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Abstract

LLM-as-a-Judge and reward models are widely used alter-
natives of multiple-choice questions or human annotators for
large language model (LLM) evaluation. Their efficacy shines
in evaluating long-form responses, serving a critical role as
evaluators of leaderboards and as proxies to align LLMs
via reinforcement learning. However, despite their popularity,
their effectiveness in diverse contexts, such as non-English
prompts, factual verification, or challenging questions, re-
mains unexplored. In this paper, we conduct a comprehensive
analysis of automated evaluators, reporting several key find-
ings on their behavior. First, we discover that English eval-
uation capabilities significantly influence language-specific
evaluation capabilities, often more than the language profi-
ciency itself, enabling evaluators trained in English to easily
transfer their skills to other languages. Second, we identify
critical shortcomings, where LLMs fail to detect and penal-
ize errors, such as factual inaccuracies, cultural misrepresen-
tations, and the presence of unwanted language. Finally, we
find that state-of-the-art evaluators struggle with challenging
prompts in either English or Korean, underscoring their lim-
itations in assessing or generating complex reasoning ques-
tions. We release the dataset and codes used in this research.1

1 Introduction
Automated evaluators, such as LLM-as-a-Judge and reward
models (RMs), supplant human effort across a broad spec-
trum of large language model (LLM) research. The applica-
tions range from quality filtering of pretraining corpora (Ko-
rbak et al. 2023; Penedo et al. 2024) to replicating human
preferences (Ouyang et al. 2022; Touvron et al. 2023; Lee
et al. 2023) and evaluating complex model outputs (Zheng
et al. 2024). As scalable alternatives to costly human anno-
tation (Min et al. 2023; Mishra et al. 2022), they contribute
to the development of user-friendly chat systems like Chat-
GPT (OpenAI 2022) and Claude (Bai et al. 2022). While
some research (Park et al. 2024) highlights the biases these
models are prone to, there is limited understanding of their
broader abilities. In this work, we examine a diverse array of
automated evaluators, focusing on their failure cases.

For analysis, we create KUDGE, a bilingual meta-
evaluation dataset of Korean and English. The Original sub-
set contains two categories: Pointwise, where a model as-

1https://anonymous.4open.science/r/kudge-0648

sesses a single response on a Likert scale, and Pairwise,
where the evaluator chooses the better of two responses. We
also introduce the Challenge subset, putting emphasis on
STEM questions requiring complex reasoning. Finally, we
construct an ablation set with human-corrupted responses
containing cultural misrepresentations or false information.
This setup simulates hallucinations (Huang et al. 2023)—a
common phenomenon in LLMs—to evaluate the ability of
LLM judges to detect knowledge-related errors.

We report three key findings in our research. First, LLM-
as-Judges and RMs demonstrate equal proficiency in Ko-
rean, a language they have not been trained in. Interestingly,
the capability of models to evaluate Korean question and an-
swer (QA) pairs can be predicted by their performance on
REWARDBENCH (Lambert et al. 2024), an English meta-
evaluation dataset. This predictive ability surpasses that of
Korean language benchmarks (Son et al. 2024, 2023; Kim
2024; Kim et al. 2022), challenging the expectation that
proficient Korean speakers would naturally excel at evalu-
ating Korean text. We conjecture that a significant portion of
evaluation ability is language-agnostic, which explains this
positive correlation. Secondly, however, we identify weak-
nesses in the transferability of proprietary and fine-tuned
LLMs. These models fail to detect and penalize instances
containing false information or cultural misrepresentations.
This limitation indicates that they may not serve effectively
as factual verifiers in unfamiliar languages or cultural con-
texts. Finally, automated evaluators struggle to assess QA
pairs that include questions requiring complex reasoning in
either language, underscoring the need for better judge mod-
els.

The main contributions of this work are as follows:

1. We empirically analyze the circumstances under which
automated evaluators are effective in new languages and
when not.

2. We identify the shortcomings of state-of-the-art (SOTA)
judge models in evaluating challenging prompts, even in
English, highlighting the need for improved evaluators.

3. We release KUDGE, a bilingual meta-evaluation
dataset—the first of its kind in Korean. It also includes a
challenge subset designed to enhance the evaluation of
English models.



2 KUDGE: A Bilingual Benchmark for
Automated Judges

In this section, we introduce KUDGE, a dataset designed to
assess the performance of automated judges. The original
subset primarily focuses on Korean to complement existing
English datasets of similar difficulty (Lambert et al. 2024;
Park et al. 2024). The challenge subset is created in both
English and Korean. Sections 2 to 2 detail the creation of the
original subset, while Section 2 describes the development
of the challenge subset.

Dataset Creation
Existing Korean benchmarks for long-form question an-

swering (Research 2024; Park 2024) primarily translate or
replicate MT-Bench (Zheng et al. 2024), omitting aspects
of Korean culture. To address this issue, we handcraft 90
unique instructions. We classify Korean knowledge into nine
distinct categories and map seven unique reasoning skills to
ensure comprehensive coverage of topics and reasoning abil-
ities, distributing the instructions evenly across these cate-
gories. We also incorporate personalized evaluation rubrics
and gold-standard responses for each question. The concise
size of the instruction set aims to keep evaluation and an-
notation feasible within budget constraints. Following this,
to collect model responses of a wide variety, we generate
answers for each instruction using 31 LLMs, ranging in
size from 1.3 billion to over 100 billion parameters. For an
overview of all models utilized in generating responses, see
Table 6. Finally, fifteen human annotators, including five au-
thors and ten hired experts compensated at ten US dollars per
hour, evaluate the responses. Annotators were provided the
above-mentioned reference answers and scoring rubrics to
rate model generations on a Likert scale from 1 to 5. To pre-
vent negligence, they were required to justify their scores.
For quality control, each instance undergoes evaluation by
two different annotators. For additional details on the cre-
ation process, see Appendix 6.

