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ABSTRACT

Perception is a crucial component of autonomous driving systems. However,
single-agent setups often face limitations due to sensor constraints, especially un-
der challenging conditions like severe occlusion, adverse weather, and long-range
object detection. Multi-agent collaborative perception (CP) offers a promising
solution that enables communication and information sharing between connected
vehicles. Yet, the heterogeneity among agents—in terms of sensors, models, and
tasks—significantly hinders effective and efficient cross-agent collaboration. To
address these challenges, we propose STAMP, a scalable task- and model-agnostic
collaborative perception framework tailored for heterogeneous agents. STAMP
utilizes lightweight adapter-reverter pairs to transform Bird’s Eye View (BEV)
features between agent-specific domains and a shared protocol domain, facilitat-
ing efficient feature sharing and fusion while minimizing computational overhead.
Moreover, our approach enhances scalability, preserves model security, and ac-
commodates a diverse range of agents. Extensive experiments on both simulated
(OPV2V) and real-world (V2V4Real) datasets demonstrate that STAMP achieves
comparable or superior accuracy to state-of-the-art models with significantly re-
duced computational costs. As the first-of-its-kind task- and model-agnostic col-
laborative perception framework, STAMP aims to advance research in scalable
and secure mobility systems, bringing us closer to Level 5 autonomy. Our project
page is at https://xiangbogaobarry.github.io/STAMP and the code is available at
https://github.com/taco-group/STAMP.

1 INTRODUCTION

Multi-agent collaborative perception (CP) (Bai et al., 2022b; Han et al., 2023; Liu et al., 2023a) has
emerged as a promising solution for autonomous systems by leveraging communication among mul-
tiple connected and automated agents. It enables agents—such as vehicles, infrastructure, or even
pedestrians—to share sensory and perceptual information, providing a more comprehensive view of
the surrounding environment to enhance overall perception capabilities. Despite its potential, CP
faces significant challenges, particularly when dealing with heterogeneous agents that defer in input
modalities, model parameters, architectures, or learning objectives. For instance, Xu et al. (2023b)
observed that features from heterogeneous agents vary in spatial resolution, channel number, and
feature patterns. This domain gap hinders effective and efficient CP, particularly when employing
fusion-based approaches.

To facilitate collaborative perception among heterogeneous agents—often referred to as heteroge-
neous collaborative perception—one might consider using early or late fusion. However, early fu-
sion requires high communication bandwidth, making it impractical for real-time applications. Late
fusion often results in suboptimal accuracy, and it is not viable across models with different down-
stream tasks. Alternative methods attempt to achieve heterogeneous intermediate fusion by either
incorporating adapters (Xu et al., 2023b) or sharing parts of the models (Lu et al., 2024). While
these approaches can bridge the domain gap, they are limited in scalability or security, rendering
them inefficient or unsafe for practical deployment. Additionally, recent studies have highlighted
increased security vulnerabilities in CP systems compared to single-agent frameworks (Hu et al.,
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2024; Tu et al., 2021; Li et al., 2023b). Notably, Li et al. (2023b) found that black-box attacks are
nearly ineffective without the knowledge of other agents’ models, emphasizing the importance of
task- and model-agnostic approaches in enhancing system-level security against adversarial threats.

To address these challenges, we propose STAMP, a Scalable Task- And Model-agnostic collabora-
tive Perception framework. Our approach employs lightweight adapter-reverter pairs to transform
the Bird’s Eye View (BEV) features of each heterogeneous agent into a unified protocol BEV feature
domain. These protocol BEV features are then broadcasted to other agents and subsequently mapped
back to their corresponding local domains, enabling collaboration within each agent’s source do-
main. We refer to this process as collaborative feature alignment (CFA). Our proposed pipeline
offers several key advantages. Firstly, it enables existing heterogeneous agents to collaborate with
minimal additional disk memory (~1MB) and computational overhead, making it scalable for a
large number of heterogeneous agents. Secondly, the alignment process is designed to be task- and
model-agnostic, allowing our framework to integrate with various models and tasks without retrain-
ing the model or the need to share models among agents, enhancing both flexibility and security.

We conducted comprehensive experiments to evaluate the performance of our collaborative per-
ception framework. Using the simulated OPV2V dataset (Xu et al., 2022b) and the real-world
V2V4Real dataset (Xu et al., 2023d), we demonstrated that our STAMP pipeline achieves compa-
rable or superior accuracy with a significantly lower training resource growth rate as the number
of heterogeneous agents increases. Our method requires, on average, only 2.36 GPU hours (7.2x
saving) of training time per additional agent, compared to 17.07 GPU hours per additional agent for
existing heterogeneous collaborative pipelines. We also demonstrated our pipeline’s unique ability
to perform task- and model-agnostic collaboration, a capability not supported in existing methods.
This achievement establishes a new benchmark for heterogeneous CP in autonomous driving, show-
casing clear performance improvements in scenarios where other methods are unable to operate.

2 RELATED WORKS

2.1 MULTI-AGENT COLLABORATIVE PERCEPTION

Multi-agent CP has emerged as a promising solution to overcome the inherent limitations of single-
agent perception systems, particularly in addressing occlusions and extending perception range (Hu
et al., 2022a).

Information-sharing schemes. There are three main information-sharing schemes in multi-agent
CP systems: early fusion, late fusion, and intermediate fusion. @ Early fusion (Gao et al., 2018;
Chen et al., 2019; Arnold et al., 2020) involves the direct sharing of raw sensor data, such as LiDAR
point clouds or camera images, between agents. This method maximizes information transfer but
requires high bandwidth for transmitting. @ Late fusion (Melotti et al., 2020; Fu et al., 2020; Zeng
et al., 2020; Shi et al., 2022; Glaser & Kira, 2023; Xu et al., 2023a; Su et al., 2023; 2024), involves
sharing only final prediction results, such as object detection bounding boxes or occupancy pre-
dictions. This approach significantly reduces communication bandwidth overhead, making it more
feasible for implementation in real-world systems. However, late fusion often results in subopti-
mal accuracy due to the loss of intermediate information that could be valuable for collaborative
decision-making. @ Intermediate fusion (Wang et al., 2020; Liu et al., 2020b;a; Guo et al., 2021;
Li et al., 2021; Hu et al., 2022b; Bai et al., 2022a; Cui et al., 2022; Xu et al., 2022a; 2023c; Qiao
& Zulkernine, 2023; Li et al., 2023a; Wang et al., 2023; Yu et al., 2023; Yang et al., 2024) has
emerged as a promising middle ground, involving the sharing of mid-level information, typically in
the form of Bird’s Eye View (BEV) features. This approach strikes a balance between communica-
tion bandwidth efficiency and information richness. Intermediate fusion allows for more flexibility
in collaborative processing while maintaining a reasonable data transfer load. However, intermediate
fusion faces significant challenges in addressing domain gap issues for heterogeneous agents.

