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Abstract001

Typical video modeling methods, such as002
LLava, represent videos as visual tokens, which003
are then processed by the LLM backbone for004
effective video understanding. However, this005
approach would result in a massive number006
of visual tokens especially on long videos. A007
practical approach is to first extract relevant008
visual information from the large visual con-009
text before integrating it into the LLM back-010
bone, thereby avoiding substantial computa-011
tional overhead. In this work, we propose Dyn-012
Tok, a training-free strategy for Dynamic video013
Token compression. DynTok adaptively splits014
visual tokens into groups and merges them015
within each group, achieving high compression016
in low-information-density areas, while retain-017
ing essential information. Our method reduces018
the token count to 44.4% of the original size019
while maintaining comparable performance. It020
benefits more from increasing the number of021
video frames and achieves 65.3% on Video-022
MME and 72.5% on MLVU. By leveraging023
this simple yet effective compression method,024
we uncover the redundancy in video token rep-025
resentations and provide insights into designing026
more efficient video modeling techniques.027

1 Introduction028

Multimodal understanding models are rapidly ad-029

vancing, showcasing remarkable capabilities in im-030

age and video understanding. Typically, Vision-031

Language Models (VLMs) (Bordes et al., 2024)032

leverage CLIP to extract visual representations,033

which are then processed through a connector and034

finally fed into the large language model (LLM)035

backbone. Compared to image-understanding036

tasks, video understanding involves processing a037

large number of video frames. Efficient encoding038

of the numerous video frames is the core topic of039

video understanding. For instance, a 10-minute040

video sampled at 1 frame per second (fps) gener-041

ates 600 frames. If each frame is modeled with042

Figure 1: Illustration of two test video frames with their
visual token grouping results by DynTok. Each image
patch is determined to be masked or not based on its
patch similarity to its left neighbor. In this figure, for
each patch, if the similarity is greater than the threshold
0.6, it is masked with a gray block. As can be seen,
DynTok can effectively retain informative patches with
minimal information loss, making it suitable for integra-
tion into LLMs for diverse video understanding tasks.

196 tokens, this results in 117,600 visual tokens 043

being fed into the LLM. For hour-long videos, this 044

can escalate to over 700k context tokens, making 045

comprehension of such long-duration videos ex- 046

ceptionally challenging. This creates significant 047

obstacles to effectiveness and efficiency. On one 048

hand, extracting relevant information from such 049

extensive contexts is inherently complex. On the 050

other hand, handling ultra-long contexts demands 051

substantial computational resources and memory 052

capacity. 053

A number of studies have focused on reducing 054

the number of tokens input into LLMs to fit within 055

the context window and improve computational 056

efficiency. For example, LLaVA (Zhang et al., 057

2025) and Dynamic-VLM (Wang et al., 2024a) 058

perform pooling operations on visual tokens, while 059

Q-former (Li et al., 2023a) compresses visual to- 060

kens into a fixed-length token sequence (Bai et al., 061

2023; Xiao et al., 2021). Some works also select 062

important visual tokens based on attention weights 063

in ViT (Yang et al., 2024b) or fuse tokens based 064
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on similarities (Tao et al., 2024), inspired by Bolya065