Quality Analysis
To assess the quality of the collected annotations, we ana-

lyze the evaluation times and agreement rates between au-
thors and hired annotators. The average evaluation time is
146 seconds for authors and 150 seconds for hired annota-
tors, showing no significant difference. In 83.85% of cases,
annotations by the two annotators are identical or within a 1-
point margin, likely due to the subjective nature of the task.
However, in 8.36% of cases, disagreements exceed a 2-point
margin, indicating significant discrepancies. Such discrep-
ancies often stem from annotators assigning identical scores
to multiple responses with very brief evaluation times or
from unusually long annotation times exceeding 1000 sec-
onds, which may indicate negligence or loss of concentra-
tion. In our experiments, we average scores for instances
where the discrepancy between annotators is 1 point or less.
Furthermore, we exclude instances with larger margins or
those with only one annotation. The missing annotations are
likely due to platform failures or human errors in curation.

Pointwise & Pairwise Subsets
LLM-as-a-Judge applications typically include two evalu-

ation methods: pointwise and pairwise (Vu et al. 2024; Kim
et al. 2024b). Pointwise evaluation involves assigning inte-
ger scores to individual responses, whereas pairwise eval-
uation contrasts two responses to determine a preference.
Although initially intended for pointwise assessment with
a Likert scale, we have adapted KUDGE for pairwise eval-
uation by pairing responses from distinct models into pairs.
This approach involves selecting a “chosen” response with a
score exceeding three and a “rejected” response scoring two
or less. Accordingly, the original subset of KUDGE features
a pointwise subset comprising 2506 instances and a pairwise
subset totaling 818 instances.

Subset Category # N

Original Pointwise 2506
Pairwise 818

Challenge Pairwise-Easy {266, 282}
Pairwise-Hard {99, 99}

Table 1: Overview of the KUDGE dataset. The figures in braces
indicate the number of questions in Korean and English, respec-
tively. The slight numerical differences between the two languages
within the Challenge subset reflect adjustments made during trans-
lation quality checks.

Challenge Subset
The prompts in KUDGE are focused primarily on Korean

culture, excluding STEM topics. To address this limita-
tion, we introduce the KUDGE CHALLENGE subset, a bilin-
gual evaluation set in English and Korean with two levels
of difficulty. The “easy” level features questions from the
MMLU dataset (Hendrycks et al. 2020), specifically from
four categories identified by Gema et al. (2024) to have
minimal issues: college physics, college mathematics, high
school chemistry, and high school geography. For each ques-
tion, Exaone-3-7.8B-Instruct generates 32 Chain-
of-Thought (CoT) reasonings in Korean, from which we se-
lect one correct and one incorrect response. These are then
translated into English. The “hard” level incorporates ques-
tions from the GPQA (Rein et al. 2023) dataset, following
the same process but using GPT-4o. We exclude questions
if neither a correct nor incorrect response emerges from
the 32 CoTs, and the authors manually review translations
for accuracy. We present evaluation results for this subset
in Section 3. See Table 1 for an overview of the KUDGE
dataset.

3 Evaluation Results
The performance of 20 LLMs on KUDGE ORIGI-

NAL is summarized in Table 2. Proprietary language
models show the best results, with large and re-
cent open LLMs demonstrating comparable performance.
Specifically, GPT-4o (74.51) leads in overall per-
formance, with Claude-3.5-Sonnet (72.79) trail-



Models
KUDGE Original Additional Stats.

Point (Acc) Point (Pear.) Pair (Acc) Average KMMLU RB.

proprietary language models
GPT-4o 61.26 0.62 87.76 74.51 64.28 87.28
Claude-3.5-Sonnet 56.46 0.59 89.11 72.79 - 85.17
HyperCLOVA X 51.84 0.55 85.10 68.47 53.40 -

openly available language models
Llama-3.1-405B-Instruct (FP8) 58.88 0.57 87.42 73.15 65.07 90.67
Llama-3.1-70B-Instruct 51.59 0.44 83.40 67.49 51.94 86.13
Llama-3.1-8B-Instruct 29.96 0.24 82.05 56.01 41.56 72.94
Mistral-Large-Instruct 58.44 0.60 87.93 73.19 61.17 88.08
Mixtral-8x22B-Instruct 49.25 0.46 84.67 66.96 47.84 79.84
Mixtral-8x7B-Instruct 24.48 0.25 81.51 53.00 40.61 74.02
Mistral-Nemo-Instruct 41.36 0.27 79.63 60.50 43.46 71.08
Command-R-Plus 28.34 0.19 71.98 50.16 47.84 73.18
Command-R-v01 22.48 0.04 71.18 46.83 39.83 66.67
Qwen2-72B-Instruct 50.58 0.62 86.06 68.32 63.66 84.51
Qwen2-7B-Instruct 24.03 0.20 73.05 48.54 46.12 68.10
Qwen2-1.5B-Instruct 13.65 0.11 47.86 30.75 26.59 52.17
Qwen1.5-72B-Chat 15.30 0.32 76.07 45.68 51.31 76.60
Qwen1.5-32B-Chat 30.48 0.39 76.28 53.38 46.65 76.96
Qwen1.5-14B-Chat 23.54 0.24 73.75 48.64 43.16 68.05
Qwen1.5-MoE-A2.7B-Chat 17.69 0.08 59.02 38.36 36.75 51.62
EXAONE-3-7.8B-Instruct 34.58 0.39 81.86 58.22 44.94 67.86