Collaborative perception datasets. Several significant collaborative perception datasets have
emerged recently (Yazgan et al., 2024). The simulated OPV2V (Xu et al., 2022b) and V2X-Sim
dataset (Li et al., 2022) each contain approximately 10k multi-agent scenes, featuring RGB images
and LiDAR point clouds with 3D object detection, tracking, and segmentation annotations. Two
real-world DAIR-V2X Yu et al. (2022) and V2V4Real (Xu et al., 2023d) datasets provide 39k and
20k dual-agent samples, respectively, with object detection annotations only. For our framework
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evaluation, we selected two complementary datasets: the OPV2V dataset for its diverse downstream
tasks, and the V2V4Real dataset to validate performance in real-world scenarios.

2.2 HETEROGENEOUS COLLABORATIVE PERCEPTION

In a CP system, the heterogeneity of agents can manifest as three different types: heterogeneous
modalities, heterogeneous model architectures or parameters, and heterogeneous downstream tasks.
@ Heterogeneous modalities. Each model is expected to take input data of different modalities
(e.g., RGB images, LiDAR point clouds (Liu et al., 2023b), Thermal images (Gao et al., 2024a)),
requiring different encoders to process the data. Xiang et al. (2023) propose a hetero-modal vision
transformer to fuse heterogeneous BEV features, but this requires end-to-end model training, which
is impractical for existing heterogeneous agents. Xu et al. (2023b) introduce multi-agent perception
domain adaptation (MPDA), which aligns feature maps between heterogeneous agent pairs. While
effective for collaboration, this method’s polynomial complexity limits its scalability as the num-
ber of heterogeneous models increases. Lu et al. (2024) introduce a backward alignment training
strategy, creating heterogeneous models by fixing a base network’s decoder and training only the
encoders. While this enables collaboration between existing heterogeneous agents, it incurs high
computational costs, especially for models with large encoders. @ Heterogeneous model archi-
tectures or parameters. Model architectures or parameters may differ across agents, resulting in
feature map in different domains, rendering existing heterogeneous intermediate fusion methods
(Xiang et al., 2023; Lu et al., 2024) inapplicable. However, late fusion methods (Xu et al., 2023b)
remain viable as the model output for all models is in the same domain. ® Heterogeneous down-
stream tasks. The learning objectives are different across agents, which results in model outputs in
different domains. Li et al. (2023c) propose task-agnostic CP by training models with multi-robot
scene completion objectives. Despite the effectiveness of task-agnostic collaboration, their method
does not support heterogeneous modality inputs and model architectures.

3 METHODOLOGY

3.1 PRELIMINARIES: INTERMEDIATE COLLABORATIVE PERCEPTION

A CP system typically comprises multiple (/V) agents, each equipped with its own CP model. This
work mainly focuses on intermediate fusion, so we consider all CP models to be trained using an
intermediate fusion strategy. The architecture of these models generally consists of an encoder E;,
a compressor ¢;, a decompressor \p;, a collaborative fusion layer U;, and a decoder D;, where
1€ {1,2,..., N} represents the agent index.

The CP process unfolds as follows: Upon receiving input data I;, the encoder F; of agent ¢ trans-
forms this data into a Bird’s Eye View (BEV) feature representation F;. To save transmission band-
width, each agent uses the compressor ¢; to compress F; to F; before broadcasting them to other
agents within a predefined collaborative distance §. Here, § denotes the maximum range for inter-
agent collaboration. Each agent collects the BEV features from other agents and uses their own
decompressor \; to decompress F}, to Fy, where agent ¢ and agent k are within the distance § for
collaboration. Then, the collaborative fusion layer U; collects and integrates the BEV features from
all cooperating agents, producing a consolidated BEV feature F’. Finally, the decoder D; processes
this fused feature F” to generate the final model output O;. This process can be formally described
as follows for each agent € {1,2,...,N}:

Encoding: F; = Ei(I;) ()
Compression: F = $i(F3) @)
Decompression: Fj =Ui(Fy), YjeN(,j)<? 3)
Fusion: F{ =U;({F; | N(i,j) < d}) “)
Decoding: O; = Dy(Fy) ©)

where N (i, k) refers to the Euclidean distance between the agent i and agent k.

3.2 FRAMEWORK OVERVIEW

Our proposed framework, STAMP, enables collaboration among existing heterogeneous agents with-
out sharing model details or downstream task information. We replace the compression (Equation 2)
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Figure 1: Initially, agents are non-collaborative (I), resulting in degraded performance. Collaborative
Feature Alignment (CFA) enables collaboration among heterogeneous agents through a two-step
process (II): training a protocol network and training local adapters and reverters. The protocol
network facilitates communication between Agent 1, Agent 2, and , each with heterogeneous
models and features. Gradient-colored feature maps represent features adapted or reverted between
domains. After CFA implementation, agents become collaborative (IIT) with improved performance.
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and decompression (Equation 3) with adaptation and reversion steps. Specifically, for each agent 7,
we introduce a local adapter ¢; and a local reverter \»;. The adaptation process is defined as follows:

Adaptation: F;p = ¢;(F;), Vie{l,2,...,N} (6)

Here, the adapter ¢; maps the local BEV feature F; to a unified BEV feature representation, which
we term the protocol feature, denoted as F'p. The resulting adapted feature is denoted as F;p.

Following adaptation, the features from all heterogeneous agents ¢ are broadcast to other agents j
within the collaborative distance 0. Each receiving agent j (j # ¢) then uses its local reverter \;
to map the received features back to its own local feature representation. The resulting reverted
features are denoted as F;;. This reversion process is formulated as:

. (Fip), ifij o
Reversion: Fj;; = {%( 2 LCZ i; Vi,j€{1,2,...,N} @)
Note that F; is already in the local feature presentation, so stay intact. This adaptation and reversion
process seamlessly integrates into the standard heterogeneous CP pipeline, forming the core of our
STAMP framework.

