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Abstract

Typical video modeling methods, such as
LLava, represent videos as visual tokens, which
are then processed by the LLM backbone for
effective video understanding. However, this
approach would result in a massive number
of visual tokens especially on long videos. A
practical approach is to first extract relevant
visual information from the large visual con-
text before integrating it into the LLM back-
bone, thereby avoiding substantial computa-
tional overhead. In this work, we propose Dyn-
Tok, a training-free strategy for Dynamic video
Token compression. DynTok adaptively splits
visual tokens into groups and merges them
within each group, achieving high compression
in low-information-density areas, while retain-
ing essential information. Our method reduces
the token count to 44.4% of the original size
while maintaining comparable performance. It
benefits more from increasing the number of
video frames and achieves 65.3% on Video-
MME and 72.5% on MLVU. By leveraging
this simple yet effective compression method,
we uncover the redundancy in video token rep-
resentations and provide insights into designing
more efficient video modeling techniques.

1 Introduction

Multimodal understanding models are rapidly ad-
vancing, showcasing remarkable capabilities in im-
age and video understanding. Typically, Vision-
Language Models (VLMs) (Bordes et al., 2024)
leverage CLIP to extract visual representations,
which are then processed through a connector and
finally fed into the large language model (LLM)
backbone. Compared to image-understanding
tasks, video understanding involves processing a
large number of video frames. Efficient encoding
of the numerous video frames is the core topic of
video understanding. For instance, a 10-minute
video sampled at 1 frame per second (fps) gener-
ates 600 frames. If each frame is modeled with

Figure 1: Illustration of two test video frames with their
visual token grouping results by DynTok. Each image
patch is determined to be masked or not based on its
patch similarity to its left neighbor. In this figure, for
each patch, if the similarity is greater than the threshold
0.6, it is masked with a gray block. As can be seen,
DynTok can effectively retain informative patches with
minimal information loss, making it suitable for integra-
tion into LLMs for diverse video understanding tasks.

196 tokens, this results in 117,600 visual tokens
being fed into the LLM. For hour-long videos, this
can escalate to over 700k context tokens, making
comprehension of such long-duration videos ex-
ceptionally challenging. This creates significant
obstacles to effectiveness and efficiency. On one
hand, extracting relevant information from such
extensive contexts is inherently complex. On the
other hand, handling ultra-long contexts demands
substantial computational resources and memory
capacity.

A number of studies have focused on reducing
the number of tokens input into LLMs to fit within
the context window and improve computational
efficiency. For example, LLaVA (Zhang et al.,
2025) and Dynamic-VLM (Wang et al., 2024a)
perform pooling operations on visual tokens, while
Q-former (Li et al., 2023a) compresses visual to-
kens into a fixed-length token sequence (Bai et al.,
2023; Xiao et al., 2021). Some works also select
important visual tokens based on attention weights
in ViT (Yang et al., 2024b) or fuse tokens based



on similarities (Tao et al., 2024), inspired by Bolya
et al. (2023). However, pooling-based methods of-
ten fail to account for the varying importance of
different tokens, typically using a 2x2 pooling size,
with larger pooling sizes leading to performance
degradation. Furthermore, current similarity-based
token fusion, which is applied across the entire
image or video, struggles to preserve spatial in-
formation and incurs high computational costs for
similarity calculations. In this work, we explore
a local token reduction method that more effec-
tively preserves spatial information while minimiz-
ing computational overhead.

The main idea of DynTok is illustrated in Figure
1. A video frame is typically processed into mul-
tiple visual tensors via pretrained visual encoders
such as CLIP/SigLIP (Zhai et al., 2023), each corre-
sponding to image patches (e.g., 14x14 in LLaVA-
OneVision (Li et al., 2025) ). It could be observed
that the informativeness of these patches varies.
For example, in the right image, compared to its
main subject, the dark background area carries less
informational content, indicating the greater poten-
tial for token compression. Typically, solid color-
filled low-density areas exhibit consecutive similar
patches, while high information-density regions
such as the edges of people or objects differ from
preceding tokens. Leveraging this phenomenon,
we propose to adaptively compress less informa-
tive patch tokens, thereby reducing the proportion
of low-information-density tokens and decreasing
the total number of visual tokens. Furthermore,
by merging highly similar tokens within the same
row, our method better preserves the spatial rela-
tionships of visual tokens while maintaining com-
putational efficiency.