Table 2: Evaluation results for 20 LLMs on KUDGE ORIGINAL. For the pointwise category, off-by-0.5 accuracy is considered to account
for mismatches caused by averaging human annotation scores. Accordingly, random guessing accuracies are set at 30.86% for pointwise and
50% at pairwise. The highest-scoring model across all categories is highlighted in bold, while the top model in each category is underlined.
Missing evaluation results will be updated shortly.

ing slightly in overall average score. Among open-
weight models, Llama-3.1-405B-Instruct (73.15)
and Mistral-Large-Instruct (73.19) stand out, par-
ticularly in pairwise accuracy, where they compete closely
with GPT-4o. However, the Pearson correlation for the
pointwise subset remains below 0.6 for most models, indi-
cating a moderate correlation at best and suggesting signifi-
cant room for improvement in this area.

Interestingly, several large models, despite their size,
underperform compared to their peers. For instance,
Qwen1.5-72B-Chat posts KMMLU and REWARD-
BENCH scores similar to Mixtral-8x22B-Instruct
(51.31 vs. 47.84 in KMMLU and 76.60 vs. 79.84
in RB.), but lags by 21.28% in KUDGE (45.68
vs. 66.96). Similarly, Command-R-Plus matches
Mixtral-8x22B-Instruct in other benchmarks,
but falls 16.8% behind in KUDGE (50.16 vs. 66.96). This
suggests that while scale remains important, as evidenced
within the same family of models like the Llama-3.1
series, where larger models outperform smaller ones, it
appears that newer models consistently outperform older
models of similar size. This may be attributed to improve-
ments in training data quality, larger datasets, and higher
training budgets.

Figure 4 illustrates the average margin between hu-

man annotators and LLM-as-a-Judges for each score.
We notice a performance gradient across score ranges.
Smaller models typically struggle in the lower score
range (1-2.5), demonstrating difficulty in accurately pe-
nalizing lower-quality inputs. In contrast, GPT-4o or the
Llama-3.1 models tend to be conservative in award-
ing higher scores, as shown by lighter shades in the
higher score spectrum. Furthermore, the variance in mar-
gins per score is lowest for GPT-4o (0.06), followed
by Claude-3.5-Sonnet (0.08), Llama-3.1-405B
(0.07), and Mistral-Large-Instruct (0.08), corre-
lating with performance, implying that better models tend
to exhibit lower variance and consistent performance across
the score range.

Can LLMs judge responses with false information?
While models trained in English may transfer particular

learned preferences, their robustness against factual inaccu-
racies—easily spotted by native Korean speakers—remains
uncertain. To assess this, we initially sampled 106 responses,
each scoring above four from human evaluators. We ex-
clude 18 instructions unsuitable for factual corruption, such
as those requiring the creation of imaginary stories. A hu-
man annotator then corrupts the remaining responses to
include false information. The annotator was required to



highlight the corrupted spans and add explanations on the
changes made. The corruption is performed at one of three
levels: “word,” involving subtle perturbations to individual
words; “sentence,” entailing alterations to entire sentences;
and “paragraph,” where broader changes are made by mod-
ifying arguments or altering comparisons. These modified
responses undergo review by three human reviewers, who
verify the truthfulness of each corrupted segment with a sim-
ple ‘yes’ or ‘no.’ We discarded 34 cases where the reviewers
could not identify errors. Ultimately, we retain 54 instances
unanimously identified as incorrect by all reviewers.

Type Count GPT-4o Claude-3.5-Sonnet

Word 34 1 (2.94%) 0 (0%)
Sentence 13 4 (30.8%) 3 (21.4%)
Paragraph 7 4 (57.1%) 6 (85.7%)

Total 54 9 (16.7%) 9 (16.7%)

Table 3: Results from a manual review on the generated feed-
back. Evaluation is done in a pointwise setting using corrupted
responses containing false information.

Feedback Analysis As it is unclear how much we should
deduct from the original score according to each cor-
ruption, instead of comparing scores, we input the cor-
rupted responses for evaluation to two models GPT-4o and
Claude-3.5-Sonnet and conduct a qualitative anal-
ysis on the generated feedback to count the number of
cases where the two models succeed in identifying the er-
rors. In Table 3, we observe that top-performing propri-
etary models struggle significantly in detecting factual er-
rors. Both models perform best on paragraph-type errors,
with Claude-3.5-Sonnet identifying nearly all, likely
because these alterations significantly change the overall
context, making them easily visible. However, as the errors
become subtler, both models face difficulties in detection,
highlighting a limitation of LLM-as-a-Judges. While they
may effectively assess the logic or coherence of responses,
they are less suitable for identifying the truthfulness or hal-
lucinations in LLM outputs.

Type Model Accuracy

LLM-as-a-Judge
Claude-3.5-Sonnet 68.52

GPT-4o 66.67

Reward Model
OffsetBias-RM-8B 42.59

FsfairX-RM-8B 38.89

Table 4: Evaluations results of 4 automated evaluators using
a pairwise setting. Evaluation is done using corrupted responses
containing false information.

Pairwise In the pairwise subset, we pair corrupted re-
sponses with their original versions and present them to
LLMs to assess their ability to distinguish between the two.

