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Abstract

Language models acquire vast knowledge during pretraining, but adding new
knowledge to pre-trained models often lacks robustness—models can retrieve
individual facts but struggle with multi-hop reasoning over newly acquired knowl-
edge. To systematically study this robustness gap, we introduce RANK (Robust
Acquisition of New Knowledge), a testbed using synthetic knowledge graphs to
evaluate knowledge acquisition via k-hop reasoning tasks of increasing complexity.
Our evaluation of supervised fine-tuning (SFT) and in-context learning (ICL) re-
veals that ICL performance degrades with reasoning complexity and knowledge
scale, while SFT trained on simple facts fails completely at multi-hop reasoning.
However, we find that increasing training data diversity induces a sharp phase
transition of fine-tuned models from memorization to out-of-distribution general-
ization. RANK enables controlled experiments that reveal insights into knowledge
acquisition robustness.

1 Introduction

Language models (LMs) acquire vast knowledge during pretraining [[79} [15[37], but incorporating
new knowledge post-training remains crucial for adapting LMs to proprietary data. Moreover, rapidly
evolving domains make static pretraining both costly and quickly outdated. To address these needs,
researchers have developed approaches based on continual pretraining [39, [77]], fine-tuning [69]],
model editing [5327]], and context compression [56163]. However, these methods can fail to integrate
large-scale knowledge bases robustly, struggle with update implications of new knowledge [81} [16],
interfere with existing knowledge [59]], and increase hallucinations [66} [30]. More generally, the
robustness of knowledge acquisition—whether models can reason over new knowledge, not just
retrieve it—remains understudied.

To study this robustness problem systematically, we define robust knowledge acquisition as the ability
to both retrieve individual facts and reason over multiple facts to draw inferences. This motivates
three key research questions:

How can we systematically measure knowledge acquisition robustness?
How do standard knowledge acquisition methods compare in terms of robustness?
Which data factors most influence robust knowledge acquisition via fine-tuning ?
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Figure 1: RANK: A testbed for Robust Acquisition of New Knowledge. We use our testbed
RANK to evaluate robust knowledge acquisition in three steps: (1) generate synthetic knowledge
graphs, (2) textualize the graph into natural language for different knowledge acquisition methods,
and (3) evaluate their performance through k-hop performance metrics that jointly measure both
basic knowledge retrieval and multi-hop compositional reasoning.

To answer the first question, we introduce RANK (Robust Acquisition of New Knowledge), a testbed
that uses synthetic knowledge graphs to systematically evaluate robust knowledge acquisition. As
shown in Figure (1| knowledge graphs naturally encode reasoning chains as paths, enabling us to
generate questions of varying complexity (k-hop) that test both basic retrieval and multi-hop reasoning
capabilities.

We use RANK to evaluate the knowledge acquisition robustness of two standard approaches: In-
context Learning (ICL) and Supervised Fine-tuning (SFT). First, we find that ICL exhibits systematic
performance degradation with both reasoning complexity (number of hops) and knowledge graph
size, even for frontier models like Gemini 2.5. Second, models finetuned exclusively on one-hop data
achieve perfect retrieval but fail completely on multi-hop reasoning, performing at random chance
even after aggressive data augmentation.

To understand why SFT fails at multi-hop reasoning, we use RANK to analyze the role of training
data composition, revealing two data-specific factors that significantly improve robustness: (1)
increasing training data diversity by adding multi-hop data induces a shift from narrow in-distribution
generalization to out-of-distribution generalization and (2) training with chain-of-thought rationales
is essential—removing them causes failure across all reasoning levels. With these changes, SFT can
perform significantly better than ICL for robust knowledge acquisition, highlighting the critical role
of dataset design for knowledge acquisition.

Organization. We present RANK and our evaluation framework in Section [2} followed by experi-
mental results for SFT and ICL in Section[3] Due to space constraints, we defer detailed experimental
setups, additional ablations, and related work to the appendix.

2 RANK: A Testbed for Robust Acquisition of New Knowledge

We now describe RANK, our testbed that leverages synthetic knowledge graphs for evaluating whether
language models robustly acquire and reason over new knowledge.

2.1 Using Knowledge Graphs to Study Robust Knowledge Acquisition

Robust knowledge acquisition requires two capabilities: retrieval (learning and recalling individual
atomic factual relationships) and reasoning (synthesizing or chaining multiple facts to arrive at an
answer). While basic factual knowledge is necessary for reasoning, it is not sufficient—recent work
demonstrates that methods successfully adding or updating individual facts often fail when models
must reason over the acquired knowledge [81 (80, 16} [59]. Therefore, measuring robustness requires
evaluation approaches that jointly assess both retrieval and reasoning over acquired knowledge.



Our testbed RANK operationalizes this study using knowledge graphs—structured representations
with entities as nodes and relationships as edges—which naturally enable testing robust knowledge
acquisition via k-hop questions. One-hop questions test retrieval of atomic facts, while multi-hop
questions test reasoning by requiring models to chain multiple relations. For example, a model that
robustly internalizes an affiliation-based knowledge graph should answer the two-hop question “Are
Bob and Allen colleagues?” by retrieving and reasoning over: “Bob affiliated with Hogwarts” and
“Allen affiliated with Hogwarts.”

2.2 Evaluating Knowledge Acquisition Robustness with Multi-hop Questions

We formalize our setup as follows: Let M denote an instruction-tuned language model, G a knowledge
graph of factual triplets {(e, 7, ¢’) } unknown to M, and A : (M, G) — M a knowledge acquisition
method (e.g., fine-tuning or in-context learning). Knowledge graphs naturally support multi-hop
evaluation: k-hop questions correspond to k-step paths through G. We generate questions by sampling
these paths via Q(G) and converting them to natural language.

