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Abstract

Optimal Transport (OT) is a widely used and powerful approach in domain adaptation.
While effective, most existing methods rely on the pairwise squared Euclidean distances for
the transportation cost, implicitly assuming a Euclidean space. In this paper, we challenge
this assumption by introducing Geometric Optimal Transport (GOT), a new transport cost
designed for domain adaptation under the manifold assumption. By utilizing concepts and
tools from the field of manifold learning, specifically diffusion geometry, we derive an op-
erator that accounts for the intra-domain geometries, extending beyond the conventional
inter-domain distances. This operator, which quantifies the probability of transporting be-
tween source and target samples, forms the basis for our cost. We demonstrate how the
proposed cost, defined by an anisotropic diffusion process, naturally aligns with the desired
properties for domain adaptation. To further enhance performance, we integrate source la-
bels into the operator, thereby guiding the anisotropic diffusion according to the classes. We
showcase the effectiveness of GOT through comprehensive experiments, demonstrating its
superior performance compared to recent methods across various benchmarks and datasets.

1 Introduction

Unsupervised Domain Adaptation (UDA) is an extensively studied field within machine learning. In UDA,
given labeled data from a domain denoted as the source domain, we aim to train a model that will generalize
well to unlabeled data from a different domain denoted as the target domain. Optimal Transport (OT)
stands out as a key method for addressing the UDA problem. The essence of OT lies in finding the most
efficient way to transport from one distribution to another while minimizing a transportation cost. It offers
a robust approach to measuring the similarity between probability density functions and facilitating an
optimal mapping between them. This capability makes it well-suited for UDA tasks, where there is a need
for distribution alignment.

An established approach to utilizing OT for UDA is the Optimal Transport for Domain Adaptation (OTDA)
framework (Courty et al., |2016), which directly employs the transport plan to map source samples to the
target domain via barycentric mapping. While OTDA has proven effective in addressing the UDA task, the
OT solution may not always yield the optimal mapping for maximizing target accuracy. To improve accuracy,
a common practice is to add a regularization term into the OT problem formulation (Courty et al.l [2014;
2016; [Flamary et al., [2014]). Alternatively, in recent years, the OT problem has been incorporated into deep
learning models. One notable method, termed DeepJDOT (Damodaran et al.| 2018), uses the OT problem
to address the discrepancy between source and target distributions, subsequently leveraging the obtained
transportation plan to train a feature extractor implemented through a deep model. Following DeepJDOT,
numerous studies have proposed OT-based deep models, aimed at improving target accuracy in the UDA
task. Some have suggested different OT formulations to be used within the DeepJDOT framework (Fatras
et al) 2021; [Nguyen et al., |2022a)), while others have introduced entirely new architectures and objective
functions (Chen et al., 2018} [Lee et al., |2019; [Balaji et al., 2020). While research on utilizing OT for DA
tasks is extensive and constantly evolving, one aspect that remains relatively unexplored is the selection of
the transportation cost function. The transportation cost can take the form of any dissimilarity measure
between samples in the source and target domains. Nevertheless, the predominant choice tends to be a
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distance function, with the most common choice being the squared Euclidean distance, computed between
source and target samples. Only a small number of papers have suggested using a cost function diverging
from the typical Euclidean distance measure (Tai et al., [2021; Nguyen et al., |2022b; [Duque et al., |2023).
Notably, this exploration of the transportation cost function is even rarer in the DA context, with only a few
studies proposing alternative approaches, such as employing a weighted Euclidean distance as the transport
cost (Li et al.l [2020; Xu et al., [2020).

In this paper, we depart from reliance on distance functions as the transportation cost, and instead, focus
on the probability of transportation from source samples to target samples. To achieve this, we introduce
Geometric Optimal Transport (GOT), a new transportation cost based on an operator composed of three
diffusion operators. The construction of the operator uses concepts and tools from the field of manifold
learning, specifically, diffusion geometry (Coifman & Lafon, 2006). Initially, we construct a graph solely
from the source samples, where each node represents a sample in the source data. From this graph, we
build the first diffusion operator, which aims at preserving the local geometry of the source domain. When
source labels are available, they are utilized to further guide the diffusion process, ensuring that each source
sample can only diffuse (transport) to other samples within the same label category. Subsequently, we build
a bipartite graph incorporating both source and target samples to capture the inter-domain relationships.
We construct the second operator from this graph, which facilitates cross-domain diffusion. For the third
diffusion operator, we construct a graph exclusively from target samples, aimed at capturing intra-domain
similarities within the target domain. Taking the product of the three aforementioned operators forms the
composite operator underlying GOT. We analyze the asymptotic behavior of this operator, demonstrating
that the cost function is defined by an anisotropic diffusion process between the source and target domains.
Our analysis underscores that this process is primarily influenced by the intrinsic geometry of the domains
and their discrepancy.

Our main contribution. We introduce a new transportation cost, termed GOT, which is based on a
composite diffusion operator consisting of three diffusion steps: (i) in the source domain, (ii) across domains,
and (iii) in the target domain. This framework enables the learning of the geometries and relationships
both between and within the two domains, distinguishing it from conventional approaches by considering
both inter-domain distances and intra-domain structures. By incorporating source label information into
our cost, we eliminate the need for regularization terms. Furthermore, the proposed cost is straightforward
to compute and is derived directly from the data, in contrast to competing cost functions that necessitate
learning the cost and are thus limited to specific frameworks. These features make GOT applicable to any
OT problem formulation and ensure compatibility with most OT-based methods, with the experiments in the
paper illustrating only a fraction of its broader potential. Our experiments demonstrate GOT’s effectiveness
compared to competing approaches. Specifically, when integrated into a deep domain adaptation framework,
GOT achieves superior performance on benchmark datasets over the baseline and other OT-based methods.
Additionally, we evaluate our cost on Motor Imagery (MI) benchmarks, showcasing its applicability to non-
Euclidean data.

2 Related work

UDA is a subfield of machine learning that addresses the challenges of domain shifts and generalization,
where a model trained on data from a source domain performs poorly when applied to a target domain with
a different data distribution. Various methods and metrics have been proposed to align the distributions
of source and target domains, including Maximum Mean Discrepancy (MMD) (Gretton et al., 2012; |Pan
et al., 2010), Correlation Alignment (CORAL) (Sun et al., 2017)), and Domain Adversarial Neural Networks
(DANN) (Ganin et al.| [2016)), to mention just a few.

The Optimal Transport for Domain Adaptation (OTDA) framework was introduced by |Courty et al.| (2016).
In addition to the general framework, the authors propose the integration of several regularization terms to
improve performance, including a class-based regularization term (Courty et al.l |2014)) that utilizes source
label information. By employing specific parameter configurations, the optimization problem can be effec-
tively addressed using the Sinkhorn algorithm (Cuturi, 2013]). The authors also proposed applying graph
regularization on the transported samples (Flamary et all|2014). While this regularization, termed Laplace
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regularization, considers neighborhood information, it is limited to Euclidean geometry. Furthermore, their
optimization problem is quadratic, rendering it unsolvable by efficient algorithms and resulting in high com-
putational complexity. A notable work is the JDOT framework introduced in |Courty et al. (2017), which
presents an optimization problem designed to simultaneously optimize both the transportation plan and the
classifier. Building upon this concept, the DeepJDOT framework (Damodaran et al., [2018]) further extends
the idea by leveraging deep learning algorithms. This approach addresses two significant drawbacks in the
OTDA framework. Firstly, handling large datasets becomes infeasible with OTDA due to the quadratic
increase in complexity with the number of samples n, and the fact that it involves computations with n x n
matrices. Conversely, DeepJDOT can train deep models using mini-batches, making it suitable for large
datasets. Secondly, OTDA predominantly employs the squared Euclidean distance as the transportation
cost, and, as a result, it often performs poorly on non-Euclidean datasets. In contrast, although the DeepJ-
DOT framework also uses the squared Euclidean distance as the cost, it operates in a latent space learned
by a deep model, potentially enabling superior performance on non-Euclidean data. In [Fatras et al.| (2021)),
the authors proposed enhancing the DeepJDOT framework by employing Unbalanced Optimal Transport
(UOT), yielding improved results. A related work by Nguyen et al.| (2022al) suggested solving it using Partial
Optimal Transport (POT) and presented a two-stage implementation for the DeepJDOT framework, further
enhancing target accuracy, particularly when coupled with the POT formulation. The OT problem was later
incorporated into various deep learning and adversarial training frameworks (Chen et al., [2018; [Lee et al.
2019; Xie et al., |2019; Balaji et al., 2020), all relying on the squared Euclidean distance as the ground cost.

Few papers in the literature have proposed alternative cost functions diverging from the standard distance
metric. For instance, [Tai et al|(2021)) introduced an innovative approach termed SLA, which utilizes the OT
formulation as a novel label assignment method. In this approach, each element (i, k) in the transportation
cost matrix is associated with the probability that sample i belongs to class k. |Gu et al.| (2022) introduced a
semi-supervised cost for Heterogeneous DA, which assumes access to a set of source-target pairs referred to
as keypoints. Using these keypoints, the authors propose to compute a relation score for all source and target
samples, which is subsequently used to construct the cost matrix. A related semi-supervised approach is
presented inDuque et al.| (2023)) for manifold alignment. This method similarly relies on prior correspondence
knowledge between some source and target samples to align the domains. It constructs intra-domain diffusion
operators for each domain and combines them by multiplying the operators. The known correspondences
are used to select the relevant rows, resulting in a joint diffusion operator. The final cost matrix is computed
using the cosine distance between rows of the joint and intra-domain diffusion operators. While diffusion
plays a central role in shaping the alignment, the approach is semi-supervised and does not incorporate
inter-domain distances. Furthermore, the resulting cost lacks a probabilistic interpretation. [Asadulaev et al.
(2022)) proposed a neural network-based framework for learning task-specific semi-supervised cost functions.
Although the Gromov-Wasserstein distance typically leverages only intra-domain relationships, several works
have explored approaches that integrate both intra- and inter-domain information, albeit not in the context
of a transportation cost or specifically for DA. These methods are worth noting, as they share conceptual
similarities with our approach in incorporating structural information from both domains. For example, [Yan
et al.|(2018) introduced a semi-supervised DA method that adds a regularization term to the optimization
problem. This term incorporates cross-domain distances, computed in the target domain after transportation,
and relies on target labels. Alternatively, Xu et al.| (2019) presented a graph-matching method that learns an
embedding space for the nodes, enabling the computation of inter-domain relationships, which are included
in the optimization via an additional term.

In the context of UDA, |Li et al.| (2020) introduced ETD, which utilizes a weighted Euclidean distance for the
cost function. They proposed leveraging an attention mechanism to learn the correlation between source and
target samples, subsequently using this correlation as the weights in their proposed transportation cost. The
OT distance is then employed in the training objective, serving as a quantification of the domain discrepancy.
The work in Xu et al.| (2020) also proposed using a weighted Euclidean distance as the transportation cost.
In that method, termed RWOT, the element (i, k) in the weight matrix quantifies the probability that the
i-th sample belongs to class k. This probability is dynamically computed based on both spatial prototypical
information and the pseudo-classification probability of target samples. Both methods have fundamental
drawbacks compared to our proposed approach. First, ETD and RWOT rely on learned weights, limiting
their applicability to specific deep learning frameworks, while GOT is derived directly from the data. Second,
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the costs in ETD and RWOT, including the learned weights, consider only the inter-domain relationships
and source label information, whereas our cost also incorporates intra-domain relationships for both source
and target domains.

By integrating principles from diffusion maps (Coifman & Lafon) [2006), our approach incorporates intra-
domain relationships and aims to reflect the underlying geometric structure of the data in the proposed
cost. Diffusion maps, originally a dimensionality reduction technique, provide a method to analyze and
visualize high-dimensional data. The core concept involves constructing a transition kernel, where transition
probabilities are defined by the local similarities between data samples. Diffusion geometry has been widely
applied in various fields, including data analysis (Coifman & Lafon, 2006), computer vision (Bronstein et al.,
2010; Liu et al., |2012), and medical imaging (Haghverdi et al., 2015 [Zheludev et al.| |2015), among others.
For further background on diffusion geometry, see Appendix [A]

3 Optimal Transport for Domain Adaptation

We formulate the problem we consider and briefly describe the OTDA framework proposed in [Courty et al.
(2016)).

Problem formulation. Let X be an input space and ) be a label space. We define a domain as a
distribution D over the input space X. Consider N, samples {z§ € X} Y+, drawn i.i.d from a source domain
D,, associated with labels {y# € Y} and N; unlabeled samples {a} € X};-V:tl, drawn i.i.d from a target
domain D;. In UDA, the goal is to enable a predictive model f, trained on labeled source samples, to
generalize well to target samples. There are two dominant approaches for UDA. In the first approach, a
mapping function g : X — X is learned to align the source domain to the target domain, e.g., by minimizing
the divergence between them. A predictive model f is then trained using the mapped source samples,
denoted by z; = g(xF). In the second approach, we learn an embedding function g : X — Z that maps both
domains to a latent space Z of domain-invariant features. Thus, a predictive model f : Z — Y, trained using
the source embeddings {25 = g(z)} Y+, with labels {y{}~* will generalize well on the target embeddings
(= = g(ah)}).

