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Abstract

Deep learning algorithms aim to minimize overall error and exhibit impressive perfor-
mance on test datasets across various domains. However, they often struggle with out-
of-distribution data samples. We posit that deep models primarily focus on capturing the
prominent features beneficial for the task while neglecting other subtle yet discriminative
features. This phenomenon is referred to as Abridge Learning. To address this issue and
promote a more comprehensive learning process from data, we introduce a novel DIVerse
and INconspicuous feature lEarning (DIVINE) approach aimed at counteracting Abridge
Learning. DIVINE embodies a holistic learning methodology, effectively utilizing data by en-
gaging with its diverse dominant features. Through experiments conducted on ten datasets,
including MNIST, CIFAR10, CIFAR100, TinyImageNet, and their corrupted and perturbed
counterparts (CIFAR10-C, CIFAR10-P, CIFAR100-C, CIFAR100-P, TinyImageNet-C, an d
TinyImageNet-P), we demonstrate that DIVINE encourages the learning of a rich set of
features. This, in turn, boosts the model’s robustness and its ability to generalize. The
results on out-of-distribution datasets, such as those that are perturbed, achieve a perfor-
mance 5.36%, 3.10%, and 21.85% mean Flip Rate (mFR) corresponding to CIFAR10-P,
CIFAR100-P, and TinyImageNet-P datasets using DIVINE. On the other hand, Abridged
Learning on CIFAR10-P, CIFAR100-P, and TinyImageNet-P datasets, achieve a perfor-
mance 6.53%, 11.75%, and 31.90% mFR, respectively. The proposed DIVINE algorithm
achieves state-of-the-art (sota) results on CIFAR100-P dataset when compared to existing
algorithms.

1 Introduction

Deep learning algorithms have achieved tremendous success in several tasks including image classification
(Taesiri et al., 2024), (Dehghani et al., 2023), (Su et al., 2023), object detection (Wang et al., 2023b),
(Zong et al., 2022), (Tan et al., 2020), and segmentation (Fang et al., 2023), (Xie et al., 2020). However,
the robustness and generalizability of these algorithms in real-world scenarios is still an open problem.
Supervised learning tasks in deep neural networks primarily focus on maximizing the classification accuracy
by learning the easiest solutions/patterns that exist in the entire dataset (Geirhos et al., 2020). In other
words, models take shortcuts by learning only the dominant input features that are sufficient for confident
classification (Dogra et al., 2024), (Li et al., 2023),(Ilyas et al., 2019), (Pezeshki et al., 2021). This results
in ignorance of other useful and distinct features that can be helpful in classification. Therefore, as shown
in Figure 1, these models often fail to classify out-of-distribution samples.

In this research, we termed the above-mentioned learning process as “Abridge Learning". Formally, Abridge
Learning (AL) is defined as the “learning process in which a model learns only the dominant input features
while failing to learn other useful input features for the target task". The solution obtained by Abridge
learning process lacks generalizability and is not suitable for deployment in real-world scenarios. To mitigate
the problem of Abridge Learning, one solution is to identify the inconspicuous discriminative input features
and use them to learn a diverse unified model that is generalizable to unseen real-world datasets. In an ideal
training process, a model should identify and learn all the input features present; however, the identification
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Abridge Learning

Diverse and Inconspicuous Feature Learning

Figure 1: Illustration of the Abridge Learning (AL) and the proposed method. Model conventionally trained
with AL, learns only ‘paw’ input feature and ignore other features. This results in failure of the model on the
image with missing ‘paw’ feature. The proposed DIVINE learns ‘paw’ along with the feature ‘ear’ resulting
in successful classification of the image where ‘paw’ feature is missing and the ‘ear’ feature is present.

of all the input features is intractable. Therefore, it is important to identify a set of diverse input features
that can provide a generalized solution.

Research Contributions: Existing methods address the problem of robustness and lack of generalizability
in models; however they do not explicitly focus on learning the inconspicuous features from the dataset that
are also discriminative in nature. This leads to learning of shortcut features that only work well for a given
task on the given data but cannot sustain under real-world variations in data. To abridge this gap, we propose
a novel learning method termed as DIVINE i.e., Diverse-Inconspicuous Feature Learning which mitigates this
problem by removing the shortcuts and learning a diverse set of input features. The objective of the proposed
method is two-fold: (a) identification of the minimum number of diverse inconspicuous discriminative input
features as illustrated in Figure 1 and (b) train a unified model to learn the identified features for enhancing
generalizability. The diverse features identified using the proposed method are disjoint, which in turn
maximizes diverse learning of the model. Experiments for image classification tasks on CIFAR10, MNIST,
CIFAR10-C, and CIFAR100-C datasets show that, DIVINE is generalized and can be applied to different
machine learning tasks.

2 Related Work

The notion of “Abridge Learning" is excessively applicable to train deep learning models. This learning
schema has been termed as shortcut learning1(Geirhos et al., 2020) where the model finds shortcuts to
minimize the loss, primarily by picking up only the dominant features in the input. This has been the
traditional way of training the models. Carter et al. (2021) have shown that only 5% spurious pixel subsets
are enough for confident prediction leading to over-interpretation of pixels resulting in shortcut learning.
Such shortcuts were also recently identified in a medical imaging task (Oakden-Rayner et al., 2020) where
the model picked undesired tumor patterns in the dataset. It gave a falsely reasonable performance, which
went undetected because of the chosen evaluation metric. This implies that such spurious correlations can
also remain unobserved because of the selected evaluation metrics. Lapuschkin et al. (2019) discussed Clever
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Hans strategies in the domain of Computer Vision and Arcade Gaming. They generated heatmaps and
showed the patterns focused by the model while taking shortcuts.

