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ABSTRACT

State-of-the-art meta-learning techniques do not optimize for zero-shot adaptation
to unseen tasks, a setting in which humans excel. On the contrary, meta-learning
algorithms learn hyperparameters and weight initializations that explicitly optimize
for few-shot learning performance. In this work, we take inspiration from recent
advances in generative modeling and language-conditioned image synthesis to pro-
pose meta-learning techniques that use natural language guidance to achieve higher
zero-shot performance compared to the state-of-the-art. We do so by recasting the
meta-learning problem as a multi-modal generative modeling problem: given a task,
we consider its adapted neural network weights and its natural language description
as equivalent multi-modal task representations. We first train an unconditional
generative hypernetwork model to produce neural network weights; then we train a
second “guidance” model that, given a natural language task description, traverses
the hypernetwork latent space to find high-performance task-adapted weights in a
zero-shot manner. We explore two alternative approaches for latent space guidance:
“HyperCLIP”-based classifier guidance and a conditional Hypernetwork Latent
Diffusion Model (“HyperLDM”), which we show to benefit from the classifier-free
guidance technique common in image generation. Finally, we demonstrate that
our approaches outperform existing meta-learning methods with zero-shot learning
experiments on our Meta-VQA dataset, which we specifically constructed to reflect
the multi-modal meta-learning setting.

1 INTRODUCTION

State-of-the-art machine learning algorithms often lack the ability to quickly generalize in a sample
efficient manner to new unseen tasks. In contrast, humans show remarkable capabilities in leveraging
previous knowledge for learning a new task from just a few examples. Often, not even a single
example is needed, as all relevant task information can be conveyed in the form of natural language
instructions. Indeed, humans can solve novel tasks when prompted from a variety of different
interaction modalities such as visual task observations or natural language prompts. In this work we
aim to improve forward generalization of deep networks by developing new models that are capable
of a similar multi-modal task inference. In particular, we present two different approaches that utilize
text-based task descriptors for rapid zero-shot adaptation to new tasks.

The development of deep learning models that quickly adapt and generalize to unseen tasks is the
focus of the field of meta-learning. A recent trend stemming from the success of Model-Agnostic
Meta-Learning (Finn et al., 2017, MAML) describes meta-learning as a bi-level optimization problem:
an outer loop meta-model is trained with the goal of improving the few-shot performance of a base
model when fine-tuned on a variety of related tasks. MAML was specifically introduced as a gradient-
based method to find an unconditional network initialization with good few-shot performance over an
entire task universe. Recent progress in large scale deep learning is however challenging this explicit
meta-learning framework. Large models trained on huge, rich, and diverse data sets have been shown
to possess surprisingly good few-shot learning capabilities (Brown et al., 2020). In particular, large
scale pre-training and fine-tuning often outperforms explicit meta-learning procedures (Mandi et al.,
2022).

These developments prompted us to develop alternative methods for explicit meta-learning which
natively benefit from rich and multi-modal data. Inspired by recent advances in conditional image
generation (Ramesh et al., 2022; Rombach et al., 2022), we reframe meta-learning as a multi-modal
generative modeling problem such that, given a task, its adapted neural network weights and its
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Figure 1: Schematic of the three main
components of our proposed meta-
learning approach. A. An unconditional
variational autoencoder (VAE) models the
latent space of adapted network weights
W . Its generator hypernetwork h (high-
lighted in gray) can be re-used in the
conditional setting with our guidance
techniques. B. Our HyperCLIP encoder
CLIPH is contrastively trained to map net-
work weights W to the space of CLIP
embeddings ei. Then, given a new task
with descriptor ti, we can use CLIP guid-
ance to find a VAE latent vector zi with
embedding e

(H)
i that has a high cosine

similarity to a given task embedding e(T )
i .

C. Alternatively, our Hypernetwork La-
tent Diffusion Model (HyperLDM) learns,
conditional on the task embedding ei, to
iteratively denoise a VAE latent vector
zTi , . . . , z

0
i over T iterations.

natural language description are considered equivalent multi-modal task representations. What we
show is that popular techniques for the image domain, such as CLIP-based guidance (Gal et al., 2021;
Patashnik et al., 2021), denoising diffusion models (Ho et al., 2020), and classifier-free guidance
(Dhariwal & Nichol, 2021; Ho & Salimans, 2021; Nichol et al., 2022) can be repurposed for the
meta-learning setting to generate adapted neural network weights instead of images.

Specifically, we approach the generation of neural network weights in two separate phases. In the
unconditional pre-training phase, we train a generative hypernetwork (Ha et al., 2016) to map from
its latent space to the weight space of a base model (Figure 1.A). In the guidance phase, we learn
language-conditioned models that can be used to traverse the hypernetwork latent space and find
zero-shot adapted weights with high performance on our task (Figure 1.B and 1.C).

1.1 OUR CONTRIBUTIONS

We summarise our contributions as follows:

• We recast meta-learning as a multi-modal generative modeling problem using hypernetworks,
providing a theoretical framework for the application of recent research on image synthesis
to the field of meta-learning.

• We propose HyperCLIP, a contrastive learning method equivalent to Contrastive Language-
Image Pre-training (CLIP) (Radford et al., 2021), producing CLIP embeddings of fine-tuned
neural network weights. We can then use HyperCLIP to: 1) perform CLIP-guidance in
the latent space of a hypernetwork model (Figure 1.B); and 2) perform task inference on
fine-tuned models without given task descriptions.

• We propose Hypernetwork Latent Diffusion Models (HyperLDM) as an alternative to
HyperCLIP guidance for task-conditional network generation within the latent space of a
hypernetwork model (Figure 1.C). We show how combining this approach with classifier-free
guidance (Ho & Salimans, 2021) improves the performance of generated networks.

• We demonstrate the soundness of our methods on Meta-VQA, our modification of the
Visual-Question-Answering VQA v2.0 dataset (Goyal et al., 2017) that interprets questions
as task descriptions. We show how our guidance methods outperform traditional multi-task
and meta-learning techniques for zero-shot learning on this dataset.

2



Under review as a conference paper at ICLR 2023

2 META-LEARNING WITH MULTI-MODAL TASK EMBEDDINGS

The setting we investigate is similar to the classic meta-learning framework, where we operate within
a distribution of tasks Ti ∼ p(T ), each associated with a loss function LTi

. Using a set of training
tasks drawn from this distribution, our goal is to train a model such that it generally performs well on
new unseen tasks drawn from p(T ).