Definition 1 (k-hop accuracy). Let M denote a language model, G a knowledge graph, and A a
knowledge acquisition method. Let Qy(G) denote a question generation process that samples k-hop
walks from G and converts them to natural language questions with ground truth answers. The k-hop
accuracy of method A applied to model M and graph G is:

Accg (A, M, G) = E(ga)~g,6) 1AM, G)(q) = d]]

where 1[] is the indicator function for correct answers.

The evaluation produces a performance profile over multiple values of k, providing a fine-grained
measure of robustness. One-hop questions test retrieval of individual facts, while k-hop questions
(k > 1) test reasoning over multiple facts. Additionally, RANK supports multiple question formats—
multiple-choice, cloze, true-false—as detailed in Appendix

2.3 Using RANK in Practice

RANK comprises a four-step pipeline: (1) defining entity-relation schemas, (2) generating synthetic
knowledge graphs, (3) textualizing graph relations into natural language via templates, and (4)
constructing datasets (summaries, questions, solutions) for different knowledge acquisition methods.
We defer this discussion to Appendix due to space constraints.

3 Evaluating Robust Knowledge Acquisition with RANK

We now evaluate the extent to which two standard approaches—Supervised Fine-tuning (SFT) and
In-context Learning (ICL)—robustly acquire new knowledge using RANK.

3.1 Supervised Fine-tuning (SFT)

Setup. We begin by describing the setup—data, training, evaluation—used in our SFT experiments.
Given a knowledge graph G, we format SFT training data as single-turn (question, answer) conver-
sations containing synthetically generated CoTs using the pipeline described in Section 2.3] We
uniformly sample across all data formats—summaries, multiple choice, true-false, and cloze-style
questions—and vary dataset size by varying the number of template-based rephrasals per relation
(see Appendix [B.T). Following prior work [77], we construct a replay buffer of general instruction-
following data (using Dolly [19]) to mitigate catastrophic forgetting. We perform full-network
fine-tuning on instruction-tuned Qwen3 models [76] for a single epoch and evaluate them with a
k-hop performance profile (Definition , where k € {1, ..., Kiain, ---, Krest }- Specifically, we evaluate
fine-tuned models based on (a) in-distribution performance on [1, ...k ]-hop questions and (b)
out-of-distribution performance with (Kirin, ..., krest]-hop questions. We defer details to Appendix@

Results. We systematically examine three key aspects of robust knowledge acquisition with SFT:

* Models fine-tuned on one-hop data lack robustness. The first subplot in Figure [2| shows that fine-
tuned models trained exclusively on 1-hop questions achieve near-perfect 1-hop performance (re-
trieval) with sufficient augmentation (50-100x). However, these models fail on out-of-distribution
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Figure 2: Training on diverse k-hop questions improves robustness. The four subplots show the
effect of training Qwen3-4B on < ky,i,-hop data and testing on kg -hop multiple-choice questions,
where Eyain € [1,4] and ks € [1, 5]. Each subplot—one for each value of ky,in—shows accuracy
(y-axis) versus ks € [1,5] (x-axis), with darker bars representing more training data augmentation
(1x to 100x) and the gray line indicating random chance. Our results reveal three key findings: (a)
with sufficient augmentation, SFT achieves strong in-distribution performance when ket < Kirain,
(b) out-of-distribution generalization (kg > Kirain) remains poor when training on < 2-hop data but
exhibits a critical transition at ki, = 3 that enables 4-hop and 5-hop performance, and (c) training
on < 4-hop data further improves 5-hop out-of-distribution performance.

multi-hop questions, performing at chance level on all (k > 1)-hop tasks regardless of augmentation
level. Figure[T4]in Appendix D] validates this finding across different QA formats and model sizes.

* Multi-hop training data improves robustness. Figure[2examines the effect of training Qwen3-4B
on Kyin-hop training data and evaluating on kieq-hop performance, with kg, € {1,2,3,4} and
ket € [1,5]. With sufficient augmentation, training on {1}-hop and {1, 2}-hop data results in
models with near-perfect in-distribution performance (i.e., when ket < Kirain) and close-to-random
out-of-distribution performance on (kiest > Kirain )-hop questions. However, when ki, > 3, fine-
tuning improves out-of-distribution generalization. Similarly, adding 4-hop questions to the training
data further improves out-of-distribution performance on 5-hop data, indicating a shift from narrow
in-distribution generalization to compositional out-of-distribution generalization.

* Fine-tuning without CoT hurts robustness. Figure[13]in Appendix [D|compares Qwen3-1.7B
fine-tuned on {1, 2, 3}-hop data with and without synthetic CoTs. We show that removing CoT
from the training data significantly degrades both in-distribution and OOD performance, suggesting
that step-by-step decomposition of multi-hop is useful for robustness.

Discussion. Our analysis with RANK unifies key findings on SFT-based knowledge acquisition:
the role of data augmentation on one-hop retrieval [3] [T1]], the role of CoTs for multi-
hop knowledge manipulation [4]], and more generally, the role of data diversity for compositional
generalization [[70,[82]. More broadly, while recent findings show that SFT amplifies memorization
over generalization [14]], our results in Figure 2] show that data augmentation, problem diversity, and
CoT fine-tuning can, in fact, make fine-tuned models generalize better.

3.2 In-context Learning (ICL)

We evaluate ICL by textualizing RANK-generated graphs as factual statements in context and testing
multi-hop reasoning via zero-shot CoT prompting. Our findings show that ICL performance worsens
with an increase in (a) number of hops k (proxy for reasoning complexity) and (b) knowledge graph
size (proxy for in-context length), well before reaching maximum context limits, even for frontier
models like Gemini 2.5 [17]. We defer this analysis to Appendix [C|due to space constraints.



