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Abstract

Composed image retrieval (CIR) aims to retrieve target image given the combination of
an image and a textual description as a query. Recently, benefiting from vision-language
pretrained (VLP) models and large language models (LLM), the use of textual inversion or
generating large-scale datasets has become a novel approach for zero-shot CIR task (ZS-
CIR). However, the existing ZS-CIR models overlook one case where the textual description
is often too brief or inherently inaccurate, making it challenging to effectively integrate the
reference image into the query for retrieving the target image. To address this problem, we
propose a simple yet effective method—prompting vision-language fusion (PVLF), which
adapts representations in VLP models to dynamically fuse the vision and language (V&L)
representation spaces. In addition, by injecting the context learnable prompt tokens in
Transformer fusion encoder, the PVLF promotes the comprehensive coupling between V&L
modalities, enriching the semantic representation of the query. We evaluate the effectiveness
and robustness of our method on various VLP backbones, and the experimental results show
that the proposed PVLF outperforms previous methods and achieves the state-of-the-art
on two public ZS-CIR benchmarks (CIRR and FashionIQ).
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1. Introduction

Composed image retrieval (CIR) (Vo et al., 2019; Liu et al., 2021b; Wu et al., 2021), as one
of the derived topics of cross-model retrieval, has a wide range of applications in various
fields, including E-commerce platforms. In contrast to traditional uni-modal or cross-modal
image retrieval systems, CIR employs a query that goes beyond simple unimodal queries
such as images or textual descriptions. It is dedicated to combining a reference image and
a relative caption as a query to retrieve the target image, as shown in Fig. 1 (c). Due to
the high flexibility and customizability of this bi-modality query (i.e. users can express the
concept through free-form textual descriptions), CIR has attracted rising attention.

Large scale VLP (Radford et al., 2021; Jia et al., 2021; Li et al., 2022, 2023) models
have recently achieved tremendous success on various multi-modal downstream tasks. Ow-
ing to the exceptional performance of these VLP models on cross-modal alignment, some
studies (Saito et al., 2023; Baldrati et al., 2023; Gu et al., 2023; Levy et al., 2023) have
leveraged their powerful representation ability for ZS-CIR. Pic2Word (Saito et al., 2023)
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Figure 1: An illustration of our motivation. (a) TransAgg (Liu et al., 2023c). (b) Our
proposed method PVLF. (c) Performance improvement compared to the baseline
for the ZS-CIR.

proposes to leverage the linguistic capability of the language encoder in CLIP to generate
embeddings that are close to the corresponding visual representations. SEARLE (Baldrati
et al., 2023) transfers CIR to standard text-to-image retrieval by mapping the reference im-
age into a learned pseudo-word token which is then concatenated with the relative caption.
In addition, another line of recent researches (Gu et al., 2023; Liu et al., 2023c) have taken
advantage of the powerful generation capabilities of the LLM to build scalable pipelines for
ZS-CIR by generating high-quality triplets (Ir, Tr, It) composed of a reference image Ir, a
relative caption Tr and a target image It, respectively. CompoDiff (Gu et al., 2023) pro-
poses a dataset SynthTriplets18M and effectively trains the diffusion model. TransAgg (Liu
et al., 2023c) constructs a high-quality Laion-CIR dataset through the designed templates
and GPT-3 (Brown et al., 2020) to adaptively combine information from diverse modalities,
as shown in Fig. 1 (a). However, the aforementioned methods overlook one crucial point,
that is, the relative captions Tr within the current benchmark of the CIR field (CIRR (Liu
et al., 2021b) and FashionIQ (Wu et al., 2021)) are extremely simple, or inherently inaccu-
rate, making it challenging to learn the transformations from the reference image Ir to the
target image It with a fine-grained perspective, and resulting in the significant deficiencies
in both the effectiveness and the robustness.

