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ABSTRACT

Cooperative perception enables autonomous agents to share encoded representations over
wireless communication to enhance each other’s live situational awareness. However, the
tension between the limited communication bandwidth and the rich sensor information
hinders its practical deployment. Recent studies have explored selection strategies that
share only a subset of features per frame while striving to keep the performance on par.
Nevertheless, the bandwidth requirement still stresses current wireless technologies. To
fundamentally ease the tension, we take a proactive approach, exploiting the temporal con-
tinuity to identify features that capture environment dynamics, while avoiding repetitive
and redundant transmission of static information. By incorporating temporal awareness,
agents are empowered to dynamically adapt the sharing quantity according to environment
complexity. We instantiate this intuition into an adaptive selection framework, COOPER-
TRIM, which introduces a novel conformal temporal uncertainty metric to gauge feature
relevance, and a data-driven mechanism to dynamically determine the sharing quantity. To
evaluate COOPERTRIM, we take semantic segmentation as an example task. Across multi-
ple open-source cooperative segmentation models, COOPERTRIM achieves up to 80.28%
bandwidth reduction while maintaining a comparable accuracy. Relative to other selection
strategies, COOPERTRIM also improves IoU by as much as 45.54% with up to 72% less
bandwidth. Qualitative results show COOPERTRIM gracefully adapt to environmental dy-
namics, demonstrating the flexibility and paving the way towards real-world deployment.

1 INTRODUCTION

Cooperative perception (Wang et al., 2020; Xu et al., 2023) enables autonomous agents to exchange informa-
tion about invisible or uncertain regions to enhance a range of tasks, including detection (Qiu et al., 2022),
prediction (Wang et al., 2025), mapping (Ahmad et al., 2020), and navigation (Cui et al., 2022). The benefits
of additional vantage points come at the cost of communication. Balancing bandwidth overhead and accu-
racy, modern approaches adopt intermediate (over early and late) fusion (Wang et al., 2020; Xu et al., 2023)
to share task-oriented lightweight encoded representations of the environment. To further improve commu-
nication efficiency in intermediate fusion, three strategies have been proposed: compression (Wang et al.,
2020; Xu et al., 2022a), which reduces the size of the features but risks information loss if targeted at higher
compression ratio (i.e., lossy compression); selection (Hu et al., 2023; Liu et al., 2020), which transmits only
useful data or selects agents; and hybrid (Yuan et al., 2022; Yang et al., 2023), combining both for optimal
bandwidth reduction. For example, Where2comm (Hu et al., 2022) uses threshold-based spatial confidence
maps for feature selection, UniSense (Ren et al., 2025) focuses on uncertainty-driven data exchange, and
SwissCheese (Xie et al., 2024) exploits the disparity in semantic information on features between different
spatial regions on different channels to perform fixed threshold-based selection. While these approaches
reduce the exchange volume, the bandwidth demands still strain wireless technologies (Mo et al., 2025).
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Fundamentally, the mismatch between limited communication bandwidth and the richness of sensor infor-
mation hinders the practical deployment of cooperative perception. To address this mismatch, we take a
proactive adaptation approach. Our intuition is twofold: 1) rather than sharing a smaller yet static volume
of features per frame, sharing should be made on demand at a variable volume depending on the recipient’s
cognitive challenges for its surrounding environment; 2) rather than sharing frame by frame independently,
cooperation should leverage the temporal context just as the rest of the autonomy stack does to enhance
temporal comprehension while reducing repetitive and redundant sharing. Consider a scenario where the
ego (recipient) agent is confident in most features from its sensor data, but collaborating agents may have
varying confidence levels of elements in the scene. In such cases, the ego can learn from its temporal context
to request only the uncertain features. For instance, a complex scenario (e.g.,multiple road intersections)
should demand more features over consecutive frames than a simple scenario (e.g.,no intersections).

Building on top of these insights, in this paper, we present COOPERTRIM, an adaptive cooperative perception
framework, which introduces a novel conformal temporal uncertainty metric to gauge feature relevance,
and a data-driven mechanism to dynamically determine the sharing quantity. Our methodology employs
temporal uncertainty estimation using conformal prediction to identify feature deviations across frames,
alongside an uncertainty-based attention mechanism to weigh feature importance. It dynamically selects
relevant features with adaptive thresholds based on environmental needs and facilitates efficient feature
exchange between agents to minimize bandwidth usage while ensuring robust fusion of multi-source data.

We instantiate the framework using semantic segmentation as an example cooperative task, and evaluate
it against existing open-source cooperative segmentation models (Xu et al., 2023; 2022b; Li et al., 2021)
and existing selection strategies. To our knowledge, this is the first work on selective cooperative semantic
segmentation. Unlike detection or tracking, which can work with sparse, object-level features, segmentation
demands pixel-level granularity for exact shapes and boundaries, which poses more challenges for bandwidth
reduction—a difficult case to address the bandwidth-information mismatch. We evaluate COOPERTRIM
through extensive benchmarking on the OPV2V dataset (Xu et al., 2022b), assessing the performance and
network overhead across multiple open-source cooperative segmentation models, as well as against other
existing selection strategies. Furthermore, we perform a wider network overhead analysis by comparing the
bandwidth consumption against 10 existing baselines. To understand the efficacy of the adaptation design,
we evaluate data request variations across frames with respect to environment complexity.

In summary, COOPERTRIM makes the following contributions:

• We propose a learning framework to proactively adapt feature selection by dynamically determining fea-
ture relevance and sharing quantity—a transformative deviation from existing static selection frameworks.

