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Abstract
Large Language Models (LLMs) have exhibited
exceptional performance in software engineering
yet face challenges in adapting to continually
evolving code knowledge, particularly the
frequent updates of third-party library APIs.
This limitation, rooted in the static pre-training
datasets, often results in non-executable code
or implementations with suboptimal safety
and efficiency. To this end, we introduce
CODESYNC, a data engine to identify outdated
code patterns and collect real-time code
knowledge updates from Python third-party
libraries at scale. Building upon CODESYNC, we
develop CODESYNCBENCH, a comprehensive
benchmark for assessing LLMs’ ability to stay
synchronized with code evolution, which covers
real-world updates for 220 APIs from six Python
libraries. Our benchmark offers 3,300 test
cases spanning three evaluation tasks and an
update-aware instruction tuning dataset of 2,200
training samples. Extensive experiments on 14
LLMs reveal that they struggle with dynamic
code evolution, even with the support of advanced
knowledge updating methods (e.g., DPO, ORPO,
and SimPO). Our CODESYNC lays a strong
foundation for developing more effective and
robust methods for real-time and large-scale
code knowledge updating in the future. The
experimental code is available at: https://
github.com/CGCL-codes/naturalcc/
tree/main/examples/codesync.

*Equal contribution 1National Engineering Research Center
for Big Data Technology and Systems, Services Computing
Technology and System Lab, Cluster and Grid Computing
Lab, School of Computer Science and Technology, Huazhong
University of Science and Technology, Wuhan, China 2Wuhuan
University 3Zhejiang University. Correspondence to: Yao Wan
<wanyao@hust.edu.cn>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

class  SmoothReLU(torch.autograd.Function):
         @staticmethod
         def  forward(
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argument but 2 were given.

def forward(ctx, input):
       ctx.save_for_backward(input)
       . . . . . .
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def forward(*args):
       ctx = args[0]; input = args[1]
       ctx.save_for_backward(input)

sync
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Figure 1: LLMs struggle to adapt to API updates, leading
to potential compatibility issues in generated code. For
example, the device parameter was removed from the
full function in numpy version 2.1.0, making LLM failed
to provide correct invocation. It highlights the need for API
knowledge updating to synchronize LLM with the latest API
changes and correctly generate updated API invocations.

1. Introduction
Large Language Models (LLMs), exemplified by DeepSeek-
R1 (Guo et al., 2025), CodeLlama (Roziere et al., 2023),
and GPT-4o (OpenAI, 2024), have demonstrated remarkable
performance in automating software development through
generating executable code (Jiang et al., 2024). However,
due to static pre-training datasets, they often struggle to
adapt to the rapidly evolving knowledge in programming,
especially the frequent updates of external library APIs (Tao
et al., 2012; Zhang et al., 2020).

As illustrated in Figure 1, when prompted to create an array
on a CUDA device, the LLM is unaware of the removal
of the device parameter in the updated numpy.full
function. This oversight results in an error, i.e., “TypeError:
full() got an unexpected keyword argument ‘device’”.
The pitfalls of generating code containing outdated APIs
can lead to parameter compatibility issues, which cause
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Figure 2: Performance comparison of knowledge updating methods across three evaluation tasks on five LLMs. All
LLMs shown in the figure are instruction-tuned versions. The results reveal that LLMs face challenges in adapting to
dynamic API updates, even with the support of knowledge updating approaches, emphasizing the need for improvements in
real-time code knowledge updating.

programs to crash or malfunction, undermining the stability
and reliability of software (Bai et al., 2024; Zhang et al.,
2024c). This challenge highlights the need for LLMs to
synchronize with the dynamic evolution of practical code
knowledge, particularly the fast-paced API updates that have
immediate and visible impacts on software development.

Recently, Liu et al. (2024c) made an initial attempt
to address this gap by benchmarking LLMs’ ability to
access API updates through fine-tuning. However, their
benchmark relies on unauthentic API updates synthesized
by GPT-4 (OpenAI, 2024) rather than real-world library
updates, resulting in potentially biased assessments of
LLMs’ adaptability to practical code evolution. We argue
that an authentic evaluation system should be established
to answer the key question: Can LLMs be effectively and
efficiently updated to handle real-time API modifications?

To address this gap, this paper introduces CODESYNC, a
scalable data engine for collecting authentic code knowledge
updates from Python third-party libraries across various
domains, including data science (e.g., pandas), artificial
intelligence (e.g., torch), and web development (e.g.,
flask). Specifically, CODESYNC systematically identifies
real-time API updates at scale by tracking changes to API
signatures across library versions. For each identified
API with updates, it retrieves relevant code instances
invoking the API from GitHub repositories using GitHub
Code Search (GitHub). Based on these real-world API
invocations, CODESYNC employs DeepSeek-V3 (Liu et al.,
2024a) to synthesize contrastive invocations for the legacy
and updated API versions.

Based on CODESYNC, we develop CODESYNCBENCH,
an extensive benchmark for assessing LLMs’ ability to
stay synchronized with dynamic code evolution, which

includes real-world updates for 220 APIs (130 functions,
59 initializers, and 31 methods) from 6 Python libraries,
along with 3,300 legacy-updated pairs of API invocation
instances. The benchmark provides 3,300 test cases across
three evaluation tasks, i.e., Code Complete Task (CCT),
Error Correction Task (ECT), and Multiple Choice Question
(MCQ), accompanied by an update-aware instruction tuning
dataset comprising 2,200 training samples. Unlike retrieval-
augmented frameworks that enhance LLMs at the expense
of increased inference overhead and without reflecting true
model updates, CODESYNCBENCH focuses on evaluating
and improving LLMs’ ability to internalize API update
knowledge and accurately recall it during code generation.

Take-Aways. We benchmark 14 state-of-the-art LLMs (e.g.,
ChatGPT (OpenAI, 2024), DeepSeek (Liu et al., 2024a) and
Claude (Anthropic, 2024)), including both proprietary and
open-source models, as well as five knowledge updating
methods (e.g., DPO (Rafailov et al., 2023), ORPO (Hong
et al., 2024), and SimPO (Meng et al., 2024)). Our findings
reveal several key insights. First, as shown in Figure 2,
assessment results indicate that LLMs struggle to adapt to
dynamic API updates, even with the support of advanced
knowledge updating approaches, highlighting the need for
further advancements in real-time code knowledge updating.
Moreover, the number of API invocations available for
training and the types of updated APIs significantly impact
the effectiveness of knowledge updating, increasing the
complexity of handling real-world API modifications.

Contributions. Our primary contributions are summarized
as follows.

• A Data Engine. We introduce CODESYNC, a data engine
that systematically collects real-time code knowledge
updates from various Python third-party libraries.
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Figure 3: An overview of our proposed CODESYNC framework. CODESYNC consists of four key steps: (1) Real-Time
API Update Tracking tracks and collects API updates by comparing legacy and latest versions of libraries. (2) Real-World
API Invocation Retrieval is designed to crawl API invocations and locate valid API calls. (3) Legacy-Updated API
Invocation Synthesis leverages LLMs to synthesize new API invocation statements based on legacy and updated signatures,
respectively, and then recognizes them into metadata. (4) CODESYNCBENCH is used to evaluate the performance of LLMs
on API updating tasks, with a period spanning from January 1, 2023 (post-GPT-3.5 release) to current versions.

• A Novel Benchmark. We develop CODESYNCBENCH,
a novel benchmark covering updates for 220 APIs across
six Python libraries. It offers 3,300 test cases across three
evaluation tasks and an update-aware instruction tuning
dataset with 2,200 training samples. This benchmark can
serve as a rigorous testbed to facilitate the development
of real-time code knowledge updating methods.

• Comprehensive Evaluation. Our extensive experiments
on 14 state-of-the-art LLMs, including both proprietary
and open-source models, indicate that they still struggle
to handle dynamic code evolution. Additionally, our
results reveal that knowledge updating methods can
improve LLM synchronization with API updates, though
challenges remain to be addressed.

2. CODESYNC: A Data Engine for Real-Time
Code Knowledge Collection

As illustrated in Figure 3, we propose CODESYNC, a data
engine for real-time collection of code knowledge evolution,
which operates through three key steps: (1) Real-Time
API Update Tracking. CODESYNC identifies and extracts
API updates across diverse Python third-party libraries by

systematically tracking changes to API signatures between
library versions (see Section 2.1). (2) Real-World API
Invocation Retrieval. For each identified API with updates,
CODESYNC retrieves relevant code instances invoking
the API from GitHub repositories through GitHub Code
Search (GitHub) (see Section 2.2). (3) Legacy-Updated
API Invocation Synthesis. Building on the retrieved real-
world API invocations, CODESYNC employs DeepSeek-
V3 (Liu et al., 2024a) to synthesize contrastive code
instances that invoke legacy and updated APIs, respectively
(see Section 2.3). Based on CODESYNC, we establish
CODESYNCBENCH, a benchmark for assessing real-time
code knowledge of LLMs, which collects updates for
220 APIs (including 130 functions, 59 initializers, and 31
methods) from 6 Python libraries, totaling 3,300 legacy-
updated pairs of API invocation instances (see Section 2.4).

2.1. Step 1: Real-Time API Update Tracking

The functionality of APIs is exposed through their
signatures, which provide an interface for developers to
utilize this functionality within code. This feature enables
systematic tracking of library API updates by monitoring
changes in their signatures.
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Table 1: Statistics of tracked API updates. We
systematically identify API updates across diverse Python
third-party libraries by monitoring changes in API
signatures between the latest version and an outdated version
around January 1, 2023. This period coincides with the
introduction of the milestone GPT-3.5.