We find that in the existing training data for supervised CIR models, the average length
of Tr in triplets (Ir, Tr, It) is typically short, thereby the brief descriptions Tr are inadequate
for accurately representing the transformations in CIR, which encompass diverse tasks such
as domain conversion, scene or object composition or fashion-attribute manipulation etc.
Such textual annotations struggle to fully leverage the wealth of knowledge encoded in
pretrained language models.
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Furthermore, prompt tuning (Liu et al., 2023a; Li and Liang, 2021; Jiang et al., 2020)
has become a highly practical method in VLP models and LLMs, and has demonstrated
the superior performance in both visual tasks (Jia et al., 2022; Wang et al., 2022; Zhou
et al., 2022b,a) and multimodal domains (Khattak et al., 2023; Shen et al., 2024). Inspired
by this, in this paper, we innovate the Prompting Vision-Language Fusion (PVLF) method
for Zero-Shot Composed Image Retrieval. Different from the existing methods that utilize
prompt tokens for either uni-modal representations shown in Fig. 2 (a) (b) or multi-modal
representations shown in Fig. 2 (c) , we explore a new resolution for multi-modal fusion.
Specifically, we propose to inject a small amount of task-specific context prompt tokens
between the two modalities in fusion Transformer (Vaswani et al., 2017) encoder, as shown in
Fig. 2 (d), to enable a more comprehensive and effective interaction. Firstly, we concatenate
the textual tokens, context prompt tokens and visual tokens together and feed them into
a fusion Transformer encoder, enabling three types of tokens to share a global attention
integration. Secondly, we adaptively aggregate the thoroughly integrated features to obtain
high-quality queries. In this way, PVLF improves the flexibility of textual descriptions,
accurately integrates effective patch features, and effectively alleviates the imbalance modal
representations, hence facilitating more comprehensive multimodal integration. Compared
with the existing models, our retrieval examples demonstrate a noticeable improvement, as
illustrated in Fig. 1 (c). Our contributions can be summarized as follows:

• To solve the insufficient description and semantic ambiguity in training triplets, con-
text prompt learning is incorporated to obtain abundant and flexible textual features.
To the best of our knowledge, it is the first time to introduce V&L prompt learning
in ZS-CIR.

• By injecting a small number of learnable parameters, a simple yet effective Prompting
Vision-Language Fusion (PVLF) method is proposed to enhance the modality fusion.

• Our method outperforms the SOTA models on the two public ZS-CIR benchmarks
including FashionIQ and CIRR. Extensive experiments demonstrates the effectiveness
and robustness of the proposed PVLF.

2. Related Work

2.1. Composed image retrieval

Composed image retrieval (CIR) (Liu et al., 2021b) is a variant task of retrieval within the
context of multi-modal learning. Different from image-to-image or text-to-image retrievals,
the goal of CIR is to generate joint-embedding features from both text and visual domains
to retrieve the corresponding target image. Benefiting from the robust representation and
generalization capabilities of VLP models (Radford et al., 2021; Li et al., 2022, 2023), ZS-
CIR is firstly tacked by (Saito et al., 2023), which relies on a textual inversion network
trained on the 3M unlabeled images using a cycle contrastive loss. Later, (Baldrati et al.,
2023) train a new textual inversion network using fewer data and employs a weighted sum of
distillation and regularization losses to achieve better results. In contrast, CompoDiff (Gu
et al., 2023) proposes a novel dataset SynthTriplets18M and achieves impressive results
by introducing diffusion model. CASE (Levy et al., 2023) addresses the ZS-CIR task by
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Figure 2: The architecture of (a) CoOp (textual prompt tuning), (b) VPT (visual prompt
tuning), (c) MaPLe (multi-modal prompt learning), and (d) Ours.

employing an early fusion approach through the utilization of the BLIP (Li et al., 2022)
and GPT-3 (Brown et al., 2020), further improving the results. Meanwhile, TransAgg (Liu
et al., 2023c) proposes a retrieval-based pipeline for automatically constructing datasets for
training, and achieves superior results by employing the Transformer-based feature fusion.
However, existing methods rarely consider the relative descriptions used for supervising
models may be too brief to accurately describe the transformations from the reference
image to the target image, resulting in suboptimal query generation.

2.2. Prompt learning

Prompt learning is initially developed as a method for knowledge probing (Petroni et al.,
2019), which aims to automate the process with the help of affordable-sized labeled data (Jiang
et al., 2020). The motivation of prompt learning is to view pre-trained models (Devlin
et al., 2018; Brown et al., 2020) as knowledge base to improve the practical applicability.
Originating from NLP (Lester et al., 2021; Li and Liang, 2021), the model shows strong
generalization to all kinds of downstream tasks. Due to the inherent sensitivity of hard-
prompts, recent literatures (Lester et al., 2021; Li and Liang, 2021; Liu et al., 2023b, 2021a)
propose to turn prompts into a set of continuous vectors and direct optimize them in an
end-to-end manner as shown in Fig.2 (a). Meanwhile, the paradigm of prompt learning
has also gradually gained popularity in computer vision (Jia et al., 2022; Wang et al.,
2022; Rao et al., 2022) and multi-modal fields (Zhou et al., 2022b,a; Khattak et al., 2023;
Shen et al., 2024), yielding promising results. VPT (Jia et al., 2022) introduces the visual
prompt tuning method to pure vision backbones (Dosovitskiy et al., 2020), demonstrating
the potential to serve as an alternative to fine-tuning visual backbones as shown in Fig. 2
(b). CoOp (Zhou et al., 2022b) brings continuous prompt learning to the vision domain for
adaptation of VLP models. CoCoOp (Zhou et al., 2022a) solves CoOp’s generalization issue
by explicitly conditioning prompts on image instances. However, the prior works mainly
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Figure 3: An overview of our proposed model architecture, which is primarily composed of
three components: text encoder, image encoder and Prompting Vision-Language
Fusion (PVLF) module. The text encoder ϕt encodes the relative caption t, while
the image encoder ϕi encodes reference image x and target image y. The pair
(x, t) is transformed within the PVLF module ϕf , yielding a fusion query fq that
is utilized for retrieving the target image y in gallery images.