We validated DynTok through extensive experi-
ments on multiple video benchmark datasets. Dyn-
Tok achieved a slight improvement in model per-
formance while compressing the total number of
video tokens to 44.4% of the baseline method, cor-
responding to a 2.2x reduction. Moreover, thanks
to the compression of tokens per frame, DynTok
demonstrates stronger robustness to more extracted
frames. In long video tasks, where more frames
are processed, DynTok demonstrates further perfor-
mance improvements, achieving a VideoMME ac-
curacy of 65.3%. These results highlight DynTok’s
dual benefits: it not only improves modeling effi-
ciency but also reduces the complexity for LLMs
to extract information from lengthy sequences of
visual tokens. Our main contribution could be sum-

marized as follows:

* We propose a simple yet effective token com-
pression method, DynTok. It achieves high
compression ratios in low-information-density
patches while effectively preserving critical
information by adaptively splitting and fuss-
ing the similar adjacent tokens.

* Experiment demonstrates that DynTok re-
duces video tokens to 44.4% of the baseline
(a 2.2x reduction) while maintaining perfor-
mance. DynTok could benefit more from the
increasing of video frames, enhancing long
video understanding by 1.5% on MLVU and
1.7% on Video-MME while using a similar
number of tokens compared to the baseline.

2 Related works

2.1 Visual language model for video
understanding

VLMs have achieved significant milestones in both
image-text integration (OpenAl, 2023, 2024; Liu
et al., 2023; Alayrac et al., 2022; Tong et al., 2024;
Li et al., 2023a) and video comprehension (Team,
2024; Li et al., 2025; Zhang et al., 2024b; Wang
et al., 2024b). Unlike image understanding, video
modeling requires processing sequences of images
and capturing the dynamic relationships between
frames. Recent works, such as MiraData (Ju et al.,
2025) and LLaVA-Video (Zhang et al., 2024b), fo-
cus on leveraging existing VLMs to generate high-
quality video captioning or question-answering
datasets. Meanwhile, models like VideoChat (Li
et al., 2023b), VideoLLaMa2 (Cheng et al., 2024),
and Aria (Li et al., 2024a) explore video encoding
modules, methods for integrating video encoders
with large language models (LLMs), and modifi-
cations to LLM architectures. Additionally, there
has been significant work on handling long video
contexts (Weng et al., 2024; Xue et al., 2024).

However, many of these approaches rely on fixed
token sizes for distinct frames to represent video,
leading to redundant and lengthy video inputs. This
paper addresses the challenge of reducing redun-
dancy in video data through spatial compression,
aiming to mitigate model overload during video
processing.

2.2 Visual token compression

Video inputs are typically represented as separate
frames, resulting in a substantial increase in the