et al. (2023). However, pooling-based methods of-066

ten fail to account for the varying importance of067

different tokens, typically using a 2x2 pooling size,068

with larger pooling sizes leading to performance069

degradation. Furthermore, current similarity-based070

token fusion, which is applied across the entire071

image or video, struggles to preserve spatial in-072

formation and incurs high computational costs for073

similarity calculations. In this work, we explore074

a local token reduction method that more effec-075

tively preserves spatial information while minimiz-076

ing computational overhead.077

The main idea of DynTok is illustrated in Figure078

1. A video frame is typically processed into mul-079

tiple visual tensors via pretrained visual encoders080

such as CLIP/SigLIP (Zhai et al., 2023), each corre-081

sponding to image patches (e.g., 14x14 in LLaVA-082

OneVision (Li et al., 2025) ). It could be observed083

that the informativeness of these patches varies.084

For example, in the right image, compared to its085

main subject, the dark background area carries less086

informational content, indicating the greater poten-087

tial for token compression. Typically, solid color-088

filled low-density areas exhibit consecutive similar089

patches, while high information-density regions090

such as the edges of people or objects differ from091

preceding tokens. Leveraging this phenomenon,092

we propose to adaptively compress less informa-093

tive patch tokens, thereby reducing the proportion094

of low-information-density tokens and decreasing095

the total number of visual tokens. Furthermore,096

by merging highly similar tokens within the same097

row, our method better preserves the spatial rela-098

tionships of visual tokens while maintaining com-099

putational efficiency.100

We validated DynTok through extensive experi-101

ments on multiple video benchmark datasets. Dyn-102

Tok achieved a slight improvement in model per-103

formance while compressing the total number of104

video tokens to 44.4% of the baseline method, cor-105

responding to a 2.2x reduction. Moreover, thanks106

to the compression of tokens per frame, DynTok107

demonstrates stronger robustness to more extracted108

frames. In long video tasks, where more frames109

are processed, DynTok demonstrates further perfor-110

mance improvements, achieving a VideoMME ac-111

curacy of 65.3%. These results highlight DynTok’s112

dual benefits: it not only improves modeling effi-113

ciency but also reduces the complexity for LLMs114

to extract information from lengthy sequences of115

visual tokens. Our main contribution could be sum-116

marized as follows: 117

• We propose a simple yet effective token com- 118

pression method, DynTok. It achieves high 119

compression ratios in low-information-density 120

patches while effectively preserving critical 121

information by adaptively splitting and fuss- 122

ing the similar adjacent tokens. 123

• Experiment demonstrates that DynTok re- 124

duces video tokens to 44.4% of the baseline 125

(a 2.2x reduction) while maintaining perfor- 126

mance. DynTok could benefit more from the 127

increasing of video frames, enhancing long 128

video understanding by 1.5% on MLVU and 129

1.7% on Video-MME while using a similar 130

number of tokens compared to the baseline. 131

2 Related works 132

2.1 Visual language model for video 133

understanding 134

VLMs have achieved significant milestones in both 135

image-text integration (OpenAI, 2023, 2024; Liu 136

et al., 2023; Alayrac et al., 2022; Tong et al., 2024; 137

Li et al., 2023a) and video comprehension (Team, 138

2024; Li et al., 2025; Zhang et al., 2024b; Wang 139

et al., 2024b). Unlike image understanding, video 140

modeling requires processing sequences of images 141

and capturing the dynamic relationships between 142

frames. Recent works, such as MiraData (Ju et al., 143

2025) and LLaVA-Video (Zhang et al., 2024b), fo- 144

cus on leveraging existing VLMs to generate high- 145

quality video captioning or question-answering 146

datasets. Meanwhile, models like VideoChat (Li 147

et al., 2023b), VideoLLaMa2 (Cheng et al., 2024), 148

and Aria (Li et al., 2024a) explore video encoding 149

modules, methods for integrating video encoders 150

with large language models (LLMs), and modifi- 151

cations to LLM architectures. Additionally, there 152

has been significant work on handling long video 153

contexts (Weng et al., 2024; Xue et al., 2024). 154

However, many of these approaches rely on fixed 155

token sizes for distinct frames to represent video, 156

leading to redundant and lengthy video inputs. This 157

paper addresses the challenge of reducing redun- 158

dancy in video data through spatial compression, 159

aiming to mitigate model overload during video 160

processing. 161

2.2 Visual token compression 162

Video inputs are typically represented as separate 163

frames, resulting in a substantial increase in the 164
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number of visual tokens as the video lengthens.165

