaving only ∼2% as unlabeled. Most877

of the unlabeled expressions are brief phrases such 878

as “A refrigerator". 879
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Location Color Action Shape Unlabeled

47,083 35,733 14,187 5,871 1,865
58.48% 44.38% 17.62% 7.29% 2.32%

Table 12: A summary of aspect-class distribution in
training data. Note that a reference can belong to multi-
ple aspect classes.

By color: A white car. 

 

By location: A white car parked on the side of 
the road. 
By action: A white car driving down the 
street. 
By action and color: A white car driving 
down the street. 
Ground truth: A parked white Ford SUV. 

  
By color: A baby wearing a red and black 
sweater. 
By location: A small child sitting at a table. 

 

By action: A child eating. 
By action and color: A young boy in a red 
and black sweater holding a cup. 
Ground truth: The baby boy wearing a red 
shirt and gray bib. / a baby wearing a red 
sweater. 
 

 

Figure 9: More examples showing the behavior of de-
fault prompt (“Describe the red box inside the image:")
and prompts appended with different aspects like color,
location, action for generating referring expressions.

Beam Search Decoding: 

 

a man in a tan shirt and sunglasses riding on a red 
motorcycle. 
a man in a tan shirt and sunglasses riding on a 
motorcycle. 
a man in a tan shirt and sunglasses riding on a red 
bike. 
Prompt-controlled Generation: 
a man riding a motorcycle. 
a man wearing sunglasses. 
a man riding a motorcycle in front of another man. 

 
Beam Search Decoding: 

 

a small silver car 
a small silver car parked on the side of the road 
a small silver car parked on the side of the street 
Prompt-controlled Generation: 
a small silver car. 
the car in the middle. 
a small silver car driving down the street. 

Figure 10: More examples comparing referring expres-
sions generated using beam search decoding vs by vary-
ing prompt. The ‘aspect tokens’ in the prompt are ran-
domly sampled.

A.10 Other Examples880

Figure 9 shows two more examples on our aspect-881

controlled generation. Figure 10 shows two more882

examples that compare the references generated by883

beam-searching approach and prompt control.884
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