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Leveraging sparse and shared feature activations
for disentangled representation learning
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Abstract
Research on recovering the latent factors of varia-
tion of high dimensional data has so far focused
on simple synthetic settings. Mostly building on
unsupervised and weakly-supervised objectives,
prior work missed out on the positive implica-
tions for representation learning on real world
data. In this work, we propose to leverage knowl-
edge extracted from a diversified set of supervised
tasks to learn a common disentangled represen-
tation. Assuming that each supervised task only
depends on an unknown subset of the factors of
variation, we disentangle the feature space of a
supervised multi-task model, with features acti-
vating sparsely across different tasks and infor-
mation being shared as appropriate. Importantly,
we never directly observe the factors of variations,
but establish that access to multiple tasks is suffi-
cient for identifiability under sufficiency and min-
imality assumptions. We validate our approach on
six real world distribution shift benchmarks, and
different data modalities (images, text), demon-
strating how disentangled representations can be
transferred to real settings.

1. Introduction
A fundamental question in deep learning is how to learn
meaningful and reusable representation from high dimen-
sional data observations (Bengio et al., 2013; Salakhutdi-
nov, 2014; Schölkopf et al., 2021; Schmidhuber, 1992). A
core area of research pursuing is centered on disentangled
representation learning (DRL) (Locatello et al., 2019; Ben-
gio et al., 2013; Higgins et al., 2017) where the aim is to
learn a representation which recovers the factors of varia-
tions (FoVs) underlying the data distribution. Disentangled
representations are expected to contain all the information
present in the data in a compact and interpretable structure
(Kulkarni et al., 2015; Chen et al., 2016) and to enable ro-
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bust downstream predictions, which was partially validated
in synthetic settings (Dittadi et al., 2021; Locatello et al.,
2020b). Unfortunately, these benefits did not materialize in
real world representations learning problems, largely limited
by a lack of scalability of existing approaches.

In this work we focus on leveraging knowledge from differ-
ent task objectives to learn better representations, exploring
the link with disentanglement and out-of-distribution (OOD)
generalization on real data distributions. Representations
learned from a large diversity of tasks are indeed expected
to be richer and generalize better to new, possibly OOD,
tasks. However, this is not always the case, as different
tasks can compete with each other (Marx et al., 2005; Wang
et al., 2019; Standley et al., 2020) leading to noisy features,
increase of the sensitivity to spurious correlations (Hu et al.,
2022; Geirhos et al., 2020; Beery et al., 2018)and weaker
models. Instead, assuming that each task only depends on
an unknown subset of FoVs, we build on two following
inductive biases, showing that disentanglement naturally
emerges from them:

• Sparse sufficiency: Features should activate sparsely
with respect to tasks. The representation is sparsely
sufficient in the sense that any given task can be solved
using few features.

• Minimality: Features are maximally shared across tasks
whenever possible. The representation is minimal in
the sense that features are encouraged to be reused, i.e.,
duplicated or split features are avoided.

We demonstrate how these intuitive properties are desirable
in order to obtain features that (i) are disentangled w.r.t. to
the factors of variations underlying the task data distribution
(which we also theoretically argue in Proposition B.1), (ii)
generalize better in settings where test data undergo distri-
bution shifts with respect to the training distributions, and
(iii) suffer less from problems related to negative transfer
phenomena. To learn such representations in practice, we
implement a meta learning approach, enforcing feature suffi-
ciency and sharing with a sparsity regularizer and a entropy
based feature sharing regularizer, respectively, incorporated
in the base learner. Experimentally, we show that our model
learns meaningful disentangled representations that enable
strong generalization on real world data sets.
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2. Method
Given a distribution of tasks t ∼ T and data (xt, yt) ∼ Pt

∀t, we aim to learn a disentangled representation g(x) =
ẑ ∈ Ẑ ⊆ RM , which generalizes well to unseen tasks. We
learn g by imposing the sparse sufficiency and minimality.
Learning sparse and shared features Our architecture
(see Figure 4) is composed of a backbone module gθ that
is shared across all tasks and a separate linear classification
head fϕt

, which is specific to each task t. The backbone
is responsible to compute and learn a general feature
representation for all classification tasks. The linear head
solves a specific classification problem for the task-specific
data (xt, yt) ∼ Pt in the feature space Ẑ while enforcing
the feature sufficiency and minimality principles. Adopting
the typical meta-learning setting (Hospedales et al., 2020),
the backbone module gθ can be viewed as the meta learner
while the task-specific classification heads fϕt can be
viewed as the base learners. In the meta-learning setting we
assume to have access to samples for a new task give by a
support set U , with elements (xU , yU ) ∈ U . These samples
are used to fit the linear head fϕ∗ leading to the optimal
feature weights for the given task. For a query xQ ∈ Q,
predictions are obtained by computingŷ = fϕ∗(gθ(x

Q)).
Enforcing feature minimality and sufficiency. To solve
a task in the feature space Ẑ of the backbone module we
impose the following regularizer Reg(ϕ) on the classifica-
tion heads fϕ with parameter ϕ ∈ RT×M×C , where T is
the number of tasks, M the number of features, and C the
number of classes. The regularizer is responsible for enforc-
ing the feature minimality and sufficiency properties. It is
composed of the weighted sum of a sparsity penalty RegL1

and an entropy-based feature sharing penalty Regsharing:

Reg(ϕ) = αRegL1
(ϕ) + βRegsharing(ϕ), (1)

with scalar weights α and β. The penalty terms are:

RegL1
(ϕ) =

1

TC

∑
t,c,m

|ϕt,m,c| (2)

Regsharing(ϕ) = H(ϕ̃m) = −
∑
m

ϕ̃mlog(ϕ̃m) (3)

where ϕ̃m = 1
TC

∑
t,c |ϕt,c,m|)∑

t,c,m |ϕt,c,m| are the normalized classifier
parameters. Sufficiency is enforced by a sparsity regular-
izer given by the L1-norm, which constrains classification
head to use only a sparse subset of the features. Minimality
is enforced by the feature sharing term: minimizing the
entropy of the distribution of feature importances (i.e. nor-
malized |ϕt|) averaged across a mini batch of T tasks, leads
to a more peaked distribution of activations across tasks.
This forces features to cluster across tasks and therefore be
reused by different tasks, when useful.
Training method We train the model in meta-learning
fashion by minimizing the test error over the expectation

of the task distribution t ∼ T . This can be formalized as a
bi-level optimization problem. The optimal backbone model
gθ∗ is given by the outer optimization problem:

min
θ

Et[Louter(fϕ∗(gθ(x
Q
t ), y

Q
t ))], (4)

where fϕ∗ are the optimal classifiers obtained from solving
the inner optimization problem, and (xQ

t , y
Q
t ) ∈ Qt are the

test (or query) datum from the query set Qt for task t. Let
Ut be the support set with samples (xU

t , y
U
t ) ∈ U for task

t, where typically the support set is distinct from the query
set, i.e., U ∩Q = ∅. The optimal classifiers fϕ∗ are given
by the inner optimization problem:

min
ϕ

1

T

∑
t

Linner(ŷ
U
t , y

U
t ) +Reg(ϕ), (5)

where ŷUt = fϕ(gθ(x
U
t ). For both the inner loss Linner and

outer loss Louter we use the cross entropy loss. In practice
we solve the bi-level optimization problem (4) and (5) as
described in the algorithm in section D.1 of the Appendix.

3. Experiments
We start by highlighting here the experimental setup of this
paper along with its motivation. Experimental details are
fully described in Appendix E.
Synthetic experiments. We first evaluate our method on
benchmarks from the disentanglement literature (Matthey
et al., 2017; Burgess & Kim, 2018; Reed et al., 2015;
LeCun et al., 2004) where we have access to the FoVs
and we can assess quantitatively how well we can learn
disentangled representations. We show how minimality
is correlated with disentanglement measures (Section 3.1)
and how our representations, learned from a limited set
of tasks, can generalize their composition. The purpose of
these experiments is to validate our theoretical statement,
showing that if the assumptions of Proposition B.1 hold,
our method quantitatively recovers the FoVs.
Domain shifts and transferability. On real data sets, we
can neither quantitatively measure disentanglement nor are
we guaranteed identifiability (as assumptions may be vio-
lated). Ultimately, the goal of disentangled representations
is to learn features easily and robustly transferrable to down-
stream tasks. Therefore, we first evaluate the usefulness of
our representations with respect to downstream tasks subject
to distribution shifts, where isolating spurious features was
found to improve generalization in synthetic settings (Dit-
tadi et al., 2021; Locatello et al., 2020b) We evaluate our
method on domain generalization and domain shift tasks
on six different benchmarks (Section 3.2). Lastly, we test
the OOD adaptability of our method in a few-shot transfer
learning setting in Appendix F.5.