Existing video token compression methods can be166

broadly classified into two categories: strategy-167

based and learning-based approaches.168

Strategy-based methods focus on dynamically169

resizing or merging visual tokens. For example,170

LLaVA-Video (Zhang et al., 2024c) divides frames171

into high-resolution parts for detailed informa-172

tion and low-resolution parts for dynamic content.173

Dynamic-VLM compresses similar visual tokens174

within each frame, while FrameFusion (Fu et al.,175

2024b) employs temporal merging and spatial prun-176

ing in a two-stage compression process. Addition-177

ally, methods like LLaVA-PruMerge (Shang et al.,178

2024) and VisionZip (Yang et al., 2024b) lever-179

age attention distributions to guide token selection.180

While these approaches effectively reduce token re-181

dundancy, they may struggle to accurately capture182

the spatial and temporal distribution of visual to-183

kens, potentially compromising the model’s ability184

to understand the full context of the video.185

Learning-based methods, in contrast, train com-186

pressors to directly compress the tokens corre-187

sponding to each frame, learning optimal com-188

pression patterns through model training. For189

instance, MobileVLM (Chu et al., 2023), To-190

kenPacker (Li et al., 2024c), MQT (Hu et al.,191

2024), and MiniCPM-V (Yao et al., 2024) re-192

duce the number of visual tokens per frame us-193

ing purpose-built downsampling projectors. Blip3-194

Video (Ryoo et al., 2024) and InternVideo2 (Wang195

et al., 2024c) employ temporal encoder layers to196

aggregate and compress visual tokens over time.197

Similarly, VideoChat (Li et al., 2023b) and LLaVA-198

mini (Zhang et al., 2025) use multi-stage fusion199

strategies to further compress video inputs. How-200

ever, many of these methods apply uniform com-201

pression, reducing each frame to a fixed number of202

tokens. These approaches overlook the dynamic203

nature of visual redundancy, where the amount of204

compression needed can vary across frames based205

on content complexity and relevance. As a result,206

these methods may not fully exploit the potential207

for more efficient token compression in videos.208

3 Method209

3.1 Preliminary210

Given one or more videos, denoted as V , and a211

question q, the goal of video understanding is to212

generate the corresponding answer a based on the213

content of the video. We adopt the LLaVA architec-214

ture (Li et al., 2025), which effectively integrates 215

the pretrained LLM with visual inputs. The archi- 216

tecture consists of three main components: a vision 217

encoder, an LLM backbone, and an MLP connec- 218

tor. The vision encoder processes video frames to 219

extract visual representations. These representa- 220

tions are then mapped to visual tokens in the word 221

embedding space of the LLM through the MLP 222

connector. Finally, the LLM leverages the visual 223

information to fully comprehend the query and 224

generate a response. As mentioned in the introduc- 225

tion, the token sequence for video understanding 226

could be very long and the computational complex- 227

ity of an LLM can be quadratic with respect to 228

the sequence length. Moreover, the visual tokens 229

account for the majority. DynTok processed the 230

visual tokens before they were fed into the LLM. 231

Formally, suppose t frames are extracted from 232

the input video. The visual encoder encodes the 233

frames into a tensor X with shape (t, h, w, dclip), 234

where h and w are the number of patches in 235

the horizontal and vertical directions respectively, 236

and dclip is the representation dimension. Then 237

the MLP layer transforms the representation into 238

the corresponding visual tokens H ∈ Rt,h,w,demb , 239

where demb is the dimension of the LLM embed- 240

ding layer. 241

3.2 Token level compression 242

Typically, H will be flatten into the visual token ten- 243

sor with size (t× h× w, demb) and then fed into 244

the LLM. Instead of adopting all tokens, DynTok 245

compresses the visual tokens into H ′ ∈ Rl,demb 246

based on the visual representation X , where l < 247

t× h× w is the number of reduced token. 248

For each video frame represented into a tensor of 249

size (h,w, demb), i.e. there are (h,w) tensors corre- 250

sponding to (h,w) image patches, the main idea of 251

DynTok is to merge adjacent visual tokens within 252

each row. We first describe the specific method for 253

calculating token similarity, followed by the pro- 254

cess of dynamically constructing token groups and 255

implementing dynamic information compression. 256

Token similarity measurement Each image 257

patch is represented as Xi,j,k ∈ Rdclip , and then 258

transformed into a visual token Hi,j,k ∈ Rdemb . 259

We simplify the notation to xk ∈ Rdclip and 260

hk ∈ Rdemb , by omitting the first two dimensions 261

here. The similarity between two adjacent visual to- 262

kens is computed based on the CLIP representation 263

3



Fused tokens

Raw tokens

Similarity 0.00 0.82 0.68 0.59 0.53 0.62 0.38 0.69 0.38 0.75 0.80 0.61 0.14 0.27

Image Patch

Fused tokens

Raw tokens

Similarity 0.00 0.86 0.29 0.38 0.85 0.81 0.77 0.26 0.31 0.71 0.37 0.29 0.54 0.79

Image Patch

Figure 2: Illustration of the proposed token compression method, DynTok. For each row of image patches, every
visual token of a patch is compared with the one corresponding to its left patch. If the similarity exceeds a predefined
threshold (0.6 in this example), the token merges into the preceding group; otherwise, it initiates a new group as a
primary token. Tokens in the same group are fused together to reduce the number of visual tokens finally.