Surprisingly, in contrast to the full subset where reward
models outperformed LLM-as-a-Judges (Section 8), we ob-
serve an opposite trend. Reward models perform poorly,
scoring below the random baseline of 50. Moreover, we
manually review the feedback from the models and quan-
tify how often the generative judges identify errors. GPT-4o
and Claude-3.5-Sonnet detected the correct factual er-
rors 26 and 32 times, respectively, significantly outperform-
ing their results from Table 3. This suggests that pairwise
comparisons may enhance evaluation accuracy. However, it
is important to note that encountering two nearly identical
responses with subtle differences is rare in real-world sce-
narios, making the detection of factual errors even more
challenging. Additionally, we identify 13 and 16 instances
where each model provided incorrect, fabricated reasons to
differentiate between the responses, indicating potential ro-
bustness issues.

Can LLMs evaluate challenging prompts?
Intuitively, evaluating a problem necessitates solving it, as

the evaluator must determine the correctness of an answer.
We posit that models may find it difficult to assess challeng-
ing questions that they themselves cannot solve. In this sec-
tion, we use the KUDGE CHALLENGE subset to explore how
question difficulty influences judgability.

In Table 102, we observe that model performance sig-
nificantly correlates with the difficulty of the prompts. All
models manage reasonable success on simpler MMLU ques-
tions but encounter substantial difficulties with the more de-
manding GPQA subset. No model surpasses a 70% accu-
racy rate on these harder questions, a concerning perfor-
mance given that random guessing would result in 50% ac-
curacy. Reward models, although competitive on easier sets,
underperform on tougher questions, likely due to their rela-
tively smaller size compared to the LLMs-as-judges, all of
which exceed 70B parameters. This disparity suggests that
the complexity of GPQA questions particularly challenges
smaller models. Overall, the findings indicate that models
struggle with complex questions, revealing a significant lim-
itation in employing state-of-the-art, open-source judges for
training LLMs (OpenAI 2024) on advanced reasoning tasks.

4 Conclusion
In this paper, we introduce KUDGE, a meta-evaluation
dataset that assesses meta-evaluation capability in both Ko-
rean and English. Our findings show that automated eval-
uators perform comparably in Korean, effectively evaluat-
ing questions and answers beyond their English training.
This observation challenges the assumption that native Ko-
rean proficiency is essential for high-quality text evaluation.
However, we also uncover significant deficiencies in their
ability to detect cultural misrepresentations or false informa-
tion. This underscores a substantial gap in their effectiveness
as reliable fact-checkers across varied languages and con-
texts. Furthermore, models struggle with evaluating com-
plex reasoning tasks in our Challenge subset, pointing to a
widespread limitation in current automated evaluators.

2Table in Appendix due to page limits.



References
Aksitov, R.; Miryoosefi, S.; Li, Z.; Li, D.; Babayan, S.; Kop-
parapu, K.; Fisher, Z.; Guo, R.; Prakash, S.; Srinivasan, P.;
et al. 2023. Rest meets react: Self-improvement for multi-
step reasoning llm agent. arXiv preprint arXiv:2312.10003.
Anthropic. 2024. Claude 3.5 Sonnet.
Aryabumi, V.; Dang, J.; Talupuru, D.; Dash, S.; Cairuz, D.;
Lin, H.; Venkitesh, B.; Smith, M.; Marchisio, K.; Ruder, S.;
et al. 2024. Aya 23: Open weight releases to further multi-
lingual progress. arXiv preprint arXiv:2405.15032.
Bai, Y.; Jones, A.; Ndousse, K.; Askell, A.; Chen, A.; Das-
Sarma, N.; Drain, D.; Fort, S.; Ganguli, D.; Henighan, T.;
et al. 2022. Training a helpful and harmless assistant with re-
inforcement learning from human feedback. arXiv preprint
arXiv:2204.05862.
Burnell, R.; Hao, H.; Conway, A. R.; and Orallo, J. H.
2023. Revealing the structure of language model capabil-
ities. arXiv preprint arXiv:2306.10062.
Chen, G. H.; Chen, S.; Liu, Z.; Jiang, F.; and Wang, B. 2024.
Humans or llms as the judge? a study on judgement biases.
arXiv preprint arXiv:2402.10669.
Chiang, W.-L.; Zheng, L.; Sheng, Y.; Angelopoulos, A. N.;
Li, T.; Li, D.; Zhang, H.; Zhu, B.; Jordan, M.; Gonza-
lez, J. E.; et al. 2024. Chatbot arena: An open platform
for evaluating llms by human preference. arXiv preprint
arXiv:2403.04132.
Chung, J. J. Y.; Kamar, E.; and Amershi, S. 2023. Increasing
diversity while maintaining accuracy: Text data generation
with large language models and human interventions. arXiv
preprint arXiv:2306.04140.
Cohere. 2024. Introducing Command R+: A Scalable LLM
Built for Business. https://cohere.com/blog/command-r-
plus-microsoft-azure.
Dong, H.; Xiong, W.; Goyal, D.; Zhang, Y.; Chow, W.; Pan,
R.; Diao, S.; Zhang, J.; Shum, K.; and Zhang, T. 2023. Raft:
Reward ranked finetuning for generative foundation model
alignment. arXiv preprint arXiv:2304.06767.
Dong, Y. R.; Hu, T.; and Collier, N. 2024. Can LLM be a
Personalized Judge? arXiv preprint arXiv:2406.11657.
Gema, A. P.; Leang, J. O. J.; Hong, G.; Devoto, A.; Mancino,
A. C. M.; Saxena, R.; He, X.; Zhao, Y.; Du, X.; Madani,
M. R. G.; et al. 2024. Are We Done with MMLU? arXiv
preprint arXiv:2406.04127.
Hendrycks, D.; Burns, C.; Basart, S.; Zou, A.; Mazeika,
M.; Song, D.; and Steinhardt, J. 2020. Measuring mas-
sive multitask language understanding. arXiv preprint
arXiv:2009.03300.
Huang, L.; Yu, W.; Ma, W.; Zhong, W.; Feng, Z.; Wang, H.;
Chen, Q.; Peng, W.; Feng, X.; Qin, B.; et al. 2023. A sur-
vey on hallucination in large language models: Principles,
taxonomy, challenges, and open questions. arXiv preprint
arXiv:2311.05232.
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5 Appendix A: Related Works
Traditional metrics such as BLEU (Papineni et al. 2002)
and ROUGE (Lin 2004), which measure lexical overlap
between texts, have long been the standard for evaluat-
ing generated text. However, as LLMs advance, they are
now capable of producing semantically equivalent yet syn-
tactically varied expressions that these metrics cannot ac-
curately assess (Chung, Kamar, and Amershi 2023). Al-
though human evaluation may be ideal, it is often imprac-
tical due to resource constraints (Li et al. 2023). Conse-
quently, model-based evaluation (i.e., LLM-as-a-Judges and
RMs) has emerged as an alternative, employing LLMs in a
peer-review-like setup.