• We propose a novel relevance assessment strategy by quantifying temporal uncertainty using conformal
prediction to compare features across frames. Coupled with the conformal assessment using an adaptive
quantile threshold based on conformity score, we use an attention mechanism with an adaptive mask
threshold for quantity estimation.

• Our instantiation of COOPERTRIM on cooperative segmentation is the first work that demonstrates feature
selection on this task. Segmentation requires transmitting large volumes of data, making selective percep-
tion challenging under bandwidth constraints. Our approach addresses this by intelligently selecting and
prioritizing critical features, reducing data transmission while preserving segmentation accuracy.

• We employ a training method inspired by the ϵ-Greedy exploration strategy from reinforcement learn-
ing (Liu et al., 2022), which balances exploration and exploitation effectively in training, resulting in
lower bandwidth and higher task performance.

• Our evaluation shows that COOPERTRIM achieves up to 80.28% bandwidth reduction while maintaining
a comparable accuracy. Relative to other selection strategies, COOPERTRIM also improves IoU by as
much as 45.54% with up to 72% less bandwidth. Quantitative frame-by-frame inspection further validates
the flexibility, demonstrating graceful adaptation to environmental dynamics and paving the way towards
real-world deployment.
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2 RELATED WORK

Cooperative Perception. Resilient operation of autonomous agents depends on their onboard perception,
which is often limited by blind spots and uncertainties. A range of cooperative perception mechanisms
have been proposed, from early fusion and edge assistance (Zhang et al., 2021) sharing raw sensor data,
to late fusion of regional processing results while missing holistic scene details. Most prominently are
intermediate feature fusion methods (Chen et al., 2019), however, there remains a gap between bandwidth
demand and availability. V2VNet (Wang et al., 2020) uses compressed LiDAR BEV features and GNN
aggregation, yet often transmitting redundant data. AttFuse (Xu et al., 2022b) and DiscoNet (Li et al.,
2021) offer attentive fusion and collaboration graphs, but lack intelligent data selection. CoBEVT (Xu et al.,
2023) integrates multi-vehicle BEV features via SinBEVT and FuseBEVT for segmentation, yet struggles
with inefficient feature compression. Unlike these approaches, COOPERTRIM selectively transmits essential
perception features, reducing bandwidth usage, improving network efficiency, and maintaining accuracy
under constraints.

Network Efficient Cooperation. The literature on communication-efficient cooperative perception includes
Compression-based, Selection-based, and Hybrid approaches. We focus on Selection-based methods due to
practical wireless broadcasting needs. Where2comm (Hu et al., 2022) uses threshold based spatial con-
fidence maps for selection, ignoring uncertainties and relying on impractical multi-round transmission.
UMC (Wang et al., 2023) applies entropy-based selection but sending full maps is computationally expen-
sive. CenterCOOP (Zhou et al., 2023) transmits center-point LiDAR features via mutual information, im-
proving bandwidth by 10% on DAIR-V2X while sharing all embeddings. BM2CP (Zhao et al., 2023) shares
modality-guided features, overlooking sensor noise. UniSense (Ren et al., 2025) selects critical regions via
uncertainty, missing occlusion uncertainties and incurring high bandwidth costs. SwissCheese (Xie et al.,
2024) uses fixed thresholds for selection, lacking adaptability to dynamic scenarios. Different from meth-
ods with fixed thresholds or static selection strategy, COOPERTRIM adapts feature selection to environment
dynamics, prioritizes uncertainty-driven critical features using past confident data, balancing bandwidth ef-
ficiency and perception performance resilience.

3 METHODOLOGY AND SOLUTION

3.1 PROBLEM STATEMENT

We address the challenge of selective feature sharing for cooperative perception tasks. Rather than design-
ing a new model, we aim at a selection framework that is applicable to a set of similar feature-sharing
mechanisms (Xu et al. (2023); Hu et al. (2022); Li et al. (2021). In particular, we focus on the segmenta-
tion task. Given a set of features F = {f1, f2, . . . , fn} extracted from input data, where n is the number
of feature channels in latent representations, our objective is to identify a subset S ⊆ F such that the
number of selected features |S| is minimized, while the accuracy of the segmentation task, denoted as a
function A(S) of the selected features, is maximized. Formally, the optimization problem can be expressed
as minS⊆F |S|,maxS⊆F A(S). This bi-objective optimization problem poses significant challenges due to
the inherent tension between feature abundance and bandwidth limitations.

3.2 COOPERTRIM DESIGN

To resolve that tension, we present COOPERTRIM, a selective cooperative perception framework that learns
to enhance representation learning via temporal uncertainty-driven feature selection for bandwidth-efficient,
accurate perception in multi-agent systems. COOPERTRIM addresses two key research questions:
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(a) COOPERTRIM Overview (b) Cross-Attention Module

Figure 1: (a) COOPERTRIM Overview. COOPERTRIM conducts feature learning, followed by an uncertainty-
based selection module using learned features. It estimates adaptive temporal uncertainty (via learned con-
fidence) for each feature, performs cross-attention-based feature weighting, and selects features using a
learned threshold. The ego then broadcasts a request vector for selected features, reconstructs received CAV
data into full features, fuses them, and sends them to the task head for final results. (b) Cross-Attention
Module uses learned projections of temporal uncertainty as queries, and feature projections as keys and val-
ues. These matrices pass through an attention module, and a learned threshold at the final output generates
a binary mask for selected channels.