tensor:264

s(k−1,k) =
xk−1 · xk

∥xk−1∥∥xk∥
.265

The CLIP representation is used here, by consider-266

ing that the CLIP or SigLIP trained with contrastive267

learning cosine loss works better with cosine simi-268

larity than with the visual tokens in the embedding269

space (Zhou et al., 2022).270

Dynamic token merging It is interesting to ob-271

serve that adjacent image patches with solid-color272

blocks, typically have a high similarity with adja-273

cent nodes in Figure 1. DynTok aims to fuse the274

adjacent image patches to reduce the number of275

visual tokens while keep the most information.276

For each row of image patches277

(h0, h1, ..., hw−1) ∈ R(w,demb), these patches278

are split into groups based on a similarity threshold279

hyperparameter Sth. Initially, the first token280

patch forms a new token group. For each subse-281

quent visual token hk, if the similarity s(k−1,k)282

between this token and its predecessor exceeds the283

threshold, it indicates the token carries little new284

information. In this case, hk is added to the token285

group containing hk−1. If the similarity does not286

surpass the threshold Sth, it suggests a significant287

content difference, and thus a new token group is288

created starting from hk. The visual token groups289

could be formally denoted as [(hs, hs+1, .., he)h′ ],290

and we denote the number of groups as h′. h′ ≤ h291

is a dynamic value depending on the similarity292

between adjacent tokens.293

At the fusing stage, the visual tokens within each294

token group are averaged to form a new visual to-295

ken tensor of size (l′, demb). However, the number296

of tokens at each row varies, making it difficult for 297

the LLM to determine the spatial information of 298

each token, e.g. LLM is not informed where a new 299

row starts. Therefore, we add a grid marker at the 300

end of each row to keep the spatial information. 301

Finally, the visual tokens from different rows are 302

concatenated together as H ′ ∈ Rl,demb . 303

In contrast to static pooling methods like bilin- 304

ear pooling (Wang et al., 2024a), we dynamically 305

construct token groups based on token similarity. 306

By fusing tokens with low information density, we 307

can maintain a good modeling performance with 308

fewer tokens. DynTok, as a local token merge strat- 309

egy, can better preserve spatial information, and it 310

only requires calculating the similarity between the 311

current token and its preceding token. The compu- 312

tational complexity has a linear relationship with 313

the token length. 314

3.3 Model Training 315

DynTok is a parameter-free token compression 316

method that merges visual tokens carrying similar 317

information. As a result, DynTok can be applied 318

in a zero-shot manner to existing models. How- 319

ever, using in the zero-shot manner may encounter 320

a training-inference mismatch issue. To mitigate 321

this, the model can be trained according to the 322

DynTok configuration to become familiar with the 323

compressed tokens. 324

4 Experiments 325

4.1 Training Configurations and Evaluations 326

Training data. The training data is divided into 327

two parts: single-image and video data. Firstly, we 328
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Model MVbench PercepTest NextQA LongVideo MLVU VideoMME

Proprietary models
GPT4o (OpenAI, 2024) - - - 66.7 64.6 71.9
Gemini1.5-pro (Team, 2024) - 57.5 - 64.0 - 75.0
Claude3.5-sonnet (Anthropic, 2024) - - - - - 60.0
GPT4V (OpenAI, 2023) 43.7 - - 61.3 49.2 59.9
GPT4o-mini (OpenAI, 2024) - - - - - 64.8

Open-source models
Qwen2-VL-7B (Wang et al., 2024b) 67.0 62.3 - - - 63.3
Intern-VL2.5-8B (Chen et al., 2024) 72.0 - - 68.9 60.0 64.2
LLaVA-OV-7B (Li et al., 2025) 56.7 57.1 79.4 64.7 56.5 58.2
LLaVA-Video-7B (Zhang et al., 2024b) 58.6 67.9 83.2 58.2 70.8 63.3
Dynamic-VLM (Wang et al., 2024a) - 68.8 - - 65.0 60.9
DyCoke-7B(Tao et al., 2024) 58.0 57.6 78.5 - - 59.5