3.1. Synthetic experiments
We start by demonstrating that our approach is able to re-
cover the FoVs underlying a synthetic data distribution like
(Matthey et al., 2017). For these experiments, we assume
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Figure 1: Role of minimality: We plot the DCI metric
of a set of models (red dots) trained on fixed tasks
from DSprites: Training without regularizers leads
to no disentanglement (green). Enforcing sparsity alone
(yellow, akin to (Lachapelle et al., 2022a)) achieves good
disentanglement (DCI = 71.9), but some features may be
split or duplicated. Enforcing both minimality and sparse
sufficiency (magenta) attains the best DCI (98.8). When
β is too high (> 0.25) activated features collapses into
few clusters with respect to tasks. For exact values and
qualitative evidence see Table 7 and Figure 5 in Appendix.

to have partial information on a subset of FoVs Z, and we
aim to learn a representation ẑ that aligns with them while
ignoring any spurious factors. We sample random tasks
from a distribution T (see Appendix E.3 for details) and
focus on binary tasks, with Y = {0, 1}. For the DSprites
dataset an example of valid task is “There is a big object on
the left of the image”. In this case, the partially observed
factors (quantized to only two values) are the x position and
size. In Table 1, we show how the sparse sufficiency and
minimality properties enable disentanglement in the learned
representations. We train two identical models on a random
distribution of sparse tasks defined on FoVs, showing that,
for different datasets (Matthey et al., 2017; Burgess & Kim,
2018; LeCun et al., 2004; Reed et al., 2015), the same model
without regularizers achieves a similar in-distribution (ID)
accuracy, but a much lower disentanglement.

We then randomly draw and fix 2 groups of tasks with sup-
ports S1, S2 (18 in total), which all have support on two
FoVs, |S1| = |S2| = 2. The groups share one factor of
variation and differ in the other one, i.e. S1 ∩ S2 = {i}
for some {i} ∈ Z. We start from an overestimate of the
dimension of z̃ of 6, trying to recover z of size 3. We train
our network to solve these tasks, enforcing sufficiency and
minimality on the representation with different regulariza-
tion degrees. In Figure 1, we show how the alignment of the
learned features with the ground truth factors of variations
depend on the choice of α, β, going from no disentangle-
ment (DCI = 27.8) to good alignment (DCI = 98.8) as
we enforce sufficiency and minimality.
Disentanglement and minimality are correlated. For 15

Table 1: Enforcing disentanglement: DCI (Eastwood &
Williams, 2018) score and ID accuracy on test samples for
a model trained enforcing sufficency and minimality (bot-
tom row), and a model without (top row). While attaining
comparable accuracy, the regularized model always shows
higher disentanglement.

Dsprites 3Dshapes SmallNorb Cars

No reg
(DCI,Acc) (16.6,94.4) (44.4,96.2 ) (16.5,96.1) (60.5,99.8)

α, β
(DCI,Acc) (69.9,95.8) (87.7, 95.8) (55.8,95.6 ) (92.3,99.8 )

Figure 2: Task compositional generalization: Mean ac-
curacy over 100 random test tasks reported for group of
tasks of growing support (second, third, fourth column) for
a model trained without inductive biases (blue, attaining
DCI = 29.4) and enforcing them (orange, DCI = 59.4).
The latter show better compositional generalization resulting
from the properties enforced on the representation. Exact
values are reported in Table 8 in Appendix.
models trained on Dsprites increasing β from 0 to 0.2
linearly, we observe a correlation coefficient with the DCI
metric of 94.7, showing that the feature sharing property
strongly encourages disentanglement. This confirms again
that sufficiency alone (i.e. enforcing sparsity) is not enough
to attain good disentanglement.
Task compositional generalization. Finally, we evalu-
ate the generalization capabilities of our method by testing
our model on a set of unseen tasks obtained by combin-
ing tasks seen during training. To do this, we first train
two models on the AbstractDSprites dataset using a
random distribution of tasks, where we limit the support
of each task to be within 2 (i.e. |S| = 2). The models
differ in activating/deactivating the regularizers on the lin-
ear heads. In Figure 2, we test on 100 tasks drawn from a
distribution with increasing support on the factors of vari-
ation (|S| = 3, |S| = 4, |S| = 5), which correspond to
composition of tasks in the training distribution.

3.2. Domain Shift
In this section we evaluate our method on benchmarks
coming from the domain generalization field (Gulrajani
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Table 2: Results on CivilComments: we report the accuracy
on test averaged across all demographic groups (left), and
the worst group accuracy (right). We show that our method
performs similarly in terms of average accuracy and outper-
forms in terms of worst group accuracy, without using any
knowledge on the group composition in the training data.

avg acc worst group acc

ERM 92.2 56.5
DRO 90.2 69
Ours 91.2 ± 0.2 75.45± 0.1

& Lopez-Paz, 2021; Wenzel et al., 2022; Qiu et al., 2022)
and subpopulation shifts (Sagawa et al., 2019; Koh et al.,
2021), to show that a feature space learned with our induc-
tive biases performs under real world data distribution shift.
Subpopulation shifts. Subpopulation shifts occur when
the distribution of minority groups changes across domains.
Our claim is that a feature space that satisfies sparse
sufficiency and minimality is more robust to spurious
correlations which may affect minority groups, and should
transfer better to new distributions. To validate this, we test
on two benchmarks Waterbirds (Sagawa et al., 2019),
and CivilComments (Koh et al., 2021). In Table 4, last
row, we report the results on the test set of Waterbirds
for the different groups in the dataset, comparing with ERM.
For CivilComments we report the average and worst
accuracy in Table 9, where we compare with ERM and
groupDRO (Sagawa et al., 2019). While performing almost
on par w.r.t. ERM, our method is more robust to spurious
correlation in the dataset, showing the higher worst group
accuracy. Importantly, we outperform GroupDRO, which
uses information on the subdomain statistics, while we do
not assume any prior knowledge about them. Results per
group are reported in the Appendix (Table 10).
DomainBed & Camelyon17 We evaluate the domain
generalization performance on the PACS, VLCS and
OfficeHome datasets from the DomainBed (Gulrajani
& Lopez-Paz, 2021) test suite (see Appendix E.1 for more
details). On these datasets, we train on N − 1 and leave
one out for testing. Regularization parameters α and β are
tuned according to validation sets of PACS, and used ac-
cordingly on the other dataset. Results are reported in Table
4, showing how enforcing sparse sufficiency and minimality
leads consistently to better OOD performance. Compar-
isons with 13 additional baselines is in Appendix F.4. On
Camelyon17 the model is trained according to the original
splits in the dataset. In Table 3 we report the accuracy of our
model on in-distribution and OOD splits, compared with
different baselines (Sun et al., 2017; Arjovsky et al., 2019).
Our method shows the best performance on the OOD test
domains. The intuition is that, due to minimality, we retain
features shared across the three training domains, giving
less weight to the domain-specific ones which are spuri-

Table 3: Quantitative evaluation on Camelyon17: we report
accuracy both on ID and OOD splits. Our approach achieves
significantly higher validation and test OOD accuracy.

Validation(ID) Validation (OOD) Test (OOD)

ERM 93.2 84 70.3
CORAL 95.4 86.2 59.5

IRM 91.6 86.2 64.2
Ours 93.2 ±0.3 89.9±0.6 74.1±0.2

Table 4: Results for domain generalization on DomainBed.
Our approach achieves consistently higher average OOD
generalization, outperforming ERM in all cases except one.