2.1 MODEL-AGNOSTIC META-LEARNING

We present here a slightly altered formulation of MAML (Finn et al., 2017) introduced in (Zintgraf
et al., 2019), whereby the parameters of the model g are partitioned into two parts: context parameters
ϕ that are adapted on individual tasks, and shared parameters θ that are meta-trained and shared across
tasks. MAML and its variants focus on the few-shot setting, which aims to learn an initialization
for these parameters such that the model g(·, θ, ϕ) generalizes well on new tasks after fine-tuning
ϕ on a few data points from that task. To train such a model, the data from each task Ti is split
during training into a support set Ds

i and a query set Dq
i . The MAML objective aims to optimize the

validation score evaluated on the query set when fine-tuning ϕ on the support set, e.g., consider the
following optimization problem:

min
θ,ϕ

ETi∼p(T )

 1

|Dq
i |

∑
(x,y)∈Dq

i

LTi
(g(x, θ,ATi

(Ds
i, θ, ϕ)), y)

 , (1)

where ATi is some differentiable algorithm, typically implementing a variant of few-step gradient
descent on the loss computed on the support set, e.g., in the case of one-step gradient descent:

ATi
(Ds

i, θ, ϕ) = ϕ− η
1

|Ds
i|

∑
(x′,y′)∈Ds

i

∇ϕLTi
(g(x′, θ, ϕ), y′) (2)

with some learning rate η. The objective from Eq. 1 is itself solved with gradient descent, by
iteratively optimizing the parameters ϕ in the inner loop on the support set of a sampled task, and
updating θ and the initialization of ϕ with their gradient with respect to the entire inner loop training
process, averaged over batches of tasks. Note that the original formulation of MAML considers
θ = ∅.

2.2 NATURAL LANGUAGE TASK EMBEDDINGS

In this work, we assume to have access to an additional high-level context embedding ei for each
task Ti. In practice, such embeddings can come from a natural language description ti of the task,
which can be encoded into task embeddings using pre-trained language models. While MAML is a
powerful algorithm for finding universal initializations, the model naturally requires some data at test
time to adapt its unconditioned network parameters. In contrast, by incorporating task embeddings,
we aim to improve performance on a new task in the no-data (zero-shot), or very low data regime.

A simple way to incorporate task embeddings into our model during training is by augmenting the
input of the network, concatenating such input with the task embedding during the forward pass.
Instead, we consider the use of hypernetworks (Ha et al., 2016), a network that generates the weights
of another network given a conditioning input. Concretely, given an unconditioned neural network f
parametrized by a weight vector W , we reparametrize the model by introducing a hypernetwork h.
The hypernetwork h is parametrized by θ, which generates a task-conditioned weight, h(ei, θ) =Wi.
The model is then defined as f(·, h(ei, θ)).
We can thus rewrite the MAML objective with respect to the hypernetwork weight θ as

min
θ

ETi∼p(T )

 1

|Dq
i |

∑
(x,y)∈Dq

i

LTi
(f(x, h(ATi

(Ds
i, ei, θ), θ))), y)

 , (3)

when ATi
(Ds

i, ei, θ) = ei, we recover the classic multi-task objective of a hypernetwork optimizing
for zero-shot performance. When ATi

is instead the gradient descent algorithm on ei, the objective
aligns with the few-shot performance of h when adapting the embedding initialized at ei.
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3 HYPERNETWORKS AS GENERATIVE MODELS

A rich literature exists on hypernetworks interpreted as generative models of base network weights
(see Section 7). Our work builds upon this interpretation to adapt multi-modal generative modeling
techniques to the meta-learning domain.

In generative modeling, we aim to learn the distribution p(x) over a high dimensional data domain X ,
such as images, given samples from the distribution. Since classic maximum-likelihood learning is
insufficient to do so, we must resort to techniques such as variational inference, adversarial learning,
or diffusion models. It seems apparent that, in meta-learning, the modeling of a distribution of diverse
high-dimensional base network weights W may be considered in analogous terms. In the Bayesian
setting, this distribution is made explicit as we seek to model the posterior p(W |D) given data D,
but the framework is still useful even when no explicit posterior distribution is assumed, as it is the
case for deep ensembles. In the present work, we indeed avoid explicit Bayesian inference: given
training tasks, we consider their respective fine-tuned network weights Wi as training samples for
our generative model of network weights.

The fundamental building block of our unconditional generative model is the hypernetwork h(z, θ) =
W that we can train in two ways: 1) We define a Hypernetwork VAE (HVAE) as in Figure 1.A,
which, given samples of fine-tuned base network weights Wi, learns a low-dimensional normally
distributed latent representation z. The encoder d(W,ω) = (µz,Σz) with parameters ω maps base
network weights to means and variances used to sample a latent vector z, while the decoder (or
generator) is a classic hypernetwork h(z, θ) =W which reconstructs the network weights from the
latent vector. 2) Using MAML, we learn both an embedding z and hypernetwork weights θ such that,
when fine-tuning only the embedding z on each task Ti, we obtain high-performing base networks
with weights Wi = h(zi, θ). Concretely, we optimize θ and the initialization of z following the
objective in Eq. 1 where z takes the role of the task-specific parameter ϕ.

4 HYPERCLIP: TRAINING A CLIP ENCODER FOR THE “META-LEARNING
MODALITY”

To define our new meta-learning approach, we first borrow from the field of multi-modal contrastive
learning. More specifically, we build on top of Contrastive Language-Image Pre-training (CLIP)
(Radford et al., 2021), a popular method for joint learning of language and image embeddings with
applications to zero-shot and few-shot classification.

In the original CLIP formulation, separate text and image encoders are trained such that, given a
bi-modal sample (xi, ti) of an image and its corresponding language caption, their representations
(CLIPI(xi) = e

(I)
i and CLIPT (ti) = e

(T )
i ) are aligned across modalities. Specifically, the formu-

lation maximizes the cosine similarity e(I)⊤i e
(T )
j /∥e(I)i ∥∥e(T )

j ∥ for pair-wise matches (i = j) and
minimizes the cosine similarity for non-matches (i ̸= j). Beyond the original language-image setting,
the CLIP approach can be easily adapted to include additional modalities, aligning the representation
of more than two encoders at a time. Existing works such as AudioCLIP (Guzhov et al., 2022)
demonstrate the possibility of training an encoder for an additional modality such as audio on the
side of the pre-trained frozen CLIP language-image encoders.