Models with comparable training setting
Baseline 67.9 74.0 84.1 60.1 71.0 63.6
DynTok -zeroshot 65.2 74.0 83.5 59.9 70.8 62.5
DynTok 67.5 73.5 83.7 60.4 71.3 64.0
DynTok -moreframes - - - 60.7 72.5 65.3

Table 1: Performance on various video benchmarks. Results of other models are collected from official reports of
the model or the leaderboard of the benchmark. The first three datasets consist of short videos, each with a duration
of less than 45 seconds, while the remaining three contain long videos ranging from several minutes to hours.

train the model with single-image data to acquire329

basic visual understanding, the trianing data is330

identical to the LLAVA-OneVision(Li et al., 2025)331

single-image stage. Our Video dataset consists332

of LLAVA-Video (Zhang et al., 2024b), VideoIn-333

struct (Maaz et al., 2024b), VCG-Plus (Maaz et al.,334

2024a), and diverse video question answering/clas-335

sification data from the training mixture of (Li et al.,336

2024b). We remove videos that could not be down-337

loaded or opened, resulting in a final dataset of338

1.79M training samples for the video stage.339

Model configurations and hyper-parameters set-340

tings. We first drive a model with single-image341

understanding ability as the warm-up stage before342

our video training stage. We adopt the model archi-343

tecture, training procedure and dataset following344

LLaVA-OneVision (Li et al., 2025), except we uti-345

lize Qwen2.5-7B-instruct (Yang et al., 2024a) as346

our LLM Backbone. We do not apply dynamic347

token compression during this stage. After that,348

we train the video understanding model mostly349

following the experimental setting of LLaVA-350

Video (Zhang et al., 2024b). We first resize each351

frame to a fixed size of 378×378 and leverage352

SigLIP to encode this new image, resulting with353

an visual matrix of 28×28. The bilinear pooling of354

stride 2 is performed to reduce the grid into 14×14,355

i.e. there are 196 tokens for each frame. And we356

apply DynTok on these visual tokens. 357

In the training, we randomly set the value Sth 358

from a set {0.4, 0.45, 0.5, 0.55, 0.6} in order to 359

support different compression ratio. Learning rate 360

of the MLP adapter and LLM backbone is set to 361

1e-5, and 2e-6 for the ViT tower. As mentioned in 362

Section 3.2, a grid marker is added to the end of 363

each row in order to keep the spatial information. 364

The model is trained for 1 epoch on our dataset 365

with the global batch-size 512. For a fair compari- 366

son, we train a baseline model using identical set- 367

ting without the DynTok proposal. The experiment 368

is conducted on 16 nodes with NVIDIA 8xH100 369

GPUs. With DeepSpeed Zero2 optimization, the 370

video training stage taking approximately 16 hours. 371

Evaluation. We evaluate our model on six bench- 372

marks: MVBench (Li et al., 2024b), Perception- 373

Test (Pătrăucean et al., 2023), NextQA (Xiao 374

et al., 2021), LongVideoBench (Wu et al., 2024), 375

MLVU (Zhou et al., 2024) and Video-MME (Fu 376

et al., 2024a), covering both the perception and 377

reasoning tasks on videos of various durations. 378

MVBench, PerceptionTest and NextQA consist 379

of relative short videos, and the average du- 380

ration are 16, 23 and 44 seconds respectively. 381

LongVideoBench and MLVU focus on long videos, 382

with the average video duration of 473 and 651 383

seconds. Video-MME is a comprehensive video 384
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understanding benchmark and the videos are spited385