OTDA framework. We start by outlining the discrete OT formulation, which is consistently employed
throughout this paper. For any source sample z; and target sample x} let c(z? ,acg) denote the cost to
move a probability mass from z] to CC;-, which is typically chosen to be the squared Euclidean distance. Let
C € RM=*Nt he the cost matrix, with elements C;; = c(z5, xé) The discrete OT formulation is given by:

V" =arg min<’7> C>Fa (1)
yel’

where I' = {’y ERNNe |yl y, =a,7yT1y, = b} denotes the set of transport plans that satisfy conservation
of mass, a € RNs and b € RY* are the empirical distributions of the source and target samples, respectively,
and (-, -, ) denotes the standard Frobenius inner product.

This optimization problem has been studied for many years and addressed through various algorithms. To
date, one of the most commonly employed algorithms is the efficient Sinkhorn algorithm (Cuturi, [2013)),
which incorporates entropy regularization into the objective function. This leads to the following modified
problem that can be solved iteratively using linear projections, offering reduced complexity:

~v* = argmin(vy, C) g + AQs(7), (2)
yer

where Q4(v) = 3, ; (i, j) log¥(4, j) is the negative entropy of 7, and A is a hyperparameter.

The OT problem can be utilized for UDA in both of the aforementioned approaches. Recent deep learning-
based methods, such as Damodaran et al.| (2018]); [Chen et al.| (2018); [Lee et al.|(2019)), incorporate OT into
the loss function to learn domain-invariant representations, thereby following the second approach for UDA.
In contrast, the OTDA framework follows the first approach, where, after solving the OT problem, source
samples are transported to the target domain using the obtained transport plan. The transportation of any
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source sample xf is given by the barycentric mapping (Courty et al., [2016; [Perrot et al.l [2016)), defined by:

Ny
— : t
z) = arg min g 1 Ve, ). (3)
J:

4 Geometric Optimal Transport

In this work, we present GOT, a new cost function for the OT problem, designed specifically for the UDA
setting described in Section [3] Our premise is the manifold assumption, a widely accepted principle in
modern high-dimensional data analysis that has given rise to an extensive body of work termed manifold
learning (Roweis & Saul, [2000; [Tenenbaum et al., |2000; Belkin & Niyogi), 2003; |Coifman & Lafon| [2006)). In
the UDA setting, it implies that both domains are supported on the same hidden manifold M embedded
in X. When the squared Euclidean distance is used as the transport cost, whether explicitly stated or not,
it is assumed that the source and target domains are embedded in R?. The manifold assumption extends
this concept, allowing for the possibility that the samples may not lie within a Euclidean space. Building
on this foundation, we propose defining the OT cost matrix C based on a diffusion operator, composed of
three diffusion steps. Notably, the construction of this operator stems from diffusion geometry (Coifman &
Lafon| 2006)), which is a prevalent manifold learning approach (see Appendix [A]for details).

Initially, we build an operator solely from the source samples, aimed at capturing the local geometry within
the source domain. We construct a graph G with N, nodes, where each node represents a source sample.
Assuming that the hidden manifold M is locally Euclidean, we use the Euclidean distance to build the
affinity matrix of the graph, K, € RVs*¥s with a Gaussian kernel:

s _ ps|2
K.,(i, j) = exp (—M> , (4)

€s

where €; > 0 is a scale hyperparameter. Subsequently, we obtain the source diffusion operator, denoted by
P, € RV=*N: by normalizing the affinity matrix K, to be row-stochastic, i.e., ensuring that the sum of each
row equals 1. Following this standard normalization (Coifman & Lafon! [2006), the rows of P represent the
transition probabilities of a diffusion process on M defined at the source samples {If}f\;1

In the second diffusion step, we apply a cross-domain diffusion, which captures the inter-domain relationships
by incorporating both the source and target samples. To this end, we define a bipartite graph G. with a
vertex set V. = {vf,... 7vas,v§, ... 71}§\,t} that represents the N source samples and N; target samples. In
this graph, each node v has edges only to target nodes, and each node v;- has edges only to source nodes.
Consequently, the graph adjacency matrix consists of two off-diagonal blocks. For our purpose, we utilize
only the N; x N, top-right block of the matrix. The weight of the edge between source node v; and target

node v! is given by:
xf — 2t
Kc(%]) = €xXp ( H ‘ J”Q ’ (5)

€c

where €. > 0 is a scale hyperparameter. We normalize this kernel matrix to be row-stochastic, and denote
the resulting cross-domain diffusion operator by Q € RNs*Nt,

In the third and last diffusion step, designed to capture intra-domain similarities within the target domain,
we construct the graph G; exclusively from target samples. This graph comprises IV; nodes, representing
the target samples, and an affinity matrix K; € RV*N¢ constructed using a Gaussian kernel with scale ¢;
similarly to Equation 4] After normalizing K; to be row-stochastic, we obtain the target diffusion operator,
denoted by P, € RNtxNe,

The final operator S, which serves as the basis for the transport cost, is defined by:
S =P.QP.. (6)

By construction, S(i, j) is the probability of transporting from source sample x{ to target sample x§ through
local neighborhoods. Specifically, S(4, j) encapsulates the probability of (i) diffusing from source sample x}
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(a) Step #1 (b) Step #2 (c) Step #3

Figure 1: Illustration of the diffusion process for computing S;;, the transition probability from the source
i-th sample to the target j-th sample. Source samples are represented by circles, target samples by triangles,
and the source markers are color-coded by labels. (a) Transition from xf to nearby source samples of the
same class. (b) Transition from those source samples to the 3 nearest neighbors of z%. (c) Transition from
the target neighbors to x§ The final probability S;; aggregates all paths from z7 to xé

to its source neighbors, (ii) diffusing from these source neighbors to target samples that are neighbors of sr:z-,
and finally (iii) diffusing from these target neighbors to x§ An illustration of this triple diffusion process is
presented in Figure [[] The intra-domain graphs use local neighborhoods, defined based on class labels for
G, and nearest neighbors for G; (details in Section .

As a final step, we apply a negative element-wise logarithm to the diffusion probabilities to translate the
notion of similarity into a notion of cost, aligning with the requirements of the OT problem. Thus, the
proposed transportation cost matrix, referred to as GOT, is defined by: C = —log(S).

The computational complexity of GOT is O(n?); see Appendix for details.

4.1 Theoretical results

While competing methods typically do not include theoretical insights, our approach is driven by the following
theoretical basis. Specifically, we prove that the proposed operator S is a diffusion operator and analyze
its asymptotic behavior, showing how it aligns with the desired properties. This analysis provides a deeper
understanding of the motivation behind our method. Building on this, we now transition to examining the
diffusion operator in a continuous setting.

Consider infinite source and target datasets, sampled i.i.d from the probability distributions u and v, respec-
tively, defined over the continuous manifold M. Consider a Gaussian kernel k. (x,y) with a scale parameter .
In analogy to the row-stochastic normalization in the discrete case, we define the continuous source diffusion
operator Ps . by:

P f(y) = / Pee(@, ) f (@) () de

_ [ k) z)p(z)dx
- / T @t (7)

where p; ((x,y) is the normalized kernel, and ds (z) = [ ke(2,y)p(y)dy.

Similarly, we define the continuous target diffusion operator P; ., which operates on the target domain,

by employing Equation [7| with respect to v and with the normalized kernel p; (x,y) = %w(’g)), where
dt,e(m) = fke(x,y)l/(y)dy
The cross-domain diffusion operator is defined by:
ke(,y)
. = z)u(x)de. 8
Qs = [ S5 @t 0
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Note that in this analysis, without loss of generality, we use the same kernel k.(z,y) for all three operators.

In the discrete case, applying the diffusion operator defined in Equation [f] to the source samples necessitates
using the transpose of S. Thus, in the continuous case, the diffusion operator S, defined as the composition
of the three operators Ps ., Q., and P, ¢, can be expressed as Scf(z) = P, ¢QcPs.c f(x).

Proposition 4.1. Suppose f € C*(M), and suppose j,v € CH(M) denote the probability measures of the
source and target domains, respectively, where p is dominated by v. For sufficiently small €, the asymptotic
expansion of operator Se is given by:

Sef(@) = L) [f—:ze[Z%Af—s—Q(fA,(;)+2VfV1og<5)> ()

where A,V are the Laplace—Beltrami operator and the covariant derivative on M, respectively, and mgy, mo
are two constants defined by the Gaussian kernel and by the manifold M.

The proof appears in Appendix

We remark that if u(x) = v(x) for all z € M, indicating no domain shift, the asymptotic expansion is given
by:

S.fe) = Jl) e <3Af - 3fff) (2) + O(&), (10)

coinciding with the asymptotic expansion of a diffusion operator on M with distribution p (Coifman &
Lafon| |2006), applied three times.

The expression derived in Proposition suggests that GOT inherently considers both the domain shift
and the intra-domain relationships of the source and target domains. In particular, the result implies that
the proposed diffusion operator leads to an anisotropic diffusion process on the manifold M, influenced by
the manifold geometry (conveyed by the differential operators A and V w.r.t. the manifold), the source and
target domains (captured by the terms within the second set of round parentheses), and the discrepancy
between them (captured by the term within the first set of round parentheses, involving both the first- and
second-order derivatives of £). We illustrate the induced anisotropic diffusion process with a 2D toy example

outlined in Appendix

In OT, the goal is to find a transport plan that minimizes the total cost of moving mass between distributions.
In our approach, this cost is obtained by applying a negative logarithm to the diffusion operator S. Viewing
the expression derived in Proposition [I.1]from this perspective highlights the advantages of using the operator
as the basis for our transport cost, particularly in the context of domain adaptation.

When solving the transportation problem, samples that minimize the cost are favored — that is, they are
assigned more mass in the transport plan. More specifically, by maximizing the term (% + 2%) (z)
(or assigning more weight to samples for which this term is large), we focus on regions with non-uniform
density, where the source and target densities change rapidly. These regions tend to be sparser (where p
is small). More importantly, they often correspond to key geometric structures in the data (where Ay is
large). In the context of transport, this focus provides an additional advantage: samples in such regions
carry richer structural information and are less ambiguous, whereas samples in uniform-density areas tend
to lack distinctive local features, making them harder to match.

A natural question arises: what happens at locations where 2£ is high while % is low, or vice versa?

In other words, how do we avoid assigning high weight to regions where, for example, the source has low

ﬁ
density while the target has high density? This is where the term %”) +2VfViog (%) becomes important.

Minimizing this expression encourages transport between regions where the ratio £ varies smoothly. In such
cases, high-density regions in the source are aligned with high-density regions in the target, and likewise
for low-density regions. This prevents density inversion, where a dense source region is mapped to a sparse
target region — a mismatch that would distort the local geometry.
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Algorithm 1 GOT

Input: {((z7, yvs)}f\[:glv {xé}jv:th €s; €c, €t
1: Compute the intra-domain kernel of the source, K, using Equation and supervised neighborhood
information.
2: Compute the intra-domain kernel of the target, K, using Equation [[I] with a three nearest neighbors
neighborhood.
Compute the cross-domain kernel K, according to equation [}
Compute the row-stochastic probability matrices, P, Py, and Q.
Compute the diffusion matrix S according to Equation [6]
Apply element-wise negative logarithm C = — log(S).
Return the cost matrix C.

4.2 Enhanced intra-domain kernels

In UDA, we assume access to labeled source samples. To leverage this information, we incorporate source
labels into the proposed cost, guiding the diffusion based on the class labels. Specifically, rather than using
fully connected graphs for the intra-domain kernels, as in Equation [d] we adopt the widely used approach of
integrating neighborhood information into the Gaussian kernel. The resulting intra-domain kernel:

_Hﬁb‘i—i‘ng 3 X
K(z’,k;):{eXp( =) ifheN: (11)

0 otherwise

where A; is defined as the set of all indices {k} such that the sample zy is within the neighborhood of ;.

For the source operator P, where labels are available, we define the neighborhood as N; = {k | y; = vy}, en-
suring that each source sample x diffuses only to other source samples within the same class. This approach
stands in contrast to other methods that propose incorporating source labels by adding a regularization
term to the problem formulation. Such regularization terms often impose constraints on the OT solver or
the learned geometry, potentially restricting the method’s adaptability and performance.

For the target operator Py, or in scenarios where labels are unavailable in a specific DA setup, we define the
neighborhood N; as the three nearest neighbors of x;. This allows leveraging local structure effectively, even
in the absence of label information.