Automated Evaluators Initially, the LLM-as-a-Judge
approach involved prompting LLMs to evaluate out-
puts (Zheng et al. 2024; Liu et al. 2023; Verga et al. 2024).
However, recent efforts have shifted towards specifically
training LLMs to enhance their evaluative accuracy (Kim
et al. 2024b; Vu et al. 2024; Park et al. 2024; Wang et al.
2024e). LLM-as-a-Judge models offer high flexibility, em-
ploying customizable rubrics (Ye et al. 2023) and scoring
ranges (Dong, Hu, and Collier 2024). Typically, these mod-
els are prompted to provide feedback (Wang et al. 2024e,d)
before their evaluations, which boosts performance and en-
hances interpretability for users. However, relying on gen-
eration for every evaluation step may be resource-intensive.
Instead, reward models (RMs) attach classification heads to
LLMs to directly output continuous scores (Munos et al.
2023; Wang et al. 2024b; Swamy et al. 2024). These mod-
els may be easily integrated into training systems, serving as
proxies for human preferences and facilitating the training
of aligned LLMs (Lee et al. 2023; Dong et al. 2023; Ak-
sitov et al. 2023). Recent efforts also include merging the
two approaches by training RMs with a next-token predic-
tion objective (Zhang et al. 2024).

Meta-Evaluation As automated evaluators gain traction,
meta-evaluation tools have been developed to assess their
reliability (Zeng et al. 2023; Lambert et al. 2024). These
benchmarks evaluate how closely LLMs mirror human judg-
ments and determine their efficacy as reliable proxies for hu-
man annotators. Such tools are crucial in guaranteeing the
significance of LLM-based evaluations. However, despite
their widespread use in multilingual settings (Aryabumi
et al. 2024; Chiang et al. 2024), the full capabilities of these
evaluators remain largely unexamined. This work presents a
comprehensive analysis of automated evaluators across di-
verse settings, including non-English contexts, factual veri-
fication, and complex reasoning tasks. We assess their relia-
bility, determine when they can be trusted, and identify key
limitations in handling such scenarios.

6 Appendix B: Additional details of KUDGE
K2-Eval
Given the absence of long-form question datasets in Korean
at the time of this research, we create K2-EVAL, a curated
set of 90 prompts encompassing various aspects of Korean

knowledge. The concise dataset size is intended to keep eval-
uation and annotation manageable within budgetary limits.
Despite its small size, we ensure broad coverage by catego-
rizing Korean knowledge into nine distinct areas and identi-
fying seven unique reasoning skills, with each task in the
dataset pairing one knowledge category with one reason-
ing skill. See Table 5 for an overview of the knowledge
and reasoning types. The gold answer for each instruction
is crafted through a three-step process. Initially, we gener-
ate answers for each prompt using GPT-4, enhanced with a
browsing-augmented chain of thought (CoT) technique (Yao
et al. 2022). Subsequently, two authors independently re-
view and amend any problematic responses. Finally, one au-
thor consolidates these revisions to finalize the gold stan-
dard answers. We also establish specific scoring rubrics and
evaluation metrics for each task, linked to the paired knowl-
edge and reasoning categories. These assessment tools mea-
sure the effectiveness of responses, their cultural accuracy,
and the use of unique Korean linguistic elements, including
honorifics. The scoring rubric and evaluation criteria are not
unique to each instruction instead, they are shared within
each combination of knowledge and reasoning types.

Figure 1: Agreement rate of the two annotators. Note that
the values are normalized column-wise.

In Figure 2, we examine the relationship between re-
sponse length and the average score annotated by humans.
We observe a slight trend where higher scores correlate with
longer average lengths, however not to a concerning extent.

Human Annotation
A group of 15 human annotators, consisting of authors and
10 hired experts, all native Korean speakers with at least a
bachelor’s degree from a Korean university, were recruited
for this task. The group included a diverse mix of seven fe-
males and eight males. Annotators were tasked with scoring
model responses on a Likert scale from 1 to 5, using a pro-
vided scoring rubric, a reference answer representing a score
of 5, and specific evaluation criteria. To ensure consistent
evaluation standards, annotators received a 30-minute train-
ing session with examples from the dataset. To minimize



Category Subcategory Description

Knowledge Art Traditional and contemporary Korean art, including historical context.
Knowledge Culinary Knowledge of traditional Korean foods, recipes, and food culture.
Knowledge Culture & Traditions Understanding of diverse cultural practices in Korea.
Knowledge Geography Korean natural environments, topography, and architectural influence.
Knowledge History Recognition of historical events, and figures from ancient to modern

times.
Knowledge Linguistics Comprehension of Korean linguistic characteristics and dialects.
Knowledge Politics & Economy Understanding of government systems, and economic policies.
Knowledge Social Issues Awareness of contemporary social challenges in Korean society.