number of visual tokens as the video lengthens.
Existing video token compression methods can be
broadly classified into two categories: strategy-
based and learning-based approaches.
Strategy-based methods focus on dynamically
resizing or merging visual tokens. For example,
LLaVA-Video (Zhang et al., 2024c) divides frames
into high-resolution parts for detailed informa-
tion and low-resolution parts for dynamic content.
Dynamic-VLM compresses similar visual tokens
within each frame, while FrameFusion (Fu et al.,
2024b) employs temporal merging and spatial prun-
ing in a two-stage compression process. Addition-
ally, methods like LLaVA-PruMerge (Shang et al.,
2024) and VisionZip (Yang et al., 2024b) lever-
age attention distributions to guide token selection.
While these approaches effectively reduce token re-
dundancy, they may struggle to accurately capture
the spatial and temporal distribution of visual to-
kens, potentially compromising the model’s ability
to understand the full context of the video.
Learning-based methods, in contrast, train com-
pressors to directly compress the tokens corre-
sponding to each frame, learning optimal com-
pression patterns through model training. For
instance, MobileVLM (Chu et al., 2023), To-
kenPacker (Li et al., 2024¢), MQT (Hu et al.,
2024), and MiniCPM-V (Yao et al., 2024) re-
duce the number of visual tokens per frame us-
ing purpose-built downsampling projectors. Blip3-
Video (Ryoo et al., 2024) and InternVideo2 (Wang
et al., 2024c) employ temporal encoder layers to
aggregate and compress visual tokens over time.
Similarly, VideoChat (Li et al., 2023b) and LLaVA-
mini (Zhang et al., 2025) use multi-stage fusion
strategies to further compress video inputs. How-
ever, many of these methods apply uniform com-
pression, reducing each frame to a fixed number of
tokens. These approaches overlook the dynamic
nature of visual redundancy, where the amount of
compression needed can vary across frames based
on content complexity and relevance. As a result,
these methods may not fully exploit the potential
for more efficient token compression in videos.

3 Method

3.1 Preliminary

Given one or more videos, denoted as V', and a
question g, the goal of video understanding is to
generate the corresponding answer a based on the
content of the video. We adopt the LLaVA architec-

ture (Li et al., 2025), which effectively integrates
the pretrained LLM with visual inputs. The archi-
tecture consists of three main components: a vision
encoder, an LLM backbone, and an MLP connec-
tor. The vision encoder processes video frames to
extract visual representations. These representa-
tions are then mapped to visual tokens in the word
embedding space of the LLM through the MLP
connector. Finally, the LLM leverages the visual
information to fully comprehend the query and
generate a response. As mentioned in the introduc-
tion, the token sequence for video understanding
could be very long and the computational complex-
ity of an LLM can be quadratic with respect to
the sequence length. Moreover, the visual tokens
account for the majority. DynTok processed the
visual tokens before they were fed into the LLM.

Formally, suppose ¢ frames are extracted from
the input video. The visual encoder encodes the
frames into a tensor X with shape (¢, h, w, depip),
where h and w are the number of patches in
the horizontal and vertical directions respectively,
and d;, is the representation dimension. Then
the MLP layer transforms the representation into
the corresponding visual tokens H € Rb/w:demb,
where d,,; is the dimension of the LLM embed-
ding layer.

3.2 Token level compression

Typically, H will be flatten into the visual token ten-
sor with size (¢ X h X w, depp) and then fed into
the LLM. Instead of adopting all tokens, DynTok
compresses the visual tokens into H' € Rbdems
based on the visual representation X, where [ <
t X h X w is the number of reduced token.

For each video frame represented into a tensor of
size (h, w, demp), 1.e. there are (h, w) tensors corre-
sponding to (h,w) image patches, the main idea of
DynTok is to merge adjacent visual tokens within
each row. We first describe the specific method for
calculating token similarity, followed by the pro-
cess of dynamically constructing token groups and
implementing dynamic information compression.

Token similarity measurement FEach image
patch is represented as X; j € R%ui», and then
transformed into a visual token H; j; € Rems,
We simplify the notation to z;, € R%tir and
hy, € Rmb by omitting the first two dimensions
here. The similarity between two adjacent visual to-
kens is computed based on the CLIP representation
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Figure 2: Illustration of the proposed token compression method, DynTok. For each row of image patches, every
visual token of a patch is compared with the one corresponding to its left patch. If the similarity exceeds a predefined
threshold (0.6 in this example), the token merges into the preceding group; otherwise, it initiates a new group as a
primary token. Tokens in the same group are fused together to reduce the number of visual tokens finally.
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The CLIP representation is used here, by consider-
ing that the CLIP or SigLIP trained with contrastive
learning cosine loss works better with cosine simi-
larity than with the visual tokens in the embedding
space (Zhou et al., 2022).