Library Legacy Version Updated Version Num.

pandas 2.0.3 2.1.4 1,043
numpy 1.24 2.1 55
scipy 1.10.0 1.13.1 494
tensorflow 2.11.0 2.18.0 161
torch 2.0.0 2.5.0 4,260
flask 2.2.2 3.0.0 22

Extracting API Signatures. We target 6 widely used
Python third-party libraries: pandas, numpy, scipy,
tensorflow, torch and flask. To collect complete
API signatures from these libraries, we leverage Python’s
built-in inspect module, a dynamic reflection tool provided
by the Python standard library (Python, b). This tool enables
runtime analysis and collection of information about Python
objects, including modules, classes, functions, and methods.
For each library, we extract API signatures using inspections
within virtual environments configured with specific library
versions. Further details are provided in Appendix B.1.1.

Identifying API Updates. To evaluate LLMs’ ability to
synchronize with real-time API evolution, we consider
the most recent library version before ChatGPT’s
release (OpenAI, 2023) as the legacy version and the current
library version as the updated version. Then, we identify
API updates by systematically comparing API signatures
between versions. To determine whether an update exists
for a given API, we perform a static analysis to establish
parameter mappings for same-name APIs across versions.
These mappings allow us to analyze API changes at the
parameter level by examining differences in attributes such
as parameter name, position, and type. Using this approach,
we identify 6,063 API updates from the six targeted Python
libraries, as summarized in Table 1. More implementation
details are provided in Appendix B.1.2.

2.2. Step 2: Real-World API Invocation Retrieval

While API updates are reflected in signature changes,
collecting this information alone is insufficient to fully
capture the evolution of code knowledge. To address this,
we consider real-world API invocation scenarios, focusing
on modifications in API usage within actual code contexts.
For each API update identified in Section 2.1, we collect
relevant code instances that invoke the API from GitHub.

Retrieving Relevant Code Instances. We use GitHub Code
Search (GitHub) to retrieve Python files that potentially
contain API invocations by designing multiple matching

templates. For example, to retrieve code invoking the
function torch.nn.Linear, we match the API name
(e.g., .Linear) along with relevant import statements
(e.g., import torch.nn as nn and from torch
import nn). Further details on the matching templates
are provided in Appendix B.1.3.

Locating Valid API Invocations. Code instances retrieved
via matching templates may only potentially invoke the
target APIs, requiring precise localization to confirm valid
invocations. To achieve this, we parse each code instance
into an Abstract Syntax Tree (AST) using Python’s built-
in ast module (Python, a) and traverse all statements to
identify those that genuinely contain targeted invocations.
Moreover, we perform alias resolution on import statements
to establish mappings between full module names (e.g.,
numpy) and their aliases (e.g., np), ensuring more accurate
identification of valid API invocations. For example, we
locate statements that contain np.full for the full
function and nn.Linear for the Linear class initializer.
Furthermore, regarding method invocation locating, the
ast module enables us to track objects whose types match
the target class by examining class instantiations and
assignments. For example, in the case of x.reshape(),
we identify that x is of type torch.Tensor, confirming
a valid invocation of the reshape() method from the
torch.Tensor class. The strategy guarantees that
the filtered instances are absolutely correct. Detailed
implementation is provided in Appendix B.1.4.

Through retrieval and localization, we filter out APIs with
fewer than 15 valid invocation instances. Out of 6,036
APIs, 220 meet the criteria, each with 15 valid invocation
instances, resulting in a total of 3,300 instances.

2.3. Step 3: Legacy-Updated API Invocation Synthesis

While real-world code instances with valid API invocations
can be retrieved from GitHub repositories, it is challenging
to determine the exact library version of the invoked
API. To address this, we synthesize the contrastive API
invocation pairs—legacy and updated—using state-of-the-
art LLMs, which have demonstrated strong capabilities in
revising code while preserving both semantic and syntactic
correctness (Guo et al., 2024b).

Specifically, for each API invocation instance retrieved
in Section 2.2, we prompt DeepSeek-V3 (Liu et al., 2024a)
to adapt the target API invocation statement according
to the legacy and updated API signatures, respectively,
while preserving the integrity of the surrounding context.
To ensure data quality, the authors manually verify the
divergence between legacy and updated versions, instructing
the LLM to re-synthesize cases with insufficient divergence.
This approach ensures divergence in API usage while
maintaining functional equivalence between legacy and
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Code Completion Task
[Instruction]   Provided with a code context ending 
with API name, numpy. vectorize.__init__,  please 
complete the parameter list of current API call 
statement. 

[Question]  

   def  step(input_path, output_path, 
                  interval, base):
      """Snaps layer values to boundaries  """        
         scaler = lambda x : round(x / interval) * interval  
         arr = numpy.vectorize

[Answer]
    (scaler, otypes="f", signature=None)

Error Correct Task

[Instruction]   You are provided with a code 
context ending with calls of flask.json.load. There 
exists invoking errors. please check and correct to 
appropriate version.

[Question]

  def  index(var, fname, app):
        <...code context...>
         flask.url_for(‘static’, filename=fname)
         var = flask.json.load (open('config.yml'), 
               app=app) 

[Answer]
       var = flask.json.load (open('config.json')) 

Multiple Choice Question

[Instruction] You are provided with a code context 
ending with API name, numpy.ma.masked_array.var. 
There are 4 possible calls. Please pick up the best one. 

[Question]  
<...code context...> (orig_scr.var

[Choices]
     

[Answer] D.

A.  (keepdims=2, left_param=10)          
B.  (leftdims=2, mean=1, token_order=1) 
C.  (mean=1, straight_param)             
D.  (axis=None, keepdims=2, mean=1)

Figure 4: An illustrative example of three evaluation tasks of CODESYNCBENCH. (1) CCT only provides the API
call name at the end of the question, without explicitly listing the parameters, expecting the completion. (2) ECT includes
an incorrect parameter list at the end of the question, expecting the correction. (3) MCQ does not explicitly listing the
parameters, but presents one correct option and three incorrect options, expecting the most accurate answer.

Table 2: Statistics of data in CODESYNC. We construct
CODESYNCBENCH and the associated training set step by
step, from identifying real-time API updates, retrieving
real-world invocations, and synthesizing legacy-updated
invocations to building training and test samples.

Step Setting Input Num. Output Num.

1 - Python Libraries 6 API Updates 6,036

2 - API Updates 220 API Invocations 3,300

3 - API Invocations 3,300
Legacy-Updated

Invocation Pairs
3,300

CODESYNC

BENCH

Train
Legacy-Updated

Invocation Pairs
2,200

Update-Aware

Instructions
2,200

Test
Legacy-Updated

Invocation Pairs
1,100

CCT Tests 1,100

ECT Tests 1,100

MCQ Tests 1,100

updated implementations, enabling explicit modeling of API
evolution. Through this process, we synthesize 3,300 legacy-
updated API invocation pairs from 3,300 real-world code
instances. The detailed prompt is provided in Appendix C.1.

2.4. CODESYNCBENCH: A Benchmark for Real-Time
Code Knowledge Assessment

Based on CODESYNC, we develop CODESYNCBENCH, a
real-time benchmark for assessing how effectively LLMs
adapt to evolving code knowledge, which comprises three
evaluation tasks, including Code Completion Task (CCT),
Error Correction Task (ECT), and Multiple Choice Question
(MCQ), as shown in Figure 4. CODESYNCBENCH covers
updates for 220 APIs across 6 Python libraries, including
130 functions, 59 initializers, and 31 methods. Each API is
associated with 15 legacy-updated invocation pairs (3,300

in total), with 5 pairs for evaluation (1,100 in total) and 10
for training (2,200 in total). Based on this, our benchmark
builds 1,100 tests per evaluation task, accompanied by a
training set comprising 2,200 update-aware instructions,
providing a rigorous foundation for assessing LLMs’ ability
to stay synchronized with API evolution.

Code Completion Task (CCT) (Lu et al., 2021). This task
evaluates whether LLMs have internalized the updated APIs
and can recall them during code generation. Given a code
snippet ending with an API name, the LLM is prompted to
complete the parameter list, with the updated API invocation
statement serving as the ground truth. To measure the
API invocation completion, we employ three widely used
metrics: BLEU (Papineni et al., 2002) for evaluating lexical
precision, ROUGE-L (Lin, 2004) for measuring semantic
coverage, Relative Edit Distance (Ristad & Yianilos, 1998)
for quantifying structural deviation, and CodeBLEU (Ren
et al.) for assessing AST matching.

Error Correction Task (ECT) (Zheng et al., 2024a). This
task simulates real-world debugging scenarios, where an
interpreter throws an exception related to a specific API
invocation. It evaluates the LLM’s ability to actively correct
potential errors. Given a code snippet ending with a legacy
API invocation, the LLM is prompted to rectify it to the
updated version. We assess the accuracy of API invocation
correction using BLEU (Papineni et al., 2002), ROUGE-
L (Lin, 2004), Relative Edit Distance (Ristad & Yianilos,
1998), and CodeBLEU (Ren et al.).