4.1 CONTRASTIVE LEARNING ON NEURAL NETWORK WEIGHTS

In our work, we consider multi-modal representations of meta-learning tasks Ti, which may be
presented in the form of language as task descriptions ti, but potentially also in the form of images,
videos, and audio. We fine-tune a base machine learning model f(x,Wi) = y for task Ti and consider
the base model as part of an alternative meta-learning modality for task Ti. Fine-tuned networks from
the meta-learning modality can then be paired in contrastive learning with the other multi-modal
descriptions of Ti. We can thus define our new HyperCLIP encoder as a “reverse hypernetwork”
CLIPH(Wi) = e

(H)
i , taking fine-tuned neural network weights Wi as input, and outputting a CLIP

embedding e(H)
i optimized for high cosine similarity with the CLIP embedding for the textual (and

image, video, etc.) description of the task. We point to Figure 2 for an illustration of the approach,
and to Algorithm 1 for the detailed training procedure.
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Figure 2: Our HyperCLIP encoder CLIPH is contrastively trained to map neural network weights
W to the latent space of a pre-trained language encoder CLIPT , which we use to embed the natural
language questions associated to the tasks (see A). To perform task inference given an already fine-
tuned network, we encode all candidate task questions using the language CLIP encoder (see B), then
encode the fine-tuned network weights with HyperCLIP (see C), and finally infer the correct task with
a softmax operation over cosine similarities between HyperCLIP and language CLIP embeddings.

Algorithm 1 HyperCLIP Training
sample a batch of tasks Ti=1,...,N with loss functions LTi

, training data Dtrain
i and text ti

define two N -sized arrays of d-dimensional embeddings T ∈ RN×d and H ∈ RN×d

for i = 1, . . . , N do
T [i] = CLIPT (ti) / ∥CLIPT (ti)∥
Fine-tune Wi with objective: minW

∑
(x′,y′)∈Dtrain

i
LTi(f(x

′,W ), y′)

H[i] = CLIPH(Wi) / ∥CLIPH(Wi)∥
end for
loss =

(
Lcross-entropy(TH

⊤) + Lcross-entropy(HT
⊤)

)
/ 2

Update weights of CLIPH(.) using ∇loss

4.2 CLASSIFIER-GUIDED META-LEARNING

On their own, CLIP encoders are at most useful for zero-shot or few-shot multi-modal classification as
opposed to data generation. Recent popular image synthesis techniques, however, use CLIP encoders
or other classifiers to guide generation from pre-trained unconditional generative models. Classifier
guidance or CLIP guidance (Gal et al., 2021; Patashnik et al., 2021) use gradients with respect to a
classifier or CLIP encoder to traverse a generative model’s latent space.

In this work, we introduce HyperCLIP guidance, the first algorithm for classifier guidance in
the meta-learning setting (Figure 1.B). Given a previously unseen validation task Ti and an uncon-
ditional generative hypernetwork model h(z, θ) = W , we can use a trained HyperCLIP encoder
CLIPH(W ) = e(H) to guide the exploration of the hypernetwork’s latent space and find a set of base
weights Wi with high zero-shot performance for Ti. Specifically, as long as we are given a starting
hypernetwork latent vector z0 and a textual description ti of the task, we can update z0 with gradient
descent over the guidance loss

Lguidance(z) = − CLIPH (h(z, θ))
⊤ CLIPT (ti)

∥CLIPH (h(z, θ)) ∥∥CLIPT (ti)∥
+ λ∥z − z0∥, (4)

and then run the optimized latent vectors ẑi through the generative hypernetwork to find adapted
zero-shot base network weights h(ẑi, θ) = Ŵi that perform well for the task.

5 HYPERLDM: TASK-CONDITIONAL DIFFUSION OF HYPERNETWORK
LATENTS

Using classifier guidance to explore the latent space of a traditional generative model with direct
CLIP gradients is a powerful and elegant approach. However, rapid innovation in the image synthesis
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community recently led to this method being largely overcome in favor of applying classifier guidance
and classifier-free guidance during the sampling process of a Diffusion Model (Dhariwal & Nichol,
2021; Ho & Salimans, 2021; Kim et al., 2022; Crowson, 2022; Nichol et al., 2022; Rombach et al.,
2022). To paint a more complete picture, we also investigate this setting in the meta-learning domain,
as an alternative to the previously introduced HyperCLIP guidance.

5.1 (LATENT) DIFFUSION MODELS

Denoising Diffusion Probabilistic Models (Sohl-Dickstein et al., 2015; Ho et al., 2020, DDPM) are a
powerful class of generative models designed to learn a data distribution p(x). They do so by learning
the inverse of a forward diffusion process in which samples x0 of our data distribution are slowly
corrupted with additive Gaussian noise over T steps with a variance schedule β1, . . . , βT , resulting
in the Markov Chain

q(xt|xt−1) = N (xt;
√
1− βtx

t−1, βtI) q(x1:T |x0) =
T∏
t=1

q(xt|xt−1). (5)

A property of such a process is that we can directly sample each intermediate step from x0 as
xt =

√
ᾱtx

0 + (
√
1− ᾱt)ϵ given ϵ ∼ N (0, I), αt = 1− βt and ᾱt =

∏t
s=1 αt. Then, to learn the

reverse process pψ(xt−1|xt), we parametrize the timestep-dependent noise function ϵψ(xt, t) with a
neural network and learn it by optimizing a simplified version of the variational lower bound on p(x)

LDM(ψ) = Ex,ϵ∼N (0,1),t

[
∥ϵ− ϵψ(x

t, t)∥22
]

. (6)

Sampling from the reverse process can then be done with

xt−1 =
1

√
αt

(
xt − βt√

1− ᾱt
ϵθ(x

t, t)

)
+ σtξ, (7)

with ξ ∼ N (0, I) and σt chosen between βt and βt/
√
1− ᾱt. Sampling from the learned diffusion

model can be seen as analogue to Langevin Dynamics, a connection explicitly made in works
exploring the diffusion technique from the “score matching” perspective (Song & Ermon, 2019; Song
et al., 2020).

In our meta-learning setting, we aim to train a diffusion model which generates adapted zero-shot base
network weights Ŵi that perform well for task Ti. Thus, our diffusion model has to be conditional on
a task embedding ei. Moreover, in order to speed up training and leverage our previously trained
generative hypernetwork h(z, ψ), we define the diffusion process on latent vectors instead of doing
so in weight space, emulating the Latent Diffusion technique from Rombach et al. (2022).

Satisfying the above requirements, we propose Hypernetwork Latent Diffusion Models (HyperLDM),
which learn to sample from the conditional distribution of fine-tuned latent vectors p(z0|ei) given a
language CLIP embedding corresponding to the task. The HyperLDM neural network models the
noise function ϵψ(zt, t, ei), and is learned by optimizing the reweighted variational lower bound,
which in this setting is

LLDM(ψ) = ETi,henc(Wi),ϵ∼N (0,1),t

[
∥ϵ− ϵψ(z

t, t, ei)∥22
]

. (8)

5.2 CLASSIFIER-FREE GUIDANCE FOR META-LEARNING

The classifier guidance technique presented in Section 4.2 can be also adopted together with diffusion
models. Even in the case of conditional diffusion models, the gradient of an auxiliary classifier (or
CLIP encoder) can be added during sampling to induce an effect similar to GAN truncation (Brock
et al., 2018), producing samples that are less diverse but of higher quality. Here, we showcase how
the same technique can be adopted when generating adapted base network weights conditioned on
task representations, tuning the temperature of sampling to reduce variance and increase base network
performance.