• Relevance. If the bandwidth does not permit all features to be shared, what are the most essential features
that are impactful to downstream tasks? The relevance is inevitably recipient-centric, which demands the
recipient vehicle to assess its field-of-view visibility, perception uncertainty, and environment dynamics.

• Quantity. If most relevant features are prioritized, where is the diminishing return point to stop sharing?
Such quantity sweet spot may be dependent on both scene- and task-complexity, which demands dynamic
runtime adaptation, a sophistication in COOPERTRIM framework design.

COOPERTRIM leverages two key insights in addressing the above research questions. i) Temporal Uncer-
tainty as Relevance. Unlike conventional approaches Ren et al. (2025); Xie et al. (2024); Hu et al. (2022),
which quantify the feature relevance of each individual frame, we put the features in their temporal contexts,
and quantify the temporal uncertainty (e.g., introduced by scene dynamics, changing lighting conditions,
occlusions) as relevance to determine sharing priority. We use conformal prediction to better assess the tem-
poral uncertainty in continuous frames. ii) Environment Adaptivity. Adapting to environment dynamics, we
introduce two learned parameters: a data-driven uncertainty threshold used in the uncertainty estimation, and
a data-driven attention mask threshold, to adjust the runtime sharing quantity for each frame. This flexibil-
ity empowers COOPERTRIM to scale gracefully while maintaining efficient bandwidth utilization. Figure 1
shows an architectural overview of COOPERTRIM. We describe the components in detail.

Conformal Temporal Uncertainty. COOPERTRIM takes encoded representations from sensor data, con-
textualizes them within the ego agent’s recent memory, and identifies the uncertain ones as candidates for
enhancement through cooperation. Specifically, given current frame feature Ft ∈ RH′×W ′×D, encoded
from sensor input Xt ∈ RH×W×C , it calculates conformity scores by comparing the feature Ft against the
fused features from previous frames, denoted as distance function St = d(Ft, F

fused
t−1 ). Then, to use con-

formal prediction to assess the features’ relevance, we introduce a learnable quantile threshold q, and apply
a cross-attention mechanism between the features and the ranges of those scores above the threshold (i.e.,
St(f) > q) to obtain the relevance metric Rt.
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Data-driven Quantity Cutoff. In order to adapt to environment dynamics, we introduce a mechanism to
determine the diminishing return point of the sharing volume. Specifically, we introduce a second learnable
threshold τ such that we only share those features whose relevance score is above the threshold (Rt > τ ).
In situations where the perception complexity is high, the range of conformity score will increase due to
more temporally diverse feature encodings, which, in turn, yields higher relevance scores. More features
would have relevance scores above the learned threshold; the communication of which incurs higher band-
width usage. On the contrary, temporal consistency will result in low relevance scores among all features,
which yields low sharing volume. Moreover, the temporal consistency not only comes from the low envi-
ronment dynamics, but also comes from perception stability—COOPERTRIM leverages this stability to save
bandwidth as well.

Feature Exchange and Fusion. To communicate recipient-centric relevance assessment, the ego agents
send requests for selected high-relevance features. Following prior work assumptions of precise pose es-
timation (Xu et al., 2023), responders use spatial transformation (Jaderberg et al., 2015) to match ego’s
perspective and share the requested features. The ego agent blends received features into its own feature
map before passing them along to the fusion decoders and task heads.

3.3 TRAINING

Loss Function. To attain the joint goal of bandwidth efficient transmission and task performance, the
training of COOPERTRIM can be formulated as a constrained optimization problem defined as follows:

θ∗ = argmin
θ

L(C(θ)), s.t. P (C(θ)) = C1.6 (1)

where C1.6 represents the percentage of channels corresponding to 1.6 Mbps (Mo et al., 2025), C(θ) repre-
sents the channels selected, P (·) represents the precentage of channels selected, L(·) represents the percep-
tion task loss. To solve this, we use the Lagrangian formulation, defining the total loss as

θ∗ = argmin
θ

L(C(θ)) + λ · (P (C(θ))− C1.6) (2)

where λ acts as a Lagrange multiplier dynamically adjusted (explained in Appendix A.1) to enforce the
constraint over time. The strategy starts with unconstrained optimization for initial learning, then introduces
and intensifies constraint enforcement over time, using periodic strong adjustments for major deviations and
steady increments for fine-tuning.

Training Strategy. For training the loss function in COOPERTRIM, we use an ϵ-Greedy method inspired
by the reinforcement learning ϵ-greedy exploration strategy (Liu et al., 2022). However, we make some
adaptations for our training purpose. With ϵ probability we request entire feature set and with (1 − ϵ)
probability we exploit the knowledge. By exploiting the knowledge, we request the data as per learned
thresholds (i.e. conformal predictions’s quantile threshold q and cross-attention module’s mask threshold τ ).
We see considerable improvement in bandwidth requirement with this training method. Occasional updates
considering all features can stabilize the optimization trajectory by smoothing out erratic updates caused
by noise from partial features. This can prevent the model from diverging or oscillating around suboptimal
points, leading to smoother convergence to a better solution. The ϵ-Greedy method balances exploration
(full data Dfull with probability ϵ) and exploitation (partial data Dpartial with probability (1 − ϵ)). This
balance stabilizes optimization by reducing gradient noise through periodic full-data updates. As formalized
in Theorem 1, this strategy reduces both the bias and variance of the gradient estimator compared to using
only partial data. The expected gradient

E[∇L] = ϵ · E[∇L(Dfull)] + (1− ϵ) · E[∇L(Dpartial)] (3)

ensures smoother convergence while adhering to bandwidth constraints. We formalize the effectiveness of
the ϵ-Greedy training strategy in the following theorem.
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(a) Dynamic (b) Static: Road (c) Static: Lane

Figure 2: “Trimming” existing cooperative segmentation baselines, COOPERTRIM reduces bandwidth sig-
nificantly while preserving accuracy across different semantics (i.e., dynamic, static road, and static lane.)