4 Conclusion

We introduced RANK, a testbed for systematically evaluating robust knowledge acquisition via
multi-hop reasoning over synthetic knowledge graphs. Our experiments reveal limitations in current
approaches: ICL performance degrades with reasoning complexity and knowledge scale, while SFT
requires careful data design to achieve robust reasoning. We also find a sharp phase transition in
SFT—training on diverse multi-hop examples with sufficient augmentation and CoT enables robust
out-of-distribution generalization. RANK provides a controlled framework for future research on
this critical challenge, enabling systematic evaluation of knowledge acquisition robustness across
different methods and configurations.
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A Related Work

We categorize work on knowledge acquisition into three areas: analyzing how models acquire knowl-
edge, developing methods to update parametric knowledge, and evaluating knowledge acquisition
performance across methods.

Analyzing knowledge acquisition. A growing line of work on understanding properties of knowl-
edge acquisition leverages synthetic datasets to design controlled pretraining experiments. These
studies highlight the role of data augmentation on knowledge extraction [3]], CoT reasoning on knowl-
edge manipulation [4], and model size on knowledge capacity [5]. More recent works study different
aspects of factuality: learning dynamics [83}[10], role of data formatting and generation [29, 152} 58]],
and the interplay between in-context information and parametric knowledge [75]]. Mechanistic
interpretability studies use localization techniques tools [18| 71} 64] to identify knowledge-specific
circuits [20, [7], edit factual knowledge [22, 53], and infer mechanisms responsible for factual
recall [31} 132]]. Recent works on knowledge injection highlight the (a) difficulty of adding new
knowledge to pretrained models [30, 78], and (b) its interplay with “knowledge entropy” [4 1], hallu-
cination [[66], and existing knowledge [83]]. More recently, Zhao et al. [80] show that (a) knowledge
acquisition is primarily driven by train-evaluation format alignment and (b) models struggle to
employ injected facts in multi-hop reasoning. Our work contributes to this direction by using RANK
(Section [2)—a testbed based on synthetic knowledge graphs—to analyze whether language models
robustly acquire new knowledge (Section 3)).

Improving knowledge acquisition. Knowledge acquisition methods can be grouped by approach:
fine-tuning, reinforcement learning, model editing, and in-context learning. Fine-tuning variants
typically improve knowledge acquisition via data augmentation recipes based on synthetic documents
[73L [771], paraphrasing [S1160], implications [2], multi-agent debate [24], and in-context inferences
[45,161]. Methods based on reinforcement learning directly learn such data augmentation recipes [84]]
or tune the model for factuality via external verifiers [69], fine-grained loss masking [34]], or multi-
objective rewards [47,[13]. Model editing methods, which update or add atomic facts by modifying a
small subset of model weights, typically rely on localization [53} 154} 27, 67]], meta-learning [S5] and
adding new parameters [35),123]. Methods that focus on in-context knowledge can be grouped into
those that (a) learn reusable parametric modules (e.g., through context distillation [43] [8]], generative
adapters [12]], and learned KV caches [26]]), and (b) improve the in-context encoding of graph-
structured knowledge [28}62]. In contrast, the goal of our work is not to develop new methods for
knowledge acquisition but rather to understand how representative approaches—in-context learning
and fine-tuning—fare at robust knowledge acquisition.

Evaluating knowledge acquisition. Another line of work evaluates knowledge acquisition inter-
ventions and their failure modes. Studies that evaluate knowledge editing methods highlight issues
such as representation shattering [59], unintended ripple effects that impact related knowledge [16]],
and limited effectiveness on compositional tasks [81]. Additionally, several works highlight unin-
tended consequences of knowledge acquisition approaches: retrieval-augmented generation suffers
from brittleness [9]] and increased hallucinations [72]], while fine-tuning exhibits sensitivity to fact
popularity [33]], hallucinations due to unfamiliar knowledge [38l|30]], and catastrophic forgetting [S0].
Recent works also develop synthetic testbeds for studying knowledge acquisition [3}42] and realistic
benchmarks for evaluating practical knowledge acquisition performance [[74} 21]. Specifically, recent
works also use synthetic graphs to study language model phenomena such as stepwise inference [40]
and creativity vis-a-vis next-token prediction [57]].
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B RANK: Robust Acquisition of New Knowledge

This appendix provides additional details on the implementation of RANK, covering the complete
pipeline from generating synthetic entities and knowledge graphs to creating multi-hop reasoning
questions with chain-of-thought solutions.

B.1 Using RANK in Practice

We now outline a four-step pipeline for applying RANK to study knowledge acquisition: (1) defining
the schema, (2) generating the knowledge graph, (3) textualizing the graph into natural language,
and (4) constructing datasets for training and evaluation, as shown in Figure|[I] In this work, we use
RANK to generate knowledge graphs over researchers and their academic relationships, though the
framework can be applied to any domain by specifying alternative schemas.

Step 1: Defining the schema. To construct synthetic knowledge graphs, we first need a schema
specifying valid relations over a pool of entities. We generate five types of fictional entities—people,
universities, companies, cities, and research areas—using instruction-tuned models in order
to avoid overlap with knowledge acquired during pretraining. Then, we create a schema to specify
valid relations—graduate school, graduation year, research advisor, research area, current
affiliation, location, and coauthors—between pairs of entities. Each relation corresponds to
an atomic fact (s, r,t), associating a source entity s to a target entity ¢ via relation r. Together,
these entities and relations form the nodes and edges of our knowledge graphs. We defer details

to Appendix

Step 2: Generating the knowledge graph. Given the schema and entity pools, we generate
synthetic knowledge graphs by first specifying the number of nodes (i.e., entities of each type) and
the number of edges (i.e., total relations in the graph). We then construct the graph in two steps: (a)
adding nodes by uniformly sampling entities of each type from the entity pools, and (b) adding edges
by uniformly samplinﬁ target entities for each (source entity, relation) pair. We also use rejection
sampling to enforce logical consistency constraints, e.g., ensuring that an advisor’s graduation year
precedes their advisee’s graduation year.