Reasoning Empathetic Reasoning Ability to understand and interpret others’ emotions and perspectives.
Reasoning Brainstorming Capacity for divergent thinking and generating creative solutions.
Reasoning Cause & Effect Analysis Skill in identifying and analyzing causal relationships between events.
Reasoning Comparative Analysis Ability to compare and contrast subjects to evaluate similarities and dif-

ferences.
Reasoning Numerical Estimation Competence in making mathematical estimations in data-limited sce-

narios.
Reasoning Creative Writing Capability to generate original narratives and use various literary de-

vices.
Reasoning Proposing Solutions Skill in suggesting feasible solutions to problems within realistic con-

straints.

Table 5: Summary of the knowledge and reasoning types defined for instruction creation.

human error, each instance was independently annotated by
two different annotators, securing two sets of evaluations per
instance.

We observe that annotators completely agree only 52.2%
of the time. 30.7% of the time, they assign scores with a
one-point difference. Surprisingly, despite the detailed eval-
uation criteria and rubrics provided, 17.1% of the time an-
notators disagree by a margin bigger than two. In our work,
we treat cases where scores differ by one point as agree-
ments and calculate the final score by averaging these two
scores. However, in instances where the score difference is
two points or more, occurring 17% of the time, we consider
these significant disagreements and exclude them from our
analysis.

Figure 1 presents a cross-tabulation of the scores given
by the two annotators, normalized column-wise. We observe
that the agreement rate is highest for the lowest score and de-
creases progressively towards the highest score. This trend
suggests that while annotators commonly agree on identify-
ing poor responses, they often differ on recognizing high-
quality responses.

Benchmark results
We leverage 31 LLMs, mentioned in Table 6, to gen-
erate responses for the K2-EVAL dataset and subse-
quently hire annotators to evaluate these responses. Fig-
ure 8 presents the performance of these 31 models
as evaluated by humans. HyperCLOVA X shows the
highest performance, followed closely by GPT-4 and
Command-R-Plus. Interestingly, smaller models specif-
ically fine-tuned on Korean instruction data, such as

EEVE-Korean-Instruct-10.8B (Kim, Choi, and
Jeong 2024) and KULLM3 (Kim et al. 2024a), outperform
larger counterparts like Mixtral-8x22B-Instruct
and Qwen-1.5-72B-Chat. This underscores the signif-
icance of localized tuning, which addresses linguistic and
cultural nuances to enhance performance in terms of human
preference, beyond mere model size.
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Figure 2: An analysis between length and human scores. The X-axis represents the average scores annotated by human
reviewers, while the Y-axis shows the response lengths in number of characters.

7 Experimental Setup

Prompt Configuration

For the evaluation of LLM-as-a-Judges, we employ a gener-
ative setting in which models are prompted to first generate
an analysis and append their final decisions in a standard-
ized format. In pointwise evaluation, models are instructed
to generate the “[RESULT]” token followed by an integer
from 1 to 5. In pairwise evaluation, models select the supe-
rior response as either “[[A]]” or “[[B]]”, which is subse-
quently parsed. If a model fails to generate the correct for-
mat, we attempt up to three retries. For further details on
generation configuration and prompts, refer to Appendix ??.
For RMs, we adopt the codebase provided from Lambert
et al. (2024).

Evaluated Models

In Table 2, we assess 20 LLMs, including three
proprietary models: GPT-4o (OpenAI 2024),
Claude-3.5-Sonnet (Anthropic 2024), and
HyperCLOVA X (Yoo et al. 2024); along with five
open-source model families: Llama-3.1 (Meta 2024),
Qwen 1.5/2 (Yang et al. 2024), Mistral (Mistral AI
2024; Mistral 2024), and Command-R (Cohere 2024).
We also include EXAONE-3.0-7.8B-Instruct (Re-
search et al. 2024), a model pretrained on 8 trillion tokens
of bilingual English and Korean text. Due to hardware
constraints, a quantized version of Llama-3.1-405B is
used. Additionally, in Section 8 we also explore fine-tuned
LLM-as-a-Judge models like Prometheus2 (Kim et al.
2024b) and RMs such as FsfairX (Xiong et al. 2024),
OffsetBias (Park et al. 2024), and Skywork-RM (Liu
and Zeng 2024).

8 Additional Analysis
Qualitative Analysis on Biases

LLM-as-a-Judges are known to be susceptible to various bi-
ases (Park et al. 2024; Chen et al. 2024). To investigate such
bias in KUDGE, we conduct a qualitative analysis on 15% of
the pointwise subset. We identify two main types of biases:
(1) Unwanted Character, where we find 149 responses
containing non-Korean characters or sentences, and (2) In-
complete Answers, noted in 105 cases where responses are
perceived as incomplete by humans due to refusal or low-
confidence baseless claims. See Figure ?? for examples of
the selected samples.

To determine if models struggle more when evaluating in-
stances with such bias, we analyze their average errors, de-
fined as the margin between model scores and human scores,
across the two above-mentioned instances. If the error mar-
gins in these instances align with the model’s typical error
rates, it suggests that models do not specifically suffer in
these scenarios. Conversely, differing error patterns indicate
that models struggle with these error-prone instances.

