

000 001 002 003 004 005 COOPERTRIM: ADAPTIVE DATA SELECTION FOR 006 UNCERTAINTY-AWARE COOPERATIVE PERCEPTION 007 008 009

010 **Anonymous authors**
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046

Paper under double-blind review

ABSTRACT

Cooperative perception enables autonomous agents to share encoded representations over wireless communication to enhance each other’s live situational awareness. However, the tension between the limited communication bandwidth and the rich sensor information hinders its practical deployment. Recent studies have explored selection strategies that share only a subset of features per frame while striving to keep the performance on par. Nevertheless, the bandwidth requirement still stresses current wireless technologies. To fundamentally ease the tension, we take a proactive approach, exploiting the temporal continuity to identify features that capture environment dynamics, while avoiding repetitive and redundant transmission of static information. By incorporating temporal awareness, agents are empowered to dynamically adapt the sharing quantity according to environment complexity. We instantiate this intuition into an adaptive selection framework, COOPERTRIM, which introduces a novel conformal temporal uncertainty metric to gauge feature relevance, and a data-driven mechanism to dynamically determine the sharing quantity. To evaluate COOPERTRIM, we take semantic segmentation as an example task. Across multiple open-source cooperative segmentation models, COOPERTRIM achieves up to 80.28% bandwidth reduction while maintaining a comparable accuracy. Relative to other selection strategies, COOPERTRIM also improves IoU by as much as 45.54% with up to 72% less bandwidth. Qualitative results show COOPERTRIM gracefully adapt to environmental dynamics, demonstrating the flexibility and paving the way towards real-world deployment.

1 INTRODUCTION

Cooperative perception (Wang et al., 2020; Xu et al., 2023) enables autonomous agents to exchange information about invisible or uncertain regions to enhance a range of tasks, including detection (Qiu et al., 2022), prediction (Wang et al., 2025), mapping (Ahmad et al., 2020), and navigation (Cui et al., 2022). The benefits of additional vantage points come at the cost of communication. Balancing bandwidth overhead and accuracy, modern approaches adopt intermediate (over early and late) fusion (Wang et al., 2020; Xu et al., 2023) to share task-oriented lightweight encoded representations of the environment. To further improve communication efficiency in intermediate fusion, three strategies have been proposed: *compression* (Wang et al., 2020; Xu et al., 2022a), which reduces the size of the features but risks information loss if targeted at higher compression ratio (*i.e.*, lossy compression); *selection* (Hu et al., 2023; Liu et al., 2020), which transmits only useful data or selects agents; and *hybrid* (Yuan et al., 2022; Yang et al., 2023), combining both for optimal bandwidth reduction. For example, Where2comm (Hu et al., 2022) uses threshold-based spatial confidence maps for feature selection, UniSense (Ren et al., 2025) focuses on uncertainty-driven data exchange, and SwissCheese (Xie et al., 2024) exploits the disparity in semantic information on features between different spatial regions on different channels to perform fixed threshold-based selection. While these approaches reduce the exchange volume, the bandwidth demands still strain wireless technologies (Mo et al., 2025).

047 Fundamentally, the mismatch between limited communication bandwidth and the richness of sensor information
 048 hinders the practical deployment of cooperative perception. To address this mismatch, we take a
 049 proactive adaptation approach. Our intuition is twofold: 1) rather than sharing a smaller yet static volume
 050 of features per frame, sharing should be made on demand at a variable volume depending on the recipient's
 051 cognitive challenges for its surrounding environment; 2) rather than sharing frame by frame independently,
 052 cooperation should leverage the temporal context just as the rest of the autonomy stack does to enhance
 053 temporal comprehension while reducing repetitive and redundant sharing. Consider a scenario where the
 054 ego (recipient) agent is confident in most features from its sensor data, but collaborating agents may have
 055 varying confidence levels of elements in the scene. In such cases, the ego can learn from its temporal context
 056 to request only the uncertain features. For instance, a complex scenario (e.g., multiple road intersections)
 057 should demand more features over consecutive frames than a simple scenario (e.g., no intersections).

058 Building on top of these insights, in this paper, we present COOPERTRIM, an adaptive cooperative perception
 059 framework, which introduces a novel conformal temporal uncertainty metric to gauge feature relevance, and
 060 a data-driven mechanism to dynamically determine the sharing quantity. Our methodology employs tempo-
 061 ral uncertainty estimation using conformal prediction inspired quantile gating mechanism to identify feature
 062 deviations across frames, alongside an uncertainty-based attention mechanism to weigh feature importance.
 063 It dynamically selects relevant features with adaptive thresholds based on environmental needs and facil-
 064 itates efficient feature exchange between agents to minimize bandwidth usage while ensuring robust fusion
 065 of multi-source data.