Step 3: Textualizing relations in the knowledge graph. To convert knowledge graphs to natural
language, we start by textualizing the relations (i.e., edges) that encode atomic facts. Following
prior work [3l142], we create multiple templates for each relation type in different formats such as
declarative statements, reversals, and questions. For example, the triplet (Bob, graduate school,
University of Eldoria) can be textualized as “Bob graduated from the University of Eldoria”,
(statement),“The University of Eldoria is Bob’s alma mater” (reversal), and “Where did Bob graduate
from? University of Eldoria” (question). This approach supports data augmentation through multiple
templates per relation while controlling for verbatim memorization [36] by using distinct template
sets for training and evaluation. We provide the complete set of templates in Appendix B}

Step 4: Constructing datasets. We use the textualized relations from the previous step to generate
training and evaluation data. Different approaches to knowledge acquisition require different data
formats, so introduce building blocks that can be adapted to a given approach; for example, supervised
fine-tuning requires question-answer pairs while in-context learning requires demonstrations. We
outline three building blocks—summaries, questions, and solutions—below, each of which chains
sequences of 1-hop relations to synthesize multi-hop information; we vary sequence length to control
the number of hops.

* Summaries: We consider nodal and relational summaries. Nodal summaries aggregate all 1-
hop relations from an entity to create descriptive text about that entity. Relational summaries
sample pairs of entities, trace connecting paths between them, and generate descriptions of their
relationships, similar to the augmentation approach in EntiGraph [77].

2Our uniform graph sampling approach in the second step (Section|2.2) resembles Erdés—Rényi graphs [23].
This can be swapped with more realistic graph models such as Barabdsi and Albert [6] to generate scale-free
knowledge graphs with long-tailed degree distributions.
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* Questions: We create question-answer pairs by sampling k-hop random walks from the knowledge
graph and converting them into multiple choice, true-false, and cloze questions. For example,
a 2-hop walk through (Alice, advisor, Bob) and (Bob, affiliation, University of Eldoria)
generates the question “Where did Alice’s advisor graduate from?”.

* Solutions: Similar to reasoning traces, we provide algorithmically generated solutions to k-hop
questions that decompose the reasoning into k steps to arrive at the correct answer. Each step
resolves intermediate entities, showing how information chains across relations.

B.2 Additional details

Generating fictitious entities . To construct synthetic knowledge graphs with entities unknown to
pre-trained models, we employ a two-stage generation and filtering process. First, we use instruction-
tuned language models with manually crafted prompts to generate diverse pools of fictitious entities
across five types: full names, universities, companies, cities, and research areas. Our prompts are
designed to encourage realistic but uncommon names—for example, requesting entities that sound
plausible but do not match any well-known real-world counterparts. Each entity type has specific
constraints to ensure consistency and realism, such as requiring universities to either start or end
with “University” and limiting company names to single words. Second, we filter the generated
entities using a base language model’s cross-entropy loss to identify candidates that are neither
too familiar (potentially in training data) nor too unrealistic (difficult for models to process). By
computing loss scores for each entity given a neutral context, we select entities that strike an optimal
balance between realism and novelty, avoiding knowledge the confounding effects from pre-existing
parametric knowledge.

Specifying the graph schema. Our schema defines the structure of academic knowledge graphs by
specifying which entities can be connected and how. We model an academic domain with six entity
types: people (researchers), universities, companies, cities, research areas, and years. The schema
defines relations between these entities, such as “graduate school” connecting people to universities,
“current affiliation” linking researchers to their institutions, and “coauthor” relating researchers to
each other. Each relation specifies its domain (source entity types) and range (target entity types),
along with its inverse relation—for example, if Alice graduated from University X, then University
X has Alice as an alumnus. To avoid redundancy, we designate one relation in each inverse pair
for sampling while the other is automatically inferred. Some relations have dependencies: advisor
relationships require graduation years to be assigned first, ensuring that advisors graduated before
their students. Our validation checks ensure the schema is consistent—inverse relations properly
mirror each other, dependency chains don’t create cycles, and exactly one relation in each pair is
marked for sampling. The schema supports both unique relationships (each person has one graduation
year) and multiple relationships (universities can have many alumni), enabling realistic academic
networks that support multi-hop reasoning questions about researcher connections, institutional
affiliations, and collaborative relationships.

Generating the graph. Given the schema and entity pools, we generate knowledge graphs through
a systematic two-step process. First, we sample the specified number of entities for each type from
the filtered entity pools described earlier. Second, we generate relations by processing relation types
in dependency order—relations with prerequisites are sampled after their required relations have been
established. For each entity and applicable relation type, we uniformly sample the specified number
of target entities from valid candidates, applying constraint filters when necessary. For example,
when assigning academic advisors, we filter potential advisors to ensure their graduation year
precedes their student’s graduation year, maintaining temporal consistency. The system automatically
handles inverse relations by simultaneously creating both directions—when Alice graduates from
University X, we add both the "graduate school" relation from Alice to University X and the inverse
"alumni" relation from University X to Alice. This process generates realistic academic networks
where researchers have graduation histories, institutional affiliations, collaborative relationships, and
research specializations. We provide multiple standardized graph configurations ranging from smaller
networks (30 researchers) to larger ones (500 researchers) to support reproducible experiments across
different scales while maintaining consistent academic relationship patterns. As shown in Figure[3]
even moderately-sized knowledge graphs can quickly exceed the context length limits of current
language models when textualized, making controlled graph sizes essential for systematic evaluation.
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Figure 3: Large knowledge graphs quickly exhaust context limits. We plot the relationship
between the size of RANK knowledge graphs (measured in edges or factual triplets) and the resulting
context length in tokens after textualizing the graph. The horizontal dashed lines indicate maximum
context lengths for different model families: Qwen 3 4B (32k tokens), Gemma 3 (128k tokens), and
Gemini 2.5 (1M tokens). Even moderately-sized knowledge graphs with 30k-100k edges exceed the
context limits of long-context model families such as Gemini.