follow independent uni-modal representation learning. In multi-modal prompt learning, the
work most closely to ours is MaPLe (Khattak et al., 2023) and MVLPT (Shen et al., 2024),
whose architecture is shown in Fig.2 (c). Nevertheless, these methods primarily focus on
multi-modal representations, our approach involves leveraging context prompt tokens for
better multi-modal fusion.

3. Methods

In this section, we first introduce the specific details of the ZS-CIR task. Following that,
we present the architecture of our method.

3.1. Problem Definition

Let X = {x1, x2, ...xn} denote as a set of query images, T = {t1, t2, ..., tn} as a set of query
texts, and Y = {y1, y2, ..., yn} as a set of target images. The training set can be regarded
as a collection of numerous triplets:

D = {(xi, ti, yi) | xi ∈ RH×W×3, yi ∈ RH×W×3} (1)

where i = 1, 2, ...n and n is the number of samples. The CIR is defined as follows: given a
pair of (xi, ti), we need to find the target image yi from the gallery Y that best matches the
semantic representation of (xi, ti). To achieve ZS-CIR, we leverage the VLP models (Rad-
ford et al., 2021; Li et al., 2022) to separately encode the images and texts. And our
training objective is to ensure the fused query semantic representation ϕf (ϕi(xi), ϕt(ti)),
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which combines features from both modalities, remains as consistent as possible with the
representation of the target image ϕi(yi). Our objective can be represented as follows:

ϕi(yi) ≈ ϕf (ϕi(xi), ϕt(ti)) (2)

where the image encoder, the text encoder, and the modality fusion module is defined as
ϕi, ϕt, ϕf , respectively.

3.2. Network Architecture

As shown in Fig.3, our overall model architecture consists of three main components:
text encoder, image encoder and the transformer-based prompting vision-language fusion
(PVLF) model. Unlike previous approachs (Li and Liang, 2021; Jia et al., 2022; Zhou et al.,
2022b,a; Khattak et al., 2023; Shen et al., 2024) that employ prompts only for uni-modal
or multi-modal representations, we propose a joint prompting approach where the context
prompt tokens are injected between language modality and vision modality to establish
interactions. And we build our approach on pre-trained vision-language models (Radford
et al., 2021; Li et al., 2022).

3.2.1. Image Representation

We adopt the pretrained Vision Transformer(ViT) in VLP (Radford et al., 2021; Li et al.,
2022) as our image encoder. For a plain ViT with N layers, an input image is divided into
m fixed-sized patches. Each patch is then first embedded into d-dimensional latent space
with positional encoding:

ej0 = Embed(Ij) ej0 ∈ Rd, j = 1, 2, ...m (3)

where we denote Ek = {ejk ∈ Rd | j ∈ N, 1 ≤ j ≤ m} as the collection of image patch
embeddings of the (k + 1)-th Vision Transformer layer (Lk+1). Together with an extra
learnable classfication token([CLS]), the whole image encoder is formulated as:

[xk, Ek] = Lk([xk−1, Ek−1]) k = 1, 2, ..., N (4)

where xk ∈ Rd denotes [CLS] token embedding at the Lk+1 Transformer layer. N repre-
sents the number of layers. [, ., ] means the concatenation on the [CLS] token and visual
embeddings. Finally, given a reference image xi, we extract visual features from image
encoder:

Fx = ϕi(xi) ∈ R|1+m|×d (5)

3.2.2. Text Representation

Similar to the image representation, we adopt the pretrained BERT (Devlin et al., 2018)
in VLP (Radford et al., 2021; Li et al., 2022) as our text encoder. For a reference text, we
employ the lower-cased byte pair encoding (BPE) (Sennrich et al., 2015) to tokenize the
textual description. After the textual description is bracketed with [BOS] and [EOS] tokens
to indicate the start and end of sequence, the tokenized texts are fed into the Transformer
layer.