The proposed method is summarized in Algorithm

5 Experiments

In this section, we provide a visual comparison of GOT with competing methods using a toy example (Section
. Additionally, we present experiments on deep domain adaptation tasks (Section and non-Euclidean
dataset adaptation (Section , comparing the performance of GOT against the leading methods. For all
experiments, we employed the label-enhanced kernel for the source diffusion operator (Section . For all
three diffusion operators Py, Q, Py, before computing the Gaussian kernels, we conducted median normal-
ization on the distance matrix. After computing the kernels, we performed doubly-stochastic normalization
on the square matrices P and P; using the Sinkhorn algorithm, as suggested in [Landa et al.| (2021)). The
matrix Q, which may not necessarily be square, was normalized to be row-stochastic. Unless specified oth-
erwise, we employed the Sinkhorn algorithm (Cuturi, 2013) to solve the OT problem, utilizing the publicly
available POT package (Flamary et al.| 2021)). All the experiments were conducted on Nvidia DGX A100.
The source code is available herdll

IThe code will be made available on Github upon acceptance.
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Figure 2: Two moons illustration for a 40° rotation angle. Source samples are marked with circles, target
samples with triangles, and the colors of the markers indicate the labels. Each line represents an entry (i, 7)
in the transportation plan, where the line color corresponds to the label of the source sample z7, and the
line intensity reflects the values in the plan. (Best viewed in colors).

5.1 Two Moons: Visual lllustration

We utilize the toy example presented in [Courty et al. (2016), which involves two entangled moons as the
source domain, each representing a different class. The target domain is independently sampled from a
rotated version of the source distribution. As the rotation angle increases, the problem becomes more
challenging. Further details are provided in Appendix [C.1]

We employ GOT with the entropy-regularized OT problem , as presented in Equation
to derive the transport plan. The baseline method, OT, uses this formulation with the standard cost.
Additionally, due to the limited number of methods proposing alternative transport costs — particularly
those that integrate source label information and can be applied in non-deep frameworks — we include two
regularization approaches: OT-reg (Courty et al., 2016; [2014)), which incorporates source labels, and OT-
Laplace (Courty et al., [2016} Flamary et al.,|2014), which uses a Laplace regularization term to preserve data
structure. We emphasize that all three methods use the squared Euclidean distance as the transportation
cost. Table[din Appendix [C.] summarizes the key differences between the methods.

In Figure[2] we visualize the obtained plans for a 40° rotation angle, and focus on one target sample, marked
by a bold black triangle. For clarity, we plot lines from this sample to the ten source samples with the highest
values in the corresponding column of the plan. In Figure we observe that GOT successfully achieves
the optimal transportation plan, with all source samples contributing mass to the red-labeled target sample
associated with the red class. In OT (Figure , since the cost is based solely on the pairwise Euclidean
distances, the mass is coming from the closest source samples, most of which belong to the wrong class. In
OT-reg (Figure , the regularization term encourages a solution where each target sample receives mass
only from source samples of the same class. In this case, it results in the most undesirable plan, where
all source samples are from the opposite class. In OT-Laplace (Figure , the regularization aims to keep
nearby samples close after transportation. However, the encoded neighborhood information is insufficient to
correct the Euclidean cost, and the plan mirrors the behavior of the standard OT. We note that the plan is
sparser as the method does not include entropy regularization.

This scenario highlights GOT’s effectiveness in handling challenging mappings. GOT leverages source labels
not as strict constraints, as OT-reg, but to guide the diffusion process in the source domain, while still
accounting for the local geometry of the data. Additionally, it shows that by taking into account intra-domain
relationships, rather than relying on pairwise Euclidean distances, the chosen sample can receive mass from
source samples that are remote in Euclidean terms, as the diffusion distance is effectively incorporated.
Indeed, we see that GOT successfully connects the chosen target sample to the correct, more distant source
samples, which no other method considered. We provide further visual analysis and numerical comparison

in Appendix [C1]
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Table 1: Target domain accuracy. Results on (a) the Digits dataset, and (b) the VisDA dataset.

(a) (b)

Method ~ SVHN-MNIST USPS-MNIST MNIST-USPS Avg Method Accuracy
DANN 95.80 &+ 0.29 94.71 + 0.12 91.63 + 0.53 94.05

ALDA 98.81 + 0.08 9829 + 0.07 95.29 + 0.16 * 97.46 DANN 67.63 + 0.34
ETD 97.9 + 0.4 96.3 + 0.1 96.4 + 0.3  96.9 ALDA 71.22 £ 0.12
RWOT 988 + 0.1 975+ 02  98.5+ 0.2 983 DeepJDOT  69.58 + 0.34
DeepJDOT  96.04 + 0.66 97.22 + 0.23  86.12 + 0.60 93.13 JUMBOT  72.97 + 0.26
JUMBOT  98.99 + 0.06 98.68 + 0.08 96.93 + 0.42 98.20

m-POT 98.98 + 0.08 98.63 + 0.13 96.04 + 0.02 97.88 TS-POT  75.65 £ 0.78
Ours 99.19 + 0.04 98.87 + 0.03 97.81 + 0.30 98.62 Ours 78.56 + 0.15

5.2 Deep Domain Adaptation

In the following experiments, we incorporate GOT into the DeepJDOT framework, proposed by |Damodaran
et al.| (2018). We apply our method to three benchmark domain adaptation datasets: Digits, Office-Home,
and VisDA. One of the key advantages of our method is its adaptability to any OT formulation. To demon-
strate this flexibility, we employ different formulations for each dataset, as detailed below, resulting in a
different baseline method across datasets. We compare our method to the DeepJDOT framework with the
standard cost (DeepJDOT, JUMBOT, and m-POT), OT-based methods with alternative costs (ETD and
RWOT), and DA baselines (DANN and ALDA). Further details can be found in Appendix [C.2}

Results. Table presents the results for the Digits datasets. Details regarding the model architecture
and parameters for each method are available in Appendix For the digits dataset, we follow [Fatras
et al.| (2021)) and use the UOT formulation to obtain the transportation plan, making JUMBOT the baseline
method. The table displays the mean and standard deviation of the target test set over three runs. Results
for each individual run can be found in Table [6] in Appendix [C.2.1] The highest accuracy is indicated in
bold, while the second highest is underlined. Our method achieves the highest accuracy for SVHN—MNIST
and USPS—MNIST. Additionally, it attains the second highest accuracy for MNIST—USPS, followed by
RWOT. We acknowledge that this dataset is considered an easy DA task, and it appears that the generator
learns features that are well separated by the classes, even when using the standard cost. Therefore, the
obtained minor improvement is expected.

Table[2] shows the results for the Office-Home dataset. In this experiment, we again incorporate the proposed
cost into the UOT problem formulation to derive the optimal plan. Here, DeepJDOT and JUMBOT were
reproduced using the original DeepJDOT framework, while TS-POT was reproduced using a two-stage (TS)
implementation, as proposed in the original paper (Nguyen et al. [2022a). The results are averaged over
three runs, with full details, including the parameters used for each method, provided in Appendix [C.2.2]
Table [2] summarizes the target test accuracy for each scenario of the Office-Home dataset. Remarkably, the
proposed method achieves the highest average accuracy across the 12 scenarios and outperforms the tested
existing methods in 10 out of the 12 scenarios. Specifically, it surpasses the baseline JUMBOT, which was
implemented using the UOT formulation with the standard cost, by more than 2%.

Table[ID] presents the mean and standard deviation over three runs for the VisDA dataset. In this experiment,
we integrate GOT into the POT problem formulation, using the T'S implementation proposed by |[Nguyen et al.
(2022a)). Consequently, TS-POT serves as the baseline. DeepJDOT and JUMBOT were reproduced using
the original DeepJDOT framework, while TS-POT was reproduced using the TS implementation. Additional
details regarding the T'S implementation and the parameters used for each method are available in Appendix
[C:233] We observe that employing the TS implementation with the POT formulation is highly effective for
this dataset, as TS-POT obtained significantly higher accuracy than the other competing methods. Notably,
incorporating GOT into this framework further enhances performance, increasing accuracy by nearly 3% on
average. In Figure [6] in Appendix we analyze the t-SNE representation of the VisDA target features
obtained from the deep model trained with GOT, comparing them to those learned using the baseline
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Table 2: Target domain accuracy on the Office-Home dataset (ResNet-50).

Method A-C AP AR CA CP CR PA PC PR RA RC R-P Avg
ResNet-50 349 500 580 374 419 46.2 385 312 604 539 412 599 46.13
DANN 479 671 749 538 635 664 53.0 444 744 655 53.0 794 6193
ALDA 54.0 749 7T7.1 614 706 728 60.3 51.0 76.7 679 559 819 67.04
ETD 51.3 719 85.7 576 69.2 737 578 512 793 702 575 821 67.29
RWOT 55.2 725 780 63.5 725 751 602 485 789 69.8 548 825 67.63

DeepJDOT 520 709 76.1 60.5 666 69.2 584 487 753 689 549 799 65.12
JUMBOT 55.7 750 80.7 651 745 751 653 533 796 745 593 839 70.17
TS-POT 57.4 771 816 683 728 765 674 551 80.6 754 599 840 71.36
Ours 572 78.0 82.1 70.2 74.9 78.8 68.1 56.5 82.0 75.6 60.9 84.8 72.43

method, TS-POT. In Table [0 of Appendix[C.2.3] we present the accuracy achieved by integrating GOT into
a framework with a vision transformer (ViT) backbone, in comparison to state-of-the-art (SOTA) methods
utilizing similar architectures.

5.3 Domain Adaptation for non-Euclidean Data

In this section, we depart from employing OT to learn domain-invariant features and instead directly utilize
the optimal plan to transport source features into the target domain. We evaluate the proposed method on
electroencephalogram (EEG) data, addressing both binary and multi-class classification tasks. Specifically,
we apply our approach to two Motor Imagery (MI) benchmarks from the BCI Competition IV. The first
dataset, dataset I from |Blankertz et al. (2007), is referred to as MI1, and the second dataset, Ila from
Tangermann et al. (2012), is referred to as MI2. We follow the methodologies of [Barachant et al.| (2011}
2013)); [Zanini et al.| (2017); Rodrigues et al.| (2018); [Yair et al.| (2019)), and solve the DA problem on the (non-
Euclidean) Riemannian manifold of Symmetric Positive Definite (SPD) matrices. For all experiments in this
section, we utilize the entropy-regularized problem formulation (Cuturil |2013)), referring to our methods as
GOT. The baseline method, which uses this formulation with the standard transport cost, is labeled as OT
in the tables. Additionally, we include a comparison with OT-reg (Courty et al.,|2016; 2014)), a regularization
approach that incorporates source labels into the problem formulation, which we consider as a secondary
baseline. For detailed information on the framework, datasets, pre-processing, and parameters, please refer

to Appendix [C.3]

Results. To facilitate a meaningful comparison with leading methods, which are limited to two-class scenar-
ios, we initially evaluate our proposed method on a binary classification task. In Appendix[C.3.2] we present
multi-class classification experiments compared against baseline methods. For the evaluation, we utilize both
BCI datasets; specifically, for the MI2 dataset, we select the left hand (class 1) and the right hand (class 2) as
the two classes of interest. Our method is benchmarked against baseline algorithms commonly employed in
BCI classification, namely CSP-LDA (Grosse-Wentrup & Buss| 2008)), RA-MDRM (Zanini et al., 2017, and
EA-CSP-LDA (He & Wu, [2019). Additionally, we compare our approach to two leading methods: MEKT
(Zhang & Wu, 2020) and METL (Cai et al., |2022)). Results for CSP-LDA, RA-MDRM, EA-CSP-LDA, and
METL are taken from the tables in |Cai et al.| (2022), while results for MEKT are sourced from the original
paper (Zhang & Wu, [2020).

Table [3a] presents the results for the cross-subject task. In this experiment, each subject, in turn, serves
as the target domain, with the remaining subjects alternately acting as the source domain. Accuracy is
computed by training a linear SVM classifier on the transformed source mappings and evaluating it on the
target mappings. The results show the average target accuracy across source subjects, averaged over all
subjects. The proposed method achieved the highest accuracy for both datasets, improving the baselines
OT and OT-reg by 7% and 4%, respectively. Detailed subject-wise results appear in Table [10| and Table
in Appendix along with the experimental parameters.

In Table we present the results for the leave-one-subject-out task, where each subject alternately acts as
the target domain while all others are used as source domains. We employ the multi-source OT-based DA

11



Under review as submission to TMLR

Table 3: Binary classification accuracy on two BCI datasets. Results for (a) the cross-subject task, and (b)
the leave-one-subject-out task.

(a) (b)

Method MI1T M2 Ave Method MII M2  Avg
CSP-LDA 57.23 5870  57.97 CSP-LDA 59.71 6775  63.73
RA-MDRM 64.98  66.60  65.79 RA-MDRM 69.21  70.91  70.06
ﬁ%ﬁ?m gg-gg gggg 2322 EA-CSP-LDA 7979 73.53  76.66

- : ' : MEKT-R 83.42 76.31  79.87
g?TL Z;gé gigg gg";‘ METL 8314 7600 7957
OT-reg 67.17 67.26  67.22 WBT 85.21 = 74.31 7976

framework from Montesuma & Mboula| (2021)), referred to as WBT. The table reports the average target
accuracy, computed by training a linear SVM on all the transported source representations and evaluating on
target samples. Interestingly, the baseline method (WBT with the standard cost) outperformed all competing
methods on dataset MI1. Notably, incorporating GOT resulted in further accuracy improvements, achieving
the highest performance across both datasets. For details on the framework and the experimental parameters,

see Appendix [C:3.1}

6 Conclusions

In this work, we introduce a novel transportation cost for OT in DA that leverages diffusion geometry to
capture both intra-domain structures and inter-domain relationships. By analyzing the asymptotic behavior
of the proposed diffusion operator S, we identified the key factors influencing the anisotropic diffusion process
and demonstrated how it aligns with the goals of DA. Our cost can be integrated into most OT-based methods
and problem formulations, offering a flexible and practical solution. Experimental results show that GOT
consistently outperforms the standard Euclidean cost and other methods across various UDA tasks, datasets,
and frameworks.