Dataset/Algorithm OOD accuracy (by domain)

PACS S A P C Average
ERM 77.9 ± 0.4 88.1 ± 0.1 97.8 ± 0.0 79.1 ± 0.9 85.7
Ours 83.1 ± 0.1 86.7± 0.8 97.8 ± 0.1 83.5 ± 0.1 87.5

VLCS C L V S Average
ERM 97.6± 1.0 63.3 ± 0.9 76.4 ± 1.5 72.2 ± 0.5 77.4
Ours 98.1± 0.2 63.4± 0.5 78.2 ± 0.7 73.9± 0.8 78.4

OfficeHome C A P R Average
ERM 53.4± 0.6 62.7 ± 1.1 76.5 ± 0.4 77.3 ± 0. 67.5
Ours 56.3± 0.1 66.7 ± 0.7 79.2± 0.5 81.3 ± 0.4 70.9

Waterbirds LL LW WL WW Average
ERM 98.6 ± 0.3 52.05 ± 3 68.5 ± 3 93 ± 0.3 81.3
Ours 99.5 ± 0.1 73.0 ± 2.5 85.0 ± 2 95.5 ± 0.4 90.5

ously correlated with the hospital environment. This can be
further enforced at test time, as shown in Appendix F.10,
trading off in distribution performance for OOD accuracy.
Additional results In Appendix F we report a large collec-
tion of additional results, including results on few-shot trans-
fer learning (F.5), a comparison with 14 baseline methods on
the domain shift benchmarks (F.4), a qualitative and quan-
titative analysis on the minimality and sparse sufficiency
properties in the real setting (F.2), an additional comparison
on meta learning benchmarks with 6 baselines(F.9), an ab-
lation study on the effect of clustering features at test time
(F.10), and a demonstration on the possibility to obtain a task
similarity measure as a consequence of our approach (F.8).
4. Conclusions and limitations
In this paper, we demonstrated how to learn disentangled
representations from a distribution of tasks by enforcing
feature sparsity and sharing. We validated identifiability
of our approach experimentally in a controlled settings,
and showed that these representations are beneficial
for generalizing OOD in real-world scenarios, isolating
spurious and domain-specific factors that should not be used
under distribution shift. The main limitation of our work
is the global assumption on the strength of the sparsity and
feature sharing regularizers α and β across all tasks. In real
settings these properties of the representations might need
to change for different tasks while excessive regularization
might hurt performance (e.g. β > 0.25 in Figure 1). Future
work may exploit some level of knowledge on the task
distribution (e.g. some measure of distance on tasks) in
order to tune α, β adaptively during training.
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A. Related work
Learning from multiple tasks and domains. Our method addresses the problem of learning a general representation across
multiple and possibly unseen tasks (Caruana, 1997; Zhang & Yang, 2018) and environments (Zhou et al., 2021; Gulrajani
& Lopez-Paz, 2021; Koh et al., 2021; Wortsman et al., 2022; Miller et al., 2021; Wiles et al., 2022; Muandet et al., 2013)
that may be competing with each other during training (Marx et al., 2005; Wang et al., 2019; Standley et al., 2020). Prior
research tackled task competition by introducing task specific modules that do not interact during training (Parascandolo
et al., 2018; Yuan et al., 2021; Singh et al., 2021). While successfully learning specialized modules, these approaches can
not leverage synergistic information between tasks, when present. On the other hand, our approach is closer to multi-task
methods that aim at learning a generalist model, leveraging multi-task interactions (Zhu et al., 2022; Bai et al., 2022). Other
approaches that leverage a meta-learning objective for multi-task learning have been formulated (Dhillon et al., 2020; Snell
et al., 2017; Lee et al., 2019; Bertinetto et al., 2019). In particular, (Lee et al., 2019) proposes to learn a generalist model
in a few-shot learning setting without explicitly favoring feature sharing, nor sparsity. Instead, we rephrase the multi-task
objective function encoding both feature sharing and sparsity to avoid task competition.

Similar to prior work in domain generalization, we assume the existence of stable features for a given task (Muandet et al.,
2013; Arjovsky et al., 2019; Veitch et al., 2021; Jiang & Veitch, 2022; Wang & Veitch, 2022) and amortize the learning over
the multiple environments. Differently than prior work, we do not aim to learn an invariant representation a priori. Instead,
we learn sufficient and minimal features for each task, which are selected at test time fitting the linear head on them. In
light of (Gulrajani & Lopez-Paz, 2021), one can interpret our approach as learning the final classifier using empirical risk
minimization but over features learned with information from the multiple domains.

Disentangled representations. Disentanglement representation learning (Bengio et al., 2013; Higgins et al., 2017) aims at
recovering the factors of variations underlying a given data distribution. (Locatello et al., 2019) proved that without any form
of supervision (whether direct or indirect) on the Factors of Variation (FOV) is not possible to recover them. Much work
has then focused on identifiable settings (Locatello et al., 2020b; Fumero et al., 2021) from non-i.i.d. data, even allowing
for latent causal relations between the factors. Different approaches can be largely grouped in two categories. First, data
may be non-independently sampled, for example assuming sparse interventions or a sparse latent dynamics (Goyal et al.,
2020; Lippe et al., 2022; Brehmer et al., 2022; Yao et al., 2022; Ahuja et al., 2020; Seigal et al., 2022; Lachapelle et al.,
2022b). Second, data may be non-identically distributed, for example being clustered in annotated groups (Hyvärinen et al.,
2019; Khemakhem et al., 2020; Sorrenson et al., 2020; Willetts & Paige, 2021; Lu et al., 2022). Our method follows the
latter, but we do not make assumptions on the factor distribution across tasks (only their relevance in terms of sufficiency
and minimality). This is also reflected in our method, as we train for supervised classification as opposed to contrastive or
unsupervised learning as common in the disentanglement literature. The only exception is the work of (Lachapelle et al.,
2022a) discussed in Section B.

B. Theoretical analysis

z

S

xy

g*

T

f *St

Figure 3: Assumed causal generative model: the gray variables are unobserved. Observations x are generated by some
unknown mixing of a set of factors of variations z. Additionally, we observe a distribution of supervised tasks, only
depending on a subset of factors of variations indexed by S.

We analyze the implications of the proposed minimality and sparse sufficiency principles and show in a controlled setting
that they indeed lead to identifiability. As outlined in Figure 3, we assume that there exists a set of independent latent factors
z ∼

∏d
i=1 p(zi) that generate the observations via an unknown mixing function x = g∗(z). Additionally, we assume that
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the labels for a task t only depend on a subset of the factors indexed by St ∼ P (S), where S is an index set on z ∈ Z , via
some unknown mixing function y = f∗

St
(z) (potentially different for different tasks). We formalize the two principles that

are imposed on f∗ by:

1. sufficiency: f∗
t = f∗

t |St
for St ∼ p(S)

2. minimality: ̸ ∃S′ ̸= St ⊂ S s.t. f∗
t |S′ = f∗

t ,

where f |St
denotes that the input to a function f is restricted to the index set given by St (all remaining entries are set to

zero). (1) states that f∗
t only uses a subset of features, and (2) states that there are not be duplicate features.

Proposition B.1. Assume that g∗ is a diffeomorphism (smooth with smooth inverse), f∗ satisfies the sufficiency and
minimality properties stated above, and p(S) satisfies: p(S ∩ S′ = {i}) > 0 or p({i} ∈ (S ∪ S′) − (S′ ∩ S)) > 0.
Observing unlimited data from p(X,Y ), it is possible to recover a representation ẑ that is an axis aligned, component wise
transformation of z.

Remarks: Overall, we see this proposition as validation that in an idealized setting our inductive biases are sufficient to
recover the factors of variation. Note that the proof is non-constructive and does not entail a specific method. In practice,
we rely on the same constraints as inductive biases that lead to this theoretical identifiability and experimentally show
that disentangled representations emerge in controlled synthetic settings. On real data, (1) we cannot directly measure
disentanglement, (2) a notion of global ground-truth factors may even be ill-posed, and (3) the assumptions of Proposition B.1
are likely violated. Still, sparse sufficiency and minimality yield some meaningful factorization of the representation for the
considered tasks.

Relation to (Lachapelle et al., 2022a) and (Locatello et al., 2020b): Our theoretical result can be reconnected with
concurrent work (Lachapelle et al., 2022a) and can be seen as a corollary with a different proof technique and slightly
relaxed assumptions. The main difference is that our feature minimality allows us to also cover the case where the number of
factors of variations is unknown, which we found critical in real world data sets (the main focus of our paper). Instead, they
only assume sparse sufficiency, which is enough for identifiability if the ground-truth number of factors is known, but is not
enough to recover high disentaglement when this is not the case (see Figure 1) and does not translate well to real data, see
Table 16 with the empirical comparison in Appendix F.9. Interestingly, their analysis also hints at the fact that our approach
also benefits in terms of sample complexity on transfer learning downstream tasks. Our proof technique follows the general
construction developed for multi-view data in (Locatello et al., 2020b), adapted to our different setting. Instead of observing
multiple views with shared factors of variation, we observe a single task that only depend on a subset of the factors.

C. Proof of Proposition 1
To prove PropositionB.1 we rely on the same proof construction of (Locatello et al., 2020b), adapting it to our setting. The
proof is sketched in three steps:

• First, we prove identifiability when the support S of a task is arbitrary but fixed, where we drop the subscript t for
convenience.

• Second, we randomize on S, to extend the proof for S drawn at random.
• Third, we extend the proof to the case when the dimensionality of Z is unknown and we start on overestimate of it to

recover it.