The STAMP framework supports agents with different modalities, model architectures, and down-
stream tasks, while maintaining a collaboration process that is entirely agnostic to those characteris-
tics of other agents. To the best of our knowledge, STAMP is the first framework that simultaneously
addresses all three aspects of agent heterogeneity. Furthermore, the adapters and reverters can be
implemented in a highly lightweight manner, ensuring high scalability across a large number of het-
erogeneous agents. A comprehensive comparative summary STAMP and other heterogeneous CP
frameworks is presented in Table 1.

3.3 COLLABORATIVE FEATURE ALIGNMENT

We propose the Collaborative Feature Alignment (CFA) module to train a unified BEV feature
representation and a local adapter-reverter pair. As illustrated in Figure 1 (I), before CFA, het-
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Table 1: Comparison of heterogeneity support and scalability across existing heterogeneous collab-
oration frameworks. “{” indicates that while the current codebase does not support the specified
heterogeneity, we believe the proposed method could accommodate it with minor modifications.

Frameworks Modality Model Architecture  Downstream Task Scalability
Calibrator (Xu et al., 2023a) v v high
MPDA (Xu et al., 2023b) v T T low
HEAL (Lu et al., 2024) v medium
Scene Completion (Li et al., 2023¢) + v high
STAMP (ours) V4 V4 Ve high

erogeneous agents perform multiple tasks individually without the ability to collaborate, resulting
in suboptimal performance. After CFA (III), these agents can effectively collaborate, leading to a
significant performance boost.

O Training protocol network. The first step is to learn a unified BEV embedding space by training
a protocol network. This process follows the standard training process of a collaborative perception
model, as described in Equations (1) to (5). We denote the protocol encoder, fusion model, and
decoder as Ep, Up, and Dp, respectively. The compressor and decompressor are set as identity
functions. The input data, BEV feature, fused BEV feature, and final output of the protocol model
are represented by Ip, Fp, F 1’;, and Op, respectively.

® Training local adapters and reverters. We introduce a notation X = {x! x2 ... ,x%} to
denote a set of world states, where K is the total number of world states. A modality transformation
function 7 : X — I transforms a world state to sensor data of a given modality. For instance, in
an autonomous driving scenario, x could represent the world state surrounding the ego vehicle, and
T could be the matrix of six surround-view RGB cameras, resulting in I as the six RGB images
captured by these cameras.

Given a local model 7, protocol model P, and a set of world states X' = {x!,x2,...,x%} within
the collaborative distance, we define I¥ = T;(x*) as the input for local model i and I% = Tp(x¥)
as the input for protocol model P. Here, 7; and 7p denote the sensor modalities of the local model ¢
and protocol model, respectively. By passing these inputs into their corresponding encoders, we get
a set of local BEV features F*X and protocol BEV features 5. A domain gap exists between
F}E and FEX due to the heterogeneity of sensor modalities 7; and 7p, as well as the encoders E;
and Ep. To bridge this gap, we introduce a local adapter ¢; that maps the local BEV feature F} to
the protocol feature representation. The objective function for ¢, is:

¢; = argmin Ly, (FK FEE)  where  Flo = bi(FF) (8)

where L, represent the feature alignment loss for the adapter ¢;. Similarly, we introduce a reverter
1; that maps the protocol BEV feature F% to the local feature representation, i.e., F&, = ;(FE).
since F%, is also in the protocol representation, by including F} = ;(F}), we provide additional
supervision for ;. The objective function for the reverter is formulated as:
; = arg min (Ltlu (Fp FE) + lei(Fili:K? F/L‘LK))
W €))
where  Fh, = bi(FE), Ff = i(Flp)

i

Here, L, represents the feature alignment loss for the reverter ;. To achieve our objective func-
tions, we conduct alignment in both the feature space and the decision space.

® Feature space alignment. For a given local model i, we first align the feature pairs
FLE pLEY (LK PR and (FLE | F1EK) for all k using the L2-norm. This direct alignment
iP P P i i 7 g g

of feature spaces is formulated as:

1 1
LY, = = S IE Fhlae L, = = S (1FS. Fol + IFSFEL) (o)
k k

® Decision space alignment. When 7; and Tp represent significantly different sensor modalities
(e.g., RGB camera vs. LiDAR), the disparity between their intermediate feature representations can
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be substantial. In such cases, achieving exact equivalence between F}%, and F'% for all k is neither
feasible nor necessary. Nevertheless, since both F¥ and F}, are derived from the same world state
x"*, their corresponding downstream task outputs should align with the same ground truth labels. To
enforce this alignment in the decision space, we introduce additional loss terms:

LG, = Lp(Dp o Up(Fip"), GTp)
Ly, = Li(D; o Uy(Fp%), GTy) + Li(D; o Uy(F¥), GTy)
where L£p and L; represent the task-specific loss functions for training the protocol model and local

model ¢, respectively. GTp and GT; denote the corresponding ground truth labels for the protocol
and local model 7. Finally, to balance the importance of adaptation and reversion, as well as feature

and decision space alignment, we introduce scaling factors A/ , A{b, A2 and )\ﬁ). The total loss
function for local model 7 is:

TS o NFf adrd o dgd
Li= X Lp, + Ay Ly, + Ao Ly, + Ay Ly, (12)

(1)

3.4 ADAPTER AND REVERTER ARCHITECTURE

To bridge the domain gap between heterogeneous agents, we propose a flexible architecture for both
the adapter ¢ and reverter \p. This architecture addresses three main sources of domain gap caused
by agent heterogeneity, as identified by Xu et al. (2023b): spatial resolution, feature patterns, and
channel dimensions. Our design employs simple linear interpolation for spatial resolution alignment,
three ConvNeXt layers (Liu et al., 2022) with hidden channel dimension Chjqgen for feature pattern
alignment, and two additional convolutional layers for channel dimension alignment (input: Cj, —
Chidden, output: Chiggen — Cour). For the model architecture details, please refer to Appendix A.1.

Note that this high-level architecture is flexible and open to various implementations. In Section 4.4,
we evaluate alternative approaches for feature pattern alignment, demonstrating our framework’s
flexibility across different specific implementations.