Limitations and future work. We acknowledge a fundamental limitation of our method: since it incor-
porates inter-domain relationships, it operates under the assumption that both source and target domains
reside in the same space. While this assumption is common to all DA methods, we believe that GOT has
the potential to be extended to other applications, which we view as directions for future work. In addition,
the GOT cost is not a distance metric, as it lacks symmetry and does not satisfy the triangle inequality.
Consequently, the OT solution does not define a valid distance (unlike the Wasserstein distance computed
using the Euclidean cost). While this limitation did not affect the DA tasks we considered — where only
the transport plan is needed — adapting the cost to satisfy metric properties could greatly expand its util-
ity. Finally, we note that recent SOTA methods for DA, which we did not include in our comparisons, are
based on transformer architectures. While OT-based methods, including ours, may not naturally fit into the
transformer framework, we believe they remain valuable — particularly in scenarios where deep learning is
impractical, or when explicit modeling of geometric relationships is important.

References

Vincent Arsigny, Pierre Fillard, Xavier Pennec, and Nicholas Ayache. Log-euclidean metrics for fast and sim-
ple calculus on diffusion tensors. Magnetic Resonance in Medicine: An Official Journal of the International
Society for Magnetic Resonance in Medicine, 56(2):411-421, 2006.

Arip Asadulaev, Alexander Korotin, Vage Egiazarian, Petr Mokrov, and Evgeny Burnaev. Neural optimal
transport with general cost functionals. arXiv preprint arXiv:2205.15403, 2022.

12



Under review as submission to TMLR

Yogesh Balaji, Rama Chellappa, and Soheil Feizi. Robust optimal transport with applications in generative
modeling and domain adaptation. Advances in Neural Information Processing Systems, 33:12934-12944,
2020.

Alexandre Barachant, Stéphane Bonnet, Marco Congedo, and Christian Jutten. Multiclass brain—computer
interface classification by riemannian geometry. IEEE Transactions on Biomedical Engineering, 59(4):
920-928, 2011.

Alexandre Barachant, Stéphane Bonnet, Marco Congedo, and Christian Jutten. Classification of covariance
matrices using a riemannian-based kernel for bci applications. Neurocomputing, 112:172-178, 2013.

Mikhail Belkin and Partha Niyogi. Laplacian eigenmaps for dimensionality reduction and data representation.
Neural computation, 15(6):1373-1396, 2003.

Benjamin Blankertz, Guido Dornhege, Matthias Krauledat, Klaus-Robert Miiller, and Gabriel Curio. The
non-invasive berlin brain—computer interface: fast acquisition of effective performance in untrained sub-
jects. NeuroImage, 37(2):539-550, 2007.

Alexander M Bronstein, Michael M Bronstein, Ron Kimmel, Mona Mahmoudi, and Guillermo Sapiro. A
gromov-hausdorff framework with diffusion geometry for topologically-robust non-rigid shape matching.
International Journal of Computer Vision, 89(2):266-286, 2010.

Yinhao Cai, Qingshan She, Jiyue Ji, Yuliang Ma, Jianhai Zhang, and Yingchun Zhang. Motor imagery eeg
decoding using manifold embedded transfer learning. Journal of Neuroscience Methods, 370:109489, 2022.

Minghao Chen, Shuai Zhao, Haifeng Liu, and Deng Cai. Adversarial-learned loss for domain adaptation. In
Proceedings of the AAAI conference on artificial intelligence, volume 34, pp. 3521-3528, 2020.

Qingchao Chen, Yang Liu, Zhaowen Wang, lan Wassell, and Kevin Chetty. Re-weighted adversarial adap-
tation network for unsupervised domain adaptation. In Proceedings of the IEEE conference on computer
viston and pattern recognition, pp. 7976-7985, 2018.

Ronald R Coifman and Stéphane Lafon. Diffusion maps. Applied and computational harmonic analysis, 21
(1):5-30, 2006.

Nicolas Courty, Rémi Flamary, and Devis Tuia. Domain adaptation with regularized optimal transport.
In Machine Learning and Knowledge Discovery in Databases: FEuropean Conference, ECML PKDD 2014,
Nancy, France, September 15-19, 201}. Proceedings, Part I 14, pp. 274—289. Springer, 2014.

Nicolas Courty, Rémi Flamary, Devis Tuia, and Alain Rakotomamonjy. Optimal transport for domain
adaptation. IEEE transactions on pattern analysis and machine intelligence, 39(9):1853-1865, 2016.

Nicolas Courty, Rémi Flamary, Amaury Habrard, and Alain Rakotomamonjy. Joint distribution optimal
transportation for domain adaptation. Advances in neural information processing systems, 30, 2017.

Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. Advances in neural
information processing systems, 26, 2013.

Bharath Bhushan Damodaran, Benjamin Kellenberger, Rémi Flamary, Devis Tuia, and Nicolas Courty.
Deepjdot: Deep joint distribution optimal transport for unsupervised domain adaptation. In Proceedings
of the European conference on computer vision (ECCYV), pp. 447-463, 2018.

Antoine de Mathelin, Mounir Atiq, Guillaume Richard, Alejandro de la Concha, Mouad Yachouti, Francois
Deheeger, Mathilde Mougeot, and Nicolas Vayatis. Adapt: Awesome domain adaptation python toolbox.
arXiv preprint arXiv:2107.03049, 2021.

Andrés F Duque, Guy Wolf, and Kevin R Moon. Diffusion transport alignment. In International Symposium
on Intelligent Data Analysis, pp. 116-129. Springer, 2023.

13



Under review as submission to TMLR

Kilian Fatras, Thibault Séjourné, Rémi Flamary, and Nicolas Courty. Unbalanced minibatch optimal trans-
port; applications to domain adaptation. In International Conference on Machine Learning, pp. 3186-3197.
PMLR, 2021.

Basura Fernando, Amaury Habrard, Marc Sebban, and Tinne Tuytelaars. Unsupervised visual domain

adaptation using subspace alignment. In Proceedings of the IEEE international conference on computer
viston, pp. 2960-2967, 2013.

Rémi Flamary, Nicolas Courty, Alain Rakotomamonjy, and Devis Tuia. Optimal transport with laplacian
regularization. In Nips 2014, workshop on optimal transport and machine learning, 2014.

Rémi Flamary, Nicolas Courty, Alexandre Gramfort, Mokhtar Z. Alaya, Aurélie Boisbunon, Stanislas Cham-
bon, Laetitia Chapel, Adrien Corenflos, Kilian Fatras, Nemo Fournier, Léo Gautheron, Nathalie T.H.
Gayraud, Hicham Janati, Alain Rakotomamonjy, Ievgen Redko, Antoine Rolet, Antony Schutz, Vivien
Seguy, Danica J. Sutherland, Romain Tavenard, Alexander Tong, and Titouan Vayer. Pot: Python opti-
mal transport. Journal of Machine Learning Research, 22(78):1-8, 2021. URL http://jmlr.org/papers/
v22/20-451.html.

Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle, Francois Laviolette,
Mario March, and Victor Lempitsky. Domain-adversarial training of neural networks. Journal of machine
learning research, 17(59):1-35, 2016.

Arthur Gretton, Karsten M Borgwardt, Malte J Rasch, Bernhard Scholkopf, and Alexander Smola. A kernel
two-sample test. The Journal of Machine Learning Research, 13(1):723-773, 2012.

Moritz Grosse-Wentrup and Martin Buss. Multiclass common spatial patterns and information theoretic
feature extraction. IEEE transactions on Biomedical Engineering, 55(8):1991-2000, 2008.

Xiang Gu, Yucheng Yang, Wei Zeng, Jian Sun, and Zongben Xu. Keypoint-guided optimal transport with
applications in heterogeneous domain adaptation. Advances in Neural Information Processing Systems,
35:14972-14985, 2022.

Laleh Haghverdi, Florian Buettner, and Fabian J Theis. Diffusion maps for high-dimensional single-cell
analysis of differentiation data. Bioinformatics, 31(18):2989-2998, 2015.

He He and Dongrui Wu. Transfer learning for brain—computer interfaces: A euclidean space data alignment
approach. IEEE Transactions on Biomedical Engineering, 67(2):399-410, 2019.

Lukas Hoyer, Dengxin Dai, Haoran Wang, and Luc Van Gool. Mic: Masked image consistency for context-
enhanced domain adaptation. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 11721-11732, 2023.

Boris Landa, Ronald R Coifman, and Yuval Kluger. Doubly stochastic normalization of the gaussian kernel
is robust to heteroskedastic noise. STAM journal on mathematics of data science, 3(1):388-413, 2021.

Chen-Yu Lee, Tanmay Batra, Mohammad Haris Baig, and Daniel Ulbricht. Sliced wasserstein discrepancy
for unsupervised domain adaptation. In Proceedings of the IEEE/CVE' conference on computer vision and
pattern recognition, pp. 10285-10295, 2019.

Mengxue Li, Yi-Ming Zhai, You-Wei Luo, Peng-Fei Ge, and Chuan-Xian Ren. Enhanced transport distance
for unsupervised domain adaptation. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pp. 13936-13944, 2020.

Jingen Liu, Yang Yang, Imran Saleemi, and Mubarak Shah. Learning semantic features for action recognition
via diffusion maps. Computer Vision and Image Understanding, 116(3):361-377, 2012.

Eduardo Fernandes Montesuma and Fred Maurice Ngole Mboula. Wasserstein barycenter for multi-source
domain adaptation. In Proceedings of the IEEE/CVF conference on computer vision and pattern recogni-
tion, pp. 16785-16793, 2021.

14


http://jmlr.org/papers/v22/20-451.html
http://jmlr.org/papers/v22/20-451.html

Under review as submission to TMLR

Khai Nguyen, Dang Nguyen, Tung Pham, Nhat Ho, et al. Improving mini-batch optimal transport via partial
transportation. In International Conference on Machine Learning, pp. 16656-16690. PMLR, 2022a.

Vu Nguyen, Hisham Husain, Sachin Farfade, and Anton van den Hengel. Confident sinkhorn allocation for
pseudo-labeling. arXiv preprint arXiv:2206.05880, 2022b.

Sinno Jialin Pan, Ivor W Tsang, James T Kwok, and Qiang Yang. Domain adaptation via transfer component
analysis. IEEE transactions on neural networks, 22(2):199-210, 2010.

Michaél Perrot, Nicolas Courty, Rémi Flamary, and Amaury Habrard. Mapping estimation for discrete
optimal transport. Advances in Neural Information Processing Systems, 29, 2016.

Pedro Luiz Coelho Rodrigues, Christian Jutten, and Marco Congedo. Riemannian procrustes analysis:
transfer learning for brain—computer interfaces. IEEE Transactions on Biomedical Engineering, 66(8):
2390-2401, 2018.

Sam T Roweis and Lawrence K Saul. Nonlinear dimensionality reduction by locally linear embedding.
science, 290(5500):2323-2326, 2000.

Baochen Sun, Jiashi Feng, and Kate Saenko. Correlation alignment for unsupervised domain adaptation.
Domain adaptation in computer vision applications, pp. 153-171, 2017.

Kai Sheng Tai, Peter D Bailis, and Gregory Valiant. Sinkhorn label allocation: Semi-supervised classification
via annealed self-training. In International conference on machine learning, pp. 10065-10075. PMLR, 2021.

Michael Tangermann, Klaus-Robert Miiller, Ad Aertsen, Niels Birbaumer, Christoph Braun, Clemens Brun-
ner, Robert Leeb, Carsten Mehring, Kai J Miller, Gernot Mueller-Putz, et al. Review of the bci competition
iv. Frontiers in neuroscience, pp. 955, 2012.

Joshua B Tenenbaum, Vin de Silva, and John C Langford. A global geometric framework for nonlinear
dimensionality reduction. science, 290(5500):2319-2323, 2000.

Yujia Xie, Minshuo Chen, Haoming Jiang, Tuo Zhao, and Hongyuan Zha. On scalable and efficient compu-
tation of large scale optimal transport. In International Conference on Machine Learning, pp. 6882—6892.
PMLR, 2019.

Hongteng Xu, Dixin Luo, Hongyuan Zha, and Lawrence Carin Duke. Gromov-wasserstein learning for graph
matching and node embedding. In International conference on machine learning, pp. 6932-6941. PMLR,
2019.

Renjun Xu, Pelen Liu, Liyan Wang, Chao Chen, and Jindong Wang. Reliable weighted optimal transport
for unsupervised domain adaptation. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pp. 4394-4403, 2020.