Various drawbacks of shortcut learning process have recently been identified and addressed by the community.
One such learning process termed as Gradient Starvation (Pezeshki et al., 2021) showed that the deep
learning model extracts a subset of features to minimize the loss for training, while the gradients from other
potentially essential features starve. Du et al. (2020) proposed a CREX method to avoid shortcuts. This
method regularizes the subset of features annotated by experts. Wang et al. (2023a) proposed DFM-X, which
use the prior knowledge from the previous models to train the target model to enhance the generalizability
and robustness of the model. Zhang et al. (2023) proposed SADA method to generate images for the
data augmentation corresponding to highly sensitive frequencies. Gao et al. (2023) proposed DDA based
adaptation method, which learns the diffusion model on the source data and projects the target input to the
source during testing. Guo et al. (2023) proposed a method to reduce the sensitivity of vision transformer
against patch based corruptions. Ross & Doshi-Velez (2018) found that the networks trained with input
gradients are more robust and generalizable. A similar approach to make models more robust involves
regularizing the gradient norm of the model output with respect to the inputs. These Jacobian-based
regularizers have been shown to significantly improve classification accuracy (Varga et al., 2017). Another
approach incorporating the Jacobian in deep models is Jacobian Adversarially Regularized Networks (JARN),
where the model’s Jacobian is optimized by adversarial regularization (Chan et al., 2020). Similar insights
have been utilized to evaluate the robustness of deep models on data containing random and adversarial
input perturbations (Hoffman et al., 2019). The input perturbations and corruptions in the data are widely
studied in the literature to evaluate the robustness of models (Rusak et al., 2020) (Taori et al., 2020).
Different approaches (Bai et al., 2021; Strisciuglio & Azzopardi, 2022; Krueger et al., 2021; Benkert et al.,
2022; Machireddy et al., 2022; Timpl et al., 2022; Chefer et al., 2022) are used to mitigate the effect of such
distribution shifts. For example, Hendrycks et al. (2021) proposed a data augmentation method to address
this problem, which includes geographic location as well as camera operation. Another work discusses the
impact of manipulating batch normalization statistics for corrupted data to improve model performance
(Schneider et al., 2020).

Several data augmentation based methods have been proposed in the literature to directly or indirectly
address the problem of shortcut learning Jin et al. (2024). DeVries (2017) proposed a method CutOut which
randomly mask out the square regions in the input during model training to improve the model robustness.
Zhong et al. (2020) extended the work of DeVries (2017) and assigns the random pixel value to the masked
region to improve model performance. Cutmix replaces the region of an image with a region of different
image Yun et al. (2019). Zhang et al. (2018) proposed similar work, where the model is trained in convex
combination of pairs of images and their corresponding labels rather than replacing a portion of one image
with portion of another image. Hendrycks et al. (2019) proposed data augmentation technique AugMix
which utilizes stochasticity and diverse augmentations to produce a high diversity of augmented images
to improve model robustness. Huang et al. (2023) proposed a simple data augmentation IPMix, which
integrates pixel-based, patch-based, and image-based data augmentation into a single framework to achieve
model robustness. NoisyMix proposed by Erichson et al. (2024) used noisy augmentations in both input and
feature space to improve model robustness. To address the problem of label ambiguities incurred during data
augmentation with combining multiple images, Islam et al. (2024a) proposed DIFFUSEMIX method which
leverages stable diffusion for data augmentation. Authors have extended their work and proposed GenMix
Islam et al. (2024b) a prompt guided data augmentation method to enhance model robustness.

Recently, Li et al. (2023) proposed a Last Layer Ensemble (LLE) method to mitigate the multiple shortcuts
present in the dataset. The authors stated in the paper that the previous methods were amplifying the
reliance of the models on other shortcuts while mitigating one shortcut and their proposed method is able
to mitigate the multiple shortcuts. However, these shortcuts should be prior known for mitigation. Yang
et al. (2024) made multiple contributions to identify the mitigate spurious correlations. The authors showed
that the gradient based methods can be used to identify spurious correlations in the initial training phase.
The authors proposed SePArate early and REsample (Spare) method, which leverage importance sampling
method to mitigate shortcuts. Zhao et al. (2024) proposed a method COMI (COrrect and MItigate) to
address the problem of shortcut learning. The proposed method reduces the dependency of models on
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Figure 2: Pipeline of the proposed method for learning diverse and inconspicuous features. (a) Illustrates the
process of identifying inconspicuous input features. Steps 1 and 2 involve training the model with original
images from the dataset using a cross-entropy loss function. Steps 3 and 4 depict the computation of the
dominance matrix for each image. In step 5, a feature-suppressed dataset is derived from the dominance
matrix and dominance feature maps. The final step involves training the model with the feature-suppressed
dataset to identify inconspicuous input features. (b) Demonstrates the unified model training process with
original images.

shortcuts and extracts meaningful features integrated with standard Empirical Risk Minimization (ERM).
Deng et al. (2024) showed that the imbalanced data group are more easily learned rather than core feature
and overshadows the earning of core features by spurious feature. The authors porposed Progressive Data
Expansion (PDE) training algorithm, which identifies and uses the group information to improve the model’s
robustness against shortcuts. Other approaches Ling et al. (2024), Kwon et al. (2024) mitigate shortcuts for
specific applications such privacy preservation and semantic segmentation.

3 Diverse-Inconspicuous Feature Learning

As shown in Figure 2, the proposed DIVINE algorithm is a two-part learning approach. In the first learning
part, the proposed algorithm identifies and then suppresses the learned input features via a dominance feature
map to identify other inconspicuous input features. The dominance feature map represents the dominance
of the identified input features for classification. Further, in the second part, a unified model is trained
using these dominance feature maps to learn all the identified input features for enhancing generalizability.
It should be noted that the problem of identification of all the inconspicuous features is intractable, and
hence, the proposed method identifies a set of diverse inconspicuous features that maximize the learning of
the model. As a result, the proposed algorithm is able to alleviate the problem of Abridged Learning, and
the generalizability towards the out-of-distribution data samples.

1In the literature, Shortcut Learning is referred to as the broad term for various ways in which a model takes shortcuts by
learning unintended strategies to minimize the loss. Abridge Learning is a sub-problem of Shortcut Learning that deals only
with the problem where the model picks up only dominant cues and ignores other relevant features from the input data.
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Let X = {(x1, y1), (x2, y2), ..., (xn, yn)} be a dataset with original training images and their corresponding
labels. For simplicity, let x is an image of the dataset X with label y in one-hot form. Consider a model
fX(.; θ) with parameters θ. This model is trained on the dataset X using cross entropy loss function,
optimized over parameters θ.

min
θ

E(x,y)∼X[−yT log fx(x; θ)] (1)

where, fX(x; θ) outputs the probability vector for a given input image x. As mentioned earlier, the objective
is to identify diverse inconspicuous input features via dominance feature maps followed by training a unified
diverse model for enhancing generalizability. Here, we will first discuss the method for identification of
inconspicuous features followed by training of the unified model.