into short, medium and long with 0~2, 4~15 and386

30~60 minutes respectively. The evaluation is387

performed by utilizing LMMs-Eval (Zhang et al.,388

2024a) with the default configuration as LLaVA-389

Video and LLaVA-OneVision.390

4.2 Main Results391

Results are listed in Table 1. First of all, our base-392

line model, trained on 10 million samples, achieves393

performance close to leading open-source models394

across a range of benchmarks. Building upon the395

collected dataset, we establish a strong compara-396

tive baseline for our model. We would make this397

dataset open avaliable, provide the community with398

a lightweight near SOTA training dataset. The base-399

line model typically get best performance on short400

video tasks with max number of frames set to 64401

for the first three benchmarks with short video, and402

96 frames for the long video benchmarks.403

In Zero-shot DynTok, we apply the parameter-404

free DynTok method directly to the baseline model405

with Sth set to 0.6, and keep other settings un-406

changed. Without training on any fused tokens,407

DynTokzero reduces the number of visual tokens408

over 2×, while preserving accuracy above 98% on409

PerceptionTest, NextQA, LongVideo, MLVU, and410

Video-MME, and 96.0% on MVbench. The result411

indicates that DynTok effectively keeps the most412

informative visual tokens. The impact on different413

tasks would be covered in Section 4.3.414

With the integration of the DynTok strategy dur-415

ing model training, we achieve a more than 2×416

reduction in visual tokens. Unlike DynTok-zero417

which experiences a slight drop in accuracy, Dyn-418

Tok surpasses the baseline model while maintain-419

ing the same number of input video frames. By con-420

solidating similar visual tokens, the computational421

cost can be significantly reduced. Meanwhile, the422

DynTok strategy simplifies information retrieval423

from the long context of visual tokens, thereby424

even slightly enhancing model performance.425

It is also observed that the DynTok model could426

benefit from more input frames on long video un-427

derstanding compared to the baseline. The results428

are listed in the last row of Table 1 and more details429

are shown in Figure 4. DynTok achieves 65.3% ac-430

curacy on Video-MME with 160 frames extracted,431

resulting in 15k tokens. This is roughly equivalent432

to the baseline’s token consumption when using 64433

frames.434

4.3 In-Depth Analysis 435
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Figure 3: Results of varying the token merging threshold
Sth on the visual token compression ratio and the Video-
MME accuracy. The frame number of the baseline and
DynTok is set to 96.

Different compression ratios. Figure 3 shows 436

the visual token compression ratio and the corre- 437

sponding accuracy of Video-MME under different 438

similarity threshold Sth’s. As expected, a lower 439

threshold leads to higher compression of visual to- 440

kens. With the threshold Sth set to 0.4, 0.5, and 441

0.6, the number of visual tokens is reduced to 20%, 442

30%, and 44.4%, respectively, corresponding to 443

5×, 3×, and 2.3× compression. When Sth is set 444

to 0.4, despite a 5× compression, i.e. the total 445

token number 20.1k is reduced to approximately 446

4k, DynTok performs comparably to the baseline 447

(63.4% vs. 63.6%). Increasing Sth to 0.5 achieves 448

a 3× compression while surpassing the baseline 449

accuracy. Further increasing Sth initially leads to a 450

slight improvement, followed by a minor decline. 451

Overall, setting Sth at the range of 0.4 to 0.6 pro- 452

vides an optimal balance between efficiency and 453

the model performance. 454

Increasing the number of frames. The model 455

performance with different frames on the baseline 456

and DynTok are shown in Figure 4. Overall, Dyn- 457

Tok shows stable performance improvement as the 458

number of frames increases. DynTok introduces 459

a constant compression ratio on the number of vi- 460

sual tokens and outperforms the baseline across 461

different numbers of extracted frames. While the 462

baseline performance declines with 128 frames or 463

more, DynTok continues to show improvements 464

as the number of frames increases to 128 and 160. 465

These results indicate that DynTok effectively pre- 466

serves visual knowledge while simultaneously re- 467
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Baseline 63.6 67.3 72.2 76.6 64.5 71.5 68.4 40.3 49.2 80.4 54.7 59.5 78.6
DynTokzero 62.5 69.1 70.4 77.9 64.2 70.1 64.0 38.4 49.7 80.4 50.9 59.5 77.4
DynTok 64.0 74.6 70.4 77.5 62.3 70.9 69.8 41.4 51.4 78.6 54.7 61.9 77.7

Table 2: Model performance across different tasks of Video-MME benchmark.
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Figure 4: Model performance on Video-MME by varying numbers of video frames used.