Dynamic token merging It is interesting to ob-
serve that adjacent image patches with solid-color
blocks, typically have a high similarity with adja-
cent nodes in Figure 1. DynTok aims to fuse the
adjacent image patches to reduce the number of
visual tokens while keep the most information.

For each row of image  patches
(ho, R, oy h—1) € R@Wdemb)  these patches
are split into groups based on a similarity threshold
hyperparameter Sy,. Initially, the first token
patch forms a new token group. For each subse-
quent visual token hy, if the similarity s@_1 )
between this token and its predecessor exceeds the
threshold, it indicates the token carries little new
information. In this case, hy is added to the token
group containing hy_1. If the similarity does not
surpass the threshold Sy, it suggests a significant
content difference, and thus a new token group is
created starting from hj. The visual token groups
could be formally denoted as [(hs, hst1, .- he)n/],
and we denote the number of groups as h'. b/ < h
is a dynamic value depending on the similarity
between adjacent tokens.

At the fusing stage, the visual tokens within each
token group are averaged to form a new visual to-
ken tensor of size (I, demp). However, the number

of tokens at each row varies, making it difficult for
the LLM to determine the spatial information of
each token, e.g. LLM is not informed where a new
row starts. Therefore, we add a grid marker at the
end of each row to keep the spatial information.
Finally, the visual tokens from different rows are
concatenated together as H' € Rbdemo |

In contrast to static pooling methods like bilin-
ear pooling (Wang et al., 2024a), we dynamically
construct token groups based on token similarity.
By fusing tokens with low information density, we
can maintain a good modeling performance with
fewer tokens. DynTok, as a local token merge strat-
egy, can better preserve spatial information, and it
only requires calculating the similarity between the
current token and its preceding token. The compu-
tational complexity has a linear relationship with
the token length.

3.3 Model Training

DynTok is a parameter-free token compression
method that merges visual tokens carrying similar
information. As a result, DynTok can be applied
in a zero-shot manner to existing models. How-
ever, using in the zero-shot manner may encounter
a training-inference mismatch issue. To mitigate
this, the model can be trained according to the
DynTok configuration to become familiar with the
compressed tokens.

4 Experiments

4.1 Training Configurations and Evaluations

Training data. The training data is divided into
two parts: single-image and video data. Firstly, we



Model MVbench PercepTest NextQA LongVideo MLVU VideoMME
Proprietary models
GPT4o (OpenAl, 2024) - - - 66.7 64.6 71.9
Geminil.5-pro (Team, 2024) - 57.5 - 64.0 - 75.0
Claude3.5-sonnet (Anthropic, 2024) - - - - - 60.0
GPT4V (OpenAl, 2023) 43.7 - - 61.3 49.2 59.9
GPT40-mini (OpenAl, 2024) - - - - - 64.8
Open-source models
Qwen2-VL-7B (Wang et al., 2024b) 67.0 62.3 - - - 63.3
Intern-VL2.5-8B (Chen et al., 2024) 72.0 - - 68.9 60.0 64.2
LLaVA-OV-7B (Li et al., 2025) 56.7 57.1 79.4 64.7 56.5 58.2
LLaVA-Video-7B (Zhang et al., 2024b) 58.6 67.9 83.2 58.2 70.8 63.3
Dynamic-VLM (Wang et al., 2024a) - 68.8 - - 65.0 60.9
DyCoke-7B(Tao et al., 2024) 58.0 57.6 78.5 - - 59.5
Models with comparable training setting
Baseline 67.9 74.0 84.1 60.1 71.0 63.6
DynTok -zeroshot 65.2 74.0 83.5 59.9 70.8 62.5
DynTok 67.5 73.5 83.7 60.4 71.3 64.0
DynTok -moreframes - - - 60.7 72.5 65.3