3.1 Identification of Inconspicuous Input Features

Let F(x) = {F1(x), F2(x), ...Fr(x)} be the set of all input features present in the image x that can be learned
by the model using the loss function in Eq. 1. Each feature Fi(x) in the feature set F is the combination
of input image pixels that can be learned by the model for classification. For example, in Figure 1, one of
the image features (in the feature set learned by the model) constitutes of pixels of the paw region. From
the literature (Geirhos et al., 2020) (Pezeshki et al., 2021), it is known that during training, a model learns
the most dominant input features present in the dataset. Hence, the first step is to identify the dominance
of each pixel in an input image x for classification. For this purpose, we have used input-output Jacobian
method (Chan et al., 2020) (Hoffman et al., 2019) that computes the dominance of each input image pixel
on the model’s output decision. Mathematically, for a given image x with input perturbation ϵ, the Taylor
series expansion of the function f(x + ϵ; θ) is defined as:

f(x + ϵ; θ) = f(x; θ) + ϵ
df(x; θ)

dx
+ O(ϵ2) (2)

The higher-order terms can be neglected for very small perturbations. Hence, the above equation is updated
as:

f(x + ϵ; θ) ≈ f(x; θ) + ϵ
df(x; θ)

dx
(3)

where, term df(x;θ)
dx represents the input-output Jacobian matrix. Since we are computing Jacobians with

respect to the true class only, we term the output matrix as Dominance matrix denoted by D1(x) = df(x;θ)
dx .

Large values (both +ve and -ve) in the dominance matrix represent higher dominance of the corresponding
image pixels in the input image x. In other words, the model’s decision is highly dependent on the input
image pixels with high dominance values in the dominance matrix.

Once we obtain the dominance matrix, the next step is to identify the image pixels with higher dominance
values. Let p be the percentage of the most dominant image pixels. The combination of these identified
pixels represents the first identified input feature F1(x). To obtain F1(x), a mask M1(x) is created using the
following function:

M1(x) =
{

1 if |D1(x)| ≥ t
0 otherwise (4)

Here, t is the threshold obtained by sorting the dominance values of the dominance matrix for top p percentage
of pixels. Next, we compute the element-wise multiplication of the mask with the input image x for obtaining
feature F1(x). Mathematically, it is written as:

F1(x) = M1(x) ⊙ x (5)

After obtaining the feature F1(x), the next step is to compute the dominance feature map Dm1(x) correspond-
ing to the identified feature F1(x). These maps are used during unified model training. Here, dominance
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Figure 3: Sample of original images and the corresponding intermediate feature-suppressed images from the
MNIST dataset obtained using the proposed method.

feature map Dm1(x) represents the dominance values of identified feature F1(x) i.e., the combination of
identified dominant pixels. The dominance map Dm1(x) is obtained by:

Dm1(x) = M1(x) ⊙ D1(x) (6)

Next, we identify other diverse inconspicuous input features. Conceptually, diversity can be achieved by
identifying features that are completely different from one another. Thus, we enforced identified features
to be disjoint, i.e., Fi(x) ∩ Fj(x) = ϕ, for i ̸= j. For this purpose, we have suppressed the identified input
feature F1(x) in the input image x. This is done by setting the input image pixels to zero corresponding to
the non-zero dominance values in the dominance feature map Dm1(x). Mathematically, it is written as:

xs1 =
{

x if |Dm1(x)| = 0
0 if |Dm1(x)| ≠ 0 (7)

where, xs1 is the output image with suppressed feature F1(x). The above-mentioned process is applied to all
the training images in the dataset X. This results in a new dataset Xs1 with suppressed features obtained
corresponding to all the images. It is important to note that suppressing the identified features corresponding
to all the images in the dataset X will enforce the model to learn other features.

To identify other input features, we use the feature-suppressed dataset Xs1 . For this purpose, we have
trained a separate model using the loss function mentioned in Equation 1. Then, the process from Equations
2 to 7 is repeated using Xs1 in place of X to obtain Xs2 . This process is repeated to identify input features
until the stopping criteria is achieved. Figure 3 shows samples of the original and feature-suppressed datasets
corresponding to MNIST dataset. The details of the stopping criteria are discussed in Subsection 4.3.

3.2 Diverse Unified Model Learning

Once the input features are identified, the next objective is to train a unified model that learns all the
identified input features. For this purpose, we have used the dominance feature maps corresponding to all
the identified features. Let k be the number of input features identified for each image x. This means we
have k number of dominance feature maps i.e., Dm1(x), Dm2(x), ..., Dmk

(x). To provide supervision during
training, all the dominance feature maps are combined into a single unified map by adding them together.
Mathematically, it is written as:

Dm(x) = Dm1(x) + Dm2(x) + ... + Dmk
(x) (8)
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where, Dm(x) is the unified dominance feature map. Let fu(.; θ) be the unified model with parameters θ to
be trained on the dataset X with original images. In order to enforce the model to learn all the identified
input features, the following objective function is used.

min
θ

E(x,y)∼X[−yT log fu(x; θ) + LD(x)] (9)

Here, the first term represents the standard cross-entropy loss while the second term LD(x) represents the
dominance loss. The dominance loss enforces the model to focus on the identified input features. Let Du(x)
be the Dominance matrix with dominance values corresponding to the unified model fu(x; θ). Then, in order
to compute the dominance loss, the squared Euclidean distance between the unified dominance feature map
Dm(x) and the dominance matrix Du(x) is minimized. Mathematically, the loss LD(x) is written as:

LD(x) = ||Dm(x) − Du(x)||22 (10)

Therefore, the final objective function is written as :

min
θ

E(x,y)∼X[−yT log fu(x; θ) + ||Dm(x) − Du(x)||22] (11)

Since the unified model learns inconspicuous and diverse input features, thereby, it not only alleviates the
effect of Abridged Learning but also enables the model to generalize over out-of-distribution samples.

4 Experimental Setup

The primary objective of this paper is to remove the shortcuts learned by the model via learning inconspic-
uous and diverse input features. Our hypothesis is based on the observation that existing algorithms learn
dominant features while ignoring other relevant features from the dataset within a distribution. The perfor-
mance of the models suffers when dominant features are distorted/suppressed. This is because the inductive
bias of the model is based on the dominant feature only. To address this, the proposed DIVINE algorithm is
designed to learn the dominant features along with inconspicuous features reducing the dependence on the
dominant feature only. Since the proposed learning process introduces the model to suppressed features as
well, making the training diverse in nature. This ensures the generalized inductive bias of the final trained
model. In order to validate this hypothesis, the experiments are performed for Abridged Learning on the
feature-suppressed datasets corresponding to MNIST (LeCun et al., 1998), CIFAR10 (Krizhevsky et al.,
2009), and TinyImageNet (Le & Yang, 2015) datasets. These feature-suppressed datasets are obtained by
suppressing the identified input features (described in Section 3.1).