The classifier-free guidance technique (Ho & Salimans, 2021; Nichol et al., 2022) allows us to
leverage a conditional diffusion model to perform the same tempered sampling as above, without
the auxiliary classifier. To do so, we train the conditional network ϵψ(zt, t, ei) to also model the
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unconditional case ϵψ(zt, t). One way of doing this is with conditioning dropout, simply dropping
the conditional input ei for a certain percentage of training samples, inputting zeros instead. We can
then sample at each diffusion iteration with

ϵ̃ψ(z
t, t, ei) = (1− γ) ϵψ(z

t, t, 0) + γϵψ(z
t, t, ei). (9)

For γ = 0, this recovers the unconditional diffusion model, while for γ = 1 it recovers the standard
task-conditional model. For γ > 1, we instead obtain the classifier-free guidance effect, which we
show results in the sampling of latent vectors ẑi corresponding to higher-performing task-conditional
network weights h(ẑi, ψ) = Ŵi. We point to a more in-depth discussion on classifier-free guidance
and its connection to score matching in Appendix A.1.

6 EXPERIMENTAL SETUP AND RESULTS

In this section, we demonstrate the soundness of our two approaches with zero-shot image classifica-
tion experiments against a series of traditional meta-learning baseline techniques. Throughout our
experiments, we fix the choice of base network model to a CLIP-Adapter model (see Appendix A.2),
only varying the meta-learning techniques employed to obtain adapted base model weights.

6.1 THE META-VQA DATASET

To evaluate the performance of our methods, we utilize a dataset that reflects the setting of meta-
learning with multi-modal task descriptors. Existing meta-learning benchmarks such as MiniImagenet
(Ravi & Larochelle, 2016) or CIFAR-FS (Bertinetto et al., 2018) are unsuitable, as they are built for
the traditional few-shot learning setting, in which the task Ti is not associated with task descriptors but
is meant to be inferred through exposure to the support setDs

i. We thus introduce our own Meta-VQA
dataset, a modification of the VQA v2.0 dataset (Goyal et al., 2017) for Visual-Question-Answering.
The dataset is composed of training and test tasks Ti, each associated with a natural language question
ti and a mini image classification dataset (xij , y

i
j) ∈ Di. We refer to Appendix A.3 for a more

in-depth discussion.

Figure 3: Example classification task from Meta-VQA, adapted from VQA v2 (Goyal et al., 2017). A
single question ti is associated to multiple image-answer tuples (xij , y

i
j).

6.2 ZERO-SHOT TASK ADAPTATION WITH CLASSIFIER(-FREE) GUIDANCE

In Table 1 we show how our methods compare to a series of baselines when tested on the Meta-VQA
dataset in the zero-shot setting. For each training task Ti, the algorithms are given access to the full
image/answer support and query sets Ds

i, D
q
i , together with the question (task descriptor) ti. At test

time, in the zero-shot setting, only the task descriptors ti for each test task Ti are given, and the
algorithms are tasked with predicting the correct labels of images in the query set Dq

i . To simulate a
setting in which we possess a larger “unconditional” pre-training dataset, we also train our model
while only keeping a fraction of task descriptors from the Meta-VQA dataset: tasks without language
descriptors can still be used to learn the unconditional HNET/HVAE model.

Classic zero-shot CLIP provides provide a 44.99% floor for performance on Meta-VQA, as our base
model (CLIP-Adapter) consists of adapter layers over its output. We also can derive a ∼60.24%
performance ceiling for zero-shot performance by considering the few-shot setting, in which models
have also access to a data support set Ds

i for every test task (see Appendix A.6): it is apparent that
our zero-shot techniques cannot surpass this ceiling while keeping the choice of base model fixed.
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Table 1: Zero-Shot learning accuracy averaged over Meta-VQA test tasks, with % of available
question descriptors. Results should be interpreted as relative to a performance ceiling of ∼60.24
obtainable with few-shot learning on our fixed choice of base model (see Appendix A.6). (* ours)

Method Zero-shot (50% Q.) Zero-Shot (100% Q.)
Base CLIP 44.99

Uncond. Multitask 53.75 (± 0.36)
Uncond. MNet-MAML 53.04 (± 0.69)
Uncond. MNet-FOMAML 53.04 (± 0.42)
Uncond. HNet-MAML 53.37 (± 0.29)

Cond. Multitask 51.68 (± 0.33) 54.12 (± 0.80)
Cond. HNet-MAML 51.54 (± 0.63) 53.02 (± 0.20)
Cond. Multitask FiLM 51.60 (± 0.56) 53.84 (± 0.61)

* HNet + HyperCLIP Guidance 53.51 (± 0.22) 53.98 (± 0.54)
* HVAE + HyperCLIP Guidance 53.82 (± 0.07) 53.91 (± 0.08)
* HNet + HyperLDM γ = 1 53.66 (± 0.25) 54.06 (± 0.21)
* HNet + HyperLDM γ = 1.5 54.08 (± 0.11) 54.30 (± 0.27)
* HVAE + HyperLDM γ = 1 54.72 (± 0.23) 55.03 (± 0.32)
* HVAE + HyperLDM γ = 1.5 54.84 (± 0.24) 55.10 (± 0.08)
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a) Performance of classifier-free guidance
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b) Performance on partial conditional data

Cond. Multitask
* HVAE + HyperLDM γ = 1

* HVAE + HyperLDM γ = 1.5

Uncond. Multitask

Figure 4: a) Performance of HyperLDM over different classifier-free guidance parameters γ. For
γ = 0 we sample from an unconditional latent diffusion model. For γ = 1 we sample with classic
conditioning. For γ > 1, we are in the classifier-free guidance regime. b) Performance of HyperLDM
against baselines in the setting where only a fraction of natural language task labels are given.

We then benchmark several unconditional and conditional methods, with only conditional methods
having access to language task descriptors. We apply MAML and its first-order variant FOMAML
(Nichol et al., 2018) directly to the base network (MNet-MAML, MNet-FOMAML), and to both
an unconditional hypernetwork (Uncond. HNet-MAML, as in Section 3) and a conditional one
(Cond. HNet-MAML). We also benchmark against standard multitask learning (Uncond. Multitask,
Cond. Multitask), and conditional multitask learning with the classic FiLM layer (Perez et al., 2017)
(Cond. Multitask FiLM). It is apparent that the multitask approach, at least in this setting, leads to
better zero-shot models than MAML, which instead optimizes for few-shot performance. We refer to
Appendix A.2 and A.4 for more details on each model.