[tk, Bk] = Lk([tk−1, Bk−1]) k = 1, 2, ..., N (6)
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where we denote tk as the [CLS] token embedding at the Lk+1, Bk = {bik ∈ Rd | i ∈ N, 1 ≤
i ≤ n} as the collection of textual embeddings of the Lk+1. Finally, given a reference text
ti, we extract textual features from text encoder:

Ft = ϕt(ti) ∈ R|1+n|×d (7)

3.2.3. Prompting Vision-Language Fusion

In order to improve the flexibility of textual descriptions to accurately integrate patch
features, we devise a simple yet effective method to guide vision-language fusion, facilitating
a comprehensive interaction between vision and language modalities, as shown in figure
3. Specifically, after encoding the relative descriptions ti and the reference image xi, we
consider introducing a set of learnable context prompt tokens after the textual tokens and
before the visual tokens, as illustrated in PVLF module in figure 3. Subsequently, the
textual tokens, context prompt tokens and visual tokens are concatenated together and
jointly fed into the PVLF module to share the global attention computation.

It is worth noting that there exists prior works closely related to our approach on multi-
modal prompt learning (Khattak et al., 2023; Shen et al., 2024). MaPLe (Khattak et al.,
2023) is a dual-tower architecture that fine-tunes vision and language branches of CLIP
together by sharing prompts across both modalities as shown in Fig. 2 (c). Although it
employs shared prompts internally for modal connections, fundamentally, it still falls within
the structure of class independent V&L prompting. In contrast, our model embodies a dual-
tower representation supplemented by a single-tower fusion design. Our context prompt
tokens are incorporated during the single-tower stage, where the self-attention is performed
for all textual, prompt and visual tokens. MVLPT (Shen et al., 2024) incorporates cross-
task knowledge into prompt tuning for V&L models which focuses on multitask learning,
while our approach primarily aims to investigate the gains through prompt learning in the
context of ZS-CIR. And we design two variants PVLF-Shallow, PVLF-Deep to facilitate
the integration.

PVLF-Shallow In PVLF-Shallow, learnable context prompt tokens are injected into the
first layer of Transformer encoder L1 only. Let p denote the size of learnable context prompt
tokens. Each prompt token is a learnable d-dimensional vector. During the forward, the
textual tokens can be represented as Wk = [tk, Bk], the learnable context prompt tokens
can be represented as P = {pl ∈ Rd | l ∈ N, 1 ≤ l ≤ p}, the visual tokens can be represented
as Vk = [xk, Ek], where 1 ≤ k ≤ N . The PVLF-Shallow is as follows:

[W1, Z1, V1] = L1([W0, P, V0]) (8)

[Wk, Zk, Vk] = Lk([Wk−1, Zk−1, Vk−1]) (9)

where Zi ∈ Rp×d represents the context token embeddings computed by the i-th fusion
Transformer encoder layer, k represents the depth of fusion encoder and [Wk, Zk, Vk] ∈
R|1+n+p+1+m|×d. If we denote Uk = [Wk, Zk, Vk], the computation for each layer of fusion
Transformer encoder is illustrated as follows:

U ′ = MSA(Uk) + LN(Uk) (10)

Uk+1 = FFN(LN(U ′)) + LN(U ′) (11)
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where the multi-head self attention operator MSA, feed-forward network FFN and layer
normalization (Ba et al., 2016) are applied. The MSA module enables comprehensive inter-
actions among textual tokens, context prompt tokens and visual tokens at each layer. This
stands as the key distinction compared to other multi-modal prompt methods (Khattak
et al., 2023; Shen et al., 2024).

PVLF-Deep In PVLF-Deep, learnable context prompt tokens are injected into every
fusion Transformer layer’s input space. For (i + 1)-th Layer Li+1, we denote the collection
of input learnable prompt tokens as Pi = {pki ∈ Rd | k ∈ N, 1 ≤ k ≤ p}. The PVLF-Deep is
as follows:

[Wk, , Vk] = Lk([Wk−1, Pk−1, Vk−1]) (12)

Adaptive Aggregation Vision-language features are adaptively aggregated for a refined
retrieval. We concatenate the global image feature xN and the global text feature tN
together, and then feed them to a MLP to generate the fusion feature fu ∈ Rd. Subsequently,
we map the fusion feature to three weight coefficients (w1, w2, w3) and then employ them
to individually weight and sum the (xN , fu, tN ) as follows:

fq = (w1, w2, w3) · (xN , fu, tN ) (13)

where ⟨·⟩ is defined as the inner product between two matrixs. In the end, a (xi, ti) pair,
propagated through the PVLF module, yields a fusion query for retrieving the target image.

3.3. Training Objective

Considering the class imbalance as well as the challenge of difficult samples, we adopt focal
loss (Lin et al., 2017) as our training objective. Given a batch data of size B, the i-th
query pair (xi, ti) should be close to its positive target and far away from other negative
instances:

pt =
exp[K(f i

q,Fxi
target

)/τ ]∑B
j=1 exp[K(f i

q,Fxi
target

)/τ ]
(14)

L = −α · (1 − pt)
γ · log(pt) (15)

where τ = 0.01 refers to the temperature parameter, and K(, ) means the cosine similarity,
f i
q denotes the i-th query pair, Fxi

target
denotes the representation of i-th target image. We

set the α as 1.0 and γ as 2.0 in experiments.