Tongkun Xu, Weihua Chen, Pichao Wang, Fan Wang, Hao Li, and Rong Jin. Cdtrans: Cross-domain
transformer for unsupervised domain adaptation. arXiv preprint arXiv:2109.06165, 2021.

Or Yair, Felix Dietrich, Ronen Talmon, and Ioannis G Kevrekidis. Domain adaptation with optimal transport
on the manifold of spd matrices. arXiv preprint arXiv:1906.00616, 2019.

Yuguang Yan, Wen Li, Hanrui Wu, Huaqing Min, Mingkui Tan, and Qingyao Wu. Semi-supervised optimal
transport for heterogeneous domain adaptation. In IJCAI volume 7, pp. 2969-2975, 2018.

Jinyu Yang, Jingjing Liu, Ning Xu, and Junzhou Huang. Tvt: Transferable vision transformer for unsu-
pervised domain adaptation. In Proceedings of the IEEE/CVF Winter Conference on Applications of
Computer Vision, pp. 520-530, 2023.

Xiaowei Yu, Zhe Huang, and Zao Zhang. Feature fusion transferability aware transformer for unsupervised
domain adaptation. arXiv preprint arXiw:2411.07794, 2024.

15



Under review as submission to TMLR

Paolo Zanini, Marco Congedo, Christian Jutten, Salem Said, and Yannick Berthoumieu. Transfer learning:
A riemannian geometry framework with applications to brain—computer interfaces. IEEE Transactions on
Biomedical Engineering, 65(5):1107-1116, 2017.

Wen Zhang and Dongrui Wu. Manifold embedded knowledge transfer for brain-computer interfaces. IEEFE
Transactions on Neural Systems and Rehabilitation Engineering, 28(5):1117-1127, 2020.

Valery Zheludev, Ilkka Po6lonen, Noora Neittaanméki-Perttu, Amir Averbuch, Pekka Neittaanméki, Mari
Gronroos, and Heikki Saari. Delineation of malignant skin tumors by hyperspectral imaging using diffusion
maps dimensionality reduction. Biomedical Signal Processing and Control, 16:48—60, 2015.

Jinjing Zhu, Haotian Bai, and Lin Wang. Patch-mix transformer for unsupervised domain adaptation: A
game perspective. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pp. 3561-3571, 2023.

16



Under review as submission to TMLR

Supplementary Materials

A Background on Diffusion Geometry

Let {z;}¥ | be a given set of data samples on a hidden manifold M with a metric g. Constructing a graph is a
common strategy for approximating the manifold’s structure (Roweis & Saul, 2000; [Tenenbaum et al., |2000;
Belkin & Niyogil [2003; |Coifman & Lafon |2006). By leveraging a local kernel, which quantifies pairwise local
similarities between data samples, this graph captures local neighborhood relationships, facilitating effective
representation of the underlying manifold geometry. Consider a weighted graph G = (V, E) with a vertex
set V = {v1,...,vn}, where each node v; € V corresponds to the sample z;. Let K € RY*N be an affinity
matrix, whose (4, j)-th element encodes the weight of the edge between nodes v; and v; and is given by:

K(i,j) =h (dj(;::;@) : (12)

€

where dy(-,-) is a distance function induced by the metric g, € > 0 is a scale hyperparameter, and h is a
positive function with exponential decay.

Next, the affinity matrix K is normalized to be row-stochastic:

P(i,j) = (13)

where d(i) = Z K(i,7). The matrix P is often viewed as a diffusion operator (Coifman & Lafon, 2006)), as

J

P(i,j) defines a transition probability from node i to node j of a Markov chain on the graph. Analogously,
P can be viewed as the transition probabilities of a diffusion process defined at the data samples {z;} ; on
the manifold M (Coifman & Lafon| 2006).

B Geometric Optimal Transport — Additional Information

B.1 Computational Complexity of GOT

The most commonly used transport cost, the pairwise squared Euclidean distances, has a computational
complexity of O(n?), assuming balanced datasets. In contrast, our proposed cost involves the following
steps:

« Computing pairwise distances for three matrices: O(n?).

« Applying the exponential function to the matrices: O(n?).
 Normalizing the matrices to be row-stochastic: O(n?).

« Multiplying the three probability matrices: O(n?).

« Applying the logarithm to the final diffusion operator: O(n?).

As noted in Section [5] we often use doubly-stochastic normalization instead of row-stochastic normalization,
employing the Sinkhorn algorithm. Since the complexity of Sinkhorn is also O(n?), this does not increase
the overall complexity. In total, the computational complexity of the proposed cost is O(n?). While higher
than the traditional cost, our method avoids the need for a regularization term, which can often add to the
optimization complexity.

Additionally, we note that up to the fourth step, the computation involves three n x n matrices rather than
one, resulting in higher memory requirements.
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Complexity comparison. While the standard Euclidean cost, which involves computing pairwise distances
between source and target samples, has complexity O(n?), obtaining the transport plan depends on the
specific optimal transport formulation. Solving the original OT problem requires a computational cost of
O(n?), while using the Sinkhorn algorithm reduces the complexity to O(n?). OT-reg, used in Sections
and [5.3] relies on Sinkhorn iterations for the optimization and, therefore, has complexity O(n?), whereas
OT-Laplace requires O(n?).

The competing methods ETD and RWOT introduce a weighted Euclidean distance as the transport cost and
differ in how they learn the weights. Both methods are deep-learning-based, and even when disregarding the
complexity introduced by the neural networks, their computational cost remains at least O(n3) due to the
matrix multiplications between the learned weight matrix and the pairwise distance matrix.

Our method, GOT, also has complexity O(n?) for the same reason — matrix multiplication. However, unlike
ETD and RWOT, GOT is not restricted to deep-learning frameworks, making it more memory-efficient.
Moreover, as shown in Section GOT achieves superior performance while maintaining a comparable
computational cost.

B.2 The Diffusion Process — Simulation

Rt eeeraney

P11t

(c) (d)

Figure 3: (a) The PDF of the target domain, colored by PDF values. (b) Visualization of the vector field
induced by the proposed diffusion operator. (c) and (d) show the PDF of the target domain projected to
2D, colored by the proposed diffusion process initiated at high-density and low-density regions, respectively.
(Best viewed in colors).

In this section, we illustrate the behavior of the proposed diffusion operator, and more specifically, the
expression outlined in Proposition through a toy example. Consider the 2D space [0, 1]?, where the
source domain g is represented by a uniform distribution over the entire space, and the target domain
v is concentrated along a 1D contour. Specifically, 20% of the target data are sampled from a uniform
distribution over [0.1]2. For the remaining 80% of the target samples, the coordinates are generated as
follows. The first dimension z; is computed as the sum of two variables sampled from uniform distributions:
uy € U[0.02,0.98] and uy € U[—0.02,0.02], giving 21 = u; + uz. The second dimension x5 is generated with
2o = 0.4sin(27uq) + 0.5, where wu; is the same variable used for x;. Figure presents the target domain,
estimated using Kernel Density Estimation (KDE).

To illustrate the behavior of the proposed operator, we compute the diffusion operator S, which contains
the probabilities of transporting from the uniform source samples to the target samples concentrated on the
contour, as presented in Equation @ Figure visualizes the resulting vector field on the space [0,1]2, as
induced by S. As expected, we observe that for all source samples, the average direction induced by the
diffusion operator is toward the 1D contour. Figures [3dand [3d] present two specific cases that illustrate how
the anisotropic diffusion balances inter-domain and intra-domain relationships. In Figure the diffusion
process is initiated at a source sample located on the contour, a region of high target probability density,
marked by the black star. As the source distribution is uniform, by definition, the value of £ () at this initial
sample is small, indicating a high probability that this source sample belongs to the target domain. Here, the
diffusion assigns more weight to the geometry of the target domain, spreading rapidly along the contour
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where the target density is highest. In contrast, Figure [3d| shows the diffusion process starting from a source
sample located off the contour in a region with a sparser target distribution. Similar to the previous case, we
observe an anisotropic diffusion directed toward regions with high probability density. However, due to the
location of the starting point, the diffusion first draws it toward the denser region, utilizing inter-domain
relations, and resulting in a noticeable asymmetry in the diffusion process.

C Experimental Details

C.1 Two Moons: Visual lllustration

In this experiment, we analyze the resulting transportation plan and evaluate the performance of GOT
compared to competing methods using the toy example from |Courty et al.| (2016)). For the source domain,
we generate two entangled moons, each containing 50 samples, with Gaussian noise added (standard deviation
0.05) to represent two distinct classes. The target domain is independently sampled from a rotated version
of this distribution. As the rotation angle increases, the adaptation problem becomes more challenging.

We compare GOT with the entropy-regularized OT problem (Courty et al., 2016}, (Cuturi, |2013)), referred to
as OT, which serves as the baseline method. Additionally, due to the limited number of methods proposing
alternative transport costs — particularly those that integrate source label information and can be applied in
non-deep frameworks — we include two regularization approaches: OT-reg (Courty et al., 2016; |2014])), which
incorporates source label information, and OT-Laplace (Courty et al., |2016; Flamary et al., |2014), which
uses a Laplace regularization term to preserve data structure. Notably, all three methods use the squared
Euclidean distance as the transportation cost. Table [d] summarizes the key differences between GOT and
these three competing methods. While the first two characteristics in the table are straightforward, the last
two may require further clarification. OT-Laplace’s optimization relies on simplifying the regularization term
under the assumption of Euclidean geometry. For non-Euclidean geometries, the intra-domain distances,
inter-domain distances, and barycentric mapping become too complex to optimize, limiting it to Euclidean
settings. While the squared Euclidean distance is commonly used as the transport cost in OT and OT-
reg, both methods can handle non-Euclidean geometries, as demonstrated in Section [5.3] The specific
optimization processes proposed for OT-reg and OT-Laplace restrict their applicability to other formulations
or solvers. In contrast, our GOT, which is a new transport cost rather than a regularization term, is versatile
and applicable to any problem formulation or solver, as shown in Section [5.2]

Table 4: Summary of key differences between GOT and competing methods.

OT OT-reg OT-Laplace GOT (ours)
Intra-domain relationship integration v v
Label information utilization v v
Supports non-Euclidean geometry v v v
Versatile OT compatibility v v

To analyze the differences between the methods, we visualize the obtained plans for a 40° rotation angle,
focusing on two arbitrary target samples that demonstrate the typical advantages of GOT over the other
methods. We obtain the optimal plan for GOT and the other three methods as follows. For GOT, we
first compute the proposed cost and then use the entropy-regularized OT problem (Cuturi, [2013) to derive
the transportation plan . For the other methods, we calculate the standard transportation cost — the
squared Euclidean pairwise distances — and then solve the OT problem using entropy regularization, label
regularization, and Laplace regularization to obtain the transportation plans for OT, OT-reg, and OT-
Laplace, respectively.

Figure [ presents the plan values for a target sample located in the middle of the blue moon, marked by a
bold black triangle. For clarity, we plot lines from this target sample only to the ten source samples with
the highest values in the corresponding column of the plan. In GOT (Figure [4al), we observe the desired
optimal plan, where all lines connected to the chosen target sample originate from the same blue class, even
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Figure 4: Two moons illustration for a 40° rotation angle. Source samples are marked with circles, target
samples with triangles, and the colors of the markers indicate the labels. Each line represents an entry (i, 7)
in the transportation plan, where the line color corresponds to the label of the source sample z7, and the
line intensity reflects the values in the plan. (Best viewed in colors).

though a red-labeled source sample is closer. This outcome is due to incorporating label information into
the diffusion process. In OT (Figure , the transportation cost is based solely on the pairwise Euclidean
distances between source samples (circles) and target samples (squares). As a result, the blue-labeled target
sample receives mass from the closest source samples, including those associated with the other red class.
In OT-reg (Figure , the regularization term promotes group sparsity, encouraging a solution where each
target sample receives mass only from source samples within the same class. As a result, this method also
provides the desired plan in this case. In OT-Laplace (Figure , the core idea is that samples with small
Euclidean distances before transportation should remain close after transportation, and vice versa. As a
result, the blue-labeled target sample receives mass not only from the nearby red-labeled source sample, but
also from a more distant blue-labeled source sample. We note that there are fewer than ten lines because
this method does not include entropy regularization, resulting in a sparser transportation plan.

Cost analysis. To illustrate the connection between the diffusion process and the resulting transportation
plan, we present in Figure [5a] the average direction of transport from each target point to the source domain,
as induced by the diffusion operator S, for a 70° rotation angle. Although the standard OT cost lacks a
probability notion, we present a comparable visualization in Figure [5b] by applying the exponential function
to the negative cost matrix and normalizing the resulting matrix to be column-stochastic. The diffusion
induced by the cost aligns with the resulting plan values depicted in Figures [2] and [} For example, all
target points within the blue dashed ellipse in Figure are directed toward the correct red moon of the
source. Conversely, in Figure most target points are directed toward the closer but incorrect blue moon
of the source. Similarly, all target points within the red dashed ellipse in Figure [5a} including the chosen
point shown in Figure[4] are directed toward the correct blue moon of the source, even though closer source
samples, labeled red, are present. It is worth noting that, while the presented directions correspond to the
target samples, the GOT cost relies solely on source label information. In contrast, in Figure the same
target points are directed incorrectly, with many directed toward the wrong red source samples. For clarity,
only these two areas are highlighted in the figures; however, additional regions, such as the bottom-left edge
of the blue target moon and the center of the red target moon, could also be analyzed similarly. This example
demonstrates how the proposed method effectively controls the resulting transportation plan by guiding the
diffusion process toward the desired directions.