Identifiability with fixed task support We assume the existence of the generative model in Figure 3, which we report here
for convenience:

p(z) =
∏
i

p(zi) S ∼ p(S) (6)

x = g∗(z) y = f∗
S(z) (7)

together with the assumptions specified in theorem statement. We fix the support of the task S. We indicate with g : Z → X
the invertible smooth, candidate function we are going to consider, whose inverse corresponds to q(z|x). We denote with
T ∈ S which indexes the coordinate subspace of image of g−1 corresponding to the unknown coordinate subspace S of
factors of variation on which the fixed task depends on. Fixing T requires knowledge of |S|. The candidate function g−1
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must satisfy:
f |T (g−1(x)) = y (8)

f |T̄ (g−1(x)) ̸= y (9)

where T̄ denotes the indices in the complement of T . f denotes a predictor which satisfies the same assumptions on f∗ on
T . We parametrize g−1 with g∗−1 and set:

g−1 = h−1 ◦ g∗−1 where h : [0, 1]d → Z, mapping from the uniform distribution on Rd to Z. We can rewrite the two above
constraints as:

f |T (h−1(z)) = y (10)

f |T̄ (h−1(z)) ̸= y (11)
We claim that the only admissible functions h−1 maps each entry in z to unique coordinate in T . We observe that due to its
smoothness and invertibility, h−1 maps Z to the submanifolds Ms,Ms̄, which are disjoint. By contradiction:

• if MS̄ does not lie in T̄ then minimality is violated.
• if MS does not lie in T then sufficiency is violated

h−1 maps each entry in z to unique coordinate in T . Therefore there exist a permutation π s.t.:
h−1
T (z) = h̄T (zπ(S)) (12)

h−1
T̄

(z) = h̄T̄ (zπ(S̄)) (13)

The Jacobian of h−1 is a blockwise matrix with block indexed by T . So we can identify the two blocks of factors in S, S̄ but
not necessarily the factors within, as they may be still entangled.

Randomization on S

we now consider S to be drawn at random, therefore we observe p(x, y|S) without never observing S directly. g−1 must
now associate each p(x, y) with a unique T , as well as a unique predictor f , for each S ∼ p(S) Indeed suppose that
p(x, y|S = S1) and p(x, y|S = S2) with S1, S2 ∼ p(S) and S1 ̸= S2. Then if T would be the same for both tasks (as f ),
eq (6) could only be satisfied for a subset of size |S1 ∩ S2| < |S1 ∪ S2| , while T is required to be of size |S1 ∪ S2| This
corresponds to say that each task has its own sparse support and its own predictor. Conversely all p(x, y) ∈ supp(p(x, y|S))
need to be associated to the T and the same predictor f , since they will all share the same subspace and cannot be associated
to different T . Notice also that |S1 ∩ S2| = |T1 ∩ T2| and |S1 ∪ S2| = |T1 ∪ T2|. We further assume:

∀zi either p(S ∩ S′ = {i}) > 0 or p({i} ∈ (S ∪ S′)− (S′ ∩ S)) > 0

We observe every factor as the intersection of the sets S, S′ which will be reflected in T, T ′ or we observe single factors in
the difference between the intersection and the union of S, S′. Examples of the two cases are illustrated below:

This together with (8) and (9) implies:



715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

Leveraging sparse and shared feature activations for disentangled representation learning

h−1
i (z) = h̄i(zπ(i)) ∀i ∈ [d] (14)

This further implies that the jacobian of h̄ is diagonal. By the change of variable formula we have:

q(ẑ) = p(h̃(zπ([d])))

∣∣∣∣det ∂

∂zπ([d]))
h̃

∣∣∣∣ = d∏
i01

p(h̃i(zπ(i)))

∣∣∣∣ ∂

∂zπ(i)
h̃i

∣∣∣∣ (15)

This holds for the jacobian being diagonal and invertibility of h̃. Therefore q(ẑ) is a coordinate-wise reparametrization
of p(z) up to a permutation of the indices. A change in a coordinate of z implies a change in the unique corresponding
coordinate of ẑ, so g disentangles the factors of variation.

Dimensionality of the support S

Previously we assumed that the dimension of ẑ is the same as z. We demonstrate that even when d is unknown starting from
an overstimate of it, we can still recover the factors of variations. Specifically, we consider the case when d̂ > d. In this
case our assumption about the invertibility of h is violated. We must instead ensure that h maps Z to a subspace of Ẑ with
dimension d. To substitute our assumption on inveribility on h, we will instead assume that z and ẑ have the same mutual
information with respect to task labels Y , i.e.I(Z, Y ) = I(Ẑ, Y ) Note that mutual information is invariant to invertible
transformation, so this property was also valid in our previous assumption.

Now, consider two arbitrary tasks with |S ∩ S′| ≠ ∅ =k but |T ∩ T ′| < k, i.e. some features are duplicated/splitted. Hence
f, f ′ while have different support , i.e.:

f |T = f ′|T ′ = f∗

We observe that in this situation nor sufficiency, nor minimality are necessarily violated because:

• f |T = f ′|T ′ = f∗ (sufficiency is not violated)
• T ∩ T ′ = ∅ =⇒ T ̸⊂ T ′, T ′ ̸⊂ T (minimality is not violated)

In other words we must ensure that a single fov zi is not mapped to different entries in ẑ (feature splitting or duplication). We
fix two arbitrary tasks with |S ∩S′| ≠ ∅ =k but |T ∩T ′| < k, i.e. some features are duplicated. We know that |S| = |T | and
|S′| = |T ′| otherwise sufficency and minimaliy would be violated. Then if |T ∩ T ′| < k, then |T ∪ T ′| > |S ∪ S′| = d− k
we have p(|T ∪ T ′|)=p(supp(p(y|ẑ)) + supp(p′(y′|ẑ′))) = p(

∑
i supp(fi(.)) , and since

H[p(
∑
i

supp(fi(.))] > H[p(
∑
i

supp(fi(.))] (16)
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but we have assumed:
I(Z, Y ) = I(Ẑ, Y ) (17)

���H(Y )−H(Y |Ẑ) =���H(Y )−H(Y |Z) (18)

H(Y |Ẑ) = H(Y |Z) (19)

H[p(Y |Ẑ) > 0] = H[p(Y |Z) > 0] (20)

2H[p(Y |Ẑ)>0] = 2H[p(Y |Z)>0] (21)

|supp(p(Y |Ẑ))| = |supp(p(Y |Z)| (22)
this last passage is due to relation between cardinality and entropy: for uniform distributions the exponential of the entropy
is equal to the cardinality of the support of the distribution.

|supp(f)| = |supp(f∗)| (23)

We know that (12) must hold for every task, therefore:
∑

i I(Z, Yi) =
∑

i I(Ẑ, Yi) for each i then:
∑

i |supp(f̂i)| =∑
i |supp(f∗

i )| |
⋃

i Ti| = |
⋃

i Si| therefore (12) contradicts our assumption (13).

D. Implementation details

xU gθ fϕẑUgθ ŷU

Linner

xQ gθ fϕ∗ ϕ∗ẑQgθ ŷQ

Louter

Figure 4: Model scheme: Illustrations of the (Top) the inner loop stage and outer loop following the steps of the algorithmic
procedure described in Section D.1

D.1. Training algorithm

Real tasks generation . Our method can be applied in a standard supervised classification setting where we construct the
tasks on the fly as follows. We define a task t as a C-way classification problem. We first select a random subset of C
classes from a training domain Dtrain which contains Ktrain classes. For each class we consider the corresponding data
points and select a random support set Ut with elements (xU

t , y
U ) ∈ U and a disjoint random query set Qt with elements

(xQ
t , y

Q) ∈ Qt. In each iteration we sample a batch of T tasks with the associated support and query set as described above.
First, we use the samples from the support set St to fit the linear heads fϕ by solving the inner optimization problem (5)
using stochastic gradient descent for a fixed number of steps. Second, we use the samples from the query set Qt to update
the backbone gθ by solving the outer optimization problem (4) using implicit differentiation (Geng et al., 2021; Blondel
et al., 2021; Griewank & Walther, 2008).
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Algorithm 1 Training algorithm

1: Input: A task distribution T
2: while Not converged do
3: Sample a batch BT of T tasks t ∼ T
4: Sample (Ut, Qt) from each task in the batch
5: # Inner loop
6: for each t in BT do
7: Compute zUt = gθ(x

U
t )

8: end for
9: Solve ϕ∗ = argminϕ

1
T

∑
t Linner(fϕ(z

U
t ), y

U
t ) +Reg(ϕ)

10: # Outer loop
11: for each t do
12: Compute zQt = gθ(x

Q
t )

13: end for
14: Compute Louter(fϕ∗(gθ(x

Q
t ), y

Q
t ))

15: Compute ∂Louter(θ)
∂θ as in (Geng et al., 2021)

16: Update θ
17: end while

D.2. Implicit gradients

In the backward pass, denoting with L∗
outer = Louter(f

∗
ϕ(gθ(x

Q)), Y Q) denoting the loss computed with respect to the
optimal classifier f∗

ϕ on the query samples (xQ, Y Q), we have to compute the following gradient:

∂L∗
outer(θ)

∂θ
=

∂Louter(θ, ϕ
∗)

∂θ
+

Louter(θ, ϕ
∗)

∂ϕ∗
∂ϕ∗

∂θ
(24)

where is the algorithm procedure to solve Eq1, i.e. SGD. While is just the gradient of the loss evaluated at the solution of the
inner problem and can be computed efficiently with standard automatic backpropagation, requires further attention. Since
the solution to Cϕ∗ is implemented via and iterative method (SGD), one strategy would be to compute this gradient would
be to backpropagate trough the entire optimization trajectory in the inner loop. This strategy however is computational
inefficient for many steps, and can suffer also from vanishing gradient problems.