4. Experiments

In this section, we first describe our experimental setup including the datasets, and the
implementation details. Then we comparatively assess our method against the most recent
approaches to show the effectiveness of our method.
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4.1. Experiment Setup

4.1.1. Training Datasets

We utilize the datasets constructed using Templates or LLM, as proposed in the TransAgg (Liu
et al., 2023c), to tune our model. These datasets include Laion-CIR-Template and Laion-
CIR-LLM, each contains around 16k triplets, as well as their combined counterpart Laion-
CIR-combined, which comprises approximately 32k triplets.

4.1.2. Evaluation Datasets

We evaluate the performance on two standard benchmark datasets in ZS-CIR: FashionIQ (Wu
et al., 2021) and CIRR (Liu et al., 2021b). FashionIQ contains 30,134 triplets from 77,684
images crawled from the web specifically designed for fashion retrieval, categorizing its con-
tents into three categories: Dress, Toptee, and Shirt. CIRR comprises 21,552 real-life images
taken from the natural language reasoning NLV R2 (Suhr et al., 2018) dataset, which is
built to overcome two common issues for CIR: non-complex images with too narrow domain
and the high number of false-negatives. Noting that, similar to other work, we utilize both
datasets for ZS-CIR evaluation and do not employ them to train the model.

4.1.3. Evaluation Metrics

Following the standard metrics in image retrieval, we report the average recall at rank-K
(Recall@K) which is defined as the percentage of queries that correctly retrieve the ground-
truth in the top-K results. Moreover, we also report the Recall Subset@K which considers
only the images in the subset of the query for CIRR.

4.1.4. Implementation Details

For the data pre-processing pipeline, we align with (Liu et al., 2023c) for a fair comparison.
We choose AdamW (Loshchilov and Hutter, 2017) optimizer, initializing learning rate by
1e-4 with a cosine decay rate of 0.05 for fusion model. VLP models are applied to extract
visual embeddings and textual embeddings seperately, while the learning rate of both image
encoder and text encoder is set as 1e-6. We set the batch size to 64. And we use the PyTorch
to conduct all the experiments on a single NVIDIA A100 80G GPU.

4.2. Quantitative Results

We compare our approach with several ZS-CIR methods for a fair comparison, including: 1)
Text-only : the similarity is computed using only the CLIP features of the relative caption;
2) Image-only : retrieves the most similar images to the reference one via CLIP visual
features; 3) Image+Text : the summation of CLIP features of the reference image and
the textual description; 4) PALAVRA (Cohen et al., 2022): a textual inversion-based two
stage approach with a pre-trained mapping function; 5) Pic2Word (Saito et al., 2023):
leverages the linguistic capability of the language encoder in CLIP to map the reference
image into a pseudo-word token; 6) SEARLE (Baldrati et al., 2023): reduces ZS-CIR
to standard text-to-image by mapping the reference image into a learned token which is
then concatenated with the relative caption generated by GPT; 7) Context-I2W (Tang
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et al., 2024): adaptively converts description-relevant image information into a pseudo-word
token; 8) CompoDiff (Gu et al., 2023): pretrains the diffusion models on the proposed
dataset SynthTriplets18M ; 9) CASE (Levy et al., 2023): employs an early fusion approach
through the utilization of the BLIP (Li et al., 2022) and GPT-3 on their dataset LaSCo. 10)
TransAgg (Liu et al., 2023c): A Transformer-based adaptive aggregation model trained
on the constructedLaion-CIR series datasets.

Following (Liu et al., 2023c), we train our model on the aforementioned constructed
Laion-CIR-Template, Laion-CIR-LLM and Laion-CIR-combined datasets separately, and
evaluate our models with the SOTA methods. We set the length of the context prompt
token to 25, the depth of PVLF module to 2, the depth of the fusion Transformer to 2, and
utilize the paradigm of PVLF-Deep as the default method.

Table 1: Zero-shot performance on FashionIQ (Wu et al., 2021) validation set. Best perfor-
mance is in bold and second best is underlined.