Textualizing relations with templates We convert knowledge graph triplets into natural language
using a template-based approach that naturally supports data augmentation. Our templates are
stored in YAML configuration files, with each relation type having multiple template variants that
use standardized placeholders: {domain} for the source entity, {range} for the target entity, and
{relation} for the relation type. Figure [4] shows examples from our augmented.yml file, where
a graduation relation can be textualized as “Bob completed their graduate studies at University of
Eldoria” (formal) or “Bob’s graduate alma mater is University of Eldoria” (descriptive variant). To
ensure models generalize beyond specific phrasings, we implement a train-test template splitting
system that reserves distinct template sets for training and evaluation while allowing some templates
to be shared across both splits. This approach enables controlled data augmentation—we can
generate multiple textual variants of the same factual triplet while ensuring that models must learn
the underlying relationships rather than memorizing specific sentence structures. This approach also
supports different augmentation strategies by categorizing templates into types (base statements,
chain-of-thought reasoning, yes/no questions) and allows selective sampling from template subsets to
run controlled experiments.

Generating multi-hop questions. We use the textualized relations to generate training and evalu-
ation data through a modular building blocks approach. Different knowledge acquisition methods
require different data formats—supervised fine-tuning needs question-answer pairs while in-context
learning requires demonstrations—so RANK designs flexible components that adapt to specific
experimental requirements.

* Building blocks for multi-hop data generation. RANK provides three core building blocks that
chain sequences of 1-hop relations to synthesize multi-hop information:

— Summaries: We generate nodal summaries that aggregate all outgoing relations from an entity,
and relational summaries that describe connection paths between entity pairs. These support
descriptive tasks (“Describe Alice and her background”) and relationship queries (“How are Bob
and Alice related?”).

— Questions: We sample k-hop random walks and convert them into three formats: multiple
choice questions, true-false statements, and cloze questions with masked placeholders.
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Example Templates from augmented.yml

GRAD_SCHOOL (domain: person, range: university)

* "{domain} completed their graduate studies at {range}."
* "{domain} earned a graduate degree at {range}."

* "{domain} received a graduate degree from {range}."

» "{domain} pursued graduate studies at {range}."

* "{domain}’s graduate alma mater is {range}."

CURRENT_AFFILIATION (domain: person, range: institution)

* "{domain} presently holds a position at {range}."

* "{domain}’s current professional home is {range}."
* "{domain} is associated with {range} at present."

* "{domain} is currently working at {range}."

* "{domain}’s employer is {range}."

Figure 4: Templates for textualizing relations. Example templates for two relation types from our
augmented.yml file. Each relation has multiple templates that use placeholders ({domain}, {range})
to create different text versions of the same fact, supporting data augmentation while preventing
memorization.

— Solutions: We generate structured chain-of-thought traces that decompose k-hop reasoning into
k explicit steps. Each step verbalizes intermediate triplets and builds toward the final answer,
providing models with step-by-step guidance for multi-hop reasoning.

* Converting k-length walks to k-hop questions. RANK converts k-hop random walks into evalua-
tion questions via entity masking. The approach identifies intermediate entities—those appearing
as both domain and range within the walk sequence—and replaces them with typed placeholders
while preserving the first domain and final range entities. Each placeholder receives a unique
identifier based on entity type abbreviations (e.g., “Person PE1”, “University UN2”), maintaining
type information while preventing models from exploiting memorized entity associations. The
masked walks are then converted into different question formats.

* Generating chain-of-thought solutions. For each multi-hop question, RANK generates structured
CoT-like traces using question-specific CoT subroutines. The approach decomposes k-hop reason-
ing into k sequential steps, where each step verbalizes the corresponding knowledge graph triplet
and establishes intermediate entity bindings (e.g., “From step 1, we know that Person PE1 is Alice”).
Different CoT generators handle question types distinctly: multiple choice generators check each
option against sets of valid entities derived from all possible paths, true-false generators verify
statement validity by comparing claimed entities with computed valid sets, and cloze generators
systematically resolve masked entities through step-by-step triplet evaluation.
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Examples. As discussed in Appendix RANK generates multiple question formats with cor-
responding algorithmic solutions. Figures [5and [6] provide examples of descriptive questions that
aggregate entity relationships without requiring multi-hop reasoning. For tasks requiring compo-
sitional inference, Figures [7|to [0] provide examples of 2-hop multiple-choice, true-false, and cloze
questions along with algorithmically generated CoT solutions. Each example contains a task descrip-
tion, a question, a step-by-step CoT-like solution that decomposes multi-hop inference into sequential
steps, and the final answer.
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An example of a nodal summary generated using RANK

Read the instruction and describe the query entity and its direct relationships with other entities.
Provide a coherent description of the entity’s relations and connections.

Give key facts about researcher Elspeth Rigel.

Elspeth Rigel conducts research in the field of Holographic Memory Encoding. Elspeth Rigel
graduated from Zenith Vale University. Elspeth Rigel is employed at Talwood University.
Elspeth Rigel completed their graduate studies in the year 1965. Elspeth Rigel’s research
advisor in graduate school was Tilbury Quill. Elspeth Rigel served as the research advisor
for Jumoke Adebayo. Elspeth Rigel has been a co-author with Kellan Winters on research
papers. Elspeth Rigel has been a co-author with Bastian Kirov on research papers. Elspeth
Rigel has been a co-author with Caspian Vela on research papers. Elspeth Rigel has been a
co-author with Milana Brubaker on research papers. Elspeth Rigel has been a co-author with
Dorian Zephyr on research papers. Elspeth Rigel has been a co-author with Liesel Tiberius on
research papers. Elspeth Rigel has been a co-author with Rafferty Blakely on research papers.
Elspeth Rigel has been a co-author with Nyssum Tharen on research papers. Elspeth Rigel has
been a co-author with Elden Harrow on research papers.