E. Experimental details
All experiments were performed on a single gpu NVIDIA RTX 3080Ti and implemented with the Pytorch library (Paszke
et al., 2019).

Experimental setting. To have a fair comparison with other methods in the literature, we adopt the standard experimental
setting of prior work (Gulrajani & Lopez-Paz, 2021; Koh et al., 2021). Hyperparameters α and β are tuned performing
model selection on validation set, unless specified otherwise. For comparison with baselines, we substitute our backbone
with that of the baseline (e.g. for ERM models, we detach the classification head) and then fit a new linear head on the same
data. The linear head module trained at test time on top of the features is the same both for our and compared methods.
Despite its simplicity, we report the ERM baseline for comparison in our experiments in the main paper, since it has been
shown to perform best in average on domain generalization benchmarks (Gulrajani & Lopez-Paz, 2021; Koh et al., 2021).
We further compare with other consolidated approaches in the literature such as IRM (Arjovsky et al., 2019), CORAL (Sun
& Saenko, 2016) and GroupDRO (Sagawa et al., 2019) and include a large and comprehensive comparison with (Yan et al.,
2020; Blanchard et al., 2021; Li et al., 2018a;b; Ganin et al., 2016; Li et al., 2018c; Nam et al., 2021; Zhang et al., 2021;
Huang et al., 2020; Krueger et al., 2021) in AppendixF.5. Experimental details are fully described below.

E.1. Datasets

We evaluate our method on a synthetic setting on the following benchmarks: DSprites, AbstractDSprites(Matthey
et al., 2017), 3Dshapes (Burgess & Kim, 2018),SmallNorb (LeCun et al., 2004), Cars3D(Reed et al., 2015) and the
semi-synthetic Waterbirds (Sagawa et al., 2019).
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For domain generalization and domain adaptation tasks, we evaluate our method on the (Gulrajani & Lopez-Paz, 2021)
and (Koh et al., 2021) benchmarks, using the following datasets: PACS(Li et al., 2017), VLCS(Albuquerque et al., 2019),
OfficeHome(Venkateswara et al., 2017) Camelyon17(Bandi), CivilComments (Borkan et al., 2019).

Dataset descriptions

The Waterbirds dataset (Sagawa et al., 2019) is a synthetic dataset where images are composed of cropping out birds
from photos in the Caltech-UCSD Birds-200-2011 (CUB) dataset (Wah et al., 2011) and transferring them onto
backgrounds from the Places dataset (Zhou et al., 2017). The dataset contains a large percentage of training samples
(≈ %95) which are spuriously correlated with the background information.

The CivilComments is a dataset of textual reviews annotated with demographics information for the task of detecting
toxic comments. Prior work has shown that toxicity classifiers can pick up on biases in the training data and spuriously
associate toxicity with the mention of certain demographics (Park et al., 2018; Dixon et al., 2018). These types of spurious
correlations can significantly degrade model performance on particular subpopulations (Sagawa et al., 2020).

The PACS dataset (Li et al., 2017) is a collection of images coming from four different domains: real images, art paintings,
cartoon and sketch. The VLCS dataset contains examples from 5 overlapping classes from the VOC2007 (Everingham et al.),
LabelMe (Russell et al., 2008), Caltech-101 (Fei-Fei et al., 2004) , and SUN (Xiao et al., 2010) datasets. The OfficeHome
dataset contains 4 domains (Art, ClipArt, Product, real-world) where each domain consists of 65 categories.

The Camelyon17 dataset, is a collection of medical tissue patches scanned from different hospital environments. The task
is to predict whether a patch contain a benign or tumoral tissue. The different hospitals represent the different domains in
this problem, and the aim is to learn a predictor which is robust to changes in factors of variation across different hospitals.

E.2. Models

For synthetic datasets we use a CNN module for the backbone gθ following the architecture in Table 5. For real datasets
that use images as modality we use a ResNet50 architecure as backbone pretrained on the Imagenet dataset. For the
experiments on the text modality we use DistilBERT model (Sanh et al., 2019) with pretrained weights downloaded from
HuggingFace (Wolf et al., 2019).

E.3. Synthetic experiments

Table 5: Convolutional architecture used in synthetic experiments.

CNN backbone

Input : 64× 64× number of channels
4× 4conv, 32 stride 2, padding 1, ReLU,BN
4× 4conv, 32 stride 2, padding 1, ReLU,BN
4× 4conv, 64 stride 2, padding 1, ReLU,BN
4× 4conv, 64 stride 2, padding 1, ReLU,BN

FC, 256, Tanh
FC, d

Synthetic tasks generation For the synthetic experiments we have access to the ground truth factors of variations Z for
each dataset. The task generation procedure relies on two hyperparameters: the first one is an index set S of possible factors
of variations on which the distribution of tasks can depend on. The latter hyperparameter K, set the maximum number of
factors of variations on which a single task can depend on. Then a task t is sampled drawing a number kt from {1...K},
and then sampling randomly a subset S of size |S| − kt from S. The resulting set S will be the set indexing the factors of
variation in Z on which the task t is defined. In this setting restrict ourselves to binary task: for each factors in S, we sample
a random value v for it. The resulting set of values V , will determine uniquely the binary task.

Before selecting v ∈ V we quantize the possible choices corresponding to factors of variations which may have more than
six values to 2. We remark that this quantization affect only the task label definition. For examples for x axis factor, we
consider the object to be on the left if its x coordinate is less than the medial axis of the image, on the right otherwise. The
DSprites dataset has the following set of factors of variations Zdsprites = {shape, size, angle, xpos, ypos} and example
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of task is There is a big object on the right where kt = 2 the affected factors are size, xpos. Another example is There is a
small heart on the top left , where kt = 4 the affected factors are shape, size, xpos, ypos. Obervations are labelled positively
of negatively if their corresponding factors of variations matching in the values with the one specified by the current task.

We then samples random query Q and support U set of samples balanced with respect to postive and negative labels of task
task t, using stratified sampling.

Real tasks generation . Our method can be applied in a standard supervised classification setting where we construct the
tasks on the fly as follows. We define a task t as a C-way classification problem. We first select a random subset of C
classes from a training domain Dtrain which contains Ktrain classes. For each class we consider the corresponding data
points and select a random support set Ut with elements (xU

t , y
U ) ∈ U and a disjoint random query set Qt with elements

(xQ
t , y

Q) ∈ Qt.

E.4. Experiments on domain shifts

In a domain generalization setting, we do not have access to samples coming from the testing domain, which is considered
to be OOD w.r.t. to the training domains. However, in order to solve a new task, our method relies on a set labeled data at
test time to fit the linear head on top of the feature space. Our strategy is to sample data points from the training distribution,
balanced by class, assuming that the label set Y does not change in the testing domain, although its distribution may undergo
subpopulation shifts. This sampling strategy is in line with what is highlighted in (Kirichenko et al., 2022), where it is
shown that retraining the linear head of a deep classifier on a small set of balanced samples (w.r.t to minority groups in
the training data) is sufficient to achieve robustness to spurious correlations in the test data. The main difference is that we
typically don’t assume to have labels on the minority groups in the training set and we just balance the sampling by the class
label. To fit the linear head we sample 10 times with different samples sizes from the training domains and we report the
mean score and standard deviation.

For the domain generalization and few-shot transfer learning experiments we put ourselves in the same settings of (Gulrajani
& Lopez-Paz, 2021; Koh et al., 2021) to ensure a fair comparison. Namely, for each dataset we use the same augmentations,
and same backbone models.