4 EXPERIMENTS

Our STAMP framework enables collaboration among agents with heterogeneous modalities, models
architectures, and downstream tasks without sharing model or task information. We first compare
our framework with existing heterogeneous CP frameworks in Section 4.2. Given that no previous
work supports simultaneous task- and model-agnostic heterogeneous collaboration, we concentrate
our evaluation on the 3D object detection task. This focus ensures a fair comparison across two
key dimensions: object detection average precision, trainable parameters and GPU hours required
for training. Next, in Section 4.3, we demonstrate our framework’s unique capability in a task- and
model-agnostic setting, evaluating its performance using four existing collaborative models with
heterogeneous architectures and downstream tasks. Then, we present ablation studies on channel
sizes, model architectures, and loss functions in Section 4.4 to further analyze our framework’s
design choices. Finally, we present some feature and output visualization in Section 4.5.

4.1 EXPERIMENTAL SETUP

Our experiments utilize two CP datasets: the simulated OPV2V dataset (Xu et al., 2022b) and
the real-world V2V4Real dataset (Xu et al., 2023d). We employ both datasets in Section 4.2 and
Section 4.4 for method comparison and ablation studies. The task- and model-agnostic evaluation
in Section 4.3 uses only OPV2V due to its multi-task annotations. This combination leverages the
scale and diversity of simulated data with the realism of real-world data, ensuring comprehensive
model evaluation.

Implementation details. We use different setups for 3D object detection (Section 4.2) and task-
agnostic settings (Section 4.3), detailed within each section. Unless using end-to-end training, local
and protocol models are trained for 30 epochs using Adam optimizer (Kingma & Ba, 2014). For
end-to-end training, we use Itersy = 30V epochs, where N is the number of heterogeneous models,
to ensure all models receive the same amount of supervision. Local adapters ¢ and reverters 1 are

trained for 5 epochs. We set loss scaling factors /\,f:d‘,lpt = /\rfe\,erl = Agfdam = A\ . = 0.5 empirically.

For additional details, please refer to Section 4.2, Section 4.3, and Appendix A.1.
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Table 2: Performance comparison using AP@30 and AP@50 metrics on the OPV2V dataset. Agent
positions are perturbed with Gaussian noise of standard deviations 0.0, 0.2, and 0.4. Al, A2, A3,
and A4 refer to agent 1, agent 2, agent 3, and agent 4, respectively.

| | AP@30 1 | AP@50 1
o | AgentIndex | Al  +A2  +A3  +Ad4 | Al  +A2  +A3  +Ad4

Late Fusion 0902  0.931 0.935 0.935 0.894  0.908 0.913 0.914
Calibrator 0.901 0.935 0.939 0.938 0.896 0914 0916 0.920
0.0 E2E Training 0.899 0.973 0.978 0.986 0.885 0.967 0.977 0.980
HEAL 0.897 0.975 0.986  0.985 0.889 0972  0.978 0.983
STAMP (ours) 0.902  0.981 0.987  0.989 0.894 0977  0.983 0.985

Late Fusion 0900 0910 0.902  0.905 0.882  0.783  0.797  0.792
Calibrator 0.897  0.908 0.898  0.902 0.885 0.778 0.800  0.791
0.2 E2E Training 0.900  0.967 0.961 0.961 0.879 0936  0.941 0.934
HEAL 0.899 0971 0.965 0.962 0.881 0938 0.940 0.940
STAMP (ours) 0.900 0975 0968  0.968 0.882 0937 0948 0.946

Late Fusion 0.888  0.882 0.86¢4  0.870 0.874 0.639 0.614  0.617
Calibrator 0.874  0.889 0.887 0.871 0.867 0.644  0.622 0.628
0.4 E2E Training 0.885 0.952 0956  0.952 0.863 0.883 0.892  0.899
HEAL 0.880  0.959 0.961 0.962 0.852 0.913 0.915 0.912
STAMP (ours) 0.888  0.961 0.963 0.966 0.874 0.915 0.915 0.909

4.2 HETEROGENEOUS COLLABORATIVE PERCEPTION FOR 3D OBJECT DETECTION

Performance comparison. We compare our method with existing heterogeneous CP approaches
on the 3D object detection task. We select two late fusion methods (vanilla late fusion and calibrator
(Xu et al., 2023a)) and two intermediate fusion methods (end-to-end training and HEAL (Lu et al.,
2024)) for comparison. Late fusion methods offer a simple way to mitigate domain gaps in collab-
orative 3D object detection. Xu et al. (2023a) propose using a calibrator to address residual domain
gaps in late fusion, which arise from differences in training data and procedures among heteroge-
neous models. For intermediate fusion, end-to-end training of all heterogeneous models together
allows collaboration during the training stage to bridge domain gaps. Lu et al. (2024) introduce
a backward alignment technique, first training a base network, then fixing its decoder while train-
ing only the encoders to create heterogeneous models. An architectural comparison between these
frameworks and our proposed STAMP framework is illustrated and visualized in Appendix A2.

We prepared 12 heterogeneous local models (six with LIDAR modality and six with RGB camera
modality) and one protocol model with LiDAR modality (details in Appendix A.1). Each agent has
a visible range of 51.2m x 51.2m square units. Considering that most samples of the OPV2V dataset
contain no more than four agents, we only select the first four models for evaluation on the OPV2V
dataset. Similarly, we select the first two models for the V2V4Real dataset since it has two agents
for each sample. All 12 models are used for efficiency comparison.

For the OPV2V dataset, we simulate real-world noise by adding Gaussian noise with standard de-
viations ¢ = {0.0,0.2,0.4} to the agents’ locations. As shown in Table 2, late fusion methods
underperform as the number of agents increases, with performance degrading further at higher noise
levels (o = 0.4). This is particularly evident when camera agents (agents 3 and 4) are involved,
highlighting the late fusion methods’ vulnerability to bottleneck agents’ incorrect predictions. Our
framework demonstrates superior or comparable performance to other heterogeneous fusion meth-
ods across all noise levels.