To further analyze the applicability of the proposed algorithm in real-world scenarios, we perform the ex-
periment by evaluating the unified model on out-of-distribution samples. These samples are taken from
the corrupted datasets CIFAR10-C, CIFAR100-C, TinyImageNet-C and perturbed datasets CIFAR10-P,
CIFAR100-P, and TinyImageNet-P. The corrupted datasets contain 15 different corruptions correspond-
ing to the CIFAR10, CIFAR100, and TinyImageNet datasets, respectively. We discuss the details of the
corruption and perturbed datasets employed for evaluation below:

• MNIST LeCun et al. (1998) consists of 60,000 training images and 10,000 testing images, of
handwritten digits from 10 different classes (0-9). Each image is a grayscale image of 28 × 28
resolution. The standard pre-defined protocol is used for evaluation.

• CIFAR10 Krizhevsky et al. (2009) contains 60,000 32 × 32 color images of 10 different classes
with 50,000 images in training set and 10,000 images in testing set. The standard pre-defined
protocol is used for evaluation.

• TinyImageNet Le & Yang (2015) is a large-scale dataset consisting of 100,000 images of 200
classes (500 for each class). The dataset consists of color images of 64 × 64 resolution. The standard
pre-defined protocol is used for evaluation.
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• CIFAR10-C Hendrycks & Dietterich (2019b) contains 15 corruptions on the CIFAR10 dataset
- defocus blur, contrast, pixelate, snow, fog, glass blur, brightness, elastic transform, frost, jpeg
compression, shot noise, impulse noise, zoom blur, Gaussian noise, and motion blur. The images are
corrupted at five different levels with increasing severity.

• CIFAR100-C Hendrycks & Dietterich (2019b) contains 15 corruptions on the CIFAR100
dataset. The corruptions used on the CIFAR10-C dataset are also used on this dataset. The images
are corrupted at five different levels with increasing severity.

• TinyImageNet-C Hendrycks & Dietterich (2019a) contains 15 corruptions on the TinyIm-
ageNet dataset. The corruptions used in CIFAR10 and CIFAR100 datasets and also used in this
dataset. The images are corrupted at five different levels with increasing severity. This results in a
total of 75 distinct corruptions.

• CIFAR10-P, CIFAR100-P, and TinyImageNet-P Hendrycks et al. (2019): The perturbed
datasets CIFAR10-P, CIFAR100-P, and TinyImageNet-P modify the original CIFAR and ImageNet
datasets. These datasets have smaller perturbations compared to corruption datasets and are used to
measure the model’s prediction stability. Each example in these datasets is a video and we measure
the model’s prediction consistency. Ideally, the model should not change the prediction with the
increase in perturbation intensity.

4.1 Comparison with Existing Approaches

Since the proposed method involves the suppression of different input pixels under the supervision of dom-
inance maps, we have performed random suppression of input features for comparison. In the random
suppression (RS) method, we randomly drop p% pixels during training. Further, we have compared our
method with Jacobian Regularization. In literature, Jacobian Regularization (Chan et al., 2020) is primarily
used for reducing the sensitivity of input image pixels to enhance the robustness of the models. We have
used this regularization method with the standard cross-entropy loss function.

Why we are not comparing DIVINE with existing Data Augmentation methods on corrupted
datasets?: In the literature, various data augmentation based techniques (Hendrycks et al., 2019; Yun
et al., 2019; Zhang et al., 2018) have been presented to make the model robust on OOD samples. The results
are presented on the corrupted datasets CIFAR10-C, CIFAR100-C, and TinyImageNet-C. Even though the
DIVINE algorithm is evaluated on these corrupted datasets, however, it would be unfair to make comparison
of the DIVINE with existing data augmentation based techniques due to the following reasons:

1. DIVINE identifies and suppresses dominant features iteratively during training, actively encouraging
the model to learn inconspicuous features. It uses dominance matrices and a structured learning
approach, fundamentally altering the model’s training dynamics. However, data augmentation mod-
ifies the dataset to introduce diversity without addressing the model’s inherent reliance on dominant
features or its inductive biases.

2. DIVINE directly addresses the learning process to correct biases, ensuring models do not overly
rely on dominant features. On the other hand, data augmentation assumes that more diverse data
leads to better generalization. This approach does not explicitly consider the model’s inherent biases
toward dominant features.

3. Comparing DIVINE to data augmentation techniques can mislead the interpretation of results. It
might imply that DIVINE competes with augmentation methods, while in reality, the two approaches
serve complementary purposes. Data augmentation techniques can potentially be combined with
DIVINE to further enhance robustness and generalization, rather than being viewed as alternatives.
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Table 1: Comparison of classification accuracy (%) of existing algorithms and the DIVINE on the original
and feature-suppressed datasets.

Abridge
Learning

Jacobian
Regularization

Random
Suppression DIVINE

MNIST
Original 99.21 85.80 98.67 97.31

Xs1 66.53 76.52 85.56 91.41
Xs2 50.98 70.18 68.10 84.98
Xs3 40.87 62.97 54.24 75.20

Average 64.40 73.87 71.64 87.22
CIFAR10

Original 82.38 81.63 81.73 80.34
Xs1 64.16 65.90 63.97 67.41
Xs2 52.63 54.88 52.01 58.18
Xs3 44.45 46.87 45.19 51.83

Average 60.98 62.32 60.72 64.44
CIFAR100

Original 74.63 75.95 75.46 74.57
Xs1 37.44 48.31 45.21 56.31
Xs2 27.84 39.61 36.86 49.79
Xs3 15.22 26.28 14.71 33.49

Average 39.23 44.64 43.06 53.54
Tiny-ImageNet

Original 60.59 49.06 51.66 54.59
Xs1 40.46 39.29 43.71 43.42
Xs2 27.35 31.91 33.92 32.67
Xs3 21.67 27.28 27.94 26.66

Average 37.51 36.88 39.30 39.33

4.2 Evaluation Metrics

We compute the classification accuracy to evaluate model performance on the MNIST and CIFAR10 datasets.
To evaluate the performance on the corrupted images, we report the Relative Corruption Error (Relative
CE) and Relative Mean Corruption Error (Relative mCE) (Hendrycks & Dietterich, 2018).