ducing the number of tokens, thereby easing the468

difficulty for the LLM to extract information from469

long visual token sequences.470

Finally, the right subplot shows the number of471

visual tokens and the accuracy. DynTok consis-472

tently outperforms the baseline on different visual473

token budgets. The results analysis also helps guide474

reasonable parameter configurations across differ-475

ent token budgets. For token budgets below 10k,476

setting Sth to 0.5 yields better performance than477

0.6 with more video frames. With a higher token478

budget, it is preferable to increase the number of479

extracted frames while slightly decreasing the com-480

pression ratio. Essentially, this is a balance between481

increasing the number of observed frames and the482

compression ratio per frame.483

Impact on different tasks. We analyze the im-484

pact of DynTok on different kinds of tasks on485

Video-MME, and the results are listed in Table 2.486

For DynTokzero, performance declines are most487

noticeable in OCR and action recognition/reason-488

ing tasks. Only slight improvements are observed489

in temporal perception and reasoning tasks. Per-490

formance on the rest tasks remains generally sta-491

ble. For OCR and action recognition tasks, di-492

rectly merging tokens may lead to the confusing on493

fine-grained details, thereby harming the model’s494

recognition capability. However, for temporal per- 495

ception and reasoning tasks, which rely on cross- 496

frame information fusion, reducing the token count 497

per frame enhances the model’s ability to capture 498

cross-frame information. 499

After training with the DynTok strategy, perfor- 500

mance of OCR, action recognition, and reason- 501

ing tasks either matches or surpasses the baseline. 502

Meanwhile, the advantage in temporal perception 503

tasks is further enhanced. Overall, the model adapts 504

well to the token compression scenario, achieving 505

performance improvement over the baseline with 506

only 44.4% of the visual tokens. 507

Case study. We analyze the similarity between 508

image patches and visualize the start patch of the 509

visual token grouping in Figure 5 and Figure 6 510

(as well as Figure 1). The token grouping results 511

of DynTok follow a horizontal structure, where 512

the first visual token in each row always initiates 513

a new group. Tokens with high consistency with 514

preceding tokens are split into the same group on 515

the left and shaded in gray in the figure. 516

Figure 5 presents the results for the same image 517

under different threshold Sth values. When Sth is 518

set to 0.4, most patches in each row are assigned 519

to one group. At a threshold of 0.5, key regions in 520

the image, such as the woman’s face and the man’s 521
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Figure 5: The impact of varying the token merging threshold on token grouping results for the same test image.

Figure 6: The token grouping results on different test images. The token merging threshold is set as 0.6.

watch, form new visual token groups. When Sth522

is raised to 0.6, important visual patches are better523

preserved, while background regions, such as the524

lathe’s color and the dark area in the lower right525

corner, undergo greater compression.526

We now investigate the results across different527

test cases. The black background behind the singer528

in the right image of Figure 1, the window in mid-529

dle of the left image in Figure 6, and the solid-530

colored filled areas in the last two images in Fig-531

ure 6 are integrated into larger token groups, lead-532

ing to higher compression. In contrast, the complex533

scene in the left image in Figure 6 retains more to-534

kens. This demonstrates how DynTok dynamically535

compresses low-information-density regions, effec-536

tively reducing the number of visual tokens. For the537

two rightmost cartoon video frames, ViT struggles538

with fine lines in the first one, causing coordinate539

areas to blend into the background, whereas col-540

ored regions effectively retain key elements such541

as the car and trees.542

Overall, DynTok achieves reasonable token543

grouping, effectively initiating new visual token544

groups for high-information patches while merging545

tokens that carry similar information.546

5 Conclusion 547

In this work, we introduce DynTok, a simple yet ef- 548

fective token compression method that dynamically 549

merges adjacent similar tokens. DynTok signifi- 550

cantly enhances the efficiency of video modeling 551

while reducing the computational burden associ- 552

ated with processing long sequences of visual to- 553

kens. By retaining only 44% of the original visual 554

tokens, our approach achieves performance parity 555

with baseline models while substantially improv- 556

ing computational efficiency. Notably, DynTok 557

demonstrates superior scalability with extended in- 558

put video frames, achieving 65.3% accuracy on 559

Video-MME and 72.5% accuracy on MLVU. These 560

results highlight DynTok’s ability to not only im- 561

prove modeling efficiency but also to facilitate eas- 562

ier information extraction for LLMs from lengthy 563

visual token sequences. Overall, DynTok offers a 564

promising approach for designing more efficient 565

and scalable video modeling techniques. 566

Limitations 567

In principle, this method can be applied to both 568

images and videos. However, since the number 569

of visual tokens in long-video modeling could be 570

huge, we only focus on improving the efficiency 571

8



and effectiveness of video modeling, and leaves the572

impact on image understanding as a future work.573

We have not explored the coupling of this token574

compression method with a series of other methods,575

such as the scheme of gradually discarding tokens576

in different layers of the LLMs which is expected577

to further improve the efficiency.578
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