Table 3 compares the average precisiononthe  Typle 3: Performance comparison using AP@30
real-world V2V4Real dataset. Our STAMP  apnd AP@50 metrics on the V2V4Real dataset.

pipeline demonstrates superior performance,
achieving the highest AP@30 for both agents | AP@30 1 | AP@S0T

(0.523 and 0.633) and competitive AP@50 _ Agentlndex | Al +A2 | Al +A2

scores. STAMP outperforms Late Fusion Late Fusion | 0.523  0.511 0.483  0.471

_ Calibrator 0.520 0.524 0.484 0.488
methods fa“d. m.at"hhes or exceeds the perf(c’l? E2F Training | 0513 0612 | 0473  0.598
mance O eXlStlng eterogeneous intermedi- HEAL 0.515 0.628 0.480 0.595

ate fusion approaches like HEAL. These re- STAMP (ours) | 0.523  0.633 | 0.483  0.594

sults indicate that the CFA module in STAMP
is effective not only in simulated environments but also in real-world scenarios.
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Efﬁciency comparison. We conducted an Training Parameters (M) oo Training GPU Time (hrs)
efficiency comparison between our approach D N
and existing heterogeneous CP pipelines, fo- - w]
cusing on the total number of parameters and
training GPU hours. Training GPU hours
refers to the time required to complete model
training on the OPV2V dataset using an RTA
A6000 GPU. To analyze training costs at
scale, we report the number of training pa- Figure 2: Training efficiency comparison of our
rameters and the estimated training time. Fig- framework and existing heterogeneous CP frame-
ure 2 illustrates the changes in the number works across a number of heterogeneous agents.

of training parameters and estimated training

GPU hours as the number of heterogeneous agents increases from 1 to 12. End-to-end training and
HEAL exhibit a steep increase in both parameters and GPU hours as the number of agents grows. In
contrast, although our pipeline shows higher parameters and GPU hours at the one or two number
of agents (due to the training of the protocol model), it demonstrates a much slower growth rate
because our proposed adapter ¢ and reverter 1 is very light-weighted and only takes 5 epochs to
finish training. This highlights the scalability of our pipeline.
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4.3 MODEL- AND TASK-AGNOSTIC FUSION

In this section, we evaluate our proposed framework’s performance in a task-agnostic setting us-
ing the OPV2V dataset. To simulate agent heterogeneity, we assign four agents with diverse input
sensors, learning objectives, and evaluation metrics, equipping them with various backbones and
fusion models. Agent 1 was equipped with a SECOND encoder (Yan et al., 2018) and a window
attention fusion module (Xu et al., 2022a; 2024). For Agent 2, we implemented an EfficientNet-
b0 encoder (Tan, 2019), while Agents 3 and 4 were equipped with PointPillar encoders (Lang
et al.,, 2019). Agents 2, 3, and 4 all utilized the Pyramid Fusion module Lu et al. (2024). Ta-
ble 4 summarizes these models’ key characteristics. We compare our STAMP framework against
two baseline scenarios: non-collaborative (single-agent perception without information sharing) and
collaborative without feature alignment (performing intermediate fusion despite domain gaps). Ta-
ble 4 presents the evaluation results on the OPV2V dataset, with added Gaussian noise (standard
deviations o = {0.0,0.2,0.4}) to the agents’ locations.

Table 4: Heterogeneous CP results in a model- and task-agnostic setting. Tasks include 3D object
detection (‘Object Det’), static object BEV segmentation (‘Static Seg’), and dynamic object BEV
segmentation (‘Dynamic Seg’). 3D object detection is evaluated using Average Precision at 50%
IoU threshold (AP@50), while segmentation tasks use Mean Intersection over Union (MIoU).

| AgentIndex | Agent 1 Agent 2 Agent 3 Agent 4
Metric AP@50 AP@50 MIoU MIoU
Downstream Task Object Det Object Det Static Seg Dynamic Seg
Agent Info | Sensor Modality Lidar Camera Lidar Lidar
Backbone SECOND EfficientNet-b0 PointPillar PointPillar
Feature Resolution 64 x 64 128 x 128 128 x 128 128 x 128
Channel Size 256 64 64 64
Fusion Method | Window Attention Pyramid Fusion Pyramid Fusion Pyramid Fusion
. Non-Collab 0.941 0.399 0.548 0.675
E(V (fl,“gt(']‘)’“ Collab w/o. CFA 0.90910.032 039950000  0.114 [0.434 0.070 10.605
T STAMP (ours) 0.936 10.005 0.760 10.362 0.624 1+0.076 0.690 +0.014
. Non-Collab 0.936 0.399 0.521 0.658
E(V;l,“gt;‘)’“ Collab w/o. CFA 0.902 10.034 0.399 0000 0.114 [0.407 0.069 10.588
T STAMP (ours) 0.930 10.006 0.734 10336 0.615 10.094 0.676 10.018
. Non-Collab 0.925 0.399 0.503 0.630
E(V;l_“g‘i‘)’“ Collab w/o. CFA 0.886 10.039 0.400 10.001 0.114 1038 0.069 10.561
T STAMP (ours) 0.923 10.002 0.585 10.186 0.600 10.097 0.650 0.020

Our method consistently outperforms single-agent segmentation for agents 3 and 4 in the BEV
segmentation task. Conversely, collaboration without feature alignment significantly degrades per-
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formance compared to the single-agent baseline, underscoring the importance of our adaptation
mechanism in aligning heterogeneous features. For agent 2’s camera-based 3D object detection,
our pipeline achieves substantial gains (e.g., AP@50 improves from 0.399 to 0.760 in noiseless
conditions), while collaboration without feature alignment shows negligible changes. These results
demonstrate our pipeline’s effectiveness in bridging domain gaps between heterogeneous agents, en-
abling successful collaboration across diverse models, sensors, and tasks. The consistent improve-
ments, particularly under noisy conditions, highlight our approach’s robustness and adaptability.

However, we observe that both collaborative approaches lead to performance degradation for Agent
1 compared to its single-agent baseline, despite our method outperforming collaboration without
feature alignment. This unexpected outcome is attributed to Agent 2’s limitations, which rely solely
on less accurate camera sensors for 3D object detection. This scenario illustrates a bottleneck effect,
where a weaker agent constrains the overall system performance, negatively impacting even the
strongest agents. This challenge in multi-agent collaboration systems prompts us to introduce the
concept of a Multi-group Collaboration System. In Appendix A.4, we elaborate on the advantages
of such a system and demonstrate how our framework can be easily integrated to potentially mitigate
performance discrepancies in heterogeneous agent collaborations.