Relative CEf
c =

∑5
s=1 Ef

s,c − Ef
original∑5

s=1 Eb
s,c − Eb

original

(12)

where, f denotes the model to be evaluated, b denotes the baseline model obtained using Abridge Learning
(AL), Ef

clean and Eb
clean denote the error obtained corresponding to the model to be evaluated and the AL

model on original images. Ef
s,c and Eb

s,c denote error rates on corruption c at severity level s corresponding
to the model to be evaluated and the AL model, respectively. A lower Relative CE indicates a higher
performance over the baseline.

To evaluate the performance on the perturbed datasets, we measure the probability that two consecutive
frames with different intensity of perturbations, have “flipped” or mismatched predictions. This is termed
as mean Flip Rate (mFR) Hendrycks et al. (2019).

Original 
Digit 8

Feature Suppressed 
Digit 8

(a)

Original 
Digit 2

(b)

Original 
Digit 4

Feature Suppressed 
Digit 4

Original 
Digit 1

(c) (d)

Figure 4: Visualizations of the semantically relevant features learned by the model. (a) shows the strokes
learned by the model, which distinguishes digit 8 from 2, and (b) shows the feature-suppressed image.
Similarly, (c) and (d) show the distinguishing strokes learned by the model and the feature-suppressed
image.
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Table 2: Comparison of relative corruption error obtained using existing and proposed methods for each
corruption type on the CIFAR10-C and CIFAR100-C datasets.

Corruptions
CIFAR10-C CIFAR100-C

Jacobian
Regularization

Random
Suppression DIVINE Jacobian

Regularization
Random

Suppression DIVINE

Defocus Blur 102.35 108.77 92.90 105.88 108.38 102.08
Contrast 100.19 103.55 99.64 103.86 114.32 122.66
Pixelate 95.09 113.08 75.58 108.59 106.95 74.61
Snow 91.57 81.15 81.38 97.17 99.32 78.91
Fog 105.04 111.62 99.17 111.01 110.61 110.52
Glass Blur 96.11 87.62 73.69 98.51 98.49 82.99
Brightness 106.40 133.70 101.00 129.75 136.48 125.60
Elastic 103.84 109.48 97.95 107.35 106.55 96.89
Frost 100.47 113.05 88.12 104.53 111.80 83.74
JPEG 86.40 93.95 70.86 93.23 91.82 73.24
Shot Noise 95.65 111.77 72.62 101.47 107.27 76.46
Impulse Noise 91.70 92.17 73.02 105.16 96.99 78.15
Zoom Blur 99.16 111.06 95.85 97.47 98.42 89.50
Gaussian Noise 95.49 110.70 73.32 101.74 107.97 79.18
Motion Blur 105.37 116.31 99.40 107.86 113.26 98.38
Relative mCE 98.32 106.29 86.30 104.90 107.24 91.53

4.3 Selection Criteria for Number of Feature Maps

In order to decide the number of features, we have computed the running average of the classification
accuracy obtained on the original and feature suppressed dataset using AL method. We decided to iterate
computing feature maps at most 3 times given the average running classification should not be below 50%
of the classification accuracy obtained on the original dataset.

4.4 Implementation Details

For the MNIST dataset, a Convolutional Neural Network (CNN) architecture is used. The network consists
of 5 convolutional layers, each followed by ReLU activation and maxpool. Two fully connected layers of
dimensions 512 and 64 are added after the convolutional block followed by softmax. ResNet50, XceptionNet,
and DenseNet121 architectures are used for the CIFAR10, CIFAR100, and TinyImageNet datasets. Models
are trained on the original and feature-suppressed datasets with a learning rate of 0.0001. For the CIFAR10
and CIFAR100 datasets, models are trained using Adam optimizer with a batch size of 32 whereas, models
are trained using RMSProp optimizer with a batch size of 64 for the TinyImageNet dataset. For the MNIST
dataset, the models are trained for 10 epochs and the features are suppressed with p = 3%. The models on
the CIFAR10 and CIFAR100 datasets are trained for 20 epochs and p = 3% is used.

For both datasets, the architectures used to train the AL models are used for training the unified model.
The unified models are trained using Adam optimizer with a learning rate of 0.0001 for 20 epochs and batch
size of 32. Code is implemented in Tensorflow 2.3.1. The model trainings are performed on a DGX station
with Intel Xeon CPU, 256 GB RAM, and four 32 GB Nvidia V100 GPU cards.

5 Results and Analysis

The proposed DIVINE algorithm is evaluated on two types of datasets: (i) feature-suppressed datasets
and (ii) corruptions. In the first set of evaluations, we validate our assertion of “Abridge Learning” using
the MNIST, CIFAR10, CIFAR100, and TinyImageNet datasets. For corruptions, we showcase results on
CIFAR10-C, CIFAR100-C, and TinyImageNet-C datasets. We further compare the DIVINE algorithm with
an algorithm proposed by Carter et al. (2021).
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Table 3: Classification accuracy (%) obtained using Jacobian Regularization (JR), Random Suppression
(RS), and DIVINE algorithm on the TinyImageNet-C dataset for different corruptions.

Corruptions Jacobian
Regularization

Random
Supression DIVINE

Defocus Blur 21.07 19.97 29.43
Contrast 12.37 12.51 18.70
Pixelate 27.98 31.79 39.53
Snow 25.16 26.83 32.8
Fog 21.46 23.37 33.09
Glass Blur 28.33 30.36 32.14
Brightness 27.02 28.33 36.14
Elastic 21.23 21.47 30.89
JPEG 26.30 29.07 37.25
Shot Noise 35.77 37.68 43.09
Impluse Noise 29.71 34.09 39.14
Zoom Blur 20.07 18.83 28.20
Gaussian Noise 34.75 36.99 41.84
Motion Blur 21.47 22.11 30.87
Mean 25.19 26.67 33.79

5.1 Evaluation on Feature-suppressed Datasets

This experiment is performed to validate that a model trained using conventional methods relies on the
dominant features (which are easy to learn) during classification, thereby reducing the performance of the
model when these dominant input features are missing. The performance of the AL model trained on original
images is evaluated on the testing set of original and feature-suppressed datasets, i.e., X, Xs1 , Xs2 and Xs3 .
Dataset Xs1 has images with one suppressed dominant input feature in each image. Similarly, datasets Xs2

and Xs3 have images with two and three suppressed dominant input features in each image, respectively.
Table 1 shows the performance of the AL models corresponding to the MNIST, CIFAR10, CIFAR100, and
TinyImageNet datasets. It is observed that the performance of the AL models degrades significantly on the
feature-suppressed datasets. For instance, the performance of the AL model trained on the MNIST dataset
drops from 99.21% to 66.53% on feature-suppressed dataset Xs1 (32.68% drop), which further degrades
to 50.98% on feature-suppressed dataset Xs2 . This shows that the performance of the models trained
using conventional methods is heavily dependent on the dominant input features. On the other hand, the
performance of the unified model drops by only 5.90% when evaluated on Xs1 . As seen in Table 1, the unified
model trained using the proposed DIVINE algorithm performs well on the feature-suppressed datasets.