Figure 5: An example of a nodal summary generated using RANK. This figure demonstrates a
descriptive task where the model aggregates all 1-hop relationships for a given entity, providing a
comprehensive overview of the entity’s direct connections within the knowledge graph.

An example of a 1-hop relational summary generated using RANK

Read the instruction and describe how the two query entities are connected through a sequence
of relationships. Provide an explanation of the path of connections between them.

How does researcher Isolde Brine relate to year 1993?

Isolde Brine completed their graduate studies in the year 1993.

. J

Figure 6: An example of a 1-hop relational summary generated using RANK. This figure
demonstrates a relational task where the model describes the direct connection between two specified
entities within the knowledge graph.
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An example of a two-hop true-false question generated using RANK

Read the statement and determine if it is True or False. The text may contain entity placeholders
such as Person PE#, University UN#, City CT#, Research Area RA#, etc. Each placeholder
has a prefix for the entity type and a number that uniquely identifies it inside this prompt. For
example, PE1 always refers to the same hidden person, while PE1 and PE2 refer to different
people. Figure out which entity each placeholder can represent (multiple valid assignments
may exist) and reason over those assignments to answer the question. Do not include entity
placeholders in your final answer. Output 'True’ if all parts of the statement are factually
correct. Output "False’ if any part of the statement is factually incorrect. Think step-by-step.
In your final step, clearly indicate your answer on a new line starting with *The answer is’.

Niles Calder is employed at University UN1. University UN1 has a base in the city of
Draymont.

Determine whether the statement above is True or False.

My plan is to verify the statement by building a set of all possible correct answers step-by-step.
I will start with the first known entity and, for each relationship in the chain, I will find all valid
resulting entities. Finally, I will check if the entity claimed in the statement exists within my
final set of possibilities to determine if the statement is True or False.

Here is the step-by-step reasoning:

e Step 1: Which entity could University UN1 be? Niles Calder is employed at Havenlight
University. So, University UN1 is Havenlight University.

¢ Step 2: Is University UN1 located in Draymont?

— Havenlight University is located in Morwen.
— The set of valid entities is (Morwen). Draymont is not in this set.
— So, the answer to “Is University UN1 located in Draymont?” is a No.

Therefore, the statement is False.

The answer is: False.

\. J

Figure 7: An example of a two-hop true-false question generated using RANK. This figure
demonstrates the complete structure of a multi-hop reasoning question, including task instructions,
the statement with masked entities (placeholders), step-by-step chain-of-thought reasoning that
resolves entity relationships across multiple hops, and the final answer determination.
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An example of a two-hop multiple-choice question generated using RANK

Read the question and the answer choices first. Among the four choices, one is correct while the
others are incorrect. The text may contain entity placeholders such as Person PE#, University
UN#, City CT#, Research Area RA#, etc. Each placeholder has a prefix for the entity type
and a number that uniquely identifies it inside this prompt. For example, PE1 always refers to
the same hidden person, while PE1 and PE2 refer to different people. Figure out which entity
each placeholder can represent (multiple valid assignments may exist) and reason over those
assignments to answer the question. Do not include entity placeholders in your final answer.
Output only the letter corresponding to the correct choice (e.g., A, B, C, D). Think step-by-step.
In your final step, clearly indicate your answer on a new line starting with *The answer is’.

Prospera has a base in the city of City CT1. Out of the following institutions, which ones are
located in City CT1?

¢ A: Technacle

¢ B: Silicodynamics

¢ C: Oakridge University

e D: Sagebrush College

The goal is to determine which of the given answer choices correctly answers the question.

My plan is to verify the answer by building a set of all possible correct answers step-by-step. I
will start with the first known entity and, for each relationship in the chain, I will find all valid
resulting entities. Finally, I will check which of the multiple choice options exists within my
final set of possibilities to determine the correct answer.

Here is the step-by-step reasoning:

e Step 1: Which entity could City CT1 be? Prospera is in Moldenfell. So, City CT1 is
Moldenfell.

* Step 2: We can now determine valid hosts of City CT1.

— Moldenfell is a host of one or more offices of Oakridge University. Moldenfell hosts one
or more offices of Prospera. Moldenfell hosts one or more offices of Talwood University.
Moldenfell hosts one or more offices of Virtalith.

— So, the list of valid hosts is: Prospera, Virtalith, Talwood University, Oakridge University.

— Is choice A (Technacle) in this list? No. Is choice B (Silicodynamics) in this list? No. Is
choice C (Oakridge University) in this list? Yes. Is choice D (Sagebrush College) in this
list? No.

Therefore, the correct answer choice is C.

The answer is: C.

Figure 8: An example of a two-hop multiple-choice question generated using RANK. This figure
demonstrates the complete structure of a multi-hop reasoning question, including task instructions, the
question with masked entities (placeholders), step-by-step chain-of-thought reasoning that resolves
entity relationships across multiple hops, and the final answer selection.
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An example of a 2-hop cloze question generated using RANK

Read the statement carefully. The statement ends with a [MASK] placeholder. The text may
contain entity placeholders such as Person PE#, University UN#, City CT#, Research Area
RA#, etc. Each placeholder has a prefix for the entity type and a number that uniquely identifies
it inside this prompt. For example, PE1 always refers to the same hidden person, while PE1 and
PE2 refer to different people. Figure out which entity each placeholder can represent (multiple
valid assignments may exist) and reason over those assignments to answer the question. Do not
include entity placeholders in your final answer. Your task is to replace [MASK] with exactly
one correct entity name. Even if multiple entities could fit, you must choose and output only
one of them. Think step-by-step. In your final step, clearly indicate your answer on a new line
starting with *The answer is’.

Liora Vale served as the research advisor for Person PE1. Person PE1 completed their studies
in the year [MASK]

The goal is to find the correct entity to replace [MASK] in the statement above.