Table 1: Performance on various video benchmarks. Results of other models are collected from official reports of
the model or the leaderboard of the benchmark. The first three datasets consist of short videos, each with a duration
of less than 45 seconds, while the remaining three contain long videos ranging from several minutes to hours.

train the model with single-image data to acquire
basic visual understanding, the trianing data is
identical to the LLAVA-OneVision(Li et al., 2025)
single-image stage. Our Video dataset consists
of LLAVA-Video (Zhang et al., 2024b), Videoln-
struct (Maaz et al., 2024b), VCG-Plus (Maaz et al.,
2024a), and diverse video question answering/clas-
sification data from the training mixture of (Li et al.,
2024b). We remove videos that could not be down-
loaded or opened, resulting in a final dataset of
1.79M training samples for the video stage.

Model configurations and hyper-parameters set-
tings. We first drive a model with single-image
understanding ability as the warm-up stage before
our video training stage. We adopt the model archi-
tecture, training procedure and dataset following
LLaVA-OneVision (Li et al., 2025), except we uti-
lize Qwen2.5-7B-instruct (Yang et al., 2024a) as
our LLM Backbone. We do not apply dynamic
token compression during this stage. After that,
we train the video understanding model mostly
following the experimental setting of LLaVA-
Video (Zhang et al., 2024b). We first resize each
frame to a fixed size of 378x378 and leverage
SigLIP to encode this new image, resulting with
an visual matrix of 28 x28. The bilinear pooling of
stride 2 is performed to reduce the grid into 14 x 14,
i.e. there are 196 tokens for each frame. And we

apply DynTok on these visual tokens.

In the training, we randomly set the value Sy,
from a set {0.4,0.45,0.5,0.55,0.6} in order to
support different compression ratio. Learning rate
of the MLP adapter and LLM backbone is set to
le-5, and 2e-6 for the ViT tower. As mentioned in
Section 3.2, a grid marker is added to the end of
each row in order to keep the spatial information.
The model is trained for 1 epoch on our dataset
with the global batch-size 512. For a fair compari-
son, we train a baseline model using identical set-
ting without the DynTok proposal. The experiment
is conducted on 16 nodes with NVIDIA 8xH100
GPUs. With DeepSpeed Zero2 optimization, the
video training stage taking approximately 16 hours.

Evaluation. We evaluate our model on six bench-
marks: MVBench (Li et al., 2024b), Perception-
Test (Patraucean et al., 2023), NextQA (Xiao
et al., 2021), LongVideoBench (Wu et al., 2024),
MLVU (Zhou et al., 2024) and Video-MME (Fu
et al., 2024a), covering both the perception and
reasoning tasks on videos of various durations.
MVBench, PerceptionTest and NextQA consist
of relative short videos, and the average du-
ration are 16, 23 and 44 seconds respectively.
LongVideoBench and MLVU focus on long videos,
with the average video duration of 473 and 651
seconds. Video-MME is a comprehensive video



understanding benchmark and the videos are spited
into short, medium and long with 0~2, 4~15 and
30~60 minutes respectively. The evaluation is
performed by utilizing LMMs-Eval (Zhang et al.,
2024a) with the default configuration as LLaVA-
Video and LLaVA-OneVision.

4.2 Main Results

Results are listed in Table 1. First of all, our base-
line model, trained on 10 million samples, achieves
performance close to leading open-source models
across a range of benchmarks. Building upon the
collected dataset, we establish a strong compara-
tive baseline for our model. We would make this
dataset open avaliable, provide the community with
a lightweight near SOTA training dataset. The base-
line model typically get best performance on short
video tasks with max number of frames set to 64
for the first three benchmarks with short video, and
96 frames for the long video benchmarks.