We then test HyperCLIP Guidance and HyperLDM when trained on top of either a hypernetwork
or a VAE generator (see Appendix A.2 and A.5 for more detail). HyperCLIP Guidance allows for
faster sampling than HyperLDM but is generally less performant, still, it performs on par with or
slighly improves upon all other zero-shot baselines except for Cond. Multitask. The best performing
model for the zero-shot setting is HVAE + HyperLDM, and specifically for classifier-free guidance
with γ = 1.5. As illustrated in Figure 4.a, to further show the effectiveness of the classifier-free
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guidance technique, we sweep over several candidate γ parameters to find that the optimum occurs
for γ > 1. As shown in Figure 4.b, when training our model while only keeping 50% or 10% of task
descriptors, traditional Cond. Multitask learning is heavily impacted, while HyperLDM is almost
not affected due to its two-phased training regime based on an uncondtional VAE. The gap between
the multitask baseline and our HyperLDM technique is particularly striking in this setting.

7 RELATED WORK

Hypernetworks By introducing multiplicative interactions within neural networks (Jayakumar
et al., 2019), hypernetworks (Ha et al., 2016) have been shown to allow the modeling of diverse
target network weights in, e.g., continual learning, even in the compressive regime (von Oswald et al.,
2021a; 2020) without loss of performance. For a given supervised problem, hypernetworks have been
used to model the complex Bayesian posterior of the weights in conjunction with variational inference
(Henning et al., 2018; Krueger et al., 2018). Similar approaches have been used for continual learning
(Henning et al., 2021). Another vein of work consists in using hypernetworks to distill ensembles of
diverse networks (Wang et al., 2018; Ratzlaff & Fuxin, 2020; von Oswald et al., 2021a).

Meta learning In the context of meta-learning, hypernetworks have been successfully used in
combination with popular gradient-based meta-learning methods (Finn et al., 2017; Zintgraf et al.,
2019; Zhao et al., 2020; Flennerhag et al., 2020). More generally, related works have shown the
usefulness of learning a low dimensional manifold in which to perform task-specific gradient-based
adaptation at meta test time (Rusu et al., 2018; von Oswald et al., 2021b; Lee & Choi, 2018), instead
of directly adapting in weight space. Recent works bypasses the formal bi-level formulation of
meta-learning by, e.g., using transformers to directly map the few-shot examples to the weights of the
target network (Zhmoginov et al., 2022).

Generative Modeling and Classifier(-free) guidance A plethora of techniques have been proposed
for the generation of samples from high-dimensional domains such as images, such as Generative
Adversarial Networks (Goodfellow et al., 2014; Brock et al., 2018, GANs) and Variational Autoen-
coders (Kingma & Welling, 2014, VAEs). Denoising Diffusion Probabilistic Models (Sohl-Dickstein
et al., 2015; Ho et al., 2020, DDPM) overcome common issues in generative modeling using a
simple likelihood-based reconstruction loss for iterative denoising, and have been shown to achieve
state-of-the-art results in high resolution image generation (Dhariwal & Nichol, 2021; Rombach
et al., 2022). Several techniques have been proposed for effective conditional sampling in generative
and diffusion models, such as classifier/CLIP guidance (Dhariwal & Nichol, 2021; Gal et al., 2021;
Patashnik et al., 2021) and classifier-free guidance (Ho & Salimans, 2021; Crowson, 2022; Nichol
et al., 2022). Diffusion models with classifier-free guidance have also been successfully applied in
non-visual domains, such as audio generation (Kim et al., 2022) and robotic planning (Janner et al.,
2022).

Zero-shot learning There exists a large literature on zero-shot learning, including both established
benchmarks and well known methods (Han et al., 2021; Su et al., 2022; Gupta et al., 2021). While
these zero-shot learning works consider the zero-shot performance on unseen class labels within a
single classification task, our setting considers that of the zero-shot performance where test tasks
themselves are unseen, thus raising the zero shot problem to the task-level.

8 CONCLUSION

In this work we introduced a framework that re-interprets meta-learning as a multi-modal generative
modeling problem. Our HyperCLIP guidance and HyperLDM methods leverage this insight to gener-
ate task-adapted neural network weights in a zero-shot manner given natural language instructions,
and constitute the first application of the CLIP guidance and classifier-free guidance techniques from
image generation to the meta-learning domain. Our experiments show that our methods successfully
make use of external task descriptors to produce high-performance adapted networks in the zero-shot
setting.

9



Under review as a conference paper at ICLR 2023

ETHICS STATEMENT

Our contribution, despite showcasing experimental results, remains within the domain of general
methods and thus does not face many immediate ethics concerns common in applied machine learning.
Regardless, potential fairness and ethics issues should still be proactively investigated. A potential
issue is that some of the methods described in the present work rely on pre-trained large models
such as CLIP encoders, which may inadvertently encode harmful stereotypes and biases, in a manner
which may not be immediately apparent to researchers and users making use of our downstream
method.

REPRODUCIBILITY STATEMENT

We point to the supplementary material file attached to the submission for the complete codebase
and Meta-VQA dataset tools, which can be used to reproduce our results. This code will be released
online in more polished form after the requirement for anonymity is dropped. The code repository
contains a README.md file with instructions for installing the necessary software environment.
For a complete discussion of the hyperparameters used during our experimental runs, we refer
to Appendix A.5. As for the Meta-VQA dataset, one must first download the original VQA v2
dataset (https://visualqa.org/download.html) and place it in the data/VQA/ folder,
and then run:

• scripts/precompute image features.py

• scripts/precompute ques features.py

• scripts/precompute text features.py

to re-generate the pre-computed CLIP embeddings.
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A APPENDIX

A.1 CLASSIFIER-FREE GUIDANCE

We hereby provide a rationale for the use of classifier guidance and classifier-free guidance during
diffusion model sampling. As per the “score matching” interpretation of diffusion models, we
assume that our trained noise network approximates the score function of the true conditional latent
distribution p(z|ei) as ϵψ(zt, t, ei) ≈ −σt∇zt log p(z

t|ei). For classifier guidance, we can perturb
our diffusion sampling by adding the gradient of the log likelihood of our CLIP encoder pψ(ei|zt) to
the diffusion score as follows

ϵ̃ψ(z
t, t, ei) = ϵψ(z

t, t, ei)− ησt∇zt log pψ(ei|zt) ≈ −σt∇zt
[
log p(zt|ei) + η log pψ(ei|zt)

]
.