066 We instantiate the framework using semantic segmentation as an example cooperative task, and evaluate
 067 it against existing open-source cooperative segmentation models (Xu et al., 2023; 2022b; Li et al., 2021)
 068 and existing selection strategies. To our knowledge, this is the first work on selective cooperative semantic
 069 segmentation. Unlike detection or tracking, which can work with sparse, object-level features, segmentation
 070 demands pixel-level granularity for exact shapes and boundaries, which poses more challenges for bandwidth
 071 reduction—a difficult case to address the bandwidth-information mismatch. We evaluate COOPERTRIM
 072 through extensive benchmarking on the OPV2V dataset (Xu et al., 2022b), assessing the performance and
 073 network overhead across multiple open-source cooperative segmentation models, as well as against other
 074 existing selection strategies. Furthermore, we perform a wider network overhead analysis by comparing the
 075 bandwidth consumption against 10 existing baselines. To understand the efficacy of the adaptation design,
 076 we evaluate data request variations across frames with respect to environment complexity.

077 In summary, COOPERTRIM makes the following contributions:

- 078 • We propose a learning framework to proactively adapt feature selection by dynamically determining fea-
 079 ture *relevance* and sharing *quantity*—a transformative deviation from existing static selection frameworks.
- 080 • We propose a novel relevance assessment strategy by quantifying temporal uncertainty using conformal
 081 prediction inspired quantile gating mechanism to compare features across frames. Coupled with the
 082 conformal assessment using an adaptive quantile threshold based on conformity score, we use an attention
 083 mechanism with an adaptive mask threshold for quantity estimation.
- 084 • Our instantiation of COOPERTRIM on cooperative segmentation is the first work that demonstrates feature
 085 selection on this task. Segmentation requires transmitting large volumes of data, making selective percep-
 086 tion challenging under bandwidth constraints. Our approach addresses this by intelligently selecting and
 087 prioritizing critical features, reducing data transmission while preserving segmentation accuracy.
- 088 • We employ a training method inspired by the ϵ -Greedy exploration strategy from reinforcement learning
 089 (Liu et al., 2022), which balances exploration and exploitation effectively in training, resulting in
 090 lower bandwidth and higher task performance.
- 091 • Our evaluation shows that COOPERTRIM achieves up to 80.28% bandwidth reduction while maintaining
 092 a comparable accuracy. Relative to other selection strategies, COOPERTRIM also improves IoU by as
 093 much as 45.54% with up to 72% less bandwidth. Quantitative frame-by-frame inspection further validates
 the flexibility, demonstrating graceful adaptation to environmental dynamics and paving the way towards
 real-world deployment.

094

2 RELATED WORK

095
 096
097 Cooperative Perception. Resilient operation of autonomous agents depends on their onboard perception,
 098 which is often limited by blind spots and uncertainties. A range of cooperative perception mechanisms
 099 have been proposed, from early fusion and edge assistance (Zhang et al., 2021) sharing raw sensor data,
 100 to late fusion of regional processing results while missing holistic scene details. Most prominently are
 101 intermediate feature fusion methods (Chen et al., 2019), however, there remains a gap between bandwidth
 102 demand and availability. V2VNet (Wang et al., 2020) uses compressed LiDAR BEV features and GNN
 103 aggregation, yet often transmitting redundant data. AttFuse (Xu et al., 2022b) and DiscoNet (Li et al.,
 104 2021) offer attentive fusion and collaboration graphs, but lack intelligent data selection. CoBEVT (Xu et al.,
 105 2023) integrates multi-vehicle BEV features via SinBEVT and FuseBEVT for segmentation, yet struggles
 106 with inefficient feature compression. Unlike these approaches, COOPERTRIM selectively transmits essential
 107 perception features, reducing bandwidth usage, improving network efficiency, and maintaining accuracy
 108 under constraints.

109
 110 **Network Efficient Cooperation.** The literature on communication-efficient cooperative perception includes
 111 Compression-based, Selection-based, and Hybrid approaches. We focus on Selection-based methods due to
 112 practical wireless broadcasting needs. Where2comm (Hu et al., 2022) uses threshold based spatial con-
 113 fidence maps for selection, ignoring uncertainties and relying on impractical multi-round transmission.
 114 UMC (Wang et al., 2023) applies entropy-based selection but sending full maps is computationally expen-
 115 sive. CenterCOOP (Zhou et al., 2023) transmits center-point LiDAR features via mutual information, im-
 116 proving bandwidth by 10% on DAIR-V2X while sharing all embeddings. BM2CP (Zhao et al., 2023) shares
 117 modality-guided features, overlooking sensor noise. UniSense (Ren et al., 2025) selects critical regions via
 118 uncertainty, missing occlusion uncertainties and incurring high bandwidth costs. SwissCheese (Xie et al.,
 119 2024) uses fixed thresholds for selection, lacking adaptability to dynamic scenarios. Different from meth-
 120 ods with fixed thresholds or static selection strategy, COOPERTRIM adapts feature selection to environment
 121 dynamics, prioritizes uncertainty-driven critical features using past confident data, balancing bandwidth ef-
 122 ciency and perception performance resilience.