For solving the inner problem in Equation 5, we used Adam optimizer (Kingma & Ba, 2015), with a learning rate of 1e− 2,
momentum 0.99, with the number of gradient steps varying from 50 to 100, from the synthetic setting to domain shifts
experiments. For the latter, the task (or episode) sampling during training is done as follows: we sampled each task as
a multiclass classification problem setting the number of classes C = 5 when the original number of classes Ktrain in
the dataset was higher than five, i.e. Ktrain > 5, C = Ktrain otherwise. During training, the sizes of the support set U
and query sets Q where set to |U | = 25, |Q| = 15 similar to as done in prior meta-learning literature (Lee et al., 2019;
Dhillon et al., 2020). Changing these parameters has similar effects from what has been observed in many meta learning
approaches(e.g. (Lee et al., 2019; Dhillon et al., 2020)).

E.5. Selection of α and β

To find the best regularization parameters α, β weighting the sparsity and feature sharing regularizers in Equation 1
respectively, we perform model selection according to the highest accuracy on a validation set. We report in Table 6 the
value selected for each experiment.

Table 6: Selected values for α and β for all experiments, applying model selection on validation set.

Experiment α β

Table 1 1e-2 0.15
Table 2 1e-2 5e-2
Table 3 2.5e-3 5e-2
Table 4 1.5e-3 1e-2

Table 5, 6 2.5e-3 1e-2
Table 7 2.5e-3 1e-2
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Table 7: Quantitative results accompanying Figure 5

α = 0, β = 0 α = 1e− 2, β = 0 α = 1e− 2, β = 0.2 α = 1e− 2, β = 0.4

DCI 27.8 71.9 98.8 30.5

F. Additional results
F.1. Synthetic experiments

The role of minimality In Figure 5we show the qualitative results accompanying Figure1. The qualitative results in the
Figure are produced visualizing matrices of feature importance (Locatello et al., 2020a) computed fitting Gradient Boosted
Trees (GBT) on the learned representations w.r.t. task labels, and on the factors of variations w.r.t. task labels and compare
the results. In each matrix the x axis represents the tasks and the y axis the features, and each entries the amount of feature
importance (which goes from 0 to 1).

Task compositional generalization In Table 8 we show the quantitative results accompanying Figure 2.

β = 0.4, DCI = 30.5

β = 0, α = 0, DCI = 27.8

β = 0, DCI = 71.9

β = 0.2, DCI = 98.8

Figure 5: Qualitative dependency of disentanglement from the weight of our penalties (α = 0.01 unless otherwise specified).
The model that attains the best disentanglement (DCI = 98.8) uses both. Left column, top: ground-truth importance
weights of each latent factor for each task. Right column: we train models with different β and visualize the weights assigned
to each learned feature on each task. Left column: to determine whether the model recover the ground-truth latents, we
select the 3 top features and compare their assigned weights on different tasks with the ground-truth weights. Bottom row:
example of a failure case with high β.
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Table 8: Task compositional generalization: Mean accuracy over 100 random tasks reported for group of tasks of growing
support (second, third, fourth column) for a model trained without inductive biases (top row) and enforcing them (bottom
row). The latter show better compositional generalization resulting from the properties enforced on the representation

Acc ID DCI |S| = 3 |S| = 4 |S| = 5

No reg 88.7 22.8 72.6 63.3 59.9

α, β 93.2 59.4 83.0 78.8 76.8

F.2. Properties of the learned representations

Feature sufficiency. The sufficiency property is crucial for robustness to spurious correlations in the data. If the model can
learn and select the relevant features for a task, while ignoring the spurious ones, sufficiency is satisfied, resulting in robust
performance under subpopulation shifts, as shown in Tables 9 and 4. To get qualitative evidence of the sufficiency in the
representations, in Figure 6 we show the saliency maps computed from the activations of our model and a corresponding
model trained with ERM. Our model can learn features specific to the subject of the image, which are relevant for
classification, while ignoring background information. This can be observed in both correctly classified (bottom row) and
misclassified (top row) samples by ERM. In contrast, ERM activates features in the background and relies on them for
prediction.

Figure 6: Feature sufficiency: Left, pairs of random samples and saliency maps computed on activations with our method.
All samples are correctly classified. Right, corresponding saliency maps (Adebayo et al., 2018) an ERM based method:
the first row is misclassifed by the network, the last is correctly classified. The ERM model depends on features from the
background, resulting in a higher prediction error on mixed subdomains. Our model is robust to spurious correlations and
satisfies the sufficiency assumptions.

Feature sharing. In this section, we study the minimality properties of the representations learned by our method. To
achieve this, we conduct the following experiment. We randomly draw 14 tasks from the

∑3
i=1

(
4
i

)
possible combinations

of the four domains in the PACS dataset. We use the data from these tasks to fit the linear head and test the model accuracy
on the OOD domain (e.g. the sketch domain). In Figure 7, we show the performance on each task, ordered on the x axis
according to OOD accuracy of a model trained with ERM (in yellow). We also report the fraction of activated features
(in blue) shared between each task and the OOD task, and the same(red) for the ERM model. The fraction of activated
features is computed by looking at the matrix of coefficients of the sparse linear head ϕ ∈ RM×C , where M is the number

of features and C the number of classes, after fitting on each task. Specifically, is computed as
∑

m[ϕ̃ϵ∩ϕ̃OOD
ϵ ]∑

m[ϕ̃ϵ∪ϕ̃OOD
ϵ ]

where

ϕ̃ϵ =
1
C

∑
c |ϕm,c| > ϵ and ϕOOD is the matrix of coefficient of the OOD task. We set ϵ = 0.01. From Figures 7 and 8

we draw the following conclusions: (i) When the accuracy of the ERM decreases (i.e., the current task is farther from the
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OOD test task), our method is still able to retain a high and consistent accuracy, demonstrating that our features are more
robust out-of-distribution. This is further supported by the higher number of shared features compared to ERM, as we
move away from the testing domain. (ii) The correlation between the fraction of shared features and the accuracy OOD
demonstrates that the method is able to learn general features that transfer well to unseen domains, thanks to the minimality
constraint. Additionally, this measure serves as a reliable indicator of task distance, as discussed in the next section. (iii)
Even though the same sparse linear head is used on top of the ERM and our features, our method is able to achieve better
OOD performance with fewer features, further demonstrating our feature minimality.

Figure 7: Fraction of shared features VS accuracy. Barplot of OOD accuracies on the Sketch domain for our model (green)
and ERM (yellow) on the 14 tasks sampled from PACS, along with the fraction of shared features with the OOD domain
for each task (blue for our model, red for ERM). Each task is sampled from a single domain or from the intersections of
domains. Tasks are labelled according to the sampling domain on the x axis. The fraction of shared features and OOD
accuracy have a correlation coefficient of 97.5.

F.3. CivilComments

See Table 9 for the quantitative results accompanying to Figure ?? in the paper and 10 for result on groups on the civil
comments dataset.

Table 9: Quantitative results on CivilComments: we report the accuracy on test averaged across all demographic groups
(left), and the worst group accuracy (right). We show that our method performs similarly in terms of average accuracy and
outperforms in terms of worst group accuracy, without using any knowledge on the group composition in the training data.
This Table accompanies Figure ??

avg acc worst group acc

ERM 92.2 56.5
DRO 90.2 69
Ours 91.2 ± 0.2 75.45± 0.1

F.4. Full results Domain generalization

We report here comparison with several methods in the domain generalization literature, namely (Yan et al., 2020; Blanchard
et al., 2021; Li et al., 2018a;b; Ganin et al., 2016; Li et al., 2018c; Nam et al., 2021; Zhang et al., 2021; Huang et al., 2020;
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Figure 8: Barplot of feature usage (number of activated features) for each task for our model (blue) and ERM model (green)
referring to the experiment in Figure 7. Our method uses fewer features than ERM while also generalizing better.

Table 10: Civilcomments quantitative results pergroup.

Male Female LGBTQ Christian Muslim Other religion Black White
GroupDRO

Toxic 75.1± 2.1 73.7± 1.5 73.7± 4 69.2± 2.0 72.1± 2.6 72.0± 2.5 79.6± 2.2 78.8± 1.7
Non Toxic 88.4± 0.7 90.0± 0.6 76.0± 3.6 92.6± 0.6 80.7± 1.9 87.4± 0.9 72.2± 2.3 73.4± 1.4

Ours
Toxic 87.94± 0.07 89.17± 0.05 77.25± 0.16 92.25± 0.16 80.6± 0.29 87.79± 0.26 75.45± 0.17 78.35± 0.02

Non toxic 91.62± 0.11 91.52± 0.11 91.71± 0.16 91.11± 0.1 91.81± 0.12 91.32± 0.1 90.82± 0.12 92.04± 0.11

Krueger et al., 2021).