Multiple Choice Question (MCQ) (Nguyen et al., 2025).
This task evaluates the LLM’s ability to discriminate
between correct and incorrect API invocations, requiring
a deep internalization of the updated APIs. Given four
candidate API invocations, including one correct answer
and three plausible distractors, the LLM is prompted to
select the optimal choice. The distractors, synthesized
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Table 3: The performance of different LLMs in accessing API updates. We evaluate nine popular LLMs on
CODESYNCBENCH, revealing their poor performance in API invocation tasks. The results highlight significant limitations
in LLMs’ ability to handle updated APIs, with even state-of-the-art models struggling to achieve high scores due to outdated
knowledge. (BU for BLEU, RL for ROUGE-L, and RED for Relative Edit Distance)

LLM Knowledge
Cutoff Date

CCT ECT MCQ
BU↑ RL↑ RED↓ BU↑ RL↑ RED↓ P@1↑ P@3↑ P@5↑

Closed Source Models
GPT-4o Oct. 2023 14.93 47.07 58.87 37.07 67.13 43.06 38.98 42.09 46.07
GPT-4o-mini Oct. 2023 7.45 32.39 67.14 33.69 51.06 49.54 29.58 34.63 35.58
Claude-3.5-Sonnet Apr. 2024 19.29 49.24 57.07 37.91 65.85 43.21 36.08 40.13 41.80
Gemini-1.5-Pro Nov. 2023 17.62 49.65 57.85 32.75 61.93 48.03 34.40 40.55 43.16

Open Source Models
DeepSeek-V3 Jul. 2024 19.24 44.13 57.67 51.57 62.64 34.12 31.54 34.41 35.78
DeepSeek-R1 Jul. 2024 19.32 44.09 57.54 51.81 62.76 34.05 31.61 34.41 35.78
Qwen2.5-14B-Instruct Mar. 2024 10.46 36.94 63.89 30.82 49.60 54.45 37.28 38.88 39.45
Qwen2.5-32B-Instruct Mar. 2024 13.97 39.43 62.24 40.31 55.58 42.81 35.35 37.50 38.16
Qwen2.5-72B-Instruct Mar. 2024 16.06 41.53 59.76 45.03 57.92 38.23 33.49 36.41 37.41

by DeepSeek-V3 (Liu et al., 2024a), include perturbations
such as adding an invalid parameter, removing a required
parameter, and rearranging parameter order. We employ
the Pass@k metric (Chen et al., 2021a) to measure the
probability that the LLM passes a test case within k attempts,
which is calculated by drawing n ≥ k answers from the
LLM for each test case and counting the number of correct
answers c ≤ n. We use n = 10 and k ∈ {1, 3, 5}
(abbreviated as P@1, P@3, and P@5).

Training Set. To evaluate knowledge updating methods,
we build an instruction tuning dataset D = {(i,oold,onew)}.
As illustrated in Section E.1, i denotes an update-aware
instruction containing a code snippet with an incomplete
API invocation (e.g., “array=numpy.full(”). oold and
onew are output statements that accomplish the code. onew
represents the correct invocation with the updated API,
while oold reflects the legacy version. oold and onew share the
same basic functionality, differing only in the parameters
affected by the API update. The paired invocations allow
the LLMs to identify update-related changes by computing
token-level differences between oold and onew.

3. Can LLMs Sync with Code Evolution?
To assess LLMs’ ability to synchronize with code evolution,
we investigate the following Research Questions (RQs):

• RQ1: Benchmarking Large Language Models. Can
LLMs access real-time API updates without relying on
retrieval-augmented frameworks?

• RQ2: Benchmarking Knowledge Updating Methods.
Can LLMs be effectively and efficiently updated to
synchronize with API changes using knowledge updating
methods without compromising model utility?

• RQ3: Impact of API Update Settings. How do different

API update settings, e.g., the numbers of API invocations
available for training and the types of updated APIs,
impact the performance of knowledge updating?

3.1. RQ1: Benchmarking Large Language Models

We benchmark nine state-of-the-art LLMs in accessing
real-time API updates without retrieval-augmented settings,
including four proprietary models (i.e., GPT-4o, GPT-
4o-mini (OpenAI, 2024), Claude-3.5-Sonnet (Anthropic,
2024) and Gemini-1.5-Pro (Team et al., 2024)) and five
open-source models (i.e., DeepSeek-V3 (Liu et al., 2024a),
DeepSeek-R1 (Guo et al., 2025), and Qwen2.5-14/32/72B-
Instruct (Qwen Team, 2024)).

As shown in Table 3, the results indicate that state-of-
the-art LLMs face significant challenges in coding tasks
involving API updates. For example, leading commercial
models like GPT-4o and Claude-3.5-Sonnet exhibit poor
performance, with BLEU scores below 20% on the code
completion task. Similarly, recently released models with
up-to-date knowledge cutoffs, such as DeepSeek-V3 and
DeepSeek-R1, which are expected to incorporate fresher
code knowledge, also fail to accurately reflect API updates,
yielding similarly low BLEU scores. These findings reveal
systemic shortcomings in LLMs’ ability to adapt to evolving
APIs, highlighting the fundamental limitations of static
pretraining paradigms. Thus, even the latest models suffer
from knowledge decay as API versions evolve over time.

3.2. RQ2: Benchmarking Knowledge Updating Methods

We benchmark five knowledge updating methods including
SFT-LoRA (Peng et al., 2023), DPO (Rafailov et al., 2023),
SimPO (Meng et al., 2024), and ORPO (Hong et al.,
2024), across five open-source LLMs including three code-
specific LLMs (i.e., CodeLlama-7B-Instruct (Roziere et al.,
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Table 4: The overall performance of different knowledge updating methods across five open-source LLMs. We
train five models using different methods and evaluate their performance on CODESYNCBENCH and HumanEval. All
methods demonstrate limited effectiveness on CODESYNCBENCH. (BU for BLEU, RL for ROUGE-L, RED for Relative
Edit Distance, and CBU for CodeBLEU.)

Method CCT ECT MCQ HumanEval
BU↑ RL↑ RED↓ CBU↑ BU↑ RL↑ RED↓ CBU↑ P@1↑ P@3↑ P@5↑ P@1↑ Ratio↑

Qwen2.5-7B-Instruct
Original 7.95 25.70 73.61 30.21 32.24 56.79 50.77 40.71 28.48 41.61 46.91 65.24 –
SFT-LoRA 12.17 34.59 68.76 32.32 26.63 44.81 57.15 42.85 32.83 47.55 53.21 62.80 96.26
DPO 24.45 52.94 57.12 39.24 46.24 64.87 42.99 49.75 33.39 45.61 50.05 61.59 94.41
ORPO 24.90 52.33 56.37 38.77 40.98 58.92 47.63 46.38 32.85 47.74 53.35 63.41 97.19
SimPO 24.81 52.90 56.88 39.67 45.15 65.51 42.90 51.02 33.14 44.35 48.69 63.41 97.19

Qwen2.5-Coder-7B-Instruct
Original 5.89 21.56 76.58 29.41 11.64 26.78 71.81 32.68 32.56 41.28 44.57 82.32 –
SFT-LoRA 15.44 37.40 66.55 31.17 19.20 40.68 60.93 36.03 35.16 48.63 55.02 82.32 100.00
DPO 23.36 51.82 46.12 38.67 55.57 59.07 46.12 44.95 37.00 46.39 50.40 82.93 100.85
ORPO 21.47 48.17 53.43 37.06 56.92 50.20 53.43 40.62 35.42 48.64 54.70 81.71 99.26
SimPO 23.86 53.17 45.22 39.39 54.57 60.31 45.22 45.53 37.87 44.92 47.80 82.93 100.85

Llama-3.1-8B-Instruct
Original 5.99 22.45 75.70 28.94 17.68 40.98 63.41 35.18 29.08 54.39 66.28 62.20 –
SFT-LoRA 13.21 36.70 72.01 34.54 43.78 65.76 41.84 49.90 22.28 38.74 47.24 60.98 98.04
DPO 24.13 51.36 55.38 38.85 27.18 51.57 54.83 38.88 36.42 49.88 55.34 58.54 94.12
ORPO 21.55 44.19 60.62 37.12 24.27 42.21 62.09 36.81 31.47 50.30 58.74 60.37 97.06
SimPO 26.83 53.95 56.07 36.79 23.04 44.91 58.74 39.69 36.56 43.96 46.66 62.20 100.00

CodeLlama-7B-Instruct
Original 8.44 28.25 73.20 30.22 18.11 37.71 64.45 35.86 10.89 24.79 33.24 38.41 –
SFT-LoRA 17.24 44.97 59.57 34.36 30.60 50.42 53.99 43.51 10.34 18.91 24.85 36.59 95.26
DPO 26.54 53.27 26.51 41.66 39.67 60.55 44.79 48.15 20.48 41.09 51.71 36.59 95.26
ORPO 24.37 50.70 54.61 40.01 36.06 55.69 49.00 46.35 18.07 39.17 51.26 35.37 92.09
SimPO 27.78 56.48 50.62 42.04 40.56 65.27 41.65 49.08 25.40 45.50 54.66 35.98 93.67

DeepSeek-Coder-6.7B-Instruct
Original 5.97 22.55 75.51 29.03 30.07 53.11 52.20 41.69 31.25 24.29 43.60 72.56 –
SFT-LoRA 14.96 41.42 62.45 33.34 47.79 71.25 34.32 53.76 7.88 8.89 9.32 71.34 98.32
DPO 26.77 55.72 50.86 42.54 43.29 64.95 41.91 50.35 6.37 8.61 9.00 70.12 96.64
ORPO 28.39 56.99 49.23 42.47 43.77 64.86 41.32 48.70 7.02 7.79 8.04 68.29 94.12
SimPO 25.10 53.69 52.97 41.50 41.47 64.06 42.50 50.08 6.75 9.21 10.55 68.29 94.12

2023), Qwen2.5-Coder-7B-Instruct (Hui et al., 2024), and
DeepSeek-Coder-6.7B-Instruct (Guo et al., 2024a)) and two
general-purpose LLMs (i.e., Llama-3.1-8B-Instruct (Dubey
et al., 2024) and Qwen2.5-7B-Instruct (Qwen Team, 2024)).
Detailed experiment settings are listed in Appendix D.2.