To find the correct entity to replace [MASK], I will trace the relationships between the entities
mentioned in the statement, starting from the first known entity and following the relationships
until I can identify a correct entity for [MASK].

Here is the step-by-step reasoning:

* Step 1: Liora Vale was the research advisor of Meera Bharti. So, Person PE1 is Meera
Bharti.

e Step 2: From step 1, we know that Person PE1 is Meera Bharti. Meera Bharti completed
their graduate studies in the year 2018.

Therefore, we can replace [MASK] with 2018.

The answer is: 2018.

\. .

Figure 9: An example of a 2-hop cloze question generated using RANK. This figure demonstrates
a fill-in-the-blank task where the model must resolve entity relationships across multiple hops to
determine the correct entity to fill the masked position.
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C Evaluating In-context Learning with RANK

C.1 Findings

Setup. We evaluate ICL-based knowledge acquisition in two steps: (a) placing the knowledge graph
G in context and (b) evaluating multi-hop compositional reasoning. First, using the template-based
approach in Appendix [B] we textualize the knowledge graph (generated via RANK) by converting
every edge—a factual triplet—into factual statements and presenting them as a list in the context.
Then, we generate multi-hop questions where every question includes the in-context knowledge
graph, a task description with a prompt for zero-shot CoT reasoning, and the question itself, which is
either a k-hop multiple choice question or true/false statement. To answer correctly, the language
model must break down the question into k reasoning steps and use the in-context information at
each step to arrive at the correct answer. Our experiments use instruction-tuned language models
and knowledge graphs that entirely fit in the context of all models we consider. We defer details and
examples to Appendix [C]

Results. We now use RANK to evaluate whether ICL can robustly acquire new knowledge:

* Effect of number of hops and model size. Figure [I0] evaluates models of size 3.8B to 14B
from three families—Phi 4 [[1]], Gemma 3 [68]], and Qwen 3 [76]—on k-hop multiple choice and
true-false questions. For all models, we observe that increasing the number of hops systematically
degrades performance. For example, Phi 4 achieves near-perfect accuracy (98%) on 1-hop multiple
choice questions but drops substantially to 85% and 52% on 2-hop and 5-hop questions respectively.
However, larger models within each family demonstrate better multi-hop reasoning robustness over
the in-context knowledge graph. For instance, on 3-hop true-false questions, Phi 4 achieves 90%
accuracy compared to 35% for Phi 4 mini.

* Effect of context length. Figure[TT]examines the effect of context length on ICL performance by
varying the size of the knowledge graph itself. We evaluate Gemini 2.5 models [17]], which support
context lengths up to 1M tokens, on knowledge graphs that when textualized range from 1000
tokens to 1M tokens. While these models excel on small knowledge graphs, their performance
degrades as the knowledge graph size (and corresponding context length) increases, well before
reaching the maximum context limit. All models except Gemini 2.5 Flash on 1-hop tasks suffer
substantial accuracy drops as context length grows from 1000 tokens to 1M. The degradation is
more pronounced for higher-hop questions, with 3-hop performance showing the most degradation
across all model variants.

Our findings show that ICL struggles with robust knowledge acquisition, degrading as reasoning com-
plexity (number of hops) and knowledge scale (context length) increase. Additionally, Appendix[C|
shows that the response length, a proxy for test-time compute, increases with the number of hops &

(Figure [12).

Discussion. Our analysis with RANK shows that robust knowledge acquisition via ICL is bottle-
necked by basic challenges in long-context reasoning [44], such as sensitivity to irrelevant infor-
mation [65] and the “lost-in-the-middle” phenomenon [48]. Additionally, ICL is constrained by (a)
memory requirements that scale quadratically with context length and (b) context size limits—even
moderately-sized knowledge graphs generated using RANK quickly exceed the long-context limits
of frontier models like Gemini. These limitations suggest that alternative in-context strategies such
as context compression [56, [63] and retrieval-augmented generation (RAG) [46] could be more
amenable to large-scale knowledge acquisition.

C.2 Experiment setup

We evaluate ICL-based knowledge acquisition by placing entire knowledge graphs in context and
testing multi-hop reasoning capabilities. Our experimental pipeline consists of context construction,
question generation, and evaluation across different model families and graph sizes.

* Converting knowledge graphs into in-context information. We textualize knowledge graphs by

extracting each entity’s one-hop neighborhood and converting triplets to natural language using the
template-based approach in Appendix These entity-centric descriptions are then concatenated
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Figure 10: Knowledge acquisition via ICL sensitive to model size and reasoning complexity. We
evaluate the effectiveness of ICL in robustly reasoning over knowledge graphs provided in context.
We test models of different sizes from three families—Phi 4 [[1]], Gemma 3 [68]], and Qwen 3 [76]—on
k-hop multiple-choice (top row) and true-false (bottom row) questions, where the number of hops
k serves as a proxy for reasoning complexity. Our results show that (a) performance consistently
degrades as the number of hops k increases and (b) larger models within each model family exhibit
better performance across all k-hop questions.
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Figure 11: ICL-based knowledge acquisition does not scale to large knowledge graphs. We use
the Gemini 2.5 family to evaluate the effect of context length—the number of tokens needed to
embed the knowledge graph in context—on knowledge acquisition via ICL. The subplots evaluate
k-hop performance of Flash-Lite (left), Flash (middle), and Pro (right) as a function of context length.
We observe that (a) performance degrades as context length increases, well before reaching the 1M
context limit, and (b) higher-hop questions show more severe degradation.

into a single list containing all factual information in the graph. Our experiment in Figure[T0|uses
a knowledge graph comprising 100 researchers, 10 companies, 10 universities, 10 cities, and 10
research areas, with total context length scaling linearly with the number of relations in the graph.