In Zero-shot DynTok, we apply the parameter-
free DynTok method directly to the baseline model
with Sy, set to 0.6, and keep other settings un-
changed. Without training on any fused tokens,
DynTokzero reduces the number of visual tokens
over 2x, while preserving accuracy above 98% on
PerceptionTest, NextQA, LongVideo, MLVU, and
Video-MME, and 96.0% on MVbench. The result
indicates that DynTok effectively keeps the most
informative visual tokens. The impact on different
tasks would be covered in Section 4.3.

With the integration of the DynTok strategy dur-
ing model training, we achieve a more than 2x
reduction in visual tokens. Unlike DynTok-zero
which experiences a slight drop in accuracy, Dyn-
Tok surpasses the baseline model while maintain-
ing the same number of input video frames. By con-
solidating similar visual tokens, the computational
cost can be significantly reduced. Meanwhile, the
DynTok strategy simplifies information retrieval
from the long context of visual tokens, thereby
even slightly enhancing model performance.

It is also observed that the DynTok model could
benefit from more input frames on long video un-
derstanding compared to the baseline. The results
are listed in the last row of Table 1 and more details
are shown in Figure 4. DynTok achieves 65.3% ac-
curacy on Video-MME with 160 frames extracted,
resulting in 15k tokens. This is roughly equivalent
to the baseline’s token consumption when using 64
frames.

4.3 In-Depth Analysis
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Figure 3: Results of varying the token merging threshold
St on the visual token compression ratio and the Video-
MME accuracy. The frame number of the baseline and
DynTok is set to 96.

Different compression ratios. Figure 3 shows
the visual token compression ratio and the corre-
sponding accuracy of Video-MME under different
similarity threshold Sy;,’s. As expected, a lower
threshold leads to higher compression of visual to-
kens. With the threshold .S, set to 0.4, 0.5, and
0.6, the number of visual tokens is reduced to 20%,
30%, and 44.4%, respectively, corresponding to
5%, 3%, and 2.3 x compression. When .Sy, is set
to 0.4, despite a 5x compression, i.e. the total
token number 20.1k is reduced to approximately
4k, DynTok performs comparably to the baseline
(63.4% vs. 63.6%). Increasing Sy, to 0.5 achieves
a 3x compression while surpassing the baseline
accuracy. Further increasing Sy, initially leads to a
slight improvement, followed by a minor decline.
Overall, setting .Sy, at the range of 0.4 to 0.6 pro-
vides an optimal balance between efficiency and
the model performance.

Increasing the number of frames. The model
performance with different frames on the baseline
and DynTok are shown in Figure 4. Overall, Dyn-
Tok shows stable performance improvement as the
number of frames increases. DynTok introduces
a constant compression ratio on the number of vi-
sual tokens and outperforms the baseline across
different numbers of extracted frames. While the
baseline performance declines with 128 frames or
more, DynTok continues to show improvements
as the number of frames increases to 128 and 160.
These results indicate that DynTok effectively pre-
serves visual knowledge while simultaneously re-



Perception tasks Reasoning tasks Other
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DynTokzero | 62.5 | 69.1 704 779 642 70.1 640 384 | 497 804 509 595 | 774
DynTok 640 | 746 704 775 623 709 698 414 | 514 786 547 619 | 777

Table 2: Model performance across different tasks of Video-MME benchmark.
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Figure 4: Model performance on Video-MME by varying numbers of video frames used.

ducing the number of tokens, thereby easing the
difficulty for the LLM to extract information from
long visual token sequences.

Finally, the right subplot shows the number of
visual tokens and the accuracy. DynTok consis-
tently outperforms the baseline on different visual
token budgets. The results analysis also helps guide
reasonable parameter configurations across differ-
ent token budgets. For token budgets below 10k,
setting Sy, to 0.5 yields better performance than
0.6 with more video frames. With a higher token
budget, it is preferable to increase the number of
extracted frames while slightly decreasing the com-
pression ratio. Essentially, this is a balance between
increasing the number of observed frames and the
compression ratio per frame.