(10)

We can rewrite this as classifier guidance on the unconditional score ∇zt log p(z
t) with

−σt∇zt
[
log p(zt) + γ log p(ei|zt)

]
with γ = 1 + η (11)

using Bayes’ rule, as log p(zt|ei) = log p(ei|zt)+ log p(zt)− log p(ei), and thus ∇zt log p(z
t|ei) =

∇zt log p(ei|zt) +∇zt log p(z
t).

For classifier-free guidance, we aim to perform the above sampling without access to a classifier, as
long we possess a conditional diffusion model ϵψ(zt, t, ei) that doubles as an unconditional model
ϵψ(z

t, t, 0), as illustrated in Section 5.2.

Using Bayes’ rule again, we can see that ∇zt log p(ei|zt) = ∇zt log p(z
t|ei)−∇zt log p(z

t). If we
substitute this into Eq. 11 we obtain

− σt∇zt
[
log p(zt) + γ

(
log p(zt|ei)− log p(zt)

)]
, (12)

− σt∇zt
[
(1− γ) log p(zt) + γ log p(zt|ei)

]
, (13)

which can be implemented with our conditional network as

ϵ̃ψ(z
t, t, ei) = (1− γ) ϵψ(z

t, t, 0) + γϵψ(z
t, t, ei). (14)
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A.2 NETWORK ARCHITECTURES

Base Network (f ) Our choice for a base model is a CLIP-Adapter (Gao et al., 2021), which
consists of a frozen CLIP image encoder with added learned fully-connected layers refining the
output embedding. Specifically, we use the ViT-L/14@336px CLIP encoder type with embedding size
of 768. The advantages of this model choice lie in its combination of high base performance (due
to pre-trained knowledge contained in the CLIP component) and relatively small parameter count,
enabling agile medium-small scale experiments. This base CLIP-Adapter network purely works as
a base model and is not to be confused with HyperCLIP, which is employed at the meta-level. In
Section 6.2, when benchmarking the base model alone in the zero-shot setting, we drop the Adapter
and use pre-trained zero-shot CLIP (Radford et al., 2021).

Hypernetwork (h) For the hypernetworks used in our baseline as well as as the generative model,
we use a MLP with one hidden layer of 256 units, which are followed by a rectified linear activation.
For the unconditioned hypernetwork, the embedding to the hypernetwork is a vector of dimension
64, while for the conditioned counterpart, the task embedding is used. In order to ensure that the
generated weights are properly normalized at initialization, we use the Kaiming initialization (He
et al., 2015) for the hypernetwork weights, initialize the embedding as a sample from a multivariate
standard gaussian distribution (for unconditioned models), and use the NTK parametrization (Jacot
et al., 2020) for the target network.

Variational Autoencoder For the variational autoencoder used as our unconditioned generative
model, we use an MLP of 2 hidden layers of size 512 and 256, each followed by the rectified linear
non-linearity. We chose 32 as the latent code dimension. We use the same architecture for the decoder,
except for the dimensionality of the 2 hidden layers being swapped. We use the Kaiming initialization
(He et al., 2015) to initialize the weight of both the encoder and decoder.

HyperCLIP We parametrize our HyperCLIP model as a fully-connected MLP with a single hidden
layer of dimension 256, taking as input the flattened weight of the base network and outputting the
corresponding CLIP encoding. We chose the tangent hyperbolic function as the activation function in
the hidden layer.

HyperLDM While the original LDM makes use of a time-conditional UNet (Ronneberger et al.,
2015) to parametrize the noise network, we are unfortunately unable to make use of spatial information
and convolutions due to the non-spatial nature of our latent space. We parametrize our HyperLDM as
a fully-connected network with residual connections and squeeze-and-excitation layers (Hu et al.,
2018). The time index t is embedded into a vector with a 150-dimensional sinusoidal positional
embedding, and is concatenated together with the task-conditional embedding ei at the input layer
and at intermediate activations. Hidden layer dimensions are 8192, 16384, 8192.

A.3 THE META-VQA DATASET

The original VQA problem is about choosing a suitable natural language answer ak when prompted
with both a natural language question qk and an image Ik. Our observation is that the VQA problem
can then easily be reformulated as a meta-learning image classification problem with natural language
task descriptions: given question-image-answer triples (qk, Ik, ak) ∈ D, we can group the data by
unique questions qi (which will serve as task descriptor ti), each of which can then be associated with
supervised image classification tuples (Iij , a

i
j) ∈ Di. To make sure the designed tasks are meaningful,

we filter out question-answer pairs with questions in choosing form, e.g., “A or B?” or yes/no answers.
From the remaining questions we keep the ones which appear at least 20 times throughout the dataset,
such that each task contains enough samples. In the end our Meta-VQA dataset is composed of
1234 unique tasks (questions), split into 870 training tasks and 373 test tasks, for a total of 104112
image-answer pairs. There are on average 9.13 answer choices per question/task. The average size of
the support set is 57.85 examples, while the average size of the query set is 25.9 examples.
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A.4 BASELINE METHODS

We detail an overview of the baseline methods we benchmark in table 2, together with algorithm
tables detailing each baseline method.

Training: The number of epochs each model is trained on, the learning rate lr of the optimization,
as well as the learning rate and number of steps of the adaptation algorithm used for each method can
be found in table 3. For all methods using an adaptation ATi

, the dataset from the task is randomly
split into a support set and a query set during training, every time a task is sampled. The support set
is then used to perform the adaptation (see Section 2.1), while the query set is used to compute the
loss on which the meta-parameters are updated. When no adaptation is used, all the data is used for
this update. Unconditional methods do not have access to the task embedding ei, while conditioned
methods do. When the percentage of available task descriptor is reduced, conditioned methods are
trained only on the tasks which descriptor is available.

Evaluation: Evaluation is performed on a fixed query set on the predefined query set of the held-
out test tasks of the Meta-VQA dataset. Zero-shot performance is evaluated before applying the
adaptation procedure ATi . For the few shot performance, all adaptation is performed on the support
set of the test tasks. For MAML baselines, we keep the same adaptaiton-time learning rate as during
training, while we always adapt for 50 steps. For each multitask baselines, we use the same adaptation
scheme (steps, learning rate, adapting parameters) as their MAML counterpart.

Algorithm 2 Unconditional Multitask Training
Define the base network f with parameters W .
for epoch = 1, . . . , N do

Sample a training batch of image-answer pairs (xk, yk) from a mix of random training tasks
Ti.