Results of the unified model in Table 1 are compared with random suppression, and the Jacobian regular-
ization method (Chan et al., 2020). Both approaches are used to enhance the robustness of the models. It
is observed that existing approaches perform better than the AL model, especially on the MNIST dataset.
However, the performance is not as good as that obtained using the unified model. In the random suppression
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Figure 5: A few sample original images and the corresponding intermediate feature-suppressed images on
the CIFAR10 dataset obtained using the proposed method.
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method, there is no supervision to the model for learning a diverse set of features. While in the Jacobian
regularization method, the model reduces its dependency on the dominant features during training, it is not
able to learn the inconspicuous features.

Figure 4 (a) & (b), show that the discriminative stroke of digit ‘8’ (highlighted in red) is the most dominant
feature differentiating it from digit ‘2’, and is therefore suppressed. Similar observations can be made for
digits ‘4’ and ‘1’ in Figure 4 ((c) & (d)). Figure 5 effectively illustrates the core principle of the DIVINE
algorithm: iterative feature suppression forces the model to learn inconspicuous, diverse features that enhance
generalization and robustness. The key insights from the Figure 5 are as follows:

1. The original images contain all features, including dominant and inconspicuous ones, which the
model initially uses for classification.

2. Feature-suppressed images represent the results of successive iterations of feature suppression. Con-
sidering the first row representing the sample of a class horse:

(a) The image xs1 represents that the model focuses on the body of the horse (dominant feature),
and this is removed in xs1 .

(b) After suppressing the first dominant feature, the model identifies and suppresses the second
dominant feature i.e., parts of the horse’s legs, as shown in xs2 .

(c) In the third iteration, the next set of dominant features is suppressed, which are other
structural elements like part of the tail or mane, as shown in xs3 .

3. The features learned by the model during suppression are semantically meaningful. For example:
The model’s attention transitions from the horse’s body and legs (dominant features) to the tail,
mane, and even background details (inconspicuous features). This process ensures that the model
does not overly depend on any single set of dominant features for classification.

The visualization of the dominance matrix computed corresponding to both the AL and unified models is
shown in Figure 6. We have made the following observations from Figure 6:

1. The dominance matrices D1(x) corresponding to AL models are highly concentrated on specific
dominant input features. This confirms that AL models primarily rely on dominant features for
making predictions, neglecting other potentially useful inconspicuous features.

2. The matrices D2(x) and D3(x), which correspond to models trained on feature-suppressed datasets,
show a shift in focus from dominant features to inconspicuous features.

3. The unified dominance matrix Du(x), representing the fully trained DIVINE model, shows a bal-
anced focus across all identified input features. This includes both dominant and inconspicuous
features, ensuring robustness and generalization.

4. The broader focus in Du(x) aligns with the improved performance of DIVINE on feature-suppressed
datasets (as highlighted in Table 1) and on out-of-distribution datasets.

Overall, Figure 6 provides a clear visualization of the progression from narrow feature focus (AL) to compre-
hensive feature learning (DIVINE). The shift in dominance matrices underscores the success of DIVINE in
mitigating Abridge Learning by promoting the learning of diverse and inconspicuous features. This balanced
learning enhances robustness and generalization, as demonstrated in the experimental results.

Ablation Study for parameter p: On updating the values of p from 3% to 10%, the performance of the
unified model degrades on feature-suppressed datasets. Since, the model prediction is dependent only on a
few input pixels, setting a higher value of p results in suppressing of dominant as well as other input features,
which in turn decreases the performance of the unified model on the feature-suppressed datasets.

5.2 Evaluation on Corruptions and Perturbations
This experiment is performed to evaluate the generalizability and robustness of the proposed unified model
on out-of-distribution images. The performance on corruptions and perturbations are discussed below:
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Table 4: Classification accuracy (%) obtained using Abridged Learning and DIVINE algorithm on the
CIFAR10-P and CIFAR100-P datasets for different perturbations.

mFR % CIFAR10 CIFAR100
Abridged Learning DIVINE Abridged Learning DIVINE

Brightness 1.33 1.22 2.98 1.03
Gaussian Noise 5.21 3.86 15.3 2.21
Motion Blur 11.26 9.9 14.74 2.1
Rotate 8.29 6.24 11.12 3.09
Scale 9.55 7.99 13.2 4.87
Shot Noise 6.4 4.82 17.96 2.9
Snow 3.75 2.96 6.59 1.15
Tilt 3.13 2.49 5.52 1.55
Translate 15.63 13.53 28.34 11.79
Zoom Blur 0.79 0.67 1.78 0.32
Overall mFR 6.534 5.368 11.753 3.101

Performance on Corruption We have reported the relative corruption error (Relative CE) and the
relative mean corruption error (Relative mCE) on the CIFAR10-C and CIFAR100-C datasets. The results are
shown in Table 2. The proposed unified model outperforms random suppression and Jacobian Regularization
methods on the corruption datasets. The proposed unified model gives a Relative mCE of 86.30 and 91.53
corresponding to the CIFAR10-C and CIFAR100-C datasets, respectively. On comparing the performance
of CIFAR10-C and CIFAR100-C datasets for individual corruptions, the proposed unified model trained
with the DIVINE method outperforms other methods on 14 corruptions (excluding snow corruption on the
CIFAR10-C and contrast corruption on the CIFAR100-C) and gives a comparable performance on the snow
and contrast corruption corresponding to CIFAR10-C dataset, respectively.