Impact on different tasks. We analyze the im-
pact of DynTok on different kinds of tasks on
Video-MME, and the results are listed in Table 2.
For DynTokzero, performance declines are most
noticeable in OCR and action recognition/reason-
ing tasks. Only slight improvements are observed
in temporal perception and reasoning tasks. Per-
formance on the rest tasks remains generally sta-
ble. For OCR and action recognition tasks, di-
rectly merging tokens may lead to the confusing on
fine-grained details, thereby harming the model’s

recognition capability. However, for temporal per-
ception and reasoning tasks, which rely on cross-
frame information fusion, reducing the token count
per frame enhances the model’s ability to capture
cross-frame information.

After training with the DynTok strategy, perfor-
mance of OCR, action recognition, and reason-
ing tasks either matches or surpasses the baseline.
Meanwhile, the advantage in temporal perception
tasks is further enhanced. Overall, the model adapts
well to the token compression scenario, achieving
performance improvement over the baseline with
only 44.4% of the visual tokens.

Case study. We analyze the similarity between
image patches and visualize the start patch of the
visual token grouping in Figure 5 and Figure 6
(as well as Figure 1). The token grouping results
of DynTok follow a horizontal structure, where
the first visual token in each row always initiates
a new group. Tokens with high consistency with
preceding tokens are split into the same group on
the left and shaded in gray in the figure.

Figure 5 presents the results for the same image
under different threshold .S;;, values. When Sy, is
set to 0.4, most patches in each row are assigned
to one group. At a threshold of 0.5, key regions in
the image, such as the woman’s face and the man’s



Figure 5: The impact of varying the token merging threshold on token grouping results for the same test image.

Figure 6: The token grouping results on different test images. The token merging threshold is set as 0.6.

watch, form new visual token groups. When Sy,
is raised to 0.6, important visual patches are better
preserved, while background regions, such as the
lathe’s color and the dark area in the lower right
corner, undergo greater compression.

We now investigate the results across different
test cases. The black background behind the singer
in the right image of Figure 1, the window in mid-
dle of the left image in Figure 6, and the solid-
colored filled areas in the last two images in Fig-
ure 6 are integrated into larger token groups, lead-
ing to higher compression. In contrast, the complex
scene in the left image in Figure 6 retains more to-
kens. This demonstrates how DynTok dynamically
compresses low-information-density regions, effec-
tively reducing the number of visual tokens. For the
two rightmost cartoon video frames, ViT struggles
with fine lines in the first one, causing coordinate
areas to blend into the background, whereas col-
ored regions effectively retain key elements such
as the car and trees.

Overall, DynTok achieves reasonable token
grouping, effectively initiating new visual token
groups for high-information patches while merging
tokens that carry similar information.

5 Conclusion

In this work, we introduce DynTok, a simple yet ef-
fective token compression method that dynamically
merges adjacent similar tokens. DynTok signifi-
cantly enhances the efficiency of video modeling
while reducing the computational burden associ-
ated with processing long sequences of visual to-
kens. By retaining only 44% of the original visual
tokens, our approach achieves performance parity
with baseline models while substantially improv-
ing computational efficiency. Notably, DynTok
demonstrates superior scalability with extended in-
put video frames, achieving 65.3% accuracy on
Video-MME and 72.5% accuracy on MLVU. These
results highlight DynTok’s ability to not only im-
prove modeling efficiency but also to facilitate eas-
ier information extraction for LLMs from lengthy
visual token sequences. Overall, DynTok offers a
promising approach for designing more efficient
and scalable video modeling techniques.

Limitations

In principle, this method can be applied to both
images and videos. However, since the number
of visual tokens in long-video modeling could be
huge, we only focus on improving the efficiency



and effectiveness of video modeling, and leaves the
impact on image understanding as a future work.
We have not explored the coupling of this token
compression method with a series of other methods,
such as the scheme of gradually discarding tokens
in different layers of the LLMs which is expected
to further improve the efficiency.
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