Evaluation of Updating Effectiveness. As illustrated
in Figure 2 and Table 4, the results indicate that knowledge
updating methods can improve LLMs’ performance in
handling API evolution across the three evaluation tasks.
Notably, fine-tuned LLMs with size 6.7B-8B can achieve
scores comparable to those of leading proprietary and open-
source LLMs, such as Claude-3.5-Sonnet, with BLEU
scores of 23.86%-31.59 on the CCT task. Despite these
improvements, the absolute scores remain low, indicating
that current methods are insufficient for effectively updating
the code knowledge of LLMs.

Notably, the DeepSeek-Coder-6.7B-Instruct model exhibits
an anomaly on the MCQ task, where fine-tuning leads

to significantly lower scores. Analysis of the model
outputs reveals degraded instruction-following capabilities,
resulting in non-compliant responses. In contrast, other
models maintain compliant outputs, indicating a lack of
robustness in this model.

Overall, while fine-tuning narrows the gap with larger
models in some cases, the persistently low scores reveal
the limitations of existing approaches. Further advances
(i.e. integrating structural code understanding or continual
learning) are required to more reliably update LLMs’ code
knowledge without compromising their general capabilities.

Fine-grained Analysis on Qwen. Table 4 demonstrates
that the evaluated models suffer from severe knowledge
obsolescence issues. To assess models’ intrinsic capabilities
on code, we construct a variant of the CCT benchmark
where the reference answer corresponds to outdated code
knowledge. Performance on this variant serves as an
upper-bound estimate of models’ code knowledge. As
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Table 5: Estimation of the Upper-Bound Performance on
code knowledge.

Model Original Best Method Upper Bound

Qwen2.5 30.21 39.67 42.05
Qwen2.5-Coder 29.41 39.39 45.12

Table 6: Performance of RAG Baseline.

Method CCT CBU↑ ECT CBU↑ MCQ CBU↑
Original 29.41 32.68 32.56

SFT 31.17 36.00 35.16
DPO 38.67 44.95 37.00
RAG 35.17 42.26 34.26

SFT+RAG 40.70 51.35 36.89
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Figure 5: Efficiency of different knowledge updating
techniques. We measure and compare the time consumption
of four knowledge updating techniques across five models.
We can observe that the training durations follow the pattern:
SimPO < DPO < ORPO.

shown in Table 5, we select Qwen2.5-7B-Instruct and
Qwen2.5-Coder-7B-Instruct for evaluation on CCT variant
using CodeBLEU metric. The results indicate that current
techniques fall short of the upper bound, underscoring the
limitations in their effectiveness.

Furthermore, we introduce retrieval-augmented generation
(RAG) (Lewis et al., 2020) as the additional baseline. We
construct a vector database to store all API signatures from
the target library with text-embedding-3-large (OpenAI) as
the embedding model. Table 6 reports the performance of
Qwen2.5-Coder-7B-Instruct on CODESYNCBENCH using
CodeBLEU as the metric. Across three different tasks, RAG
performs better than SFT but still falls short of DPO. The
relatively limited performance can be attributed to its hit
rate of only 60%. This reduced hit rate is largely caused
by the presence of many similarly named APIs and the
complexity introduced by the large number of APIs present
in the code context. Notably, combining SFT and RAG
achieves improved performance, demonstrating the potential
benefits of integrating external retrieval with fine-tuning.

Evaluation of Updating Efficiency. In addition to
effectiveness, updating efficiency is a crucial factor that
may influence developers’ adoption in practice. For each
model, we recorded the training time required for four
knowledge updating methods, as shown in Figure 5. The
results indicate that SFT-LoRA is the most efficient method
overall. Moreover, we can observe that, across all models,
the training durations follow the pattern: SimPO < DPO
< ORPO, indicating that ORPO is the least efficient and
SimPO is the most efficient. Additionally, it can be seen
that the training duration for ORPO exhibits relatively larger
fluctuation, indicating instability in efficiency.

Evaluation of Model Utility Post-Updating. We evaluate
the general utility of the LLMs before and after updating
using the widely used HumanEval benchmark (Chen et al.,
2021b). For each problem, we sample 10 answers (i.e.,
n = 10) and calculate Pass@1, Pass@3, and Pass@5 scores.
To assess the impact of updating, we computed the ratio of
the Pass@5 scores for models trained with various methods
to those of the original model. The results show that most
updating methods incurred a score loss of no more than 10%,
indicating a minor impact on the models’ overall utility.

3.3. RQ3: Impact of API Updating Settings

We further investigate the impact of different API update
settings such as the numbers of API invocations available for
training and the types of updated APIs, on the performance
of knowledge updating in API evolution tasks.

Impact of Update-Aware Instruction Number. To
evaluate this, we filter 32 APIs from the original training set,
each with more than 50 invocation samples, and construct
four new training sets with 5, 10, 20, and 50 samples per
API, respectively. We then train Qwen-2.5-7B-Instruct using
four knowledge updating techniques (i.e., SFT-LoRA, DPO,
ORPO, SimPO) on these sets and evaluate performance on
the code completion task. As shown in Figure 6, using only
5 samples per API results in relatively poor performance.
When the training sample number increases to 10 per API,
the model demonstrates improved recall capabilities of the
updated APIs. Further increases in sample number lead
to performance stabilization with minor additional gains.
These findings suggest that a moderate number of samples is
sufficient for LLMs to internalize new code knowledge, with
10 samples per API striking an optimal balance between
effectiveness and efficiency.

Impact of Updated API Type. We evaluate Qwen-2.5-7B-
Instruct on the CCT task across different API types. As
illustrated in Figure 7, a clear trend can be observed among
the three API types. The knowledge updating methods
perform similarly on function APIs and initializer APIs
yet exhibit significantly lower performance on method APIs.
This discrepancy can be attributed to the intrinsic complexity
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Figure 6: Model performance with varying numbers
of invocation instances per API. We divide the original
training set into subsets containing different numbers of
samples per API (5, 10, 20, 50). The Qwen2.5-7B-Instruct
is trained on these subsets and evaluated on the Code
Completion Task. The result indicates that 10 samples per
API is sufficient for injecting knowledge, keeping a balance
between performance and efficiency.

of method invocations, which typically involve class
instantiations, object references, and dynamic method calls.
Unlike function and initializer APIs that follow relatively
straightforward invocation patterns, method APIs require
LLMs to correctly infer object types, track dependencies,
and manage class hierarchies. These additional layers of
complexity increase the difficulty of accurately invoking
API updates, making it more challenging for LLMs to
learn and apply correctly. Addressing these challenges may
require more sophisticated knowledge updating strategies to
improve LLMs’ adaptability to complex code knowledge.

4. Related Work

LLMs for Code Generation. Both proprietary (OpenAI,
2024; Team et al., 2024) and open-source LLMs (Hui et al.,
2024; Roziere et al., 2023; Guo et al., 2024a) have recently
demonstrated strong code generation abilities, leading to AI-
driven tools such as Copilot (GitHub, 2024) and Cursor (AI,
2024). However, these models often overlook the risks
associated with outdated APIs. Existing benchmarks and
studies either rely on synthetic API updates (Liu et al.,
2024c) or vaguely defined knowledge-editing tasks (Li et al.,
2024b), limiting their applicability. Our work addresses
these gaps by benchmarking knowledge updating methods
on real-world API changes.

Knowledge Updating for LLMs. LLMs are prone to
knowledge obsolescence, as retraining is computationally
expensive. Knowledge updating methods (i.e. supervised
fine-tuning (Liu et al., 2024c; Peng et al., 2023),
reinforcement learning (Schulman et al., 2017; Meng et al.,
2024; Rafailov et al., 2023; Hong et al., 2024), and
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Figure 7: Model performance on different types of APIs.
We evaluate the performance of Qwen-2.5-7B-Instruct,
trained using various techniques, as well as a reference
model, on different categories of APIs (functions, methods,
and initializers). The results reveal significant differences in
the models’ capabilities across different categories. Notably,
all models perform relatively worse on methods compared
to functions and initializers.

knowledge model editing (KME) (Meng et al., 2022a;
Hartvigsen et al., 2023; Meng et al., 2022b)) aim to
efficiently integrate new information. KME methods
optimize specific neurons related to new knowledge with no
performance degradation.

Data Synthesized by LLMs. LLMs are widely used to
generate synthetic data for pretraining and fine-tuning (Liu
et al., 2024b), covering diverse applications like multilingual
QA (Riabi et al., 2021), chatbot conversations (Zhao et al.,
2023; Zhang et al., 2024b), and data augmentation (Dai
et al., 2025; Chung et al., 2023; Chen et al., 2024a; Pu
et al., 2025; Huang et al., 2025). Synthetic benchmarks
further require generated data to be diverse, accurate, and
challenging (Chen et al., 2025; Wu et al., 2024), and
are now used to evaluate emergent capabilities, such as
trustworthiness (Huang et al., 2024; Ye et al., 2024; Gao
et al., 2024) and multimodal reasoning (Zhang et al., 2024a;
Bao et al., 2024; Chen et al., 2024b; Fu et al., 2025).
We advance this area by proposing a synthetic benchmark
integrating three challenging code generation tasks.