Method Backbone Zero-shot Triplets
Shirt Dress Toptee Average

R@10 R@50 R@10 R@50 R@10 R@50 R@10 R@50

Image-only CLIP-B/32 " – 6.92 14.23 4.46 12.19 6.32 13.77 5.90 13.37

Text-only CLIP-B/32 " – 19.87 34.99 15.42 35.05 20.81 40.49 18.7 36.84

Image+Text CLIP-B/32 " – 13.44 26.25 13.83 30.88 17.08 31.67 14.78 29.60

Pic2Word (Saito et al., 2023) [CVPR’2023] CLIP-L/14 " – 26.20 43.60 20.00 40.20 27.90 47.40 24.70 43.70

PALAVRA (Cohen et al., 2022) [ECCV’2022] CLIP-B/32 " – 21.49 37.05 17.25 35.94 20.55 38.76 19.76 37.25

SEARLE-XL-OTI (Baldrati et al., 2023) [ICCV’2023] CLIP-L/14 " – 30.37 47.49 21.57 44.47 30.90 51.76 27.61 47.90

CompoDiff (Gu et al., 2023) w/T5-XL [arXiv’2023] ViT-L/14 " 18m 38.10 52.48 33.91 47.85 40.07 52.22 37.36 50.85

Context-I2W (Tang et al., 2024) [AAAI’2024] CLIP-L/14 " 3m 29.70 48.60 23.10 45.30 30.60 52.90 27.80 48.90

TransAgg (Laion-CIR-Template) (Liu et al., 2023c) [BMVC’2023] BLIP " 16k 32.83 52.31 27.67 49.38 35.70 58.08 32.07 53.26

TransAgg (Laion-CIR-LLM) (Liu et al., 2023c) [BMVC’2023] BLIP " 16k 32.92 52.16 28.56 49.58 36.82 58.59 32.77 53.44

TransAgg (Laion-CIR-Combined) (Liu et al., 2023c) [BMVC’2023] BLIP " 32k 34.45 53.97 30.24 51.91 38.40 59.51 34.36 55.13

PVLF (Laion-CIR-Template) BLIP " 16k 33.90 53.09 28.16 50.62 37.02 59.87 33.03 54.53

PVLF (Laion-CIR-LLM) BLIP " 16k 33.76 53.04 29.35 51.22 36.41 57.47 33.17 53.91

PVLF (Laion-CIR-Combined) BLIP " 32k 36.61 55.05 31.58 54.24 38.85 61.24 35.68 56.85

Table 2: Zero-shot performance on CIRR test set. We report the results on Recall@1,
Recall@5, Recall@10 and Recall@50. The Recall subset@K metrics mean only
considering the images within the subset of the query for the fine-grained retrieval
evaluation.

Method Backbone Zero-shot Triplets
Recall@K Recall subset@K

K=1 K=5 K=10 K=50 K=1 K=2 K=3

Image CLIP-B/32 " – 6.89 22.99 33.68 59.23 21.04 41.04 60.31

Text CLIP-B/32 " – 21.81 45.22 57.42 81.01 62.24 81.13 90.7

Image+Text CLIP-B/32 " – 11.71 35.06 48.94 77.49 32.77 56.89 74.96

Pic2Word (Saito et al., 2023) [CVPR’2023] CLIP-L/14 " – 23.90 51.70 65.30 87.80 – – –

PALAVRA (Cohen et al., 2022) [ECCV’2022] CLIP-B/32 " – 16.62 43.49 58.51 83.95 41.61 65.3 80.94

SEARLE-XL-OTI (Baldrati et al., 2023) [ICCV’2023] CLIP-L/14 " – 24.87 52.31 66.29 88.58 53.80 74.31 86.94

Context-I2W (Tang et al., 2024) [AAAI’2024] CLIP-L/14 " 3m 25.6 55.1 68.5 89.8 – – –

CompoDiff w/T5-XL (Gu et al., 2023) [arXiv’2023] ViT-L/14 " 18m 19.37 53.81 72.02 90.85 28.96 49.21 67.03

CASE Pre-LaSCo.Ca. (Levy et al., 2023) [AAAI’2024] BLIP " 360k 35.40 65.78 78.53 94.63 64.29 82.66 61.91

TransAgg (Laion-CIR-Template) (Liu et al., 2023c) [BMVC’2023] BLIP " 16k 38.1 68.42 79.08 93.51 70.34 86.42 94.28

TransAgg (Laion-CIR-LLM) (Liu et al., 2023c) [BMVC’2023] BLIP " 16k 36.71 67.83 79.03 93.86 66.03 83.66 92.50

TransAgg (Laion-CIR-Combined) (Liu et al., 2023c) [BMVC’2023] BLIP " 32k 37.87 68.88 79.6 93.86 69.79 86.09 93.93

PVLF (Laion-CIR-Template) BLIP " 16k 39.78 70.87 81.18 94.28 72.66 87.66 94.48

PVLF (Laion-CIR-LLM) BLIP " 16k 37.19 69.79 80.70 95.26 65.65 84.07 92.94

PVLF (Laion-CIR-Combined) BLIP " 32k 40.33 72.50 82.44 95.43 72.64 87.37 94.69
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FashionIQ Table 1 shows the results of our models on FashionIQ. In general, our
approach outperforms the SOTA TransAgg (Liu et al., 2023c) for every category of the
FashionIQ (shirt, dress, toptee and average), when trained on the same dataset. Addition-
ally, our results remain consistent across all variants of the Laion-CIR series (including
Laion-CIR-Template, Laion-CIR-LLM and Laion-CIR-combined), demonstrating the effec-
tiveness of our approach. In specific, Our approach achieves 56.85 of the average recall@50,
surpassing all previous ZS-CIR methods. Although our model exhibits a slightly lower
performance on the average R@10 metric compared to CompoDiff w/T5-XL (Gu et al.,
2023), it significantly outperforms (Gu et al., 2023) on the R@50 by a large margin. It is
noteworthy that CompoDiff w/T5-XL utilizes a significantly larger dataset than our model.