Classification results. In addition to the visual illustration, we evaluate the performance of the methods
across various rotation angles. Table [f] presents the target classification error rates for these different angles.
For the evaluation, we follow the OTDA framework (Courty et al.l [2016)). This involves computing the
optimal plan using GOT or one of the competing methods, transporting the source samples to the target
domain via barycentric mapping, and then training an SVM classifier with a Gaussian kernel on the source
data. The classifier is subsequently tested on the target samples. The classification results are consistent
with the previous analysis. We observe that GOT is the only method that achieves 100% accuracy up to a
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Figure 5: Visualization of the vector field induced by the GOT cost and the standard OT cost, for a 70°
rotation angle. (Best viewed in colors).

60° rotation angle. Furthermore, it is evident that GOT outperforms all other methods with significantly
higher accuracy across all tested angles.

Table 5: Two moons data. Target error rates for different rotation angles, obtained by training an SVM
classifier with a Gaussian kernel on the transported source data.

rotation angle GOT (ours) OT OT-reg OT-Laplace

10° 0 0 0 0

20° 0 0 0 0

30° 0 0 0 0.01
40° 0 0.06 0.09 0.14
50° 0 0.14 0.14 0.16
60° 0 0.18 0.2 0.22
70° 0.07 0.23 0.3 0.31
80° 0.23 0.34 0.34 0.34
90° 0.33 0.37 0.39 0.42

C.2 Deep Domain Adaptation

In the following section, we outline the framework utilized in the experiments presented in Section[5.2] For
these experiments, we adopt the framework introduced by Damodaran et al.| (2018]). This framework, termed
DeepJDOT, comprises two components: an embedding function, denoted by g : X — Z, which aims to learn
features optimizing both classification accuracy and domain invariance, and a classification function, denoted
by f: Z — ), which predicts the labels based on the learned features.

The DeepJDOT objective, which operates on a minibatch of size m, is given by:
m m
min > L(yf, Fo(@) + 3 v (mllg@d) = g(@IE +mL i, f(9()) (14)
T i,j
where L is the cross-entropy loss, 77 and 7 are hyperparameters, and - is the optimal plan.
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The training process follows an alternating optimization scheme. Initially, the parameters of both the feature
extractor ¢ and the classifier f are fixed. The fixed-parameter models are denoted as f and §. Subsequently,
the OT problem is solved with the associated cost matrix C;; = mllg(z5) — g(=%)[13 + ngﬁ(yf,f(g(xg))
Finally, the optimization proceeds by fixing the obtained plan, v, and optimizing the model on the mini-
batch using Stochastic Gradient Descent (SGD). The objective function for this training phase is defined by
Equation [T4]

In our experiments, we propose to derive the plan using the GOT cost. We solve the OT problem with the
associated cost C; ; = —n1log(S; ;) +n2L(yf, f(g(x})), where:

klyp=y; leN]

The probability matrices P, Q and Py, are obtained by applying a row-stochastic normalization to the
kernels defined in Equations [5| and However, in this case, the kernels are applied in the latent space,
using the source and target representations {g(x7)}i2; and {g(2%)}jL,, where m denotes the batch size.
For the source and target kernels, we compute the kernels by employing the Cosine distance, while for the
cross-domain we use the Euclidean distance. /\/ f denotes the neighborhood of xz, determined by the three
nearest neighbors in the features space. €, €. and €; are scale hyper-parameters. In all deep experiments,
we set €, = €. = ¢ = 1.

Once the plan is obtained, we fix 4 and train f and g using Equation [T4 We note that for simplicity in
handling derivatives, we omit the use of GOT in the second phase of training, and utilize Equation [T4] as is,
although integrating the GOT cost remains a viable option.

Baselines and competing methods. In addition to DeepJDOT (Damodaran et al.;|2018), which utilizes
the framework with the standard transport cost, we present comparisons to more recent methods that
leverage the DeepJDOT framework. However, unlike DeepJDOT, which employs the network simplex flow
algorithm, these approaches utilize different OT problem formulations: Unbalanced OT (UOT), referred
to as JUMBOT (Fatras et al., |2021)), and Partial OT (POT), termed as m-POT (Nguyen et al. 2022a)), to
derive the optimal plan. Notably, all three methods use the squared Euclidean distance as the transportation
cost and differ solely in their approach to obtaining . We also compare our approach to two other OT-
based deep models, which propose to employ a different transportation cost function from the conventional
squared Euclidean distance, namely ETD (Li et al., [2020) and RWOT (Xu et al., [2020). In addition to
OT-based methods, we benchmark our method against established DA baselines, including DANN (Ganin
et al [2016) and ALDA (Chen et al., 2020). For DeepJDOT (Damodaran et al.l |2018), JUMBOT (Fatras
et al., 2021), and m-POT (Nguyen et all |2022al), all employing the DeepJDOT framework with different
OT problem formulations, we reproduce the results ourselves using the POT (Python Optimal Transport)
package (Flamary et al., [2021]), an open-source Python library. Results for DANN (Ganin et al.l |2016) and
ALDA (Chen et al.[2020) are sourced from [Nguyen et al.| (2022a). For the remaining methods, we rely on
the reported results from their respective papers.

Datasets. The Digits dataset comprises three widely-used digit datasets, serving as the different domains:
(i) MNIST (28x28 grayscale images of handwritten digits), (ii) USPS (16x16 grayscale images of digits derived
from scanned handwritten letters), and (iii) SVHN (32x32 colored images of digits with diverse backgrounds
and fonts collected from Google Street View). All datasets consist of 10 classes, corresponding to the digits 0
through 9. The Office-Home dataset is composed of images from four distinct domains, each representing
a specific visual style and content distribution. The four domains are Art (A), Clipart (C), Product (P), and
Real-World (R), all with 65 classes. The VisDA-2017 dataset comprises synthetic and real-world images
across 12 diverse classes and often serves as a benchmark for domain adaptation in computer vision. In our
experimental setup, we designate the training set containing synthetic images as the source domain, while
the validation set, consisting of real images, serves as the target domain.

C.2.1 Digits

For the digits experiments, we adopt the architecture proposed by [Damodaran et al.| (2018). The generator
g is a CNN model trained from scratch, with convolutional layers containing 32, 32, 64, 64, 128, and 128
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filters, followed by a fully connected (FC) layer of 128 hidden units and a Sigmoid activation function.
Layer normalization is applied after each convolution layer. The classifier f is an FC layer with 10 units,
corresponding to the number of classes. We maintain a batch size of m = 500 for both the source and target
datasets. We construct balanced batches for the source training set by utilizing the labels, ensuring an equal
number of samples for each class. The models are optimized using the Adam optimizer. Initially, the training
is performed on the source data using cross-entropy loss for 10 epochs. Subsequently, the models are trained
for 100 epochs using both the source and target data, with the objective as described above.

For the proposed method, we use a learning rate Ir = 0.001. We set the hyperparameters 7, = 1, o = 1 for
the objective function, e = 1 for all the Gaussian kernels constructing our diffusion operator, and A = 0.02,
7 = 1 for the unbalanced Sinkhorn problem. For the reproduced methods we use the parameters reported
in the original papers. For all reproduced methods, we use a learning rate ir = 0.0002. For DeepJDOT,
we use 171 = 0.001, o = 0.0001. For JUMBOT, we use 777 = 0.1, o = 0.1 for the objective function, and
A = 0.1, 7 = 1 for the unbalanced Sinkhorn problem. We note that since we struggled to reproduce the
m-POT results for this specific dataset, Table [1a] presents the m-POT results reported in the original paper
(Nguyen et al., |2022al). We ran each method 3 times, Table |§| presents the results for each run.

Table 6: Accuracy for Digits dataset over three seeds for (a) DeepJDOT, (b) JUMBOT, and (¢) JUMBOT
+ GOT (ours).

(a) (b) ()

Run S-M UM M-U Run S-M UM M-U Run S-M UM M-U
1 95.81 96.96 86.05 1 99.05 98.64 96.66 1 99.15 98.90 97.81
2 95.53 97.34 86.75 2 98.99 98.62 97.41 2 99.23 98.87 98.11
3 96.78 97.36 85.55 3 98.93 98.77 96.71 3 99.19 98.84 97.51

C.2.2 Office-Home

For this dataset, the generator g is a pre-trained ResNet50 with the final FC layer removed, and the classifier
f consists of an FC layer. We construct balanced batches for the source training set by utilizing the labels,
ensuring an equal number of samples for each class. The models are optimized using the SGD optimizer
with a learning rate of 0.001. Given that our cost incorporates source neighborhood information based on
source labels, it is required for each mini-batch to contain at least two samples from every class. Notably,
this dataset comprises 65 classes. Thus, we employ a batch size of m = 195, and train the model for 4000
iterations. For all reproduced methods, we follow the original papers by using a batch size of m = 65 and
training the model for 10000 iterations.

For the proposed method, we set the hyperparameters n; = 0.01, 772 = 2. for the objective function, e = 1
for all the Gaussian kernels constructing our diffusion operator, and A = 0.02, 7 = 0.5 for the unbalanced
Sinkhorn problem. For the reproduced methods, we use the parameters reported in the original papers. For
DeepJDOT, we set 1 = 0.01 and 7, = 0.05 for the objective function. For JUMBOT and TS-POT, we use
m = 0.01, ny = 0.5 for the objective function. For JUMBOT, we use A = 0.01, 7 = 0.5 for the unbalanced
Sinkhorn problem. For TS-POT, we set the fraction of mass to 0.6, and the number of mini-batches k to 2.

C.2.3 VisDA

Similar to the approach taken with the Office-Home dataset, we utilize a pre-trained ResNet50 as the
generator g, with the classifier f implemented as an FC layer. For all methods, we use a batch size m = 72.
We construct balanced batches for the source training set by utilizing the labels, ensuring an equal number
of samples for each class. The models are optimized using the SGD optimizer with a learning rate of 0.0005,
and trained for 10000 iterations. We employ the two-stage (T'S) implementation proposed by [Nguyen et al.
(2022al) for our method and for TS-POT. In this implementation, the OT problem is initially solved using a
batch size of k x m on the CPU, leveraging its ability to handle larger matrices. After obtaining the optimal
plan, the gradient step is executed on the GPU with a batch size of m. To utilize the large plan in loss
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Table 7: Accuracy for Office-Home dataset over three seeds for (a) DeepJDOT (b) JUMBOT (c) TS-POT
and (d) JUMBOT + GOT (ours).

Run A-C A-P A-R C-A CP C-R P-A P-C P-R R-A RC R-P Avg

51.8 70.7 76.4 59.7 669 69.1 576 49.1 753 694 54.6 80.1 65.07
522 T71.1 76.2 60.8 672 69.5 588 484 754 68.7 54.8 79.8 65.22
51.9 709 758 60.9 659 68.9 588 48.7 752 68.6 553 79.8 65.06

W N =

Run A-C A-P A-R C-A CP CR P-A P-C PR RA RC R-P Avg

55.7 75.0 80.7 65.3 743 75.1 653 53.1 79.5 74.6 59.3 83.8 70.16
56.0 74.6 80.7 644 743 749 655 534 79.6 745 594 839 70.11
55.5 754 80.6 655 749 751 652 533 79.7 744 59.2 84.0 70.23

W N =

Run A-C A-P AR C-A CP CR P-A P-C PR RA R-C R-P Avg

7.7 76.3 81.7 68.4 73.7 769 673 552 806 754 60.2 83.7 71.43
58.4 774 814 679 725 76.2 674 54.8 80.7 754 59.1 84.2 7T1.29
56.3 775 81.7 68.7 722 76.5 67.7 553 804 755 60.4 84.1 71.36

W DN =

Run A-C A-P AR C-A CP CR P-A PC PR RA RC RP Avg

7.0 772 824 69.8 748 794 680 56.7 822 753 60.5 84.6 72.33
7.0 783 82.0 70.3 749 784 682 56.4 820 757 61.2 84.5 72.40
57.6 784 81.8 70.6 749 787 682 56.3 820 758 61.0 852 72.55

W N =

functions computed on smaller batch sizes, an adaptation to the original loss function is proposed. For more
details, see Nguyen et al.| (2022a).

For the proposed method, we set the hyperparameters n; = 0.01, n, = 1 for the objective function, e = 1 for
all the Gaussian kernels constructing our diffusion operator. For the TS implementation, we set s = 0.5 as the
fraction of mass for the partial OT problem, and k& = 2 as the number of mini-batches. For the reproduced
methods, we use the parameters reported in the original papers. For DeepJDOT, we use 1 = 0.005 and
ne = 0.1 for the objective function. For JUMBOT and TS-POT, we use 71 = 0.005 and 72 = 1 for the
objective function. For JUMBOT, we use A = 0.01, 7 = 0.3 for the unbalanced Sinkhorn problem. For
TS-POT, we set the fraction of mass to 0.75, and k = 1 for the TS implementation. In Tables[8] we present
the results per class for GOT and the competing methods.