Update W with gradient descent computed with respect to the classification loss over the
sampled batch.
end for

Algorithm 3 Unconditional MNet-MAML Training
Define the base network f with parameters W .
for meta-epoch = 1, . . . , N do

Sample a training task Ti and data Di.
Randomly split Di into support set Ds

i and query set Dq
i .

Run inner-loop adaptation ATi using the support set Ds
i , fine-tuning W into task-adapted

Wi = ATi
(W ).

Use MAML gradient update to adapt W given the inner-loop adaptation.
end for

Algorithm 4 Unconditional HNet-MAML Training
Define the base network f with parameters W .
Define a hypernetwork h with meta-parameters θ, mapping a latent vector z0 to base network
weights W .
for meta-epoch = 1, . . . , N do

Sample a training task Ti and data Di.
Randomly split Di into support set Ds

i and query set Dq
i .

Run inner-loop adaptation ATi
using the support set Ds

i , fine-tuning z0 into task-adapted
zi = ATi

(z0).
Use MAML gradient update to adapt z0 and θ given the inner-loop adaptation.

end for
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Algorithm 5 Conditional Multitask Training
Define the base network f with parameters W .
Define a hypernetwork h with meta-parameters θ, mapping the clip embedding ei of the language
task descriptor to base network weights Wi.
for epoch = 1, . . . , N do

Sample a training batch of task clip embedding, image and answer triples (ek, xk, yk) from a
mix of random training tasks Ti.

Update θ with gradient descent computed with respect to the classification loss over the sampled
batch.
end for

Algorithm 6 Conditional HNet-MAML Training
Define the base network f with parameters W .
Define a hypernetwork h with meta-parameters θ, mapping the clip embedding ei of the language
task descriptor to base network weights Wi.
for meta-epoch = 1, . . . , N do

Sample a training task Ti, data Di and the clip embedding ei of the task descriptor.
Randomly split Di into support set Ds

i and query set Dq
i .

Run inner-loop adaptation ATi
using the support set Ds

i , fine-tuning ei into task-adapted
ẽi = ATi

(ei).
Use MAML gradient update to adapt θ given the inner-loop adaptation.

end for

Table 2: Overview of the different methods trained on MetaVQA. The parameters are optimized
via the task loss evaluated on the output of the function, averaged over minibatches of tasks. The
adaptation ATi

implements a few step gradient descent algorithm applied on the argument parameter,
w.r.t the task loss evaluated on the support set.

Method Function Parameters
Unconditional Multitask f(·,W ) W
Unconditional MNet (FO)MAML f(·,ATi

(W 0)) W 0

Unconditional Hypernetwork MAML f(·, h(ATi
(z0), θ)) θ, z0

Conditional Multitask f(·, h(ei, θ)) θ
Conditional Hypernetwork MAML f(·, h(ATi

(ei), θ)) θ

Table 3: Hyperparameters used for the baseline methods. All methods are trained with the Adam
(Kingma & Ba, 2017) optimizer, with meta-batch size of 32 tasks. We use gradient norm clipping for
all optimization, with the maximum norm set to 10. Note that when the adaptation algorithm has a
range of possible steps, the number of step is sampled uniformly from the range for every adaptation.

Method epochs lr A-lr A-steps
Unconditional MNet Multitask 300 0.0001 - -
Unconditional MNet (FO)MAML 500 0.00003 0.01 0-10
Unconditional Hypernetwork MAML 100 0.00003 0.1 0-10

Conditional Multitask 60 0.0001 - -
Conditional Hypernetwork MAML 200 0.00001 0.1 0-10
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A.5 GUIDANCE MODELS

A.5.1 GENERATIVE HYPERNETWORK

To enable our guidance methods, we need to first train a generative hypernetwork h as in Section 3,
either in the form of an Unconditional Hypernetwork, or of a Hypernetwork VAE:

• For HNet + HyperCLIP guidance and HNet + HyperLDM, we meta-learnt an uncondi-
tioned hypernetwork with the exact same hyperparameters as the baseline Uncond. HNet-
MAML, and used it as the generative hypernetwork.

• For HVAE + HyperCLIP guidance and HVAE + HyperLDM, we trained an unconditioned
VAE on samples of fine tuned network weights Wi using the architecture specified in A.2. In
order to be able to quickly sample new adapted weights, and to reduce the complexity of the
manifold from which such weights are sampled, we use adaptations from our unconditional
MAML baselines as Wi. Specifically, Variant 1 (Algorithm 7 involves adaptations from
Uncond. HNet-MAML, using 50-step adaptation ATi with learning rate 0.1, on support
set stochastically sampled for every adaptation phase. Variant 2 (Algorithm 8) involves
adaptations over the base network (initialized from a learned Uncond. MNet-MAML initial-
ization), using 50-step adaptation ATi

with learning rate 0.01, on support set stochastically
sampled for every adaptation phase. We trained the VAE on 2000 epochs where each epoch
is a single pass through all the tasks, with the Adam (Kingma & Ba, 2017) optimizer and
0.0001 learning rate and batch size 32. We used gradient norm clipping independently for
both the encoder and decoder, with the maximum norm capped at 1000. For the final results
presented in our main results table (Table 1), we use Variant 2.

Algorithm 7 HVAE Training, Variant 1
Define the base network f with parameters W .
Define an encoder z = d(W,ω) with parameters ω and a hypernetwork decoder W = h(z, θ) with
parameters θ.
Obtain a previously learned HNet h̃(z0, θ̃) according to Uncond. HNet-MAML (Algorithm 6).
for epoch = 1, . . . , N do

Create an empty batch B = {}.
for b = 1, . . . ,M do

Sample a training task Ti and data Di.
Randomly split Di into support set Ds

i and query set Dq
i .

Run inner-loop adaptation ATi using the support set Ds
i , fine-tuning z0 from the HNet h̃

into task-adapted z̃i = ATi(z
0).

Given fine-tuned zi, produce task-adapted weights Wi = h̃(zi, θ̃).
Add the fine-tuned weights to the batch: B = B ∪ {Wi}.

end for
Train the HVAE encoder and decoder using the VAE loss to reconstruct the weight batch B.

end for
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Algorithm 8 HVAE Training, Variant 2
Define the base network f with parameters W .
Define an encoder z = d(W,ω) with parameters ω and a hypernetwork decoder W = h(z, θ) with
parameters θ.
Obtain a previously learned base network initialization W 0 according to Uncond. MNet-MAML
(Algorithm 6).
for epoch = 1, . . . , N do

Create an empty batch B = {}.
for b = 1, . . . ,M do

Sample a training task Ti and data Di.
Randomly split Di into support set Ds

i and query set Dq
i .