Generating questions. We sample k-hop random walks from the knowledge graph and convert
them into multiple choice, true-false, and cloze questions. To prevent shortcut reasoning, inter-
mediate entities in multi-hop questions are masked with typed placeholders (e.g., “Person PE1”).
Our prompt structure presents the textualized graph under an “Information” header, followed
by task-specific instructions and the target question, with instructions to encourage multi-hop
reasoning via chain-of-thought reasoning.

* Scaling context length. We leverage RANK to systematically vary context length by generating
knowledge graphs of different sizes, with entity counts ranging from 50 to 3,000 and edge density
varying from 1 to 5 coauthors per researcher. When textualized, these graphs produce context
lengths spanning from several thousand to one million tokens. We evaluate performance across
multiple model families (Phi, Gemma, Qwen) to analyze how both model scale and context length
jointly affect robust knowledge acquisition.
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C.3 Additional experiments

We verify that reasoning complexity, as measured by the number of hops k, correlates with test-
time compute. Figure [I2]shows that for both ground-truth chain-of-thought and model-generated
responses, the response length increases with k.

Effect of Number of Hops on Response Length
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Figure 12: Test-time compute increases with number of hops k. We measure the average response
length—a proxy for test-time compute—for k-hop multiple-choice questions. The leftmost subplot
shows ground-truth CoTs generated using RANK, while the remaining subplots show responses from
Gemini 2.5 Flash-Lite, Flash, and Pro models [17]]. In all cases, response length consistently increases
with the number of hops k, making it an effective proxy for reasoning complexity.
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D Evaluating Supervised Fine-tuning with RANK

D.1 Experiment setup

In this section, we describe the knowledge graphs, training procedures, and experimental design used
in our SFT experiments.

* Knowledge graph and dataset configuration. We use the smaller knowledge graph config-
uration (30 researchers, 10 companies, 10 universities, 10 cities, 10 research areas) described
in Appendix [B] Our SFT datasets combine all five data types—nodal descriptions, cloze questions,
walk descriptions, multiple choice questions, and true-false statements—with systematic control
over hop counts and template repetition factors. We generate datasets with maximum hop counts
k € {1,2,3,4} and augmentation factors from 1x to 100X to study both in-distribution and
out-of-distribution generalization.

* Training configuration. We perform supervised fine-tuning on Qwen3 models (1.7B and 4B
parameters) using completion-only loss. See Table [1|for details on training hyperparameters.

- Optimization: We use the AdamW optimizer [49] with learning rate 1 x 10~%, which we
selected from a learning rate sweep conducted with our fixed effective batch size of 128. We
employ cosine learning rate scheduling with 10% warmup and gradient clipping at norm 1.0.

— Infrastructure: We conduct training on 4-8 x A100 GPUs using distributed data parallel (DDP)
with Accelerate and HuggingFace SFT Trainer. We employ gradient checkpointing and gradient
accumulation to manage memory constraints across the distributed setup.

— Training setup: We train for a single epoch with maximum sequence length of 2048 tokens and
include a 5% Dolly replay buffer to mitigate catastrophic forgetting. We use full fine-tuning
rather than LoRA, as preliminary experiments showed LoRA yielded slightly worse results with
much slower convergence.

— Data processing: We implement template train-test separation with 75% of templates allocated

to training and 25% to testing. We also apply automatic deduplication to remove identical
examples from the training data.

Hyperparameter Value(s)

Model Size {Qwen3-1.7B, Qwen3-4B}
Max Hop Count {1,2,3,4}

Template Augmentation {1, 5, 25,50, 100} x
Learning Rate {5x 10761 x 10755 x 1075,1 x 1074,5 x 1074}
Training Epochs 1

Effective Batch Size 128

Max Sequence Length 2048

Optimizer AdamW

LR Scheduler Cosine with 10% warmup
Weight Decay 0

Gradient Clipping 1.0

Template Train Ratio 75%

Dolly Replay Buffer 5%

LoRA Disabled

Completion-only Loss Enabled
Table 1: Hyperparameter configuration used in SFT experiments. Training settings for Qwen3
models across different hop counts (1-4) and template augmentation factors (1x-100x), including
optimization details, data processing parameters, and experimental design choices for multi-hop
reasoning tasks.

D.2 Additional experiments

We conduct additional experiments to analyze the impact of chain-of-thought reasoning and single-
hop data limitations on model robustness. Figure|l3|shows that training without CoT leads to poor
generalization, while Figure [I4] demonstrates that models trained only on 1-hop data fail at multi-hop
reasoning.
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Effect of CoT on k-hop MCQ performance of SFT'ed Qwen3-1.7B
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Figure 13: SFT without CoT hurts robust knowledge acquisition. We compare SFT using
Qwen-1.7B models trained on {1, 2, 3}-hop data with (right) and without (left) CoT-like rationales.
Each subplot shows accuracy (y-axis) versus number of hops k € [1, 5] (x-axis), with darker bars
representing more augmentation (5x to 100x) and the gray line indicating random chance. Our
results demonstrate that CoT solutions are crucial for robust acquisition, as training without them
leads to poor performance on all k-hop questions.
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Figure 14: Models fine-tuned only on 1-hop data lack robustness. We evaluate the effect of SFT on
k-hop multiple-choice (top) and true-false (bottom) questions using two models: Qwen3-1.7B (left)
and Qwen3-4B (right). Each subplot shows accuracy on the y-axis and number of hops k € [1, 5]
on the x-axis, with darker colored bars representing more data augmentation (1 x to 100x) and the
horizontal line indicating random choice performance. Our results reveal two key findings: (a) models
require substantial augmentation (50x—100x) to achieve near-perfect 1-hop retrieval performance,
and (b) even with maximum augmentation, performance on multi-hop reasoning (k > 1) remains at
random chance levels across both model sizes, revealing that training exclusively on atomic facts
lacks the robustness needed for compositional reasoning.
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