Features Analysis. Additionally, we analyze the t-SNE representation of the VisDA target features ob-
tained from the deep model trained with GOT, compared to those learned using TS-POT (Nguyen et al.,
2022al), the baseline for this dataset. For better visualization, we randomly sampled 10% of the samples
from each class before applying t-SNE.

While the deep model is designed to learn representations that are both domain-invariant and optimized for
source classification accuracy, resulting in well-separated classes for both methods (as shown in the figure),
the visualization still highlights differences between the methods. These differences help explain why GOT
achieves better target accuracy compared to the standard transportation cost. For example, in Figure [6a]
which shows the TS-POT features, the "knife" class (colored magenta and circled by a red dashed line)
completely overlaps with the "skateboard" class (colored black). In contrast, Figure which presents
features obtained using GOT, shows that these classes are well-separated. Additionally, the TS-POT model
appears to have learned a representation with more than the expected 12 clusters. For instance, the cluster
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Table 8: Accuracy for VisDA dataset per class over three seeds for (a) DeepJDOT, (b) JUMBOT, (c)
TS-POT, and (d) TS-POT + GOT (ours).

(a)

Run Avg plane bicycle bus car horse knife mcycle person plant sktbrd train truck Avgejaes

1 69.66 88.6 59.2 70.167.2 87.6 4.0 904 683 935 49.6 884 31.2 66.5
2 6988 91.3 578 69.0725 8.5 19 899 61.1 919 642 849 30.5 66.6
3 69.21 87.8 57.1 70.969.0 872 3.2 91.7 702 923 46.8 87.5 252 65.7

(b)
Run Avg plane bicycle bus car horse knife mcycle person plant sktbrd train truck Avgcjaes

1 7284 93.0 534 769 76.6 89.8 2.1 945 762 944 71.2 89.7 184 69.7
2 7281 93.7 569 755718 90.5 3.5 942 776 96.1 60.6 89.0 274 69.7
3 7327 89.7 570 748773 906 1.5 939 746 944 69.9 903 246 69.9

(c)
Run Avg plane bicycle bus car horse knife mcycle person plant sktbrd train truck Avgejass

1 7508 944 66.6 788732 934 1.9 952 739 948 798 884 31.6 72.7
2 7654 95.1 614 821752 919 67.1 948 792 96.2 80.0 89.8 13.7 772
3 7532 931 688 81.6 747 938 21 944 751 959 76.7 90.8 264 728

(d)
Run Avg plane bicycle bus car horse knife mcycle person plant sktbrd train truck Avggjass

1 7848 95.0 58.6 823769 955 676 951 792 953 842 89.7 269 789
2 7874 95.0 643 852772 955 687 94.0 786 947 82.8 889 257 792
3 7847 948 61.7 855759 957 70.8 94.1 793 952 828 87.8 259 79.1

circled by a gold dashed line in Figure [6a] does not correspond to any specific class. In contrast, while GOT
does not achieve perfect separation between classes (as expected, given the approximately 78.5% target
accuracy), the label associated with each cluster is easily identifiable.
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Figure 6: t-SNE visualization of VisDA features, learned from the TS-POT model using (a) the Euclidean
cost and (b) GOT (ours).

ViT-Based Domain Adaptation. Vision Transformers (ViTs) have gained significant attention in recent
years due to their ability to process visual data in a manner similar to natural language processing tasks.
Unlike traditional convolutional neural networks (CNNs), which use localized convolutions to capture spatial
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hierarchies, ViTs leverage self-attention mechanisms to capture long-range dependencies between pixels across
the entire image. This characteristic enables ViTs to effectively model global features, making them highly
suitable for tasks such as domain adaptation.

In this experiment, we integrate the GOT cost into the state-of-the-art ViT-based framework, FFTAT (Yu
et al.l 2024)), to enhance the model’s domain adaptation capabilities. The GOT cost is incorporated by
adding it as an additional term to the FFTAT loss function, as described by the second term in Equation [I4]
The cost is applied to the global representations learned by the ViT backbone, which are then used for
classification.

Following FFTAT, the backbone is pre-trained on ImageNet. For the reproduced FFTAT results, we use
the parameters reported in the original paper. In our experiment (FFTAT + GOT), we use balanced source
batches with a batch size of m = 36 and a learning rate of 0.07. The parameters for the OT-based loss are set
ton; = 0.01 and 72 = 1, while the FFTAT loss uses the default parameters specified in the paper. We apply
the UOT formulation to derive the transportation plan, with A = 0.005 and 7 = 0.5. As in the DeepJDOT
framework, we set € = 1 for all Gaussian kernels used to construct our diffusion operator. Additional details
about the FFTAT framework can be found in the original paper (Yu et al., |2024]).

For comparison, we include the latest ViT-based methods: TVT (Yang et all |2023), PMTrans (Zhu et al.
2023), CDTrans (Xu et al., [2021)), and MIC (Hoyer et al., [2023)). Table@presents the average target accuracy
per class for the VisDA dataset. We observe that incorporating the GOT cost leads to a performance boost,
increasing the accuracy by more than 1.% compared to FFTAT. It also achieves a 0.36% increase over the
baseline method, FFTAT + UOT.

Table 9: Per-class accuracy comparison of ViT-based methods on the VisDA dataset.

Method plane bicycle bus car horse knife mcycle person plant sktbrd train truck Avg

TVT 97.1 838 864 644 964 974 90.6 641 92.0 903 93.7 59.6 85.1
PMTrans 994 833 881 789 988 983 95.8 703 946 983 963 485 88.0
CDTrans 97.1 905 824 775 966 961 93.6 8.6 979 869 903 628 88.4

MIC 99.0 933 865 876 989 990 972 89.8 98.9 989 96.5 68.0 928
FFTAT 99.78 9741 93.73 80.4 99.59 99.13 98.05 87.68 98.07 99.69 99.32 75.74 94.05

FFTAT + UOT 99.95 98.99 93.69 87.29 100.0 99.52 99.17 89.4 98.42 99.82 99.6 71.45 94.77
FFTAT + GOT 100.0 99.14 94.78 87.67 100.0 99.66 99.15 89.35 98.44 99.87 99.67 73.88 95.13

C.3 Domain Adaptation for non-Euclidean Data

In the following section, we outline the framework utilized in the experiments presented in Section [5.3

Previous studies (Barachant et al. [2011; 2013} [Zanini et al.,|2017; Rodrigues et al., 2018]) have demonstrated
the efficacy of using the empirical covariance matrices of the EEG recordings as an informative feature
representation for this type of data. Following this established approach, we adhere to the framework
introduced by |Yair et al.| (2019), which solves the DA problem using OT on the (non-Euclidean) Riemannian
manifold of Symmetric Positive Definite (SPD) matrices.

Consider the source data samples and labels as {(X3,y$)}¥s, and the target data samples as {X5 };V:t .- Each

data sample X; is a covariance matrix, which is an SPD matrix that lies on the Riemannian manifold of SPD
matrices M C R¥?, where d is the number of EEG channels. Applying Algorithmwith the Log-Euclidean
metric (Arsigny et all 2006), we derive the GOT cost. Next, we solve the OT problem using the Sinkhorn
algorithm (Cuturi, [2013), as described in Section |3} Subsequently, leveraging the obtained optimal plan -,
we map the source features into the target domain. This mapping can be computed using the barycentric
mapping (Courty et al.l 2016; |Perrot et al., [2016)), as described in Section
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When utilizing the Log-Euclidean metric to compute the cost function, the barycenter can be represented
as the weighted Riemannian mean, expressed by the following closed-form:

Ny
Z; = exp Z’ym log (X;) , (16)

Jj=1

where exp(-) and log(-) are the matrix exponential and logarithm. The framework is summarized in Alg.

Algorithm 2 GOT on the Riemannian manifold of SPD matrices

Input: {(Xf,yf)}f\[:sl,{X?}j\;"l,es,ec,et.
1: Compute the GOT cost C by applying Algorithm [I] to the source and target matrices.
2: Obtain the optimal plan v by applying the Sinkhorn algorithm.
3: Compute the barycentric mappings of the source samples using equation
4: Return the source mappings.

Since the representations, {Z$}Y+ and {x }évz‘l, are covariance matrices that lie on the Riemannian manifold
of SPD matrices M, prior to conducting any linear computation, such as training a linear classifier, we project

both the source and target covariance matrices onto the tangent space Tni M, using the logarithmic map:

Logn(Zi) = log(Z;) — log(M), (17)
where M represents the Riemannian mean of all the covariance matrices.

Datasets. The MI1 dataset (Blankertz et al., [2007) contains EEG recordings from 7 subjects utilizing 59
electrodes. Subjects were instructed to perform two out of three MI tasks: imagining the movement of the
left hand, the right hand, or the foot. Our evaluation focuses exclusively on the calibration data, comprising
100 trials for each subject. EEG signals were recorded at 1000 Hz, bandpass-filtered between 0.05 Hz and 200
Hz, and down-sampled to 100 Hz. The MI2 dataset (Tangermann et all 2012) consists of EEG recordings
from 9 subjects using 22 electrodes. The experiments include four MI tasks: the imagination of moving the
left hand (class 1), right hand (class 2), both feet (class 3), and tongue (class 4). The recordings in MI2 of
each subject contain two sessions, recorded on separate days, with 72 trials conducted for each MI task in
each session, resulting in 288 trials per session. EEG signals were sampled at 250 Hz and bandpass-filtered
between 0.5 Hz and 100 Hz. In both datasets, subjects were presented with a cue at each trial, instructing
them to imagine the corresponding MI task.

Pre-processing. We apply the same pre-processing pipeline proposed in [Zhang & Wuy| (2020)) to both
datasets. Initially, we extract a 3-second time window, spanning from ¢ = 0.5s to t = 3.5s following the cue.
Next, a bandpass (BP) filter ranging from 8 Hz to 30 Hz is applied to the data. Following this, we compute
the empirical covariance matrix of each trial. Finally, centroid alignment (CA) (Zanini et al 2017} [Zhang
& Wu, [2020) is applied to each set of covariance matrices, representing a domain, according to:

1

: x () (M““))ﬁ , (18)

X = (M("’))

where )Niz(-k) denotes the empirical covariance of trial i of the k-th subject, and M) represents the Riemannian
mean of the collection of covariance matrices of the k-th subject. The pre-processed set of each subject is

denoted by {ng) N |, where N is the total number of trials, possibly with the set of corresponding class
labels {y; }¥,.

C.3.1 Binary classification

Single-source domain adaptation. In the cross-subject experiment, we apply Algorithm [2] where each
subject, in turn, serves as the target domain, with the remaining subjects alternately acting as the source
domain. Accuracy is computed by initially mapping the obtained source and target representations onto a
tangent space, following Equation and subsequently training a linear SVM classifier on the transformed
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source mappings and evaluating it on the target mappings. The presented results showcase the average
target accuracy across source subjects.

For the cross-subject task, we employed the Sinkhorn algorithm with entropy regularization A = 0.02. For
the first dataset, MI1, we used the following scale parameters for the probability kernels to produce the
results shown in Table Ba} ¢, = 0.4, e, = 1, and ¢, = 1. For the second dataset, MI2, the scale parameters
for the probability kernels were set as follows: €, = 0.9, ¢, = 2, and ¢ = 2.

In Tables and we present the accuracy per subject on this task, including a comparison with MEKT
(Zhang & Wu, [2020)), utilizing their provided source code for our analysis.

Table 10: Binary classification accuracy for the cross-subject task on MI1, presented per subject.

1 2 3 4 5 6 7 Avg  STD
MEKT-R 71.58 65.58 64.25 65.58 83.33 64.67 81.92 70.99 8.33
GOT 70.92 63.5 63.25 69.75 86.33 72.67 79.25 72.24 8.3

Difference  -0.66  -2.08 -1.0 4.17 3.0 8.0 -2.67 1.25 3.92

Table 11: Binary classification accuracy for the cross-subject task on MI2, presented per subject.