In Figure 3, we present the cumulative distribution
functions and statistics from a two-sample Kolmogorov-
Smirnov (KS) test for four models. The distribution
for GPT-4o approximates a normal distribution, indi-
cating a balanced scoring pattern, whereas other mod-
els like Claude-3.5-Sonnet, Exaone-3.7-8B, and
Qwen2-7B-Instruct display right-skewed patterns,
suggesting a tendency to award higher scores com-
pared to human evaluations. Specifically, the KS test re-
veals statistically significant differences in scoring pat-
terns between the full evaluation set and subsets with
errors such as unwanted characters or incomplete an-
swers. These discrepancies are particularly pronounced in
EXAONE-3.0-7.8B-Instruct, which shows the most
significant distribution shift, indicating a greater sensitivity
to these error types.



Type Models

Proprietary GPT-4 (Turbo-2024-04-09), HyperCLOVA X

Multilingual Chat
Command-R (35B, 104B), Llama-3 (8B, 70B), Gemma-1.1 (2B, 9B),
Qwen-1.5 (4B, 7B, A2.7B, 14B, 32B, 72B), Yi (6B, 34B),
AYA-101, ORION, Mixtral (8x7B, 8x22B)

English Chat DBRX-Instruct, Falcon (7B, 40B), Mistral (7B), SOLAR (10.7B)

Korean Transfer EEVE (2.8B, 10.8B), KULLM (10.7B), KORani (13B)

Korean Chat 42dot-LLM (1.3B)

Table 6: An overview of the 31 LLMs used for response generation. We use the instruct/chat version of each model if available.
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Figure 3: Results for the Two-Sample Kolmogorov-Smirnov Test. “U.C” denotes unwanted characters, and “I.A” stands for incomplete
answers. Significance levels are indicated as follows: ** for p < 0.05, *** for p < 0.01. Analysis for the remaining models is presented in
Figure 7.
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Figure 4: Average Delta Between Human and LLM Judges.
Lighter shades represent larger deltas. The X-axis shows scores an-
notated by humans, while the text in the heatmap cells indicates the
average margin with the scores given by models.

Evaluation with Majority Voting
Verga et al. (2024) suggests that aggregating judgments

from multiple LLMs could enhance correlation with hu-
man evaluations. We test this hypothesis using KUDGE.
In Figure 5, we sample N models from proprietary and
open-source LLMs with over 70B parameters, excluding the
top-performing GPT-4o, and average their accuracy across
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Figure 5: Accuracy from Ensembling N LLMs. The table shows
the average accuracy of N randomly sampled LLMs across five
trials. GPT-4o achieves scores of 61.26 and 87.76 on the pointwise
and pairwise subsets.

five trials. Similar to prior findings, we observe aggregating
models yield improvement; however, the margins are min-
imal and still underperform compared to GPT-4o alone.
We find that the underperformance of aggregated models
compared to GPT-4o alone could be attributed to multi-
collinearity among the models, as indicated in Figure 5.
We observe that the Variance Inflation Factor (VIF) in-



creases from 10.02 to 16.91 as more models are included in
the ensemble, suggesting that these models contribute simi-
lar, rather than diverse, perspectives. This lack of diversity
means the ensemble is limited in its ability to rectify in-
correct assessments, undermining the effectiveness of model
aggregation.

Are judging capabilities transferred to new
languages?
In Table 2, we observe that models display comparable per-
formance despite not being explicitly trained in Korean,
prompting the question: Are judging capabilities transfer-
able to new languages? In this section, we investigate this
issue by identifying statistically significant features that pre-
dict KUDGE scores (Section 8), observe whether evaluation
capabilities learned in English transfer to Korean (Section 8)
and conducting a qualitative analysis of the conditions in
which transfer fails (Section 8).

Subset βXK|S βXRB|S R2 F-Stats

Pointwise 0.05 1.01∗∗ 0.48 2.30
Pairwise 0.02 0.26∗∗ 0.52 2.72

Table 7: Regression results for model performance on KUDGE.
X(K|S), and X(RB|S) denote Korean capabilities, and Reward-
Bench scores, all adjusted for model size. Significance levels: **
p < 0.05, *** p < 0.01.

Correlation with Different Features
We examine the correlation of evaluation results on KUDGE
with performance on KMMLU, and REWARDBENCH, as
shown in Figure 6. Regression against REWARDBENCH
scores yields a higher R2 value compared to KMMLU
scores, suggesting that models better at English evaluations
tend to perform well in Korean contexts, despite potential
shortcomings in Korean-specific capabilities.
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Figure 6: Regression analysis of performance KUDGE against
different benchmarks. R2 values are annotated. Pointwise scores
are in blue, Pairwise score are noted in red.

To further validate that Korean-specific abilities are less
influential on Korean evaluation capabilities, we add the fol-
lowing benchmarks to our analysis: GSM8K-Ko, HAE-RAE
Bench, and HellaSwag-KoBEST. Given the correlation in
these benchmarks (Ilić 2023; Burnell et al. 2023), we apply

PCA to distill the first principal component, capturing the
low-dimensional Korean capability of each model. To con-
trol for the influence of model size, which is often correlated
with better scores across benchmarks, we orthogonalize both
the principal component (representing Korean capabilities),
and the REWARDBENCH scores with respect to model size.
While controlling for computing budget would be ideal, we
opt to use model size as a proxy since some open models
do not disclose their training tokens, complicating the pre-
cise calculation of FLOPs used during training. The orthog-
onalization is denoted as XK|S for Korean capabilities and
XRB|S for REWARDBENCH, where:

XK|S = XK − βSXS

and similarly for XRB|S , where XK and XRB are the orig-
inal scores, XS is model size, and βS is the coefficient from
regressing the feature on size. By removing the size effect,
XK|S and XRB|S represent the residual Korean and reward
capabilities independent of model size. Table 7 presents
the regression results. The size-adjusted language features
XK|S show poor statistical significance, implying that Ko-
rean language capabilities have a limited impact on judging
capabilities once adjusted for size. Conversely, XRB|S ex-
hibits relatively higher coefficients and serves as a stronger
predictor of performance in KUDGE. This observation aligns
with discussions in Section 3 on why targeted training in
Korean does not necessarily lead to better scores, highlight-
ing that longer training and enhanced cognitive capabilities
might be more crucial.