F.4.1. VLCS

Algorithm C L S V Avg

ERM 97.7 ± 0.4 64.3 ± 0.9 73.4 ± 0.5 74.6 ± 1.3 77.5
IRM 98.6 ± 0.1 64.9 ± 0.9 73.4 ± 0.6 77.3 ± 0.9 78.5
GroupDRO 97.3 ± 0.3 63.4 ± 0.9 69.5 ± 0.8 76.7 ± 0.7 76.7
Mixup 98.3 ± 0.6 64.8 ± 1.0 72.1 ± 0.5 74.3 ± 0.8 77.4
MLDG 97.4 ± 0.2 65.2 ± 0.7 71.0 ± 1.4 75.3 ± 1.0 77.2
CORAL 98.3 ± 0.1 66.1 ± 1.2 73.4 ± 0.3 77.5 ± 1.2 78.8
MMD 97.7 ± 0.1 64.0 ± 1.1 72.8 ± 0.2 75.3 ± 3.3 77.5
DANN 99.0 ± 0.3 65.1 ± 1.4 73.1 ± 0.3 77.2 ± 0.6 78.6
CDANN 97.1 ± 0.3 65.1 ± 1.2 70.7 ± 0.8 77.1 ± 1.5 77.5
MTL 97.8 ± 0.4 64.3 ± 0.3 71.5 ± 0.7 75.3 ± 1.7 77.2
SagNet 97.9 ± 0.4 64.5 ± 0.5 71.4 ± 1.3 77.5 ± 0.5 77.8
ARM 98.7 ± 0.2 63.6 ± 0.7 71.3 ± 1.2 76.7 ± 0.6 77.6
VREx 98.4 ± 0.3 64.4 ± 1.4 74.1 ± 0.4 76.2 ± 1.3 78.3
RSC 97.9 ± 0.1 62.5 ± 0.7 72.3 ± 1.2 75.6 ± 0.8 77.1
Ours 98.1± 0.2 63.4± 0.5 78.2 ± 0.7 73.9± 0.8 78.4
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F.4.2. PACS

Algorithm A C P S Avg

ERM 84.7 ± 0.4 80.8 ± 0.6 97.2 ± 0.3 79.3 ± 1.0 85.5
IRM 84.8 ± 1.3 76.4 ± 1.1 96.7 ± 0.6 76.1 ± 1.0 83.5
GroupDRO 83.5 ± 0.9 79.1 ± 0.6 96.7 ± 0.3 78.3 ± 2.0 84.4
Mixup 86.1 ± 0.5 78.9 ± 0.8 97.6 ± 0.1 75.8 ± 1.8 84.6
MLDG 85.5 ± 1.4 80.1 ± 1.7 97.4 ± 0.3 76.6 ± 1.1 84.9
CORAL 88.3 ± 0.2 80.0 ± 0.5 97.5 ± 0.3 78.8 ± 1.3 86.2
MMD 86.1 ± 1.4 79.4 ± 0.9 96.6 ± 0.2 76.5 ± 0.5 84.6
DANN 86.4 ± 0.8 77.4 ± 0.8 97.3 ± 0.4 73.5 ± 2.3 83.6
CDANN 84.6 ± 1.8 75.5 ± 0.9 96.8 ± 0.3 73.5 ± 0.6 82.6
MTL 87.5 ± 0.8 77.1 ± 0.5 96.4 ± 0.8 77.3 ± 1.8 84.6
SagNet 87.4 ± 1.0 80.7 ± 0.6 97.1 ± 0.1 80.0 ± 0.4 86.3
ARM 86.8 ± 0.6 76.8 ± 0.5 97.4 ± 0.3 79.3 ± 1.2 85.1
VREx 86.0 ± 1.6 79.1 ± 0.6 96.9 ± 0.5 77.7 ± 1.7 84.9
RSC 85.4 ± 0.8 79.7 ± 1.8 97.6 ± 0.3 78.2 ± 1.2 85.2
Ours 83.1 ± 0.1 86.7± 0.8 97.8 ± 0.1 83.5 ± 0.1 87.5

F.4.3. OFFICEHOME

Algorithm A C P R Avg

ERM 61.3 ± 0.7 52.4 ± 0.3 75.8 ± 0.1 76.6 ± 0.3 66.5
IRM 58.9 ± 2.3 52.2 ± 1.6 72.1 ± 2.9 74.0 ± 2.5 64.3
GroupDRO 60.4 ± 0.7 52.7 ± 1.0 75.0 ± 0.7 76.0 ± 0.7 66.0
Mixup 62.4 ± 0.8 54.8 ± 0.6 76.9 ± 0.3 78.3 ± 0.2 68.1
MLDG 61.5 ± 0.9 53.2 ± 0.6 75.0 ± 1.2 77.5 ± 0.4 66.8
CORAL 65.3 ± 0.4 54.4 ± 0.5 76.5 ± 0.1 78.4 ± 0.5 68.7
MMD 60.4 ± 0.2 53.3 ± 0.3 74.3 ± 0.1 77.4 ± 0.6 66.3
DANN 59.9 ± 1.3 53.0 ± 0.3 73.6 ± 0.7 76.9 ± 0.5 65.9
CDANN 61.5 ± 1.4 50.4 ± 2.4 74.4 ± 0.9 76.6 ± 0.8 65.8
MTL 61.5 ± 0.7 52.4 ± 0.6 74.9 ± 0.4 76.8 ± 0.4 66.4
SagNet 63.4 ± 0.2 54.8 ± 0.4 75.8 ± 0.4 78.3 ± 0.3 68.1
ARM 58.9 ± 0.8 51.0 ± 0.5 74.1 ± 0.1 75.2 ± 0.3 64.8
VREx 60.7 ± 0.9 53.0 ± 0.9 75.3 ± 0.1 76.6 ± 0.5 66.4
RSC 60.7 ± 1.4 51.4 ± 0.3 74.8 ± 1.1 75.1 ± 1.3 65.5
Ours 56.3± 0.1 66.7 ± 0.7 79.2± 0.5 81.3 ± 0.4 70.9

F.5. Few-shot transfer learning

F.6. Few-shot transfer learning.

We test the adaptability of the feature space to new domains with limited labeled samples in few-shot transfer learning
setting in Append F.5. For transfer learning tasks, we fit a linear head using the available limited supervised data. The
sparsity penalty α is set to the value used in training; the feature sharing parameter β is defaulted to zero unless specified.
We compare the results with ERM in Table 11, averaged by domains in each benchmark dataset. The full scores for each
domain are in Appendix F.5 for 1-shot, 5-shot, and 10-shot setting, reporting the mean accuracy and standard deviations
over 100 draws. Our approach achieves consistently higher accuracy than ERM, showing the better adaptation capabilities
of our minimal and sufficiently sparse feature space.

Results on few-shot transfer learning on datasets PACS,VLCS,OfficeHome,Waterbirds in Tables 12,13,14 and 15.

F.7. Feature sharing on PACS

See Figure 9 for additional results on all domains in PACS.
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Table 11: Quantitative results for few-shot transfer learning, with our method consistently outperforming ERM across all
sample sizes and data sets.

N-shot/Algorithm OOD accuracy (averaged by domains)

1-shot PACS VLCS OfficeHome Waterbirds
ERM 80.5 59.7 56.4 79.8
Ours 81.5 68.2 58.4 88.4

5-shot
ERM 87.1 71.7 75.7 79.8
Ours 88.3 74.5 77.0 87.6

10-shot
ERM 87.9 74.0 81.0 84.2
Ours 90.4 77.3 82.0 89.2

Table 12: Results few-shot transfer learning on PACS

Dataset/Algorithm OOD accuracy (by domain)

PACS 1-shot S A P C Average
ERM 72.3 ± 0.3 80.4 ± 0.09 93.3 ± 4.1 75.8± 2.6 80.5
Ours 75.4 ± 3 81.7± 0.8 98.0 ± 0.8 71 ± 5.2 81.5

PACS 5-shot S P A C Average
ERM 84.9± 1.1 85.7 ± 0.08 98.6 ± 0.0 79.1 ± 0.9 87.1
Ours 85.0 ± 0.1 86.7± 0.8 97.8 ± 0.1 83.5 ± 0.1 88.3

PACS 10-shot S P A C Average
ERM 81.0 ± 0.1 88.9 ± 0.1 97.4 ± 0.0 84.2 ± 0.9 87.9
Ours 86.2 ± 0.5 90.0 ± 0.8 98.9 ± 0.1 86.6 ± 0.1 90.4

Table 13: results few-shot transfer learning on VLCS

Dataset/Algorithm OOD accuracy (by domain)