CIRR As shown in Table 2, we report the results for CIRR test set. Overall, our
model consistently achieves the best performance across various scenarios in all metrics,
outperforming all previous methods. In addition, under the condition of fine-tuning with
the same dataset (Liu et al., 2023c), our models also surpass baseline to varying degrees.
Compared to CompoDiff which utilizes 18M training triplets, we achieve the recall@1 score
twice as high with a smaller training set. In contrast to baseline transagg (Liu et al., 2023c),
our method demonstrates significant improvements across all scenarios. Notably, in more
fine-grained subset scenarios, our approach outperforms all previous methods consistently
by a more substantial margin as well, leading to new SOTA results. This improvement
can be attributed to the greater flexibility and comprehensive integration of textual and
visual tokens in our proposed PVLF, further improving the quality of the fusion query and
demonstrating superior generalization performance.

4.3. Ablation Studies

In this section, we conduct a variety of ablation studies on two standard benchmark datasets
to validate the robustness and the effectiveness of our proposed method.

Pretrained Backbone and Fine-tuning. To validate the effectiveness and the gen-
eralization of our proposed approach, we conduct comparisons with baseline (Liu et al.,
2023c) on CIRR and FashionIQ under various fine-tuning strategies as shown in Table 3.
Throughout this process, we remain other settings unchanged. As evident from the results,
our method consistently outperforms baseline (Liu et al., 2023c) almost across all scenarios,
demonstrating the effectiveness of our approach. In specific, our model exhibit a remarkable
improvement in average recall on two datasets compared to the baseline. When tuning the
full model on the two benchmarks CIRR and FashionIQ, the PVLF exceed the baseline
by 4.29 and 1.08 respectively, which can be attributed to the PVLF’s internal contextual
prompt tokens, which exhibit more flexible and effective representations in linking textual
and visual modalities.

Simultaneously, we also observe a slight degradation in performance when the CLIP
backbone is frozen. We speculate that this may be attributed to a slight overfitting due
to an abundance of context tokens when the parameters are frozen. It is necessary to
highlight that our experiments in the Table 3 are conducted with a context token length of
25, without additionally specific fine-tuning for the CLIP backbone. Nevertheless, even in
this scenario, the PVLF’s average recall scores remain higher than the baseline.
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Table 3: Generalization for different pretrained backbones and fine-tuning types on CIRR
and FashionIQ. For CIRR, the average column denotes the mean of Recall@5 and
Recall subset@1. For FashionIQ, we report the average R@10 and R@50 of all
three categories. We choose the TransAgg (Liu et al., 2023c) as our baseline for
comparison, and report the results from (Liu et al., 2023c).

Backbone Fine-tuning Method
CIRR FashionIQ

R@1 R@5 R@10 R@50 R sub@1 R sub@2 R sub@3 Average R@10 R@50 Average

CLIP-L/14

%

baseline 25.04 53.98 67.59 88.94 55.33 76.82 88.94 53.66 28.57 48.29 38.43
PVLF(ours) 24.06 54.7 67.9 89.59 53.36 75.34 87.37 54.03 28.75 48.74 38.75
improvement -0.98 +0.72 +0.31 +0.65 -1.97 -1.48 -1.57 +0.37 +0.18 +0.45 +0.32

only text encoder
baseline 27.9 58.27 71.01 91.30 60.48 80.31 90.75 59.38 30.61 50.38 40.50

PVLF(ours) 30.23 61.37 74.45 92.13 62.04 81.12 91.00 61.71 32.29 52.92 42.61
improvement +2.33 +3.1 +3.44 +0.83 +1.56 +0.81 +0.25 +2.33 +1.68 +2.54 +2.11

both
baseline 33.04 64.39 76.27 93.45 63.37 82.27 92.22 63.89 32.63 53.65 43.14

PVLF(ours) 33.84 66.92 78.37 93.97 62.98 82.87 92.05 65.00 32.85 53.61 43.23
improvement +0.80 +2.53 +2.10 +0.52 -0.39 +0.60 -0.17 +1.11 +0.22 -0.04 +0.09