5. Conclusion
In this paper, we introduce CODESYNC, an innovative
data engine for constructing the structured benchmark
CODESYNCBENCH, to evaluate LLMs’ ability in handling
evolving code knowledge. Benchmarking the state-of-the-
art LLMs and popular knowledge update techniques, we find
that LLMs struggle with rapid API evolutions. Furthermore,
existing techniques are insufficient for effective code
knowledge integration. This highlights the necessity for
improved approaches to help models adapt to evolving code
knowledge in dynamic environments.
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A. Comprehensive Related Works

Deep Learning for Code Intelligence. Neural language models have made remarkable progress in code intelligence (Wan
et al., 2024), encompassing a variety of tasks including code summarization (Wan et al., 2018; Wang et al., 2020), code
search (Gu et al., 2018; Wan et al., 2019), and code generation (Bi et al., 2024; Sun et al., 2024; Li et al., 2024a). A
central challenge in code intelligence is the effective representation of source code as vectors. Substantial effort has
been devoted to this, primarily through the design of deep neural networks in three main categories: sequential code
tokens (e.g., plain text, intermediate representations, APIs), Abstract Syntax Trees (ASTs), and code graphs (such as
control-flow graphs, data-flow graphs, and code property graphs). For sequential code tokens, approaches have employed
Recurrent Neural Networks (RNNs) (Graves & Graves, 2012; Chung et al., 2015; Gu et al., 2018) and Convolutional
Neural Networks (CNNs) (Mou et al., 2016; Yamashita et al., 2018) to process plain text (Iyer et al., 2016; Allamanis et al.,
2016), intermediate representations (VenkataKeerthy et al., 2020; Peng et al., 2021; Gui et al., 2022), and API calls (Gu
et al., 2016; Nguyen et al., 2017) extracted from source code. For ASTs, prior research has either developed structural
RNNs (Wan et al., 2018) and CNNs (Mou et al., 2016) to capture the hierarchical structure of the tree or linearized the AST
into sequential traversals (Alon et al., 2019; 2018) for processing with traditional RNNs or CNNs. To handle code graphs,
various Graph Neural Networks (GNNs) (Chu et al., 2024; Allamanis et al., 2018) have been proposed, enabling more
sophisticated representations of code structure and semantics. Recently, advancements in LLMs for text generation have
spurred the emergence of specialized code-focused LLMs, including CodeT5+ (Wang et al., 2023), InCoder (Fried et al.,
2023), StarCoder (Li et al., 2023), Code Llama (Roziere et al., 2023), WizardCoder (Luo et al., 2024), Qwen-Coder (Hui
et al., 2024), and DeepSeek-Coder (Guo et al., 2024a). Despite recent advances, LLMs still struggle to keep pace with
rapidly evolving programming knowledge. This paper explores methods for integrating dynamic knowledge, enabling LLMs
to synchronize with the ongoing developments in programming languages, frameworks, and best practices.

LLMs for Code Generation. Recently, LLMs such as the commercial/black-box GPT-4 (OpenAI, 2024), Gemini (Team
et al., 2024), and open-source models like Qwen-Coder (Hui et al., 2024), Code Llama (Roziere et al., 2023), and DeepSeek-
Coder (Guo et al., 2024a), have demonstrated impressive capabilities in generating high-quality code. Building on these
LLMs, several products, including Copilot (GitHub, 2024) and Cursor (AI, 2024), have been developed. However, the
security risks posed by outdated APIs are often overlooked, and existing studies on the code knowledge update task have
significant limitations. For example, the benchmark proposed by Liu et al. (2024c) generates API update pairs by prompting
ChatGPT (OpenAI, 2024) rather than collecting authentic APIs. Li et al. (2024b) construct an instruction benchmark where
the subject and object of knowledge are vaguely defined, but apply knowledge model editing techniques to model tuning. In
this paper, we aim to benchmark knowledge updating methods for real-world API updates using authentic GitHub releases.

Knowledge Updating for LLMs. LLMs often rely on data from a specific time period, leading to outdated knowledge that
retraining can not easily fix due to its high computational cost. To address this, knowledge updating techniques offer a more
efficient way to integrate new information without sacrificing the model’s current capabilities. One approach is supervised
fine-tuning (SFT) (Liu et al., 2024c; Peng et al., 2023), which optimizes model parameters to integrate new knowledge
directly. Other methods treat new knowledge as preferred behavior over outdated information, such as reinforcement
learning from human feedback (RLHF) methods (Schulman et al., 2017; Meng et al., 2024; Rafailov et al., 2023; Hong et al.,
2024), which is efficient for refining model behavior to align with new knowledge. Knowledge neuron theory (Dai et al.,
2021) takes a further step by formulating knowledge as a tuple {s, r, o}, where s, r, and o represent the subject, relation,
and object of knowledge, respectively. Based on this, knowledge model editing (Meng et al., 2022a; Hartvigsen et al., 2023;
Meng et al., 2022b) emerge as a more cost-effective and time-efficient approach for updating knowledge. These methods
first identify key neurons linked to the new knowledge and then optimize them, carefully preserving the language model’s
overall capabilities. However, Li et al. (2024b) reveal that many KME techniques struggle with effectiveness and fail to
generalize.

Data Synthesized by LLMs. LLMs have demonstrated an impressive capacity for data generation, leading to their
application in creating synthetic datasets for pretraining and finetuning, replacing the labor-intensive processes of manual
data scraping and selection (Liu et al., 2024b). Distinct from earlier methods that focus on traditional language models (Schick
& Schütze, 2021), LLMs offer enhanced prospects for producing high-quality synthetic data across a wide spectrum of
applications, such as multilingual QA (Riabi et al., 2021), chatbot conversation (Zhao et al., 2023; Zhang et al., 2024b),
and data diversity augmentation (Dai et al., 2025; Chung et al., 2023; Chen et al., 2024a). The concept of synthetic
benchmarks takes a step further by demanding that the LLM-generated data be diverse, accurate, and systematically
challenging (Chen et al., 2025; Wu et al., 2024). Moreover, synthetic benchmarks have also been constructed in evaluating
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LLM emergent capabilities such as trustworthiness (Huang et al., 2024; Ye et al., 2024; Gao et al., 2024), persona-based
conversation (Jandaghi et al., 2023), and multimodal domain (Zhang et al., 2024a; Bao et al., 2024; Chen et al., 2024b). Our
research advances a synthetic benchmark for code generation by developing a paradigm that integrates three challenging
code generation tasks. Recently, in response to concerns about the quality of synthetic datasets, Dekoninck et al. (2024b)
conduct comprehensive experiments to evaluate the diversity and fidelity of synthetic data produced by LLMs, while
Dekoninck et al. (2024a) introduce a new inference framework, model arithmetic, to control the generated content.

B. Detailed Experiment Setups
B.1. Dataset

B.1.1. API COLLECTION

The initial step of CODESYNC pipeline involves collecting APIs from various libraries. To achieve this, we utilize the
Python built-in module inspect, which enables us to navigate through library files and compile a comprehensive list of all
available APIs. In this part, we will delve into the detailed process of how to collect APIs comprehensively from libraries.

C-extension APIs. C-extension methods and functions are a powerful feature in Python programming that are employed in
many third-party libraries, (e.g., NumPy, PyTorch), to accelerate execution efficiency. One of the key feature of C-extension
functions and methods is their support for function overloading. Function overloading allows a single API name to be used
with multiple different parameter lists, or signatures. This means to collect various versions of signatures for each API.

Inspect Module. Python built-in module, Inspect, provides several useful functions for introspecting live objects, such as
functions, classes, and modules. It allows us to retrieve information about source code of Python objects, such as signature,
arguments and documentation.

Categories. Python offers a diverse range of APIs, each designed for specific purposes and governed by distinct invocation
rules. In this study, we focus on three primary types: function APIs, method APIs, and initializer APIs. These categories not
only highlight Python’s core capabilities but also exhibit unique characteristics and behaviors. Function APIs are standalone
entities that can be invoked without requiring a class or instance context. In contrast, method APIs are inherently tied to class
instances, leveraging encapsulation and object-oriented programming principles. The invocation rules for methods differ
significantly from those for functions, reflecting their object-oriented nature. Additionally, Python provides several magic
methods that are denoted by double underscore (‘ ’) at the beginning and end of their names. Among these, initializers (i.e.,
‘ init ’) are the most commonly used, serving as a method for object creation and initialization. To evaluate and benchmark
Python APIs evolution comprehensively, we select representatives from these three categories to construct our benchmark
CODESYNCBENCH.

B.1.2. IDENTIFYING API UPDATES

Multiple Types of Parameter. The three fundamental types of parameters are positional-only parameter, keyword-only
parameter and positional & keyword parameter. The term ‘positional’ refers to parameters that can be passed only according
to its position in definition. ‘Keyword’ is the name of parameter in the function signature, allowing passing parameter
with marking it explicitly instead of position. There are two special symbols in API signatures (e.g., *, /). Parameters set
before ‘*’ are positional-only parameters, which must be passed in order according to theirs positions in definition, and
parameters located after ‘/’ are keyword-only parameters, requiring marking parameter name when used; otherwise, a
syntax error will occur. Additionally, parameters can be also categorized according to default values into 2 types, required
parameters and optional parameters. Therefore, changes of parameter types have impact on invocation rules, which should
be considered when determining API update operations.