Theoretical Analysis. We draw a theoretical analysis based on the following assumptions. (1) Perfect trans-
mission conditions (no noise introduced during transmission, so any bias or variance arises solely from the
data used), (2) A complete dataset Dfull and a subset Dpartial ⊆ Dfull representing partial data, (3) The true
gradient is ∇L(Dfull), reflecting the loss over the entire dataset, (4) The inherent variances of the gradients
are Var(∇L(Dfull)) = σ2

full and Var(∇L(Dpartial)) = σ2
partial, with σ2

full < σ2
partial due to the more comprehen-

sive nature of full data reducing stochasticity.

Theorem 1 (Effectiveness of ϵ-Greedy Training). An ϵ-greedy training strategy that computes the gradient
of Loss L using full data (Dfull) with probability ϵ and partial data (Dpartial) with probability (1− ϵ) reduces
both the bias and the variance of the gradient estimator compared to using only partial data. Specifically,
the bias is scaled down by a factor of (1 − ϵ), and the variance is reduced by a term proportional to
ϵ · (σ2

partial − σ2
full).

Proof. Detailed proof provided in Appendix A.2.

4 EXPERIMENTS

We conduct six experiments to demonstrate COOPERTRIM’s efficiency in task performance and bandwidth
usage. Referred to as COOPERTRIM, we apply COOPERTRIM to CoBEVT (Xu et al., 2023) for evaluation,
focusing on semantic segmentation on the OPV2V (Xu et al., 2022b) dataset. We choose CoBEVT for its
robust performance in Cooperative Segmentation compared to existing works. COOPERTRIM is the first to
address selective cooperative perception in semantic segmentation.

“Trimming” Existing Cooperative Perception Baselines. In Figure 2, we assess performance and
bandwidth (BW) by applying our temporal uncertainty-aware method COOPERTRIM to three methods:
CoBEVT (Xu et al., 2023), Attfuse (Xu et al., 2022b), and DiscoNet (Li et al., 2021). We implement COOP-
ERTRIM on these methods after removing any existing compression techniques. This evaluation compares
performance accuracy between COOPERTRIM-based selection and the original methods (without compres-
sion/selection), and reports bandwidth usage percentages relative to the originals (40 Mbps). For Dynamic
and Static segmentation combined, COOPERTRIM-CoBEVT, COOPERTRIM-Attfuse, and COOPERTRIM-
DiscoNet use average bandwidths of 27.9%, 21.07%, and 10.18%, respectively, corresponding to 11.16
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Table 1: Feature Selection Strategy Comparison: Accuracy and Bandwidth
Accuracy (IoU, %) Bandwidth

Baselines Dynamic Static Lane Static Road (Mbps)
Where2Comm (Hu et al., 2022) 8.62 20.40 36.46 39.6
SwissCheese (Xie et al., 2024) 35.71 12.81 32.07 10

COOPERTRIM (ours) 54.03 24.45 44.38 11.16

Mbps, 8.4 Mbps, and 4.07 Mbps based on our 128x32x32 latent representation size. We observe that COOP-
ERTRIM achieves comparable performance accuracies to the original methods despite significantly lower
bandwidth consumption, with an average 80.28% improvement in network overhead over the baselines.
Detailed values are in Appendix Table 3.

Selection Strategy Comparison. Table 1 presents the evaluation of COOPERTRIM against selection-based,
network-efficient baselines. Our feature latent representation is sized at 128x32x32, with percentages and
bandwidths reported accordingly. We implement two algorithms: Where2Comm (Hu et al., 2022) (feature
and agent selection, adapted for segmentation with a 0.4 threshold on batch confidence map) and Swiss-
Cheese (Xie et al., 2024) (feature selection over spatial and channel features, implemented in our camera-
based segmentation framework as the official code is unavailable). For SwissCheese, we set bandwidth
at 10 Mbps (comparable to COOPERTRIM, equating to 25% of our latent representation size) to assess
segmentation performance. COOPERTRIM achieves lower bandwidth usage and better performance than
Where2Comm, and outperforms SwissCheese in dynamic and static accuracy at similar bandwidth levels.

Figure 3: Across-the-board Bandwidth Comparison.
C: Compression. FS: Feature Selection. AS: Agent
Selection. COOPERTRIM consumes the lowest band-
width among baselines.

Network Overhead Comparison. We compare
the network overhead of COOPERTRIM with used
bandwidths of a broader range of existing coopera-
tive perception works. We evaluate Feature Selec-
tion (FS) algorithms UniSense (Ren et al., 2025),
SwissCheese (Xie et al., 2024), Compression-based
(C) algorithms STAMP (Gao et al.), CoBEVT (Xu
et al., 2023), V2X-ViT (Xu et al., 2022a),
V2VNet (Wang et al., 2020), FCooper (Chen et al.,
2019), AttFuse (Xu et al., 2022b), DiscoNet (Li
et al., 2021), and Agent+Feature Selection (AS+FS)
method Where2Comm (Hu et al., 2022). Band-
width comparisons use non-compressed versions
(post-selection if applicable) for fairness, report-
ing original bandwidths from papers or calculating
based on our 128x32x32 latent representation size
when unspecified. Figure 3 show COOPERTRIM
has the lowest network overhead (11.6Mbps) com-
pared to baselines.