Table 1 shows that the performance of all the existing methods is comparable to the original images. However,
random suppression and Jacobian regularization methods fail to generalize well on out-of-distribution images
as shown in Table 2 due to the following reasons:

1. In case of randome suppression, the model lacks supervision to focus on meaningful inconspicuous
features. This approach does not ensure that suppressed features are either dominant or relevant,
potentially leading to suboptimal learning.

2. In case of Jacobian Regularization (JR), it effectively reduces dependency on dominant features,
however, it does not actively guide the model to learn inconspicuous features, leaving a gap in
robust feature learning.

To test our method on a large-scale dataset, we computed the performance on the TinyImageNet-C dataset
and report the results obtained in Table 3. On the TinyImageNet-C dataset, DIVINE yields an absolute
improvement of 25.54% and 19.02% over the random suppression and Jacobian regularization methods, re-
spectively as shown in Table 3. We observe the robustness of the proposed DIVINE algorithm against a
variety of corruptions. These results are illustrated for three different learning methods namely- Jacobian

𝑥 𝐷1(𝑥) 𝐷2(𝑥) 𝐷3(𝑥) 𝐷𝑢(𝑥) 𝑥 𝐷1(𝑥) 𝐷2(𝑥) 𝐷3(𝑥) 𝐷𝑢(𝑥)

Figure 6: Illustration of the dominant features and inconspicuous features obtained in the MNIST dataset.
Sample original images x and the corresponding dominance matrices D1(x), D2(x), D3(x), and Du(x).
D1(x) and Du(x) are obtained corresponding to the AL and unified model trained on the original dataset.
In contrast, D2(x) and D3(x) are obtained corresponding to the model trained on feature-suppressed datasets.
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Table 5: Classification accuracy (%) obtained using Abridged Learning and DIVINE algorithm on the
TinyImageNet-P dataset for different perturbations.

mFR % TinyImageNet
Abridged Learning Unified Model

Brightness 12.09 9.53
Gaussian Noise 28.56 18.58
Gaussian Noise V3 56.82 42.36
Rotate 45.49 30.19
Shear 37.83 24.19
Shot Noise V2 41.11 26.99
Snow 15.66 11.26
Specekle Noise 26.4 15.26
Specekle Noise V3 53.97 38.08
Translate 41.92 31.51
Gaussian Blur 5.17 3.91
Gaussian Noise V2 47.06 32.98
Motion blur 7.66 5.36
Scale 40.3 29.87
Shot Noise 32.09 20.14
Shot Noise V3 50.29 34.85
Spatter 17.5 12.22
Specekle Noise V2 44.1 28.65
Tilt 25.26 15.45
Zoom Blur 8.73 5.74
Overall mFR 31.9005 21.856

Regularization, Random Suppression, and the proposed DIVINE algorithm. From the table, it is clearly
visible that the proposed algorithm outperforms other algorithms on all corruptions. We also achieve sig-
nificantly better mean classification accuracy using the proposed DIVINE algorithm. This clearly describes
the applicability of DIVINE algorithm on large-scale datasets as well.

Original 
Images

Jacobian
Regularization

Random 
Suppression

Proposed 
Unified

Figure 7: Sample images corrupted with impulse noise and the corresponding dominance matrices obtained
using Jacobian regularization, random suppression, and the proposed unified model (Best viewed in color).

Performance on Perturbations We have reported the Flip Rate (FR) and the Overall mean flip rate
(Overall mFR) on the CIFAR10-P, CIFAR100-P, and TineImageNet-P datasets. The results are shown in
Table 4 and 5. The proposed unified model outperforms abridge learning on the perturbed datasets. The
proposed unified model gives an overall mFR of 5.36%, 3.10%, and 21.85% corresponding to the CIFAR10-
P, CIFAR100-P, and TinyImageNet-P datasets, respectively. On comparing the performance of individual
perturbations on all datasets, the proposed unified model trained with the DIVINE method outperforms
abridge learning. We have also compared the performance of DIVINE with existing methods and the results
are shown in the Table 6. The proposed algorithm DIVINE outperforms the second best algorithm IpMix
Huang et al. (2023) by mFR 1.2% and achieves the state-of-the-art (sota) results.
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Figure 8: Plot representing the trend line of the average classification accuracy corresponding to baseline
and proposed algorithm on different values of p on the MNIST dataset.

Table 6: Comparison of Mean Flip Rate (mFR) of DIVINE with existing algorithms on the CIFAR100-P
dataset.

Method mFR %
MixUp Zhang et al. (2018) 8.9
CutOut DeVries (2017) 11.9
CutMix Yun et al. (2019) 12.0
AugMix Hendrycks et al. (2019) 5.6
PixMix Hendrycks et al. (2022) 5.6
IpMix Huang et al. (2023) 4.3
DIVINE 3.1

The visualization of the dominance matrix obtained corresponding to the unified model and existing ap-
proaches on the corrupted images of the CIFAR10 dataset are shown in Figure 7. We can see that the
unified model focuses on multiple input features/regions while the existing approaches fail to focus diversely.
On observing the relative corruption error corresponding to impulse noise corruption in Table 2, it is found
that the error for the proposed method is 73.02, which is 18.68 and 19.15 less than Jacobian regularization
and random suppression methods, respectively. This shows the applicability of the proposed method in real-
world scenarios where external corruptions are common. Additionally, the proposed method can be used in
combination with existing approaches for improving robustness.

Comparison with Carter et al. (NeurIPS 2021) (Carter et al., 2021): Carter et al. Carter et al.
(2021) have shown that only 5% spurious pixel subsets in an image are enough for confident prediction. These
pixel subsets may be meaningless to humans and lead to over-interpretation by the model. This validates
our assumption of abridge learning during training of the model. The authors further used an ensemble
method to mitigate the problem of abridge learning. In order to showcase the effectiveness of the proposed
DIVINE algorithm, we have also compared its performance on CIFAR10-C dataset. The DIVINE algorithm
achieves a relative mCE of 86.30 which outperforms the ensemble method (Carter et al., 2021) by a margin
of 8.62. In general, ensemble methods reduce overfitting and improve model performance. However, they
do not necessarily make the model robust towards out-of-distribution samples. By enforcing the learning of
inconspicuous input features, the DIVINE algorithm offers better robustness.