Model Accuracy Pearson Failure

Mistral-7B 20.29 0.26 64.33
Prometheus2-7b 46.46 0.43 7.7

Mixtral-8x7B 22.77 0.27 19.6
Prometheus2-8x7b 46.45 0.41 20.9

Table 8: Performance comparison between Prometheus2 and
its base model. The failure column denotes how often the models
fail to generate in the desired format Higher performance metrics
are highlighted in bold.

Evaluation with Fine-Tuned LLMs
Recently, there have been increasing efforts to develop

dedicated LLMs for evaluation, either by fine-tuning them
with instruction-like data to induce judgment capabili-
ties (Kim et al. 2024b) or by integrating a classification
head and adopting a Bradley–Terry model (Wang et al.
2024c,a; Liu et al. 2024). In this section, we explore whether
LLMs fine-tuned for English meta-evaluation are directly
applicable as judges for Korean. In Table 8, we com-
pare Prometheus2 with its base model Mistral (Mis-
tral 2024). Notably, Prometheus2 demonstrates improve-
ments of 20.17% and 23.68% in accuracy across different
model sizes, suggesting that although primarily tuned in En-
glish, its meta-evaluation capabilities may effectively ex-
tend to other languages. Meanwhile, we also observe a lan-
guage bias where Prometheus favors responses contain-
ing or written in English. In instances where Prometheus



errs while Mistral is correct, the average count of En-
glish characters is 765.6, compared to 673 when the roles
are reversed, indicating a preference for longer English
strings. This suggests that the English-focused training of
Prometheus introduces a subtle bias. We further investi-
gate related biases in Section 8

Table 9: Evaluation result of four RMs on KUDGE and RE-
WARDBENCH. The highest performance metrics are highlighted
in bold, while the second-highest are underlined.

Models KUDGE RewardBench

FsfairX-RM-8B 90.22 84.4
OffsetBias-RM-8B 89.11 89.4
Skywork-Reward-8B 88.14 92.5
Skywork-Reward-27B 81.05 93.8

In Table 9, we report the performance of four reward
models on the pairwise subset of KUDGE ORIGINAL and
compare it to their performance on REWARDBENCH. Sur-
prisingly, reward models trained only with English data
prove equally effective in Korean meta-evaluation. Notably,
the top-performing model, FsfairX-RM-8B (90.22), sur-
passes Claude-3.5-Sonnet (89.11), the best model
evaluated in a generative setting. This suggests that train-
ing conducted in English can be effectively transferred to
pairwise evaluation without additional adaptation. This ob-
servation aligns with the findings of Wu et al. (2024), which
demonstrate that English RMs are also effective for cross-
lingual alignment.

Interestingly, the performance rankings on KUDGE and
REWARDBENCH are inversely related, with models ex-
celling in one dataset tending to underperform in the other.
We hypothesize that the performance disparities may be at-
tributed to the size and diversity of the training datasets. For
example, FsfairX-RM-8B utilizes the smallest dataset,
while OffsetBias-RM-8B is a merge of a reward model
trained on the OffsetBias dataset and FsfairX-RM-8B.
Similarly, the Skywork Reward series uses a larger dataset,
including the datasets from Park et al. (2024). We suspect
that such data curation might lead models to overfit on
English evaluations or REWARDBENCH specifically, poten-
tially limiting their effectiveness in broader evaluation con-
texts. However, it should be noted that the analysis of the
four models is insufficient to generalize, and future work is
required to study this behavior further.



Subset Easy Hard
Language Ko En Average Ko En Average

openly available language models (>70B)
Llama-3.1-405B-Instruct (FP8) 70.92 83.08 77.00 53.53 64.64 59.09
Llama-3.1-70B-Instruct 68.79 71.80 70.30 63.63 48.48 56.06
Qwen-2-72B-Instruct 71.73 78.94 75.34 30.30 41.41 35.86
Mistral-Large-Instruct 74.11 79.32 76.72 46.46 53.53 50.00

reward models
Skywork-Reward-27B 80.49 81.58 81.04 9.09 10.10 9.60
Skywork-Reward-8B 72.34 72.93 72.64 12.12 18.18 15.15
OffsetBias-RM-8B 75.17 73.68 74.43 19.19 34.34 26.77
FsfairX-RM-8B 76.59 81.20 78.90 17.17 19.19 18.18

Table 10: Evaluation results for 4 LLM-as-a-Judge and 4 RMs on KUDGE CHALLENGE. Random guessing accuracies are set at 50%
for all subset. The highest-scoring model across all categories is highlighted in bold, while the top model in each category is underlined.
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EXAONE-3.0-7.8B-Instruct

Full Unwanted Character Incomplete Answer

Figure 7: Results for the Two-Sample Kolmogorov-Smirnov Test. ”U.C” denotes unwanted characters, and ”I.A” stands for incomplete
answers. Significance levels are indicated as follows: ** for p < 0.05, *** for p < 0.01.



Figure 8: K2-EVAL human evaluation result.