4.4 ABLATION STUDIES

In this section, we conduct ablation studies on three factors that may affect our pipeline’s perfor-
mance: BEV feature channel size, adapter & reverter architectures, and loss functions for collabora-
tive feature alignment. All experiments are conducted on both the OPV2V and V2V4Real datasets.
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Figure 3: Ablation studies on the OPV2V dataset: (a) Model performance across different BEV
feature channel sizes. (b) Performance comparison of various adapter and reverter architectures. (c)
Performance results using different combinations of loss function components (L y and Lg).
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channel size of 64 (Figures 3 and 4). Surpris- Figure 4: Ablation studies on the V2V4real set.
ingly, reducing the channel size results in only

minor performance changes for both datasets, revealing our model’s resilience to high BEV feature
compression rates.
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Adapter & reverter architecture. We evaluate two alternative architectures for the adapter and re-
verter—a single 1 x 1 convolutional layer and three self-attention layers—compared to our standard
implementation of three ConvNeXt layers. The results demonstrate that performance is not highly
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Figure 5: Visualization of feature maps and model outputs before and after Collaborative Feature
Alignment (CFA) for two scenes with different agents and tasks. For 3D object detection, green
boxes indicate the ground truth labels and red boxes indicate the predictions. CFA enhances feature
clarity and information preservation, resulting in improved perception accuracy across heteroge-
neous agents.

sensitive to the adapter and reverter architecture, showcasing our framework’s flexibility across var-
ious specific implementations.

Loss function. The final loss function in our collaborative feature alignment module comprises two
components: L ¢ for feature space alignment and L for decision space alignment. We evaluate our
method’s performance using each loss function individually. Figure 3 shows that on the OPV2V
dataset, using only L4 leads to a significant performance drop, while using only L results in more
fluctuating and generally lower performance. Figure 4 demonstrates that on the V2V4Real dataset,
dropping either Lg or L results in performance degradation. These findings underscore the neces-
sity of using both loss functions in combination for optimal performance.

4.5 VISUALIZATION

Figure 5 illustrates the impact of our CFA method on feature maps and output results across vari-
ous tasks. We visualize feature maps by averaging each channel of the fused feature map, F}’, to a
(W, H) shape and plotting in a grayscale. Without CFA, the fused feature maps appear noisy and
lack critical information for downstream tasks, leading to poor output results. In contrast, CFA sig-
nificantly enhances feature preservation, resulting in clearer feature maps and more accurate outputs
across different tasks. This visualization demonstrates CFA’s effectiveness in maintaining essen-
tial information during the fusion process, which directly translates to improved performance in CP
tasks. More comprehensive visualization results are shown on the Appendix A.5.

5 CONCLUSION

In this paper, we introduce STAMP, a scalable, task- and model-agnostic multi-agent collaborative
perception framework. This framework simultaneously addresses three aspects of agent hetero-
geneity: varieties in modalities, model architectures, and downstream learning tasks. By utilizing
lightweight adapter-reverter pairs, STAMP enables efficient collaborative perception while main-
taining high security, scalability, and flexibility. Experiments on both the simulated OPV2V dataset
and the real-world V2V4Real datasets demonstrate its superior performance and computational ef-
ficiency over existing state-of-the-arts. This approach opens new avenues for developing more reli-
able, efficient, and secure collaborative systems in future autonomous driving applications.

Limitations. Our experiments revealed a bottleneck effect in Collaborative Perception (CP), where
the performance of the weakest agent constrains the overall system performance. This finding under-
scores the necessity for multi-group collaborative systems, where agents communicate only within
defined groups. Such systems could mitigate the bottleneck effect by allowing for more selective
collaboration. In Appendix A.4, we provide a more detailed discussion of multi-group collaborative
systems and the advantages of our framework in this context.
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Reproducibility statement. To ensure the reproducibility of our results, we have provided detailed
information about our experimental setup, including dataset descriptions, model architectures, and
training procedures in the main text and appendices. We encourage researchers to refer to Appendix
A.1 for more implementation details. We also release the codebase at https://github.com/taco-
group/STAMP.

Ethics statement. Our task- and model-agnostic framework enhances local model security, reduc-
ing risks like model stealing (Oliynyk et al., 2023) and adversarial attacks (Tu et al., 2021). While
limiting model sharing improves security, as assessed by (Li et al., 2023b), we recognize the need
for further security analysis. We advocate for collaboration with experts to rigorously evaluate and
strengthen our approach in order to contribute to safer and more trustworthy autonomous driving
systems and advance privacy in collaborative perception.
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A APPENDIX

A.1 IMPLEMENTATION DETAILS

For training all models, we initialize the learning rate at
0.001 and reduce it by a factor of 0.1 at 50% and 83% of
the total epochs. We utilize a single NVIDIA RTX A6000
GPU for both model training and inference. Training time
for each model varies between 7 to 30 GPU hours, de-
pending on the specific model architecture. For adapters
and reverters, we start with a learning rate of 0.01, reduc-
ing it by a factor of 0.1 after the first epoch. These com-
ponents are trained in pairs, requiring 1 to 5 GPU hours
depending on the specific encoder and decoder architec-
tures.

input
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Adapter and Reverter’s Architecture. We use the same
architectures for both adapters and reverters across all

output alignment

CP models, as visualized in Figure Al. The dimension (conv Ix1)
of the broadcasting feature map is set to (128,128, 64). (W H o € o)
Chidden 18 set to be 64. Wiy, Hin, Cin, Wout, Hour, and Cou output

of adapters and reverters vary according to the feature
dimensions of each local model and the broadcasting
feature map dimension. For instance, in the task- and
model-agnostic setting, Agent 1’s feature dimension is
128 x 128 x 64, so we set (Win, Hin, Cin) = (Wout, Hout, Cout) = (128,128, 64) for both its adapter
and reverter. For Agent 2, with a feature dimension of 64 x 64 x 256, we configure the adapter
with (Wi, Hin, Cin) = (64,64, 256) and (Wou, Hou, Cour) = (128,128, 64), while the reverter is
set with (Wi, Hin, Cin) = (128,128, 64) and (Woy, Hout, Cout) = (64, 64, 256).

Figure Al: Architecture of adapter and
reverter.

Table Al: Modality, encoder, and encoder parameters (M) of each heterogeneous model in the 3D
object detection setting.