VLCS 1-shot C L V S Average
ERM 98.9 ± 0.4 32.7 ± 16.2 59.8 ± 10.7 47.5 ± 11.2 59.7
Ours 98.6 ± 0.3 51.0 ± 4.9 61.2 ± 9.8 61.9 ± 9.7 68.2

VLCS 5-shot C L V S Average
ERM 99.4 ± 0.2 50.0 ± 6.2 71.9 ± 3.2 65.3 ± 2.8 71.7
Ours 98.9 ± 0.4 56.0 ± 6.2 73.4 ± 1.4 69.8 ± 2.0 74.5

VLCS 10-shot C L V S Average
ERM 99.5 ± 0.2 52.6 ± 5.0 74.8 ± 3.8 69.1 ± 2.4 74.0
Ours 99.1 ± 0.2 65.0 ± 6.2 74.4 ± 1.9 70.8 ± 2.3 77.3

F.8. Task similarity

We show that our method enables direct extraction of a task representation and a metric for task similarity from our model
and its feature space. We propose to use the coefficients of the fitted linear heads fϕ∗

t
on a given task as a representation for

that task. Specifically we transform the optimal coefficients ϕ∗ in a M -dimensional vector space (here M is the number of
features) by simply computing

∑
c |ϕ∗

t,m,c|, and discretize them by a threshold ϵ. The resulting binary vectors, together with
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Table 14: results few-shot transfer learning on OfficeHome

Dataset/Algorithm OOD accuracy (by domain)

OfficeHome 1-shot C A P R Average
ERM 40.2 ± 2.4 52.7 ± 2.6 68.1 ± 1.7 64.6 ± 1.8 56.4
Ours 41.4 ± 1.7 54.5 ± 2.0 68.5 ± 2.7 69.0 ± 1.5 58.4

OfficeHome 5-shot C A P R Average
ERM 63.2 ± 0.4 73.3 ± 0.8 84.1 ± 0.4 82.0 ± 0.8 75.7
Ours 66.2 ± 1.2 75.1 ± 1.0 83.6 ± 0.5 83.1 ± 0.8 77.0

OfficeHome 10-shot C A P R Average
ERM 71.1 ± 0.4 80.5 ± 0.5 87.5 ± 0.3 84.9 ± 0.5 81.0
Ours 72.2 ± 1.2 81.8 ± 0.5 87.5 ± 0.2 86.3 ± 0.4 82.0

Table 15: results few-shot transfer learning Waterbirds

Dataset/Algorithm OOD accuracy (by domain)

Waterbirds 1-shot LL LW WL WW Average
ERM 99.1 ± 1.1 43.8 ± 16.5 79.5 ± 10.2 86.7 ± 8.2 79.8
Ours 95.2 ± 8.1 81.9 ± 9.5 80.7 ± 5.5 95.9 ± 1.2 88.4

Waterbirds 5-shot LL LW WL WW Average
ERM 96.3 ± 5.0 58.7 ± 17.2 80.1 ± 12.6 84.1 ± 12.7 79.8
Ours 98.8 ± 1.8 75.4 ± 9.0 81.6 ± 14.0 94.8 ± 1.8 87.6

Waterbirds 10-shot LL LW WL WW Average
ERM 94.2 ± 4.2 73.0 ± 11.6 80.4 ± 6.3 89.3 ± 3.3 84.2
Ours 98.2 ± 0.9 82.6 ± 5.9 80.7 ± 6.3 95.5 ± 1.4 89.2

a distance metric (we choose the Hamming distance), form a discrete metric space of tasks. We preliminary verify how the
proposed representation and metric behave on MiniImagenet (Vinyals et al., 2016) below.

We sample 160 tasks from 10 groups from , where each group has the same class support, i.e. t1, t2 ∈ Gi 7→ Supp(t1) ==
Supp(t2)∀i. We then fit the linear heads independently on each task (i.e. not using the feature sharing regularizer). Then we
compute the discrete task representation and project the resulting vector space in a two dimensional vector space using tSNE
(Wattenberg et al., 2016). The clusters obtained in this space correspond exactly to the group identities (visualized in color
in Figure 10).

F.9. Comparison with metalearning baselines

In Table 16, we further compare our method on meta learning benchmarks, namely Mini Imagenet (Vinyals et al., 2016)
and CIFAR-FS (Bertinetto et al., 2019) with different approaches in the literature based on meta learning (Snell et al., 2017;
Oreshkin et al., 2018; Dhillon et al., 2020; Lachapelle et al., 2022a).

In Figure 11 we compare the predicting performance of our method and capacity to leverage shared knowledge between task,
comparing with backbone trained with protopical network approach. We sample a set of task with different overlap, where
the overlap between two task t1, t2 is defined as sim(t1, t2) = Supp(t1)∩Supp(t2)

Supp(t1)∪Supp(t2
indicating with Supp(ti) the support

over classes in task ti. We show that other than reaching a much higher accuracy the features of our model are able to be
clustered at test time enabling to reach better performance on unseen task. As a matter of fact we can use the feature sharing
regularizer at test time showing that there is a increasing trend in the performance, while the prototypical networks features
just decreases being unable to share information across tasks at test time.
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Table 16: Meta learning baselines, including concurrent work (Lachapelle et al., 2022a) which we significantly outperform.

Architecture Cifar-FS (1 shot) Cifar-FS( 5 shot) MiniImagenet(1 shot) MiniImagenet (5 shot)

MAML Conv32(x4) - - 48.7±1.84 63.11±0.66
Prototypical Net Conv64(x4) - - 49.42±0.78 68.20±0.66

TADAM ResNet12 - - 58.5 ±0.56 76.7 ±0.3
MetaOptNet ResNet12 72.0 ± 0.7 84.2 ± 0.5 62.64±0.61 78.63±0.46

MetaBaseline WRN 28-10 76.58±0.68 85.79±0.5 59.62 ±0.66 78.17 ±0.49
Lachapelle et al(Lachapelle et al., 2022a) ResNet12 - - 54.22 ± 0.6 70.01 ± 0.51

Ours* ResNet12 75.1 ±0.4 86.9 ±0.19 60.1 ± 2 76.6 ± 0.1

F.10. Sharing features at test time

Features can be enforced to be shared also at test time, simply by setting β > 0 to fit the linear head on top of the learned
feature space. We observe the benefits of utilizing the feature sharing penalty at test time on the Camelyon17 dataset in
the fourth row of Table 17.

As highlighted in the main paper, retaining features which are shared across the training domains and cutting the ones that
are domain-specific enable to perform better at test time, at the expenses of lower performance near the training distribution.

We analyzed in more depth this phenomenon in Figure 11. For this experiment we trained our model and a Prototypical
network (Snell et al., 2017) one on the MiniImagenet dataset. Then we sampled 5 groups of tasks according to an
average overlap measure between tasks. Between two task t1, t2 the overlap is defined as sim(t1, t2) =

Supp(t1)∩Supp(t2)
Supp(t1)∪Supp(t2

.
each group is made of 10 task. We then plot the performance at test time increasing the regularization parameter β, weighting
the feature sharing. The outcome of the experiment is twofold: (i) we observe an increase in performance at test time,
especially when tasks shows maximal overlap (i.e. they share more features) (ii) this is not the case with the pretrained
backbone of (Snell et al., 2017) which shows almost monotonical decrease in the performance, i.e. enforcing the minimality
property during training enables to use it as well at test time.

Further analysis on different datasets, and also on tuning strategies on the regularization parameter are promising directions
for future work, to better understand when and how enforcing feature sharing is beneficial at test time.

Table 17: Camelyon17 quantitative results: we report accuracy both on ID and OOD splits. We show (last row) that feature
sharing at test time, leads to more robust features on OOD test data.

Validation(ID) Validation (OOD) Test (OOD)

ERM 93.2 84 70.3
CORAL 95.4 86.2 59.5

IRM 91.6 86.2 64.2
Ours 93.2±0.3 89.9±0.6 74.1±0.2

Ours(β > 0 test) 90.4±0.2 84.01±0.9 85.5±0.6



1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484

Leveraging sparse and shared feature activations for disentangled representation learning

Figure 9: Additional results for all domains in PACS, separated by domain. The overall message of Figure 7 appear
consistent across all domains.
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Figure 10: Task Similarity. We visualize the tSNE of the discrete task representation and observe that the clusters in this
space corresponds to group identities.

Figure 11: Enforcing feature sharing at test time. Our approach (on the left) is able to benefit from the feature sharing
constraint at test time, while using the prototypical network backbone performance monotonically decrease (center). On the
right we show the maximal performance gain for each group of tasks for the two approaches.