API Update Determination. How to determine API update operations? The most straightforward changes include the
addition or deletion of parameters. A more nuanced level of analysis involves examining changes in parameter types as these
alterations can significantly impact the rules for invoking APIs. Therefore, API updates can be categorized into 2 primary
aspects, the addition of deletion of parameters and changes in parameter types. To effectively identify API updates, it is
crucial to focus on parameter changes, including both the mapping relationships between parameters and modifications to
their types. To systematically capture these changes, we construct parameter mappings for each pair of APIs, establishing
connections between corresponding parameters in the outdated and latest version of their signatures. Specifically, parameter
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mapping enables categorize two distinct aspects. First, if a parameter mapping can be successfully constructed , it implies
that all parameters are consistently present in both versions of signatures, indicating no additions or deletions. Following
this, the next step involves a detailed examination of each parameter pair within mappings, focusing on comparing their
attributes to identify any modifications or differences. This approach enables a clear and structured understanding of how
APIs involve over time.

Parameter Renaming. Static analysis, however, has inherent limitations, especially in cases where parameter
renaming occurs. It is challenging to infer changes in functionality solely based on parameter names. For
example, in transformers==4.47.0, the API transformers.pipelines.get task has a parameter named
use auth token, whereas the keyword of this parameter was token in version transformers==4.25.1. In spite
of the same functionality, renaming makes it impossible to recognize their equivalence solely by analyzing signatures. In
this process, we assume that keywords of parameters are strongly connected to their functionality. The similarity between
keywords suggests the similarity of their functionality. Instead of excluding all of name modification situations, we first set
a threshold and compute the keyword similarity scores to account for some simple modifications. Based on this, we will
then construct parameter mapping according to keyword mappings for further explorations.

Establishing Parameter Mappings. However, the inherent complexity of Python API signatures poses significant challenges
in accurately establishing parameter mappings. To address this, we establish three rules that must be satisfied to determine
whether no modification has occurred. Python introduces two special symbols (‘/’ and ‘*’), which divide parameters into
three categories, positional-only, keyword-only and positional-and-keyword parameters. Specifically, we construct three
individual parameters mappings for these types of parameters and establish three rules that must be satisfied to determine
whether no modification has occurred.
• Rule 1: Successful Parameter Mapping. A valid parameter mapping must be constructed, ensuring that both the

number of parameters and their corresponding keywords remain identical across different signatures.
• Rule 2: Type-Specific Consistency. Each parameter type must follow specific rules:

– For positional-only parameters, the order of parameters in the function definition must remain strictly unchanged
across signatures.

– For keyword-only parameters, the parameter names (keywords) must remain consistent to preserve their
correspondence.

– For positional-and-keyword parameters, both the order requirement and keyword consistency must be satisfied
simultaneously.

• Rule 3: Required vs. Optional Parameters. Parameters can be further categorized into two types: required parameters,
which must be provided when invoking APIs, and optional parameters, which have default values. While revisions to
default values are not considered API updates, the type of a parameter must remain unchanged.

These rules collectively provide a practical methodology for evaluating parameter modifications and determining API
consistency, which is a crucial part of CODESYNC implementing completely autoamted pipeline.

B.1.3. API INVOKING INSTANCES CRAWLING

After obtaining updated APIs along with corresponding information, it is necessary to crawl API invocations from ground
truth which will be used to inject API knowledge into LLM for further exploration. Actually, directly feeding signature
to models for tuning is unlikely to be effective, and limited to reflect comprehensive information, such as invoking rules,
which is hard to be formulated. Therefore, we collect a large dataset of invocation instances to implicitly reflecting relative
knowledge.

Real-World API Invocation. Synthesizing invocation completely relied on LLM is a convenient method for constructing
dataset. However, this method exists inherent limitations. For example, information implied in context of generated code is
insufficient and the contextual scenario is restricted to LLMs’ embedded knowledge. The inevitable bias therefore poses
challenges to comprehensively reflect authentic invoking rules and habits. Instead of synthesizing invocations, we try to
crawl code from GitHub with the help of GitHub Code Search, a Code Search Engine developed by GitHub to effectively
aggregate repositories or files using regular expression. Additionally, We involve search templates as shown in B.1.3, to
enhance the effectiveness of invocation retrieval

Search Templates. Python allows aliases declaration of import statements to simplify usage of third-party modules
and APIs. In the authentic programming scenario, directly invoking APIs with full name fails to align with developers’
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programming habits. We therefore design a set of templates for each library to expand searching scope. For example, while
the module torch.nn.functional is imported, these statements might exist:

1. import torch.nn.functional as F

2. from torch.nn import functional as F

For any field in the API name (a segment separated by dots), an alias can be assigned and there are two formats: import
as and from import. Based on these characteristics, we can generate a series of searching templates. Templates of
torch.nn.functional.softmax are shown as below:

1. “torch.nn.functional.softmax” (directly match)

2. “import torch as” + “.nn.functional.softmax”

3. “from torch import nn” + “.functional.softmax”

4. “import torch.nn as” + “.functional.softmax”

5. “from torch.nn import functional” + “.softmax”

6. “import torch.nn.functional as” + “.softmax”

7. “from torch.nn.functional import softmax”

In the second template, we match “import torch as” instead of “import torch”. This is because when the module is imported
without an alias (e.g., simply “import torch”), the full path “torch.nn.functional.softmax” will be directly used in the code.
For function APIs and initializer APIs, the above patterns can be directly applied for decomposition. We next utilize
GitHub Code Search to retrieve code that contains all segments for each template (with an upper limit of 500 files).

Different from function and initializer, method APIs requires a further step due to dynamic binding mechanism. A
method API can be divided into two parts: class name and method name. For example, torch.Tensor and shape
are class name and method name of torch.Tensor.shape, respectively. In the most programming scenario, Python
objects lack explicit type definitions. To align with subsequent procedures, we only take one specific situation into
consideration where both type declaration and API invocation exist in the same file simultaneously. Searching templates can
be applied on method APIs retrieval as well, while an additional segments, f".{method name}(",should be included.
For API torch.Tensor.shape, each template will include ".shape(". Explicit type declarations will be clarified
in Appendix B.1.4.

B.1.4. LOCATING VALID API INVOCATIONS

After retrieving a dataset of files that contain relative substring of target API invocation, further filtering is required to
identify code that genuinely invokes the target API. The following illustration is divided into two parts: function / initializer
APIs locating and method APIs locating.

Function / Initializer APIs Locating. Initializer APIs share similar invoking rules with those of function APIs. We can use
abstract syntax tree(AST) to analyze crawled files for locating the target API invocations. Specifically, this part contains two
steps: (1) Alias Mapping: We scan the import statements and construct mappings between original library/module name
and aliases. (2) Invocation Analysis: Based on alias mapping, we traverse the AST of files and analyze each invocation
statement to determine whether the target API are invoked. The start & end line number of invocations will be recorded for
subsequent process.

Method APIs Locating. Invocations of method APIs are often associated with class instances. To determine method API
invocations, we need to infer the types of variables that invoke the methods. However, variables are dynamically bound to
types during program execution. We therefore focus on situations where the types of variables can be statically inferred
from the raw code. There are three situations:

• Variables are assigned by using initializer of target class.
• Type annotations are provided in function definitions.
• Function definitions provide return type annotations.
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The first step is to scan the whole file to record types of variables as well as their scopes. We next traverse the AST, tracking
target class instances in their own scope to identify methods they invoked.

Format Conversion. After locating and recording API invocations in each file, we perform two operations to split the data:
(1) Segment Split: Treating the entire file as a single dataset item is inefficient and redundant.To better utilize the crawled
files, we split each file into multiple segments based on function definition. In other words, each segment corresponds
to a complete function definition and is treated as an individual dataset item. (2) Metadata Convert: Each segment is
then further divided into three parts: code context, target sequence and code suffix. The code context is the prompt in
subsequent tasks. To avoid knowledge leaking, the target sequence is the first invocation of target API within the segment.
These split operations allow for more efficient processing and better representation of the code’s structure, ultimately
improving the dataset’s usability for subsequent tasks.

B.2. Models

Qwen-2.5-7B-Instruct. A 7-billion parameter instruction-tuned model designed for general-purpose tasks, offering robust
performance across various applications by following user instructions effectively.

Qwen-2.5-Coder-7B-Instruct. A specialized 7-billion parameter model tailored for coding-related tasks, excelling in code
generation, debugging, and understanding programming languages through instruction-following capabilities.

Llama-3-8B-Instruct. An 8-billion parameter instruction-tuned model built for versatile applications, providing strong
performance in natural language understanding and task execution based on user instructions.

CodeLlama-7B-Instruct. A 7-billion parameter model fine-tuned for coding tasks, optimized for generating, analyzing,
and refining code while adhering to user-provided instructions.

DeepSeek-Coder-6.7B-Instruct. A 6.7-billion parameter model specifically designed for coding and programming tasks,
leveraging instruction-tuning to deliver accurate and efficient code-related solutions.