Environment Adaptation. Figure 4 shows the inference results for COOPERTRIM over multiple frames.
We see variations in bandwidth implying variable feature request in each frame. The figure shows increased
data requests correlate with higher scene complexity. In segmenting the dynamic objects, an increase in
complexity can be referred to criticality in positioning of an increased amount of vehicles and traffic partic-
ipants. Similarly, an increase in complexity in the static task can be referred to an increase in the number
of intersections or lane orientations in the scene. Figure 4 shows that in both cases, i.e., increased amount
of vehicles, and increased topological complexity in the roadways, COOPERTRIM accordingly shares more
data to preserve task performance, whereas in other cases, gracefully adapts to request less sharing, saving
the precious bandwidth to other agents in need.
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Dynamic
Frame 1200 Frame 200 Frame 1700

Static
Frame 900
Low BW

Frame 250
Medium BW

Frame 1700
High BW

Figure 4: Environment Adaptation Results. Increased data requests correlate with higher scene complexity.
For dynamic objects, complexity in number and positioning increases in Frames 1200, 200, and 1700. For
static road elements, complexity increases in Frames 900, 250, and 1600, with more intersections and lane
orientations. Vertical lines in column (a) at Frames 1200, 200, 1700 (dynamic) and 900, 250, 1700 (static)
mark frames linked to visualizations in columns (b), (c), and (d) for each category.

Training Methods Comparison. Table 2 shows the comparative study for training COOPERTRIM using
different training methods, all using the loss function in Section 3.3. (1) COOPERTRIM is trained with ϵ-
Greedy (EG) based fine-tuning (FT) using Conformal Prediction (CP) for temporal uncertainty estimation
[Section 3.3], termed EG + CP + FT . (2) The first method uses Standard Deviation (SD) for spatial
uncertainty estimation over latent feature channels (EG+SD+FT ), showing higher network consumption
for dynamic objects (35.64% vs. COOPERTRIM at 32.04%) due to lack of temporal consideration in SD,
and 6% lower performance in static road segmentation. (3) The second method employs a basic curriculum
for fine-tuning (Curriculum+ CP + FT ) with four stages: (a) basic fine-tuning, (b) cross-attention with
fixed mask threshold and CP confidence, (c) adaptive mask threshold with fixed CP confidence, and (d) fully
adaptive (learned mask and CP confidence) CP-guided selection. This yields good performance but higher
bandwidth use (49% dynamic, 51% static). (4) The final method omits EG in FT (CP + FT ), resulting
in lower accuracy (static road 8% below COOPERTRIM). EG’s occasional full-feature updates stabilize
optimization by promoting smoother convergence.

Table 2: Training Methods Comparison for Uncertainty Aware Training

Accuracy (IoU, %) Bandwidth (%)
Training Methods Dynamic Static Lane Static Road Dynamic Static

CP+FT 51.57 23.05 36.92 30.75 1.12
Curriculum+CP+FT 52.47 28.27 45.44 49.25 51.63

EG+SD+FT 52.55 23.69 38.45 35.64 11.03
EG+CP+FT (Ours) 54.03 24.45 44.38 32.04 23.77

Qualitative Results. Figure 5 shows the segmentation results of COOPERTRIM to analyse visually. COOP-
ERTRIM is different from CoBEVT (Xu et al., 2023) only in its feature set before fusion of muti-source
data. COOPERTRIM performs better than CoBEVT in estimating road segment, dynamic object segment,
and lane segment. This is attributed to the better feature representation achieved by COOPERTRIM selec-
tion mechanism, which reduces uncertainty in feature, by focusing on selected data transmission rather than
transmitting the entire dataset for fusion.

8
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Ground Truth

CoBEVT

COOPERTRIM

Figure 5: Qualitative Comparison of Ground Truth, CoBEVT, and CooperTrim. CooperTrim performs better
than CoBEVT in estimating dynamic object segments (Column 1 and 4), road segments (Column 2 and 5),
and lane segments (Column 3 and 5).

5 CONCLUSION

We present COOPERTRIM, an adaptive feature selection framework in cooperative perception, which en-
hances representation learning through temporal uncertainty-driven feature selection for bandwidth-efficient,
accurate perception in multi-agent systems. It addresses key challenges of relevance, identifying the most
impactful features for downstream tasks, and quantity, determining the optimal point to stop sharing based
on scene and task complexity. We employed an ϵ-greedy training method that optimizes the bandwidth-
performance balance by facilitating effective exploration and exploitation during training. Across multiple
open-source cooperative segmentation models, COOPERTRIM achieves up to 80.28% bandwidth reduction
with comparable accuracy, improves IoU by 45.54%, and uses 72% less bandwidth than other selection
strategies. Quantitative frame-by-frame inspection validates its flexibility and adaptation to environmental
dynamics, paving the way for real-world deployment. COOPERTRIM suffers from the limitation that its
training assumes ideal network conditions with no consideration for transmission loss. Furthermore, due to
reliance on temporal data, frame-to-frame stabilization for the downstream task is delayed during a scene
change (e.g., moving from a straight road to turns). In future work, we plan to model network noise for lossy
transmission and extend COOPERTRIM to a lidar-based perception task.
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A APPENDIX

A.1 LAGRANGE MULTIPLIER ADJUSTMENT

This section explains the dynamic adjustment of Lagrange multiplier for training the loss in Equation 2 The
Lagrange multiplier, represented as λ, acts as a penalty term in the loss function to enforce the constraint
on the percentage of selected features. It dynamically adjusts based on training progress (epoch count) to
balance the primary perception loss (L(C(θ))) and the bandwidth constraint (P (C(θ)) = C1.6).