Run inner-loop adaptation ATi
using the support set Ds

i , fine-tuning Wi = ATi
(W 0).

Add the fine-tuned weights to the batch: B = B ∪ {Wi}.
end for
Train the HVAE encoder and decoder using the VAE loss to reconstruct the weight batch B.

end for

A.5.2 HYPERCLIP

Training In order to train the HyperCLIP model, we need samples of fine tuned network weights
Wi. Similarly to HVAE, we used adaptations from Uncond. HNet-MAML, using 50-step adaptation
ATi

with learning rate 0.1, on a support set stochastically sampled at every adaptation phase, as this
would allow us to use the same HyperCLIP model for doing guidance on both HNet and HVAE.
We trained our HyperCLIP model for 600 epochs, with the Adam (Kingma & Ba, 2017) optimizer,
0.0003 learning rate and batch size 64, for all our experiments.

Guidance We use 10 steps guidance with λ = 0.01 and learning rate 0.1, for both when performed
on HNet and HVAE.

Evaluation Evaluation is performed on a fixed query set on the predefined query set of the held-
out test tasks of the Meta-VQA dataset. Zero-shot performance is evaluated on the output of the
generative hypernetwork h after applying latent space guidance. For the few-shot performance, all
adaptation is performed on the support set of the test tasks, on the latent space initialized at the output
of the guidance procedure. Similarly to our baselines, we use 50-steps gradient descent adaptation
with learning rate 0.1.

Algorithm 9 HNet + HyperCLIP Training
Learn an unconditional hypernetwork h(z0, θ) with the Uncond. HNet-MAML procedure from
Algorithm 6.
Learn HyperCLIP network CLIPH(W ) using the HyperCLIP training procedure from Algorithm
1. For sampling fine-tuned Wi, fine-tune the base-network on training tasks.

Algorithm 10 HVAE + HyperCLIP Training
Learn an unconditional hypernetwork h(z, θ), as the decoder of a HVAE (Algorithm 8).
Learn HyperCLIP network CLIPH(W ) using the HyperCLIP training procedure from Algorithm
1. For sampling fine-tuned Wi, fine-tune the base-network on training tasks.

19



Under review as a conference paper at ICLR 2023

Algorithm 11 HyperCLIP Guidance (Inference time)
Define a learned unconditional hypernetwork h(z, θ), as either a HNet h(z0, θ) (Algorithm 6) or
the decoder of a HVAE (Algorithm 8).
Define a learned HyperCLIP network CLIPH(W ).
Define an unseen task Ti with natural language task descriptor ti.
Randomly sample z ∼ N (0, I) if using the decoder of a HVAE, or set z = z0 where z0 is the
meta learned embedding initialization of the Hnet.
Optimize z with gradient descent over Lguidance(z) (Eq. 4), obtaining guided zi.
Obtain guided base weights Wi = h(zi, θ).
Use adapted base network f with weights Wi to classify examples from the unseen task Ti.

A.5.3 HYPERLDM

Training Similarly to HyperCLIP, to train HyperLDM we need samples of fine tuned network
weights Wi, for which we use adaptations from Uncond. HNet-MAML, using 50-step adaptation
ATi

with learning rate 0.1, on a support set stochastically sampled at every adaptation phase. We
parametrize the diffusion process with a linear noise schedule, β starting at 0.0001 and ending at 0.06,
and 350 diffusion timesteps. We train the HyperLDM for 1000 epochs with the Adam optimizer,
0.00025 learning rate and 128 epochs, for all our experiments.

Evaluation Evaluation is performed as for HyperCLIP guidance, except for the fact that adaptation
is performed natively through sampling from the learned reversed diffusion process, with parameters
derived from the chosen β schedule. The guidance parameter γ > 0 can be tuned during inference to
accentuate the effect of classifier-free guidance.

Algorithm 12 HNet + HyperLDM Training
Learn an unconditional hypernetwork h(z0, θ) with the Uncond. HNet-MAML procedure from
Algorithm 6.
Learn the HyperLDM network ϵψ(zt, t, ei) using the HyperLDM training procedure, optimizing
reconstruction of z0i with loss from Eq. 8. For sampling fine-tuned zi, fine-tune the base-network
on training tasks, then encode the weights using the HNet.

Algorithm 13 HVAE + HyperLDM Training
Learn an unconditional hypernetwork h(z, θ), as the decoder of a HVAE (Algorithm 8).
Learn the HyperLDM network ϵψ(zt, t, ei) using the HyperLDM training procedure, optimizing
reconstruction of z0i with loss from Eq. 8. For sampling fine-tuned zi, fine-tune the base-network
on training tasks, then encode the weights using the HVAE.

Algorithm 14 HyperLDM Inference
Define a learned unconditional hypernetwork h(z, θ), as either a HNet h(z0, θ) (Algorithm 6) or
the decoder of a HVAE (Algorithm 8).
Define a learned HyperLDM network ϵψ(zt, t, ei).
Define an unseen task Ti with natural language task descriptor ti, with clip embedding ei.
Randomly sample z ∼ N (0, I).
Iteratively modify z with diffusion sampling using the learned ϵψ network, obtaining guided zi.
Obtain guided base weights Wi = h(zi, θ).
Use adapted base network f with weights Wi to classify examples from the unseen task Ti.

A.6 FEW-SHOT LEARNING

For completeness, we include in Table 4 the results for few-shot learning on the test split of Meta-
VQA. Our technique, unlike classic MAML, does not optimize specifically for the few-shot learning
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setting. Instead, the few-shot learning results are meant to contextualize performance gains in the
zero-shot setting: zero-shot performance gains should be interpreted as relative to the few-shot
performance ceiling of 60.24, the maximum attained with our fixed choice of base model.

Table 4: Few-Shot learning accuracy averaged over Meta-VQA test tasks. (* ours)

Method Few-Shot
Base CLIP-Adapter 54.93 (± 0.11)

Uncond. Multitask 55.53 (± 0.40)
Uncond. MNet-MAML 60.24 (± 0.84)
Uncond. MNet-FOMAML 60.03 (± 0.48)
Uncond. HNet-MAML 58.70 (± 0.10)

Cond. Multitask 59.46 (± 0.31)
Cond. HNet-MAML 59.48 (± 0.03)

* HNet + HyperCLIP Guidance 58.82 (± 0.27)
* HVAE + HyperCLIP Guidance 58.75 (± 0.29)
* HNet + HyperLDM γ = 1 58.70 (± 0.11)
* HNet + HyperLDM γ = 1.5 58.60 (± 0.09)
* HVAE + HyperLDM γ = 1 58.97 (± 0.09)
* HVAE + HyperLDM γ = 1.5 58.89 (± 0.07)
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