1 2 3 4 5 6 7 8 9 Avg STD
MEKT-R 74.57 50.69 84.55 64.06 53.39 64.06 59.38 86.55 74.31 67.95 12.84
GOT 75.52 53.39 83.94 67.27 57.55 65.02 63.8 91.06 76.13 70.41 12.28

Difference  0.95 27 -0.61 321 416 096 442 451 182 246 1.8

Multi-source domain adaptation. For the leave-one-out task, we utilize the Wasserstein Barycenter
Transport (WBT) framework, proposed in Montesuma & Mboula) (2021)). This method involves transporting
all source samples to an intermediate domain, termed Wasserstein Barycenter Transport (WBT), before
subsequently transferring the source samples from WBT to the target domain using standard OTDA. For
the transportation of the source samples to the WBT only, we utilized the label-enhanced kernel for both
the source domain and the WBT, leveraging the available labels. For simplicity, we initially map both the
source and target covariance matrices onto a tangent space, using Equation [I7} and then apply the WBT
algorithm with the Euclidean metric. Notably, we utilize GOT instead of the standard cost for all OT
applications within the WBT framework, including transportation from each source domain to WBT and
from the Wasserstein barycenter of sources to the target domain. The results for these experiments appear

in Table 3Dl

For both datasets, we set A> = 0.02 for transporting all the source domains to the WBT and A = 0.1 for
transporting samples from the WBT to the target domain. In the latter case, we apply max normalization to
the cost matrix before using the Sinkhorn algorithm. For the first dataset, MI1, the scale parameters for the
probability kernels used to transport all source domains to the WBT are € = 0.05, 2 = 0.3, and ¢’ = 0.05.
For the transportation from the WBT to the target domain, the parameters are €, = 0.05, ¢, = 0.02, and
€: = 0.03. For the second dataset, MI2, the scale parameters for the probability kernels used to transport all
source domains to the WBT are €2 = 0.01, €2 = 0.3, and €’ = 0.01. For the transportation from the WBT
to the target domain, the parameters are e; = 0.3, €, = 0.02, and ¢; = 0.02.

In Tables and we present the accuracy per subject on this task, including a comparison with MEKT
(Zhang & Wu, 2020)).

C.3.2 Multi-class classification

In this section, we assess the performance of GOT in a multi-class classification task using the MI2 dataset,
taking into account all four classes available in the dataset. In addition to the baseline methods, OT and
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Table 12: Binary classification accuracy for the leave-one-out task on MI1, presented per subject.

1 2 3 4 5 6 7 Avg  STD
MEKT-R 865 69.5 735 89.0 940 89.5 915 8479 9.43
GOT 90.0 78.0 75.0 92.0 96.0 87.0 93.0 87.29 7.91

Difference 3.5 8.5 1.5 3.0 2.0 -2.5 1.5 2.5 3.28

Table 13: Binary classification accuracy for the leave-one-out task on MI2, presented per subject.

1 2 3 4 5 6 7 8 9 Avg STD
MEKT-R 93.06 49.31 95.83 73.61 56.25 70.83 70.14 9444 83.33 76.31 16.76
GOT 91.67 51.39 97.92 75.0 61.81 70.14 68.06 96.53 82.64 77.24 16.14

Difference -1.39 2.08 2.09 139 556 -0.69 -208 209 -069 093 238

OT-reg (Courty et al 2016; [2014} |Yair et al. 2019), we compare GOT to standard DA methods, including
CORAL (Sun et al., |2017)), SA (Fernando et al., 2013), and TCA (Pan et al.| [2010).

For all the multi-class classification experiments we employ the Sinkhorn algorithm with entropy regulariza-
tion parameter A = 0.1 and apply Algorithm [I] with e, = 3,¢. = 0.1,¢; = 0.1. For the reproduced methods,
OT and OT-reg, we apply median normalization to the cost matrix before applying the Sinkhorn algorithm.
We set A = 0.005 for the entropy parameter. For OT-reg, we use n = 10 for the label regularization, as
suggested in the original paper (Yair et al, [2019). For CORAL, SA, and TCA, we utilize the ADAPT
package (de Mathelin et al.| 2021]) with the default parameters.

Table shows the results for the cross-session task. In this experiment, for each subject, the first session
(day) serves as the source domain, while the second session serves as the target domain, and vice versa. The
reported target accuracy represents the average accuracy across both sessions, obtained as follows: First,
we apply Algorithm [2] to obtain the transported source samples. Next, we map both the target and the
transported source covariance matrices to a tangent plane, as described in Equation We then train a
linear SVM on the mapped source samples and test it on the target samples. Following Zanini et al.| (2017));
Yair et al.| (2019), we present results for five subjects out of the available nine, as the remaining subjects
exhibited poor results and were considered invalid in those works. We observe that the proposed method
achieves the highest accuracy for three out of the five subjects. For subject 1, however, it shows lower
accuracy compared to the baseline OT-reg. This is the only instance across all experiments where we do not
achieve an improvement over the baseline. Notably, GOT yields the highest average accuracy, surpassing
OT and OT-reg by over 6% and 2%, respectively. Detailed results for all subjects appear in Table

Table 14: Multi-class classification accuracy on dataset MI2. (a) Results for the cross-session task. (b)
Results for the cross-subject task.

(a) (b)

Method 1 3 7 8 9 Avg Method 1 3 7 8 9 Avg
CORAL 82.3 87.7 80.9 83.0 729 81.35 CORAL 53.1 58.2 52.0 52.5 53.3 53.82
SA 83.7 87.8 814 839 74.8 8233 SA 58.6 63.2 53.8 59.3 58.2 58.63
TCA 71.0 78.1 64.6 77.8 70.1 7233 TCA 59.1 61.2 49.4 60.7 52.7 56.64
oT 84.0 859 81.1 76.4 68.2 79.13 oT 57.2 654 59.7 57.5 52.7 58.51
OT-reg 85.2 84.5 81.1 854 78.1 82.88 OT-reg 63.2 69.7 63.8 66.1 62.1 64.97
Ours 84.7 86.5 84.5 88.9 81.4 85.21 Ours 66.7 75.1 69.4 73.4 65.5 70.03

In Table we present the results for the cross-subject task, analogous to the results shown in Table [3a] for
the binary classification case. Same as in the cross-session task, only the five valid subjects are considered.
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Our method achieves the highest accuracy across all subjects and demonstrates an average performance that
significantly exceeds both baseline methods. Detailed results for all nine subjects can be found in Table

Table 15: Comparison of cross-session multi-class classification on the MI2 dataset.

Subject CORAL SA TCA oT OT-reg GOT

1 82.29 83.68 71.01 84.03 85.24 84.72
2 50.35 51.91 44.27 56.08 57.99  58.85
3 87.67 87.85 7813 85.94 84.55 86.46
4 57.47 59.9 37.5  58.51 57.81  60.24
5 41.32 41.67 28.47  46.7 45.14 44.27
6 47.4 00.87 36.81 52.95  50.69 48.61
7 80.9 81.42 64.58 81.08 81.08  84.55
8 82.99 83.85 T77.78 76.39 85.42  88.89
9 72.92 74.83 70.14 68.23 78.13  81.42
Avg 67.03 68.44 56.52 67.77 69.56  70.89

Table 16: Comparison of cross-subject multi-class classification on the MI2 dataset.

Subject CORAL SA TCA OT OT-reg GOT

1 43.66 49.57 5191 49.1 54.24  57.99
2 27.19 27.82 27.58 27.79 28.23 2744
3 47.34 53.34 50.59 52.89 57.7 62.08
4 35.31 34.71  32.82  37.7 38.85  39.29
5) 30.96 30.57 29.42 32.79 33.26 33.51
6 33.18 32.54 32.08 34.13 34.09 34.42
7 39.69 41.41 40.82 4495 48.11 52.21
8 44.67 52.07 51.81 47.73 5553 62.04
9 42.76 48.67 455 4245 51.68 54.94
Avg 38.31 41.19 40.28 41.06  44.63 47.1
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D Proofs

Lemma D.1. The asymptotic expansion of a single-domain diffusion operator, defined in Equation [7, is
expressed as follows:

Puf(@) = fla) - 2 (Af - fi“) (2) + 0(e2). (19)

Proof of Lemma[D]l According to Lemma 8 from |Coifman & Lafon| (2006), given an isotropic kernel
ke(x,y)=h (M) with an exponential decay, and an operator T¢ defined by Tg(z) = [, ke(x,y)g(y)dy,
the asymptotic expansion of T, for all g € C3(M) and for all x € M is given by:

Teg(x) = mog(x) — mae (Ag(x) — w(z)g(x)) + O(?), (20)

where A is the Laplace—Beltrami operator on M, mg, my are two constants depending on the kernel h, and
w(x) is a potential function.

de(z)

For the diffusion operator P, defined in Equationﬂ, we use g(z) = £ @plz) and from Equation [20{ we get:

where de(z) = [ Ke(z,y)u(y)dy.
Similarly, we use g(z) = u(x) in Equation and obtain that the asymptotic expansion of d, is given by:

de(x) = mop(w) — mae (Ap(x) — w(z)u()) + O(e?)

e (5 ) ) o
=mou(z) [1— —e| — —w ] (z) ) +0(e 22
on) (1= 22 (2~ w) @) + 0(e) (22)
By applying the Taylor expansion of ﬁ and neglecting terms of order O(e?) and higher, we obtain:
—10,\ -1 ma (Ap 2
(de)™ " (x) = (mop(x))™" {14+ —€( — —w ] (z) | + O(€") (23)
mo H
Multiplying Equation 23] by f and subsequently applying the Laplace—Beltrami operator yields:
fu, o f o ma (Au )
IRy = L [ 14+ 2| =2 — 24
L) = (1 e (2w ) @) + o) (24)
fu AV Ap 2
A (de (x) = o + mgeA f . w ) | (z) + O(e?) (25)

Finally, by substituting Equations and into Equation and neglecting terms of order O(€?), we
derive the asymptotic expansion of the operator P.:

Pufa) = 7o) - 22 (—fi“ CwftAf— wf) (x) + 0(e2)
= flzx) - 2 _ A x €
— 1)~ 22 (A7 - 151) @0+ 0
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Lemma D.2. The asymptotic expansion of the cross-domain diffusion operator, defined by:

Q.10 = [ HE e (26)
is expressed as follows:
Qo) = F0) - e (A (12) - 1252 () + 0 (27)

Proof of Lemma[D-3 For the cross-domain diffusion operator defined in Equation with e, as the scale
hyperparameter of the cross-domain Gaussian kernel, we substitute g(x) = f r ( ) into Equation and

obtain:
Q@) = mod™ @) = mace (8 (L) () = wie) <z>) +O(), 29
where dy () = [ ke (2, y)v(y)dy.

Slmllarly, we substitute g(z) = v(z) to Equation and obtain the asymptotic expansion of d; ._:

di e, () = mov(x) — mee. (Av(z) — w(z)v(x)) + O(eg). (29)

We utilize the Taylor expansion as in Equation leading to the derivation:

(0.7 @) = (o)™ (14 226 (52— 0) @) + 0, (30

mo

Multiplying Equation [30] by f and subsequently applying the Laplace-Beltrami operator yields:

TH Gy = I- <1 + 2, <AVV - w) (w)) +0(e2). (31)

de, mov mo

e e N A1 C o A

Finally, by substituting Equations [31)and [32|into Equation 28| and neglecting terms of order O(€?), we derive
the asymptotic expansion of the operator @.:

% ma pAv o p % W
Qe f(z) = f;(l‘) - mf[)Gc (—fyy + f;w +A (f;) - wa> (z) + O(e2)
Av
=) = e (A (£2) - 51/) (z) + O(e).

O

Proposition 4.1. Suppose f € C*(M), and suppose p,v € CH(M) denote the probability measures of the
source and target domains, respectively, where p is dominated by v. For sufficiently small €, the asymptotic
expansion of operator Se is given by:

Sef(x)zﬁ(x)[f—:(ie[BAf#—Q(f £%)+2VfV10g< )> 9)

()]

where A,V are the Laplace—Beltrami operator and the covariant derivative on M, respectively, and mg, mo
are two constants defined by the Gaussian kernel and by the manifold M.

(z) +O(e),
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Proof of Proposition[{.1, The proposed diffusion operator is defined by the composition S.f(z) =
Py e, Qe Py, f(x), where € = (€5, €, €1).

We start by defining the function g(z) = P; ., f(x). Substituting the asymptotic expansion of the source
diffusion operator, as derived in Equation [I9] into Equation 27} we obtain:

Qe @) =2 (1= 22, (A= 12) ) (@) - 22 (A (72) - 1) (@) + O
A A
L. %z (clarvan () -2 (a2 vel)) vo@. @
where all terms with order O(e?) were neglected.
Remark that assuming e, = ¢, = € yields:
A A
QuP.cfe) = £20) = 22 (Lar+ A (r2) - 12 (22422 ) )+ 0@ (39

Next, we define the function g(z) = Q. Ps . f(x), and substitute Equation into the asymptotic expansion
of the target diffusion operator, as defined in Equation [I9

Pr Qe Poc. f(@) = J% () = 2 <es“Af +en(18) - 12 ( By CA”> )
v v v

() szt o
= o) - <635Af +(ec+e)a (£5)
- f% <esAu” + (e + et)AVV) )(w) +0(e%), (35)

where all terms with order O(e?) were neglected.

Assuming €, = €, = € we get:

PleQuPac, f5) = P40 = P2 (Bar 28 () - 12 (2 4280 ) )@+ o). @0)

v mo

Finally, by utilizing:

py p
A(rE)=Las+ra(B)+2vsv (5), (37)
we yield the expression:
Scf (@) = fhiw) = 2e (3har+2ra (B) - /2 = 2g +4vsv (B)) @ + o). @39)
v mg v v v\ u v
Lastly, for a more comprehensive analysis, we utilize the property = Vlog(f) to derive the expression
presented in Proposition .1} O
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