Index \ Agent 1 Agent 2 Agent 3 Agent 4
Modality \ Lidar Lidar Camera Camera
Encoder ‘ PointPillar SECOND EfficientNetBO ResNet101

(Lang et al., 2019) (Yan et al., 2018) (Tan, 2019) (He et al., 2016)
Encoder Param.(M) \ 0.87 3.79 56.85 6.88

Index | Agent 5 Agent 6 Agent 7 Agent 8
Modality \ Camera Lidar Camera Lidar
Encoder ‘ ResNet34 VoxelNet EfficientNetB1 PointPillar (large)

(He et al., 2016) (Zhou & Tuzel, 2018) (Tan, 2019) (Lang et al., 2019)
Encoder Param.(M) \ 6.51 2.13 66.41 1.91

Index | Agent 9 Agent 10 Agent 11 Agent 12
Modality | Camera Lidar Camera Lidar
Encoder ‘ ResNet50 SECOND (large) EfficientNetB2 VoxelNet (large)

(He et al., 2016) (Yan et al., 2018) (Tan, 2019) (Zhou & Tuzel, 2018)
Encoder Param.(M) \ 6.88 4.82 7143 3.18

3D object detection setting. Under the experiments on 3D object detection task, we prepared 12
heterogeneous models. Table Al displays the Modality, Encoder, and Encoder Parameters (M)
information of each of the 12 heterogeneous models. For model 7, 9, and 11, we enlarge the encoders
by increasing the size of hidden layers. For all heterogeneous models, we choose pyramid fusion
layers proposed by Lu et al. (2024) to be the fusion module and three 1 x 1 convolutional layers for
classification, regression, and direction, respectively.
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A.2 ARCHITECTURAL COMPARISON BETWEEN EXISTING FRAMEWORKS

Figure A2 illustrated various frameworks that address heterogeneous CP. Late fusion simply com-
bines agent outputs through post-processing. Calibrator (Xu et al., 2023a) enhances this approach
by using calibrators to address domain gaps between heterogeneous agent outputs. End-to-end train-
ing, while effective, lacks scalability due to its requirement of re-training all agents’ models. It also
compromises security and task flexibility by shared fusion models and decoders. HEAL (Lu et al.,
2024) improves upon this by fixing decoders and fusion models, re-training only the encoders, re-
ducing training resources but still facing scalability issues due to the computational cost of encoder
retraining as well as the security issue due to the shared fusion models and decoders. Our proposed
framework, STAMP, introduces a novel approach using lightweight adapter and reverter pairs to
align feature maps for collaboration. The lightweight nature of these components ensures scalabil-
ity, while the maintenance of local fusion and decoders ensures both security and task agnosticism.

This design effectively addresses the limitations of previous methods.
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Figure A2: Architectural comparison of collaborative perception frameworks: existing approaches
versus our proposed STAMP method. Blue boxes represent models with fixed parameters, while red

boxes indicate models whose parameters are trained during the collaboration process.
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A.3 ADDITIONAL EXPERIMENTS
A.3.1 DIFFERENT PROTOCOL MODELS

We conducted complementary experiments comparing different protocol model designs, analyzing
variations in both encoder types and downstream tasks.

Table A2: Comparison of protocol designs, encoder types, and tasks across different agents.

Agent 1 Agent 2 Agent 3 Agent 4
Protocol | Encoder Type | Protocol Task |y ;4.\ 0hi) (Cam.+Obj.) (Lidar+Static Seg) (Lidar+Dyn. Seg.)
Non-Collab | | | 0.941 0.399 0.548 0.675

STAMP |  CNN-based | ObjectDet. | 0.93610.005  0.760 10.362 0.624 10.076 0.690 10.014
Camera-modality Object Det. 0.931 [0.010  0.777 10.368 0.580 10.032 0.671 10.004
STAMP Camera + Lidar Object Det. 0.937 [0.004  0.762 10.363 0.632 10.084 0.714 10.039
(ablations) Point-transformer |  Object Det. 0.942 10.001  0.775 10.376 0.634 10.086 0.696 10.021
* CNN-based Dyn. Seg. 0.935 [0.006  0.743 10.344 0.624 10.076 0.723 10.048
CNN-based Static. Seg. 0.747 10.194  0.41210.013 0.681 10.133 0.235 10.440

Impact of Model Objectives The experimental results shown in Table A2 demonstrate that the
alignment’s success significantly depends on the learning objectives between protocol models and
agent architectures. When there is strong alignment between the protocol model and an agent’s ob-
jectives, we observe performance improvements. For examples, A camera-modality protocol model
improves camera-based Agent 2’s performance from 0.760 to 0.777; a dynamic-segmentation pro-
tocol model enhances Agent 4’s performance from 0.690 to 0.723. Similarly, a static-segmentation
protocol model boosts Agent 3’s performance from 0.624 to 0.681.

However, significant objective mismatches can lead to severe performance degradation. For in-
stance, using a static-segmentation protocol model causes Agent 4’s mAP to drop dramatically from
0.690 to 0.235. This highlights the importance of careful protocol model selection.

Encoder Architecture Variations While our baseline experiments primarily used CNN-based en-
coders, we explicitly tested different encoder architectures to understand their impact. As shown in
our results table, we evaluated: CNN-based encoders and Point-transformer encoders.

The Point-transformer protocol model outperforms the original CNN-based protocol model, show-
ing our framework’s compatibility with different encoder architectures. Notably, the Point-
transformer protocol model achieved slightly superior performance (AP@50 = 0.991) compared
to its CNN-based counterpart (AP@50 = 0.973). This observation suggests an important insight:
the overall performance of the protocol model is more crucial than its specific architectural design.
In other words, a well-performing protocol model tends to benefit all agent types, regardless of their
individual architectures.

A.3.2 ADVERSARIAL ROBUSTNESS EVALUATION

Adversarial attacks involve intentionally perturbing inputs to mislead machine learning models
while keeping the modifications nearly imperceptible(Tu et al., 2021; Gao et al., 2024b). Follow-
ing James et al. Tu et al. (2021)’s collaborative white-box adversarial attack method with the same
hyperparameters, we conducted adversarial attack experiments on the V2V4Real dataset with two
agents per scene. We designated agent 1 as the attacker and agent 2 as the victim, comparing three
settings:

* End-to-end training: Models trained end-to-end with full parameter access, enabling direct
white-box attacks on the victim.

* HEAL: Agents share encoders but have different fusion models/decoders, assuming no victim
model access.

* STAMP: Agents share no local models, using protocol representation for communication, assum-
ing no victim model access.

The results shown in table A3 demonstrate that adversarial attacks have minimal impact on HEAL
and STAMP frameworks due to local model security, while significantly degrading performance in
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Table A3: Performance of different frameworks under adversarial attack on the V2V4Real dataset.