• Initial Phase (epoch ≤ ITC): For the first few epochs (defined by Initial Tuning Epochs ITC), λ = 0.0,
allowing the model to focus solely on minimizing perception loss without bandwidth constraints for a
strong start.

• Periodic Update (every 10th epoch after initial tuning): At every 10th epoch, λ scales exponentially
with scaling factor SF = P (C(θ))

100.0 and λ = λ · 2SF, aggressively pushing the model towards the target
constraint if far off.

• Incremental Scaling (other epochs after initial tuning): In other epochs, λ increases linearly as λ =

λ · (1 + 0.1 · ⌊ epoch−ITC
10 ⌋), ensuring a gradual push towards the constraint without abrupt loss changes.

The strategy starts with unconstrained optimization for initial learning, then introduces and intensifies con-
straint enforcement over time, using periodic strong adjustments for major deviations and steady increments
for fine-tuning.

A.2 MATHEMATICAL PROOF FOR EFFECTIVENESS OF ϵ-GREEDY TRAINING

We provide a detailed proof to demonstrate the effectiveness of the ϵ-greedy training strategy (Section 3.3)
by analyzing the bias and variance of the gradient estimator. This proof shows reductions in both metrics
compared to a baseline of using only partial data. We assume perfect transmission, meaning all variability
and bias stem from the inherent properties of the data (full or partial) rather than external noise.

1. SETUP AND NOTATION

• Datasets: Let Dfull represent the complete dataset, and Dpartial be a subset of Dfull, representing partial
data.

• True Gradient: The target gradient to estimate is ∇L(Dfull), reflecting the loss over the entire dataset.
• Transmission Assumption: Under perfect transmission, computed gradients are unaffected by external

noise, so bias or variance arises solely from the data used.
• ϵ-Greedy Gradient Estimator: Define the gradient estimator under the ϵ-greedy strategy as ∇Lϵ, which

is:
– ∇L(Dfull) with probability ϵ
– ∇L(Dpartial) with probability 1− ϵ

• Variance Definitions: Let the inherent variance of gradients be Var(∇L(Dfull)) = σ2
full and

Var(∇L(Dpartial)) = σ2
partial, where σ2

full < σ2
partial due to the comprehensive nature of full data reduc-

ing stochasticity.

2. BIAS ANALYSIS OF THE GRADIENT ESTIMATOR

The bias of an estimator is the difference between its expected value and the true value. Here, the true
gradient is ∇L(Dfull), as full data provides the most accurate representation of the loss landscape.

12
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EXPECTED VALUE OF THE ESTIMATOR

The expected value of the ϵ-greedy gradient estimator is:

E[∇Lϵ] = ϵ · E[∇L(Dfull)] + (1− ϵ) · E[∇L(Dpartial)]

BIAS CALCULATION

The bias is defined as:
Bias(∇Lϵ) = E[∇Lϵ]− E[∇L(Dfull)]

Substituting the expected value:

Bias(∇Lϵ) = (ϵ · E[∇L(Dfull)] + (1− ϵ) · E[∇L(Dpartial)])− E[∇L(Dfull)]

Simplifying step-by-step:

Bias(∇Lϵ) = ϵ · E[∇L(Dfull)] + (1− ϵ) · E[∇L(Dpartial)]− E[∇L(Dfull)]

= (ϵ− 1) · E[∇L(Dfull)] + (1− ϵ) · E[∇L(Dpartial)]

= (1− ϵ) · (E[∇L(Dpartial)]− E[∇L(Dfull)])

Thus, the bias expression is:

Bias(∇Lϵ) = (1− ϵ) · (E[∇L(Dpartial)]− E[∇L(Dfull)])

3. EXPLANATION OF SPECIFIC CASES AND BIAS SCALING

We explore the implications of the bias expression under different scenarios and explain the origin of the
bias scaling by 1− ϵ.

CASE 1: UNBIASED PARTIAL DATA GRADIENT

If the partial data gradient is unbiased, i.e., E[∇L(Dpartial)] = E[∇L(Dfull)], the difference term is zero:

E[∇L(Dpartial)]− E[∇L(Dfull)] = 0

Thus:
Bias(∇Lϵ) = (1− ϵ) · 0 = 0

In this ideal scenario, there is no bias in the ϵ-greedy estimator regardless of ϵ. This occurs when Dpartial
perfectly represents Dfull, which is rare in practice due to sampling variability.

CASE 2: BIASED PARTIAL DATA GRADIENT AND ORIGIN OF BIAS SCALING

If there is a systematic difference, i.e., E[∇L(Dpartial)] ̸= E[∇L(Dfull)], define the inherent bias of using
only partial data as:

Bias(∇L(Dpartial)) = E[∇L(Dpartial)]− E[∇L(Dfull)]

Substituting into the bias expression:

Bias(∇Lϵ) = (1− ϵ) · Bias(∇L(Dpartial))

13
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Considering the magnitude of bias:

|Bias(∇Lϵ)| = (1− ϵ) · |Bias(∇L(Dpartial))|

Since 0 ≤ ϵ ≤ 1, the factor 1− ϵ < 1 for any ϵ > 0, implying:

|Bias(∇Lϵ)| < |Bias(∇L(Dpartial))|

Origin of Scaling: The factor 1 − ϵ comes from the probabilistic weighting in the ϵ-greedy strategy. The
expected gradient is a weighted average where the partial data gradient (carrying inherent bias) is weighted
by 1− ϵ, and the unbiased full data gradient is weighted by ϵ. Thus, the contribution of the biased gradient
is reduced, scaling the bias by 1− ϵ.