B.3. Knowledge Updating Methods

B.3.1. DIRECT PREFERENCE OPTIMIZATION (DPO)

Traditional reinforcement learning algorithms (e.g., PPO (Schulman et al., 2017)) introduce reward models to guide LLMs to
align with human preferences. While these methods exhibit superior performance in many fields, they suffer from extremely
high computational costs and require a large amount of training data to optimize policy of reward models. To accelerate
the process of training, DPO directly optimizes the model’s policy to align with human preferences by leveraging pairwise
comparison data. Each data pair consists of a preferred sample y+

i and a dispreferred sample y−
i for a given input xi. DPO

adjusts the model to increase the likelihood of generating preferred outputs while reducing the probability of dispreferred
ones. By implicitly encoding preference rankings into the objective function, DPO eliminates the need for explicit reward
modeling or complex reinforcement learning pipelines, offering a simpler and more stable training framework.

The key insight of DPO is to reframe preference learning as a supervised likelihood optimization problem. Given preference
pairs (xi,y

+
i ,y

−
i ), the objective maximizes the log-likelihood difference between preferred and dispreferred outputs:

LDPO =
∑
i

log σ

(
log

πθ(y
+
i |xi)

πref(y
+
i |xi)

− log
πθ(y

−
i |xi)

πref(y
−
i |xi)

)
,

where σ denotes the sigmoid function and πref represents the reference policy. This formulation ensures the model assigns
higher probabilities to preferred responses relative to the reference policy while maintaining generation diversity through
implicit regularization.

B.3.2. ODDS RATIO PREFERENCE OPTIMIZATION (ORPO)

ORPO introduce Odd Ratio to quantify the preference learning. Specifically, it enhances preference learning by explicitly
optimizing the odds ratio between preferred and dispreferred responses. The loss function combines log-odds maximization
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with KL-divergence regularization:

LORPO =
∑
i

log
πθ(y

+
i |xi)

πθ(y
−
i |xi)

− λ · KL (πθ∥πref) ,

where λ controls the regularization strength. This dual objective encourages preference alignment while preventing excessive
deviation from the reference policy, addressing the exploration-exploitation trade-off inherent in policy optimization.
ORPO’s probabilistic framing improves sample efficiency in low-data regimes and enhances robustness to noisy preference
labels.

B.3.3. SIMPLE POLICY OPTIMIZATION (SIMPO)

SimPO extends the paradigm of DPO through architectural simplifications that enhance both training efficiency and
alignment precision. At its core, SimPO reinterprets the alignment task as a margin maximization problem, where the
model learns to maintain a specified quality gap between preferred and dispreferred responses. This is achieved through two
synergistic mechanisms:

Dynamic Length Normalization: Traditional probability-based rewards inherently favor longer sequences due to
multiplicative probability chains. SimPO counteracts this bias by computing rewards as length-normalized token
probabilities:

Rθ(y|x) =
β

|y|

|y|∑
t=1

log πθ(yt|x, y<t) ,

where the normalization factor |y| (response length) ensures equal contribution per token, preventing length-based reward
inflation. This design choice proves critical in tasks requiring concise yet high-quality responses, such as technical question
answering or summarization.

Adaptive Margin Enforcement: Rather than relying on fixed hyperparameters, SimPO implements an intelligent margin
threshold m that interacts with the reward difference ∆Rθ = Rθ(y

+|x)−Rθ(y
−|x):

LSimPO =
∑
i

max (0,m−∆Rθ(xi)) .

The margin mechanism creates three distinct learning phases:

1. Active Learning: When ∆Rθ < m, gradients actively push the model to widen the reward gap

2. Saturation Control: Once ∆Rθ ≥ m, gradient flow ceases to prevent over-optimization

3. Implicit Regularization: The margin m automatically scales with batch statistics, adapting to varying preference
strengths

By eliminating reference policy computations and reward modeling, SimPO achieves faster convergence while maintaining
competitive performance. The margin-based objective automatically suppresses gradient updates when preference
distinctions become clear, preventing overoptimization and reducing computational overhead. This makes SimPO particularly
effective for aligning LLMs with limited computational resources.
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C. Prompts
C.1. Prompt to Update Code Legacy

I will provide a code snippet as the context, followed by a calling statement that contains a target API call and a suffix.
Additionally, the latest and outdated function signatures of the API are accessible(referred to as latest signature and
outdated signature). Your task is to update the calling statement according to both the latest and outdated API function signatures,
producing two distinct answers: the ”latest answer” and the ”outdated answer”.
—
You must adhere to the following guidelines:
1. Calling Statement Updates: Only update the calling statement based on the given signatures, ensuring the functionality and
correctness of the calls.
2. Include Required Parameters: The updated calling statements should include only the required parameters from the API
signatures. Optional parameters should only be included if they are explicitly used or necessary based on the provided code
context.
3. Avoid Unnecessary Defaults: Do not include default values for optional parameters unless they are explicitly mentioned in the
code or are necessary for functionality.
4. Reflect API Updates: Clearly showcase the differences between the latest and outdated API signatures through your
modifications.
—
Latest API Signature: [updated signature]
Outdated API Signature: [outdated signature]
Context: [context]
Statement: [target seq]
suffix: [suffix]

C.2. Prompt to Generate Wrong Choices for MCQ

I want to create a multiple-choice question where, based on a specific code context, we identify the most appropriate parameter
list for the target API. I will provide you with the following information:

• API path: The full name of the API
• updated signature: The API’s new signature
• outdated signature: The API’s old signature
• import: The import statements in the code
• context: The preceding code context, ending with the target API’s name
• updated code: The correct answer that matches the new signature
• outdated code: The incorrect answer that matches the old signature

I want to construct a multiple-choice question with four options. Among these, updated code will be the correct option, and
outdated code is one incorrect option I have already provided. You need to create two additional incorrect options based on
the differences between the new and old signatures—specifically, options that would be “misleading” if a model is still relying on
the old signature. In other words, if the model only knows the old signature, it might be inclined to select these incorrect answers.
Here are four possible approaches for crafting these additional incorrect options:

1. Remove some optional parameters from the correct answer (that is, updated code).
2. Add some incorrect optional parameters, such as parameters that existed in the old signature but do not exist in the new one,

or parameters that appear in neither signature (the name of these parameters should not be like extra param, which can
be judged to error very easily).

3. Rearrange the positions of any positional parameters based on updated code.
4. Change parameter names, for example changing add(x: int) to something like add(z=3).

WARNING: Your two new incorrect options MUST differ from both updated code and outdated code that I give to
you, as well as from EACH OTHER.
Output Format:
Provide your two new incorrect options as your answer, without any other output.
For example:
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############ Your output ##############

Option 1: (paramA, paramB=123)

Option 2: (paramX="hello")

#######################################

—
API path: [API path]
updated signature: [updated signature]
outdated signature: [outdated signature]
import: [import]
context: [context]
updated code: [updated code]
outdated code: [outdated code]
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D. Experiment Settings
D.1. Metrics

D.1.1. BLEU METRIC

The BLEU score is used to evaluate the quality of generated text by comparing it to one or more reference texts. It is based
on the precision of n-grams (contiguous sequences of words) in the generated text, with a brevity penalty to penalize overly
short outputs. The BLEU score is calculated as follows:

BLEU = BP · exp

(
N∑

n=1

wn log pn

)
,

where

• BP is the brevity penalty, defined as:

BP =

{
1 if c > r

e(1−r/c) if c ≤ r .

Here, c is the length of the candidate (generated) text, and r is the length of the reference text.

• pn is the n-gram precision, calculated as:

pn =
Number of matching n-grams in candidate and reference

Total number of n-grams in candidate
,

• wn is the weight for the n-th n-gram precision, typically set to 1
N for uniform weighting.

• N is the maximum n-gram order (usually 4 for BLEU-4).

The BLEU score ranges from 0 to 1, where 1 indicates a perfect match with the reference text and 0 indicates no overlap
with the reference text.

D.1.2. ROUGE METRIC

The ROUGE metric is used to evaluate the quality of generated text by comparing it to one or more reference texts. It
focuses on recall, measuring how much of the reference text is captured by the generated text. ROUGE has several variants,
including ROUGE-N (n-gram overlap), ROUGE-L (longest common subsequence), and ROUGE-W (weighted longest
common subsequence). In our experiments, we use ROUGE-L as the metric.

The ROUGE-L score is based on the longest common subsequence (LCS) between the candidate and reference texts. It is
defined as:

ROUGE-L =
LCS(C,R)

Length(R)
,

where

• LCS(C,R) is the length of the longest common subsequence between the candidate text C and the reference text R.

• Length(R) is the length of the reference text.

The ROUGE score ranges from 0 to 1, where 1 indicates that the candidate text perfectly captures the reference text and 0
indicates no overlap with the reference text.

D.1.3. RELATIVE EDIT DISTANCE METRIC

The Relative Edit Distance (RED) is a normalized metric used to measure the dissimilarity between two strings. It is
calculated as the edit distance (e.g., Levenshtein distance) between the two strings divided by the length of the longer string.
This normalization ensures that the metric is scale-invariant and ranges between 0 and 1.
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The RED is defined as:

RED =
EditDistance(S1, S2)

max(|S1|, |S2|)
,

where

• EditDistance(S1, S2) is the Levenshtein distance between strings S1 and S2, which measures the minimum number of
single-character edits (insertions, deletions, or substitutions) required to transform S1 into S2.

• |S1| and |S2| are the lengths of strings S1 and S2, respectively.

• max(|S1|, |S2|) is the length of the longer string, used to normalize the edit distance.

The RED score ranges from 0 to 1, where 0 indicates that the two strings are identical (no edits are needed) and 1 indicates
that the two strings are completely dissimilar (every character needs to be edited).