BLIP

%

baseline 34.89 64.75 76.24 92.22 66.34 83.76 92.92 65.55 26.95 46.1 36.53
PVLF(ours) 35.16 66.32 77.42 93.16 67.35 84.45 92.90 66.84 29 48.97 38.98
improvement +0.27 +1.57 +1.18 +0.94 +1.01 +0.69 -0.02 +1.29 +2.05 +2.87 +2.45

only text encoder
baseline 38.1 68.42 79.08 93.51 70.34 86.42 94.28 69.38 32.07 53.26 42.67

PVLF(ours) 40.54 71.99 81.75 95.05 71.95 87.40 94.12 71.97 34.17 55.46 44.81
improvement +2.44 +3.57 +2.67 +1.54 +1.61 +0.98 -0.16 +2.59 +2.10 +2.20 +2.14

both
baseline 37.18 67.21 77.92 93.43 69.34 85.68 93.62 68.28 34.64 55.72 45.18

PVLF(ours) 40.33 72.50 82.44 95.43 72.64 87.37 94.69 72.57 35.68 56.85 46.26
improvement +3.15 +5.29 +4.52 +2.00 +3.30 +1.69 +1.07 +4.29 +1.04 +1.13 +1.08

Table 4: Ablation studies on the CIRR dataset to investigate the effect on different context
prompt token length.

Recall@k
Context prompt length-l

l =5 l =10 l =15 l =20 l =25 l =30 l =35

k = 1 39.49 39.66 39.63 38.22 40.32 39.20 39.15
k = 5 72.23 71.85 72.11 70.41 72.49 71.58 71.65
k = 10 82.06 82.11 82.30 81.44 82.43 82.11 82.13
k = 50 95.24 95.53 95.21 95.07 95.43 95.36 95.37

Context prompt length. How many context prompt tokens should be used? We employ
BLIP (Li et al., 2022) as the pre-trained backbone and conduct ablation studies on the
CIRR (Liu et al., 2021b) dataset to investigate the impact of context prompt token length.
We use random initialization for all context tokens. As shown in Table. 4, the trends in
Recall@1, Recall@5, Recall@10 are nearly aligned, with each achieving its highest recall
nearly at the length of 25. However, the optimal prompt token length for Recall@50 is
10, which suggests that as the number of recalled samples increases, the stability of the
recall rate trends becomes more erratic. Meanwhile, we observe that an excessive length of
prompt tokens tends to adversely affect the performance of the model. This phenomenon
is also observed in other studies (Jia et al., 2022; Khattak et al., 2023; Shen et al., 2024),
which we believe to be normal to some extent. The optimal context prompt length is likely
to vary across different tasks.
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Table 5: Ablation studies on the CIRR and FashionIQ datasets to investigate the impact
of the prompt depth on model performance. The J means the prompt depth.

Method
CIRR FashionIQ

R@1 R@5 R@10 R@50 R@10 R@50 Avg

TransAgg 37.18 67.21 77.92 93.43 34.64 55.72 45.18

PVLF-J = 1 38.53 71.05 81.51 95.21 35.28 56.77 46.03
improvement +1.35 +3.84 +3.59 +1.78 +0.64 +1.05 +0.85

PVLF-J = 2 40.33 72.50 82.44 95.43 35.68 56.85 46.26
improvement +3.15 +5.29 +4.52 +2.00 +1.04 +1.13 +1.08

PVLF-J = 3 39.27 70.92 82.09 95.41 34.43 56.14 45.29
improvement +2.09 +3.71 +4.17 +1.98 -0.21 +0.42 +0.09

Prompt depth. We conduct ablation studies on the depth of the prompt depth J as
shown in Table 5. In general, the performance improves as context prompt depth increases.
We observe that the performance sensitivity increases when context prompt tokens are
inserted in deep layers, which is also reported in (Jia et al., 2022; Khattak et al., 2023). We
conjecture that in the context of ZS-CIR, it is highly likely that the model is overfitting.
Overall, the deeper context prompts may yield better results to some extent, which can be
attributed to the model’s incorporation of additional context parameters at each layer to
enhance the robustness and thoroughness of the fusion between different modalities. And
it is worth noting that J is also the number of layers in fusion Transformer. By default, we
use J = 2 to finetune the pretrained models to achieve the state-of-the-art performance.

5. Conclusion

To address ZS-CIR, we present Prompting Vision-Language Fusion, which explores the
potential of introducing V&L prompt learning methods into the ZS-CIR. We firstly iden-
tify the issue of semantic ambiguity in training triplets, which may result in suboptimal
performance. Subsequently, we propose to inject a certain number of context prompt to-
kens in the input space, facilitating a more comprehensive modality fusion to construct
higher-quality queries. Extensive experiments demonstrate our method achieves SOTA
performance. Additionally, it showcases remarkable robustness across different datasets
and various fine-tuning strategies.
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