Comparison with LLE Li et al. (2023): In the literature, Li et al. (2023) proposed a Last Layer Ensemble
(LLE) method to mitigate the multiple shortcuts present in the dataset, which is also one of the objectives
of the proposed DIVINE algorithm. However, there are several fundamental differences between DIVINE
and LLE Li et al. (2023), which makes DIVINE better. These differences are as follows:

1. DIVINE effectively balances the learning of dominant and inconspicuous features, ensuring gener-
alization even under severe perturbations. On the other hand, LLE focuses on mitigating shortcut
reliance, which does not explicitly guarantee balanced feature learning.

2. LLE is primarily evaluated on two new datasets, UrbanCars with controlled spurious cues like
background and co-occurring objects) and ImageNet-W (an ImageNet variant with watermarked
images) and included a wide range of baseline methods. On the other hand, DIVINE has been
evaluated on a more diverse set of datasets, including MNIST, CIFAR10, CIFAR100, TinyImageNet,
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Table 7: Training time of Abridged Learning and proposed DIVINE method on CIFAR10 dataset.
Abridged Learning DIVINE

Time per Epoch (in seconds) 73 177
Total Training Time (in minutes) 25 60

and their corrupted and perturbed counterparts (CIFAR10-C, CIFAR10-P, CIFAR100-C, CIFAR100-
P, TinyImageNet-C, and TinyImageNet-P). This broad range of datasets ensures robustness and
generalizability across various real-world conditions, making our evaluation more extensive in terms
of dataset variety.

3. Unlike LLE, which introduces additional classifiers and a distributional shift classifier, DIVINE
provides a simpler and more efficient framework that can be easily integrated into existing training
pipelines. Furthermore, our work outperforms state-of-the-art data augmentation techniques (e.g.,
MixUp, CutMix, AugMix, PixMix, and IpMix) in terms of mean flip rate (mFR), demonstrating its
robustness without relying on data augmentation alone.

4. LLE is applicable to scenarios where the shortcuts are known as given in UrbanCars and ImageNet-
W datasets. Manually identifying the shortcuts in the dataset is a tedious task and non-scalable. In
real-word scenarios, the shortcuts present in the dataset and learned by the models are unknown.
On the other hand, the proposed DIVINE is not dependent on the known shortcuts and is able to
handle multiple unknown shortcuts.

5. While DIVINE incurs additional computational costs due to Jacobian computations, the complexity
of maintaining ensemble classifiers in LLE may lead to higher memory and computational overhead.

5.3 Ablation Experiment to Visualize the Trend of Parameter p

We conduct a series of experiments for varying values of p, specifically at 0.5%, 1.5%, 3%, 6%, and 10%. The
trend observed in average classification accuracy for these values is depicted in Figure 8, and detailed results
are presented in Table 1. From this representation, we notice a slight decrease in accuracy at p=0.5% and
p=1.5% for the baseline model, indicating that dominant features are still present in the datasets with feature
suppression at these lower p values. However, at p=3%, there is a noticeable decline in the baseline model’s
performance, highlighting the successful elimination of dominant features in the dataset. Consequently, we
have selected p=3% as the optimal value for conducting our experiments.

5.4 Computational Runtime
We have calculated the temporal cost associated with the MNIST, CIFAR10, CIFAR100, and TinyImageNet
datasets during the first phase. In this phase, the model undergoes training on the dataset with suppressed
features, and this process is repeated three times. The MNIST dataset requires 10 epochs for training, with
each epoch taking approximately 14 seconds to complete. The entire training process for MNIST, therefore,
takes around 420 seconds, equivalent to 7 minutes. In the case of CIFAR10 and CIFAR100 datasets, each
epoch lasts about 61 seconds, while for the TinyImageNet dataset, it is around 935 seconds per epoch.
These time durations present opportunities for optimization, possibly through the application of methods
like the one proposed by (Wang et al., 2020), which involves pruning the network at the initial stage, prior to
training. It is important to note that the time required for inference (testing) remains consistent between the
proposed unified model and the AL model. Further, we compute the time complexity of Abridge Learning
and the proposed DIVINE algorithm for each epoch as well as the total training time. From Table 7 we
observe that overhead training time is 104 seconds for each epoch, which is mostly spent on the computation
of Jacobians. Since, the proposed DIVINE method increase the computation time over Abridge Learning,
we consider this a limitation of the proposed method the minimization of this overhead can be explored in
the future work.

6 Limitations

We highlight the following limitations of the proposed DIVINE algorithm:
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• Though the proposed method mitigates Abridged Learning, it is computationally expensive as it
uses iterative suppression and retraining process to identify inconspicuous and diverse features and
training of the models on the same data. However, this iterative mechanism is fundamental to
DIVINE’s ability to learn both dominant and inconspicuous features, which significantly improves
robustness and generalization. To mitigate this limitation in future work, we are exploring optimiza-
tion strategies, such as gradient approximation techniques, selective iteration schemes, and model
pruning or early stopping.

• The proposed idea is validated only for the image modality in classification setting. However, the
proposed approach can be extended for more modalities and different tasks.

• The proposed method DIVINE is not applicable to those abridge learning problems where the
dominant features are not semantic. For example, in ColoredMNIST dataset, the spurious correlation
is due to color attribute of the digits, which is not a semantic feature and DIVINE is capable of only
highlighting the semantic features in the input data. While DIVINE is effective for scenarios where
dominant features are semantically relevant, addressing non-semantic biases requires a different
strategy. Future work could incorporate bias mitigation frameworks, feature attribution analysis,
and data augmentation methods to deal with non-semantic features.

7 Conclusion
Conventional deep learning algorithms typically prioritize enhancing classification accuracy, which can result
in inadequate learning and poor generalization to out-of-distribution samples. In this paper, we introduce
a unique, holistic learning approach called Diverse and Inconspicuous Learning (DIVINE) which focuses on
maximizing learning from a given set of inputs and learning as many discriminative features as possible. We
validate DIVINE’s effectiveness through extensive experiments across various datasets, including MNIST,
CIFAR10, CIFAR100, TinyImageNet, and their corrupted and perturbed versions. The proposed approach
consistently outperforms state-of-the-art methods in robustness and out-of-distribution generalization. The
results reveal that the dominance maps generated via our method provide superior guidance for learning a
rich set of input features. Consequently, our model demonstrates enhanced generalizability and robustness,
particularly in the presence of out-of-distribution samples. We posit that this comprehensive style of learn-
ing ensures more reliable model predictions, especially in real-world situations where data corruption and
distribution shifts can significantly impair performance.
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