D.1.4. PASS@K METRIC

The Pass@k metric is a performance evaluation metric used to assess the quality of code generation models. It measures the
probability that at least one correct solution is generated within the top k samples produced by the model. This metric is
particularly useful for evaluating models in scenarios where multiple candidate solutions are generated, and the goal is to
determine how often the model produces a correct solution within a limited number of attempts.

Given a set of n generated samples for a problem, the Pass@k metric is calculated as follows:

Pass@k =
Number of problems with at least one correct solution in the top k samples

Total number of problems
.

Alternatively, if the model generates k samples per problem, the Pass@k metric can be computed as:

Pass@k = Eproblems

[
1−

(
n−c
k

)(
n
k

) ] ,

where

• n is the total number of samples generated per problem.

• c is the number of correct solutions among the n samples.

•
(
n−c
k

)
is the number of ways to choose k samples that do not contain any correct solutions.

•
(
n
k

)
is the total number of ways to choose k samples from n.

The Pass@k metric ranges from 0 to 1, where 1 indicates that at least one correct solution is always found within the top k
samples and 0 indicates that no correct solution is ever found within the top k samples.

D.2. RQ2. Experiment Settings

In the process of RQ2, we train five open-source models using five knowledge update techniques, and evaluate trained
models on CODESYNCBENCH. In this section, we show the detailed experiment settings as follows.

D.2.1. MODEL TRAINING

Knowledge Update Methods. Supervised Fine-Tuning (SFT) is a widely used and traditional method for modifying and
aligning model knowledge, relying on labeled data to train models. For the SFT training dataset, the context in metadata
serves as the prompt, and the updated data serves as the target sequence. We also evaluate three instruction tuning methods
(e.g., DPO (Rafailov et al., 2023), ORPO (Hong et al., 2024), SimPO (Hong et al., 2024)) to update the knowledge, relying
on positive-negative data pairs to train models. For their training datasets, we use updated code and outdated data as the
positive and negative target sequences respectively. We use LoRA for all instruction tuning experiments (?) based on LoRA
SFT on A800 servers.
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We adopt five knowledge update techniques: SFT, SFT (LoRA), DPO, ORPO, SimPO. Additionally, LoRA training requires
less computation resources and is possessed of high efficiency.

We train DPO, ORPO and SimPO using LoRA techniques, which is more efficient than that of full training. We use
LLaMA-Factory (Zheng et al., 2024b), a user-friendly and reliable automated tuning framework.

Hyperparameter.

Table 7: RQ2. Hyperparameters for Qwen2.5-7B-Instruct

Techniques Epoch Learning Rate Warmup Ratio Preference Beta

SFT 3 1.0e-4 0.1 –
SFT(LoRA) 3 1.0e-4 0.1 –
DPO 3.5 5.0e-6 0.1 0.1
ORPO 3.5 5.0e-6 0.1 0.1
SimPO 3.5 5.0e-6 0.1 0.1

D.2.2. EVALUATION ON HUMANEVAL

We utilize the open-source project Code Generation LM Evaluation Harness (Ben Allal et al., 2022) to assess our models on
the HumanEval benchmark (Chen et al., 2021b). This evaluation framework provides a standardized method for measuring
the code generation capabilities of LLMs.

For each evaluation, we generate 10 independent samples per problem across all 164 programming tasks in the benchmark.
We then compute the Pass@1, Pass@3, and Pass@5 metrics, which measure the probability of generating a correct solution
within the top 1, 3, or 5 model outputs, respectively.

To further analyze model performance, we calculate the Pass@5 ratio between the trained models and the reference models.
This comparison, visualized in Figure 2, serves as a diagnostic tool to monitor the effectiveness of our training experiments.
The results indicate that all models perform on par with the reference models, suggesting that catastrophic forgetting is
minimal. Moreover, our approach successfully injects new knowledge into the models without degrading their existing
capabilities.

This evaluation provides strong evidence that our training strategy effectively balances knowledge retention and expansion,
ensuring that models maintain their baseline performance while learning new information.

D.3. RQ3-1. Experiment Settings

Retrieving invocation instances for each API presents challenges due to the limited number of available instances, which
complicates the scaling of both training sets and benchmarks. In most cases, we only have access to a small number of
instances. On the other hand, a limited sample size may lead to underfitting, while a larger sample size does not necessarily
equate to better performance. In this section, we evaluate the impact of sample size on model performance.

To address this, we prepare a series of training sets, each containing the same APIs but varying numbers of samples per API.
Specifically, we explore four different sample sizes: 5, 10, 20, and 50, representing different levels—low, medium, high, and
very high.

We construct these training sets from the original dataset. To control the experimental conditions, all four sets are derived
from the same set of APIs. Consequently, we include APIs that have more than 50 samples. We then randomly select a
fixed number of samples for each API. To reduce sample quality variance, we ensure that the sets overlap. For example, the
5-sample set is fully included in the 10-sample set, and so on.

Next, we train the model Qwen2.5-7B-Instruct (Qwen Team, 2024) on these sets. Due to the limited size of the subsets,
we double the number of epochs (which was set to 3 in Appendix D.2, and thus set to 6 for this experiment). To ensure
convergence of the loss value, we adjust the relevant hyperparameters, as shown in Table 8.
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Table 8: RQ3-1. Hyperparameters for Qwen2.5-7B-Instruct across different training datasets.

Counts Technique Eval Steps Learning Rate Preference Beta

5

SFT(LoRA) 30 1.0e-5 –
DPO 30 5.0e-6 0.3
ORPO 30 5.0e-6 0.1
SimPO 30 5.0e-6 0.7

10

SFT(LoRA) 50 1.0e-5 –
DPO 50 5.0e-6 0.3
ORPO 50 5.0e-6 0.1
SimPO 50 5.0e-6 0.7

20

SFT(LoRA) 200 1.0e-5 –
DPO 200 5.0e-6 0.3
ORPO 200 5.0e-6 0.1
SimPO 200 5.0e-6 0.7

50

SFT(LoRA) 500 1.0e-5 –
DPO 500 5.0e-6 0.3
ORPO 500 5.0e-6 0.1
SimPO 500 5.0e-6 0.7

D.4. RQ3-2. Experiment Settings

LLMs demonstrate varying capabilities across different categories of APIs. To align with RQ2 (see Appendix D.2), we
evaluate the trained models from RQ2 on different subsets of CCT within CODESYNCBENCH. Specifically, we categorize
CCT in CODESYNCBENCH into three distinct groups based on API types: functions, methods, and initializers. Each trained
model is assessed separately on these subsets to analyze its performance across different API structures.

To ensure a fair and robust evaluation, we set the temperature to 0.9 and generate five output samples per prompt to account
for variability in model responses. The model outputs are then compared against reference answers using BLEU scores,
which serve as a metric for measuring output accuracy. The results of this evaluation are presented in Figure 7, providing
insights into how model performance varies across API categories.

This analysis helps us understand whether LLMs exhibit strengths or weaknesses in handling specific API types, offering
valuable guidance for improving future models and fine-tuning strategies.
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E. Data Format
E.1. MetaData Format
MetaData

[API] torch.optim.swa_utils.AveragedModel.load_state_dict

[Code Context]
def load_model_from_state_dict(state_dict, input_dim=None):

model = optim.swa_utils.AveragedModel(SNN(input_dim=input_dim,
num_hidden_units=hidden_dim))
model.load_state_dict

[Updated Code] (state_dict, strict=True, assign=False)
[Outdated Code] (state_dict, strict=True)

E.2. Training Data Format

E.2.1. SFT TRAINING DATA

SFT Training data
[instruction]
Please fill the parameter list of api
\"torch.optim.swa_utils.AveragedModel.load_state_dict\"
according to the given context.

[input]
def load_model_from_state_dict(state_dict, input_dim=None):

model = optim.swa_utils.AveragedModel(SNN(input_dim=input_dim,
num_hidden_units=hidden_dim))
model.load_state_dict

[output] (state_dict, strict=True, assign=False)
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E.2.2. DPO/ORPO/SIMPO TRAINING DATA

DPO/ORPO/SimPO Training data
[conversations]

[from] system
[value] Please complete subsequent API calling statement.

[from] human
[value]
def load_model_from_state_dict(state_dict, input_dim=None):

model = optim.swa_utils.AveragedModel(SNN(input_dim=input_dim,
num_hidden_units=hidden_dim))
model.load_state_dict

[chosen]
[from] gpt
[value] (state_dict, strict=True, assign=False)

[rejected]
[from] gpt
[value] (state_dict, strict=True)

E.3. Code Completion Task Format

[API_path] flask.json.dump
[question]
def test_json_dump_to_file(self):

app = flask.Flask(__name__)
test_data = {’name’: ’Flask’}
out = StringIO()
with app.app_context():

flask.json.dump
[answer] (test_data, out)

E.4. Error Correct Task Format

[API_path] flask.json.dump
[question]
def test_json_dump_to_file(self):

app = flask.Flask(__name__)
test_data = {’name’: ’Flask’}
out = StringIO()
with app.app_context():

flask.json.dump(token_data, file, app=None)
[answer] (token_data, file)
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E.5. Multiple Choice Question Format

[API_path] flask.json.dump
[question]
def test_json_dump_to_file(self):

app = flask.Flask(__name__)
test_data = {’name’: ’Flask’}
out = StringIO()
with app.app_context():

flask.json.dump
[A] (test_data, out, app=app)
[B] (test_data, out)
[C] (test_data, out, app=app, indent=4)
[D] (test_data, out, app=None)
[answer] B
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