AP@50 End-to-end HEAL STAMP (ours)
Before Attack 0.513 0.515 0.523
After Attack 0.087 0.506 0.503

end-to-end training where models are shared. This empirically supports our framework’s robustness
against malicious agent attacks.

A.3.3 MORE COMPARISON WITH THE STATE-OF-THE-ART METHODS

We conducted additional experiments comparing with V2X-ViT(Xu et al., 2022a), CoBEVT(Xu
et al., 2023¢c), HM-ViT(Xiang et al., 2023), HEAL(Lu et al., 2024) in a heterogeneous input modal-
ity setting. We configured four agents: two LiDAR agents using PointPillar and SECOND encoders,
and two camera agents using EfficientNet-b0 and ResNet-101 encoders. For COBEVT, HM-ViT, and
HEAL, we followed their standard architecture and hyper-parameter setup. V2X-ViT does not sup-
port camera modality, so we follow HEAL to use ResNet-101 with Split-slat-shot for encoding RGB
images to BEV features. For STAMP, we used pyramid fusion layers and three 1 x 1 convolutional
layers (for classification, regression, and direction) across all heterogeneous models.

Table A4: Comparison of performance metrics (AP@50) for different models across heterogeneous
agents.

Agent 1 Agent 2 Agent 3 Agent 4
AP@50 (PointPillar) (SECOND) (EfficientNet-B0) ((ResNet-101)) ‘\Verage
V2X-ViT - - - - 0.905
CoBEVT ] ] ; ; 0.899
HM-ViT ] ] - ; 0.918
HEAL 0.971 0.958 0.776 0.771 0.934
STAMP (ours) 0971 0.963 0.771 0.756 0.934

Note that COBEVT, HM-ViT, and V2X-ViT use a single fusion layer and output layer for all modal-
ities, while HEAL and our framework maintain separate fusion and output layers for each agent to
preserve model independence. The reported accuracy is averaged across all samples.

A.4 MULTI-GROUP AND MULTI-MODEL COLLABORATIONS SYSTEM

In our experimental findings, we observed a bottleneck effect in CP systems, where the overall sys-
tem performance is constrained by the capabilities of the weakest agent. This limitation underscores
the need for more selective collaboration, leading us to introduce the concept of a Collaboration
Group - a set of agents that collaborate under specific criteria. These criteria are essential for
maintaining the quality and integrity of CP, admitting agents that meet predefined standards while
excluding those with inferior models, potential malicious intent, or incompatible alignments. As
illustrated in Figure A3, we can distinguish between three collaborative system types:

* Single-group systems, where agents either operate independently or are compelled to collaborate
with all others, are susceptible to performance bottlenecks caused by inferior agents and vulnera-
bilities introduced by malicious attackers.

* Multi-group single-model systems, allowing multiple collaboration groups but restricting agents
to a single group because each agent can only equip a single model.

* Multi-group multi-model systems, enabling agents to join multiple groups if they meet the prede-
fined standards.

The multi-group structure offers significant advantages over traditional single-group systems. It en-
hances agents’ potential for diverse collaborations, consequently improving overall performance.
This approach mitigates the bottleneck effect by allowing high-performing agents to maintain ef-
ficiency within groups of similar capability while potentially assisting less capable agents in other
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Figure A3: Comparison of collaborative perception systems: (Left) Single-group system where all
agents collaborate within one group. (Middle) Multi-group single-model system allowing agents to
join only one of multiple collaboration groups. (Right) Multi-group multi-model system enabling
agents to participate in multiple collaboration groups simultaneously. The figure illustrates how
different system architectures impact agent interactions and group formations in autonomous driving
scenarios.

groups. Furthermore, it enhances system flexibility, enabling dynamic group formation based on
specific task requirements or environmental conditions.

However, implementing such a multi-group system poses challenges for existing heterogeneous
collaborative pipelines. End-to-end training approaches require simultaneous training of all models,
conflicting with the concept of distinct collaboration groups. Methods like those proposed by Lu
et al. (2024) require separate encoders for each group, becoming impractical as the number of groups
increases due to computational and memory constraints.

Our proposed STAMP framework effectively addresses these limitations, offering a scalable solu-
tion for multi-group CP. The key innovation lies in its lightweight adapter and reverter pair (approx-
imately 1MB) required for each collaboration group an agent joins. This efficient design enables
agents to equip multiple adapter-reverter pairs, facilitating seamless participation in various groups
without significant computational overhead. The minimal memory footprint ensures scalability,
even as agents join numerous collaboration groups, making STAMP particularly well-suited for
multi-group and multi-model collaboration systems.

A.5 MORE VISUALIZATION RESULTS

Figure A4 and A5 illustrate more feature map and result visualizations before and after collaborative
feature alignment (CFA). Prior to CFA, agents’ feature maps exhibit disparate representations. For
instance, in Figure A4, the pre-fusion feature maps of agents 1, 3, and 4 appear entirely black,
indicating a significantly lower scale compared to agent 2’s feature map. This discrepancy leads
to instability in feature fusion. Post-CFA, the features are aligned to the same domain, resulting in
more coherent fusion and accurate inference outputs.
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Figure A4: Visualization of feature maps and inference results before and after Collaborative Feature
Alignment (CFA) in a three-agent scene. A; — A; denotes the feature map aligned from agent ¢’s
domain to agent j’s domain, also represented as ;.
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Figure A5: Visualization of feature maps and inference results before and after Collaborative Feature
Alignment (CFA) in a four-agent scene. A; — A; denotes the feature map aligned from agent i’s
domain to agent j’s domain, also represented as Fj;.



	Introduction
	Related Works
	Multi-agent Collaborative Perception
	Heterogeneous Collaborative Perception

	Methodology
	Preliminaries: Intermediate Collaborative Perception
	Framework Overview
	Collaborative Feature Alignment
	Adapter and Reverter Architecture

	Experiments
	Experimental Setup
	Heterogeneous Collaborative Perception For 3D Object Detection
	Model- and Task-agnostic Fusion
	Ablation Studies
	Visualization

	Conclusion
	Appendix
	Implementation Details
	Architectural Comparison between Existing Frameworks
	Additional Experiments
	Different Protocol Models
	Adversarial Robustness Evaluation
	More Comparison with the State-of-the-art methods

	Multi-group and Multi-model Collaborations System
	More Visualization Results