4. SUMMARY OF BIAS REDUCTION MECHANISM

• Scaling Effect: The bias scales by 1− ϵ due to the probabilistic blending of full and partial data gradients.
• Extreme Cases:

– When ϵ = 0, only partial data is used, and the bias equals the full inherent bias of the partial data
gradient.

– When ϵ > 0, incorporating full data reduces the weight of the biased partial data gradient to 1 − ϵ,
scaling down the bias.

• Bias Comparison: The inequality |Bias(∇Lϵ)| < |Bias(∇L(Dpartial))| holds for any ϵ > 0, showing that
even a small probability of using full data mitigates bias.

This mechanism highlights the ϵ-greedy approach’s advantage in balancing computational efficiency (using
partial data) with accuracy (using full data to correct bias).

3. VARIANCE ANALYSIS OF THE GRADIENT ESTIMATOR

The variance of the gradient estimator captures the variability in the updates, which affects training stability.
Using the variance identity Var(X) = E[X2] − (E[X])2, we derive the variance of the ϵ-greedy estimator.
The expected value of the squared gradient is the weighted average of the expected squared gradients from
each component.

STEP 1: EXPECTED SQUARED GRADIENT

Let’s denote the gradient choice as a random variable determined by the ϵ-greedy policy. The squared
gradient’s expectation is:

E[(∇Lϵ)
2] = ϵ · E[(∇L(Dfull))

2] + (1− ϵ) · E[(∇L(Dpartial))
2]

This reflects that:

• With probability ϵ, the gradient is ∇L(Dfull), so the squared gradient is (∇L(Dfull))
2.

• With probability 1− ϵ, the gradient is ∇L(Dpartial), so the squared gradient is (∇L(Dpartial))
2.

STEP 2: RELATING EXPECTATION OF SQUARES TO VARIANCE

Recall that for any random variable X , the expectation of the square is:

E[X2] = Var(X) + (E[X])2

Applying this to the full and partial data gradients:

14
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• For the full data gradient:

E[(∇L(Dfull))
2] = Var(∇L(Dfull)) + (E[∇L(Dfull)])

2

where Var(∇L(Dfull)) = σ2
full.

• For the partial data gradient:

E[(∇L(Dpartial))
2] = Var(∇L(Dpartial)) + (E[∇L(Dpartial)])

2

where Var(∇L(Dpartial)) = σ2
partial.

Substituting these into the expression for E[(∇Lϵ)
2]:

E[(∇Lϵ)
2] = ϵ ·

(
σ2

full + (E[∇L(Dfull)])
2
)

+ (1− ϵ) ·
(
σ2

partial + (E[∇L(Dpartial)])
2
)

STEP 3: SQUARED EXPECTED GRADIENT

From the bias analysis, the expected gradient is:

E[∇Lϵ] = ϵ · E[∇L(Dfull)] + (1− ϵ) · E[∇L(Dpartial)]

Squaring this, we get:

(E[∇Lϵ])
2 = (ϵ · E[∇L(Dfull)] + (1− ϵ) · E[∇L(Dpartial)])

2

= ϵ2 · (E[∇L(Dfull)])
2

+ (1− ϵ)2 · (E[∇L(Dpartial)])
2

+ 2 · ϵ · (1− ϵ) · E[∇L(Dfull)] · E[∇L(Dpartial)]

STEP 4: COMPUTE THE VARIANCE VAR(∇Lϵ)

Using the variance identity Var(X) = E[X2] − (E[X])2, we subtract the squared expected gradient from
the expected squared gradient:

Var(∇Lϵ) = E[(∇Lϵ)
2]− (E[∇Lϵ])

2

Substituting the expressions:

Var(∇Lϵ) =
[
ϵ ·

(
σ2

full + (E[∇L(Dfull)])
2
)
+ (1− ϵ) ·

(
σ2

partial + (E[∇L(Dpartial)])
2
)]

−
[
ϵ2 · (E[∇L(Dfull)])

2 + (1− ϵ)2 · (E[∇L(Dpartial)])
2

+2 · ϵ · (1− ϵ) · E[∇L(Dfull)] · E[∇L(Dpartial)]]

Grouping like terms:

• Terms involving (E[∇L(Dfull)])
2:

ϵ · (E[∇L(Dfull)])
2 − ϵ2 · (E[∇L(Dfull)])

2 = ϵ · (1− ϵ) · (E[∇L(Dfull)])
2

• Terms involving (E[∇L(Dpartial)])
2:

(1− ϵ) · (E[∇L(Dpartial)])
2 − (1− ϵ)2 · (E[∇L(Dpartial)])

2 = (1− ϵ) · ϵ · (E[∇L(Dpartial)])
2

• Cross terms involving E[∇L(Dfull)] · E[∇L(Dpartial)]:

−2 · ϵ · (1− ϵ) · E[∇L(Dfull)] · E[∇L(Dpartial)]
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• Variance terms:
ϵ · σ2

full + (1− ϵ) · σ2
partial

Combining these, the variance becomes:

Var(∇Lϵ) = ϵ · σ2
full + (1− ϵ) · σ2

partial

+ ϵ · (1− ϵ) · (E[∇L(Dfull)])
2

+ (1− ϵ) · ϵ · (E[∇L(Dpartial)])
2

− 2 · ϵ · (1− ϵ) · E[∇L(Dfull)] · E[∇L(Dpartial)]

The last three terms can be factored as a square:

ϵ · (1− ϵ) ·
[
(E[∇L(Dfull)])

2 + (E[∇L(Dpartial)])
2 − 2 · E[∇L(Dfull)] · E[∇L(Dpartial)]

]
This simplifies to:

ϵ · (1− ϵ) · (E[∇L(Dfull)]− E[∇L(Dpartial)])
2

Thus, the final expression for the variance is:

Var(∇Lϵ) = ϵ · σ2
full + (1− ϵ) · σ2

partial

+ ϵ · (1− ϵ) · (E[∇L(Dfull)]− E[∇L(Dpartial)])
2

INTERPRETATION OF VARIANCE COMPONENTS

• The first two terms represent the weighted average of the variances: ϵ · σ2
full + (1 − ϵ) · σ2

partial. Since
σ2

full < σ2
partial, this weighted average is less than σ2

partial for any ϵ > 0:

ϵ · σ2
full + (1− ϵ) · σ2

partial = σ2
partial − ϵ · (σ2

partial − σ2
full) < σ2

partial

because σ2
partial − σ2

full > 0.

• The third term, ϵ · (1− ϵ) · (E[∇L(Dfull)]− E[∇L(Dpartial)])
2, accounts for additional variance due to the

difference in expected gradients (bias between full and partial data). If the bias is small (i.e., the expected
gradients are similar), this term is negligible. Even if there is some bias, for small to moderate values of ϵ,
the reduction in the weighted variance often dominates, leading to an overall variance lower than σ2

partial.

• Therefore, Var(∇Lϵ) < σ2
partial under typical conditions, indicating that the ϵ-greedy strategy reduces

variance compared to using only partial data.

4. COMBINED EFFECT ON TRAINING

• Bias Reduction: As shown, the bias of the gradient estimator is reduced by a factor of (1− ϵ) compared
to using only partial data, pulling the expected gradient closer to the true gradient E[∇L(Dfull)]. This
improves the accuracy of the optimization direction, leading to better convergence toward the true optimum
of L.

• Variance Reduction: The variance of the gradient estimator is reduced due to the incorporation of lower-
variance full data gradients with probability ϵ, leading to more stable updates and smoother training tra-
jectories. This reduces the risk of divergence or oscillation during optimization.

• Under perfect transmission, with no external noise, the ϵ-greedy strategy effectively leverages the strengths
of full data (lower bias and variance) while maintaining efficiency by using partial data most of the time,
achieving a favorable trade-off.
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Future Work in Epsilon-Greedy Training Strategy:
Future work would focus on modeling the impact of imperfect transmission in the epsilon-greedy strat-
egy, where data (full or partial) may be corrupted, delayed, or lost during communication. This requires
developing a network model that captures factors such as packet loss, latency, and bandwidth constraints.
By incorporating these elements, we can analyze how transmission imperfections affect the bias and variance
of the gradient estimator ∇Lϵ.

A.3 PRELIMINARY EXPERIMENTS FOR UNCERTAINTY BASED SELECTION ON SEGMENTATION TASK

(a) Dynamic (b) Static Lane (c) Static Road

Figure 6: Motivation for COOPERTRIM. Comparison of baseline, random channel selection and SD-based
selection (SDS) for uncertainty guidance show uncertainty-guided selection often outperforms random se-
lection, though baseline performance remains higher consistently. COOPERTRIM addresses this accuracy
gap through its proposed adaptive uncertainty driven selection method.

A.4 ”TRIMMING” COOPERATIVE SEGMENTATION BASELINES - ADDITIONAL

Additional presentation for Section 4 Cooperative Segmentation Baseline experiments in Table 3. COOPER-
TRIM maintains comparable performance accuracies while reducing bandwidth significantly, achieving an
average 80.28% improvement in network overhead over the baselines.

Table 3: Application of COOPERTRIM to Existing Cooperative Segmentation Methods. “Baseline” and
“Ours” (COOPERTRIM) show the respective IOU %, while “BW” shows COOPERTRIM bandwidth usage.

Dynamic Static Lane Static Road Avg.
Methods Baseline Ours BW Baseline Ours BW Baseline Ours BW BW (Mbps)
CoBEVT 50.23 54.03 32.04% 23.79 24.45 23.77% 45.28 44.38 23.77% 11.16

AttFuse 32.20 30.90 24.76% 24.14 23.93 17.39% 34.86 36.22 17.39% 8.4
DiscoNet 30.03 30.80 10.65% 20.72 22.05 9.72% 38.43 40.02 9.72% 4.07

A.5 TRAINING METHODS COMPARISON - ADDITIONAL

Corresponding to Section 4 Training Methods Comparison, Table 2 presents the training methods compara-
tive study for training COOPERTRIM, all using the loss function from Section 3.3.
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(a) Dynamic (b) Static Road (c) Static Lane

Figure 7: Training Methods Comparison. COOPERTRIM balances task performance and network overhead
better than other baselines.

A.6 LLM USAGE

In the preparation of this paper, Large Language Models (LLMs) were utilized as a supportive tool for
polishing the writing and implementing minor code modifications at specific points. However, the core
research ideas, code design, and overall framework are entirely our own. The LLMs played no role in the
ideation or conceptualization of the research.
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