123

3 METHODOLOGY AND SOLUTION

124

3.1 PROBLEM STATEMENT

125
 126 We address the challenge of selective feature sharing for cooperative perception tasks. Rather than design-
 127 ing a new model, we aim at a selection framework that is applicable to a set of similar feature-sharing
 128 mechanisms (Xu et al. (2023); Hu et al. (2022); Li et al. (2021)). In particular, we focus on the segmenta-
 129 tion task. Given a set of features $\mathcal{F} = \{f_1, f_2, \dots, f_n\}$ extracted from input data, where n is the number
 130 of feature channels in latent representations, our objective is to identify a subset $\mathcal{S} \subseteq \mathcal{F}$ such that the
 131 number of selected features $|\mathcal{S}|$ is minimized, while the accuracy of the segmentation task, denoted as a
 132 function $A(\mathcal{S})$ of the selected features, is maximized. Formally, the optimization problem can be expressed
 133 as $\min_{\mathcal{S} \subseteq \mathcal{F}} |\mathcal{S}|, \max_{\mathcal{S} \subseteq \mathcal{F}} A(\mathcal{S})$. This bi-objective optimization problem poses significant challenges due to
 134 the *inherent tension between feature abundance and bandwidth limitations*.

135

3.2 COOPERTRIM DESIGN

136
 137 To resolve that tension, we present COOPERTRIM, a selective cooperative perception framework that learns
 138 to enhance representation learning via temporal uncertainty-driven feature selection for bandwidth-efficient,
 139 accurate perception in multi-agent systems. COOPERTRIM addresses two key research questions:

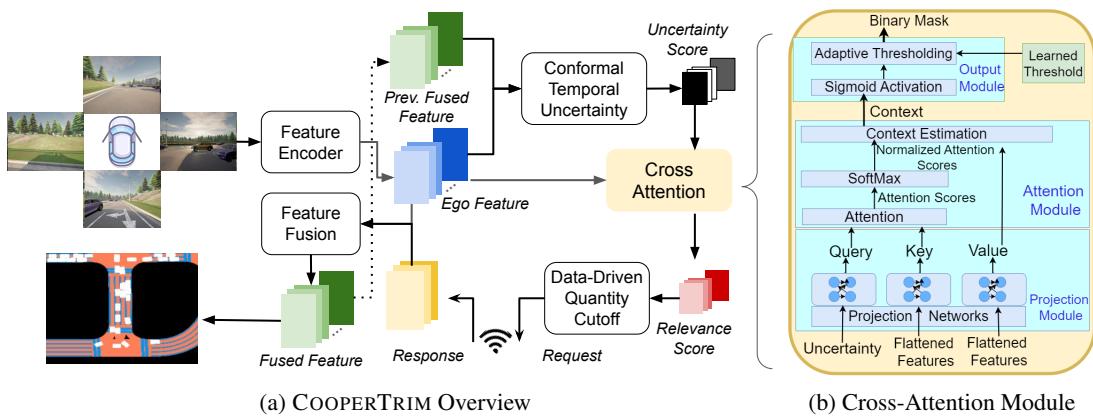


Figure 1: (a) COOPERTRIM Overview. COOPERTRIM conducts feature learning, followed by an uncertainty-based selection module using learned features. It estimates adaptive temporal uncertainty (via learned confidence) for each feature, performs cross-attention-based feature weighting, and selects features using a learned threshold. The ego then broadcasts a request vector for selected features, reconstructs received CAV data into full features, fuses them, and sends them to the task head for final results. (b) Cross-Attention Module uses learned projections of temporal uncertainty as queries, and feature projections as keys and values. These matrices pass through an attention module, and a learned threshold at the final output generates a binary mask for selected channels.

- **Relevance.** If the bandwidth does not permit all features to be shared, what are the most essential features that are impactful to downstream tasks? The relevance is inevitably recipient-centric, which demands the recipient vehicle to assess its field-of-view visibility, perception uncertainty, and environment dynamics.
- **Quantity.** If most relevant features are prioritized, where is the diminishing return point to stop sharing? Such quantity sweet spot may be dependent on both scene- and task-complexity, which demands dynamic runtime adaptation, a sophistication in COOPERTRIM framework design.

COOPERTRIM leverages two key insights in addressing the above research questions. i) *Temporal Uncertainty as Relevance*. Unlike conventional approaches Ren et al. (2025); Xie et al. (2024); Hu et al. (2022), which quantify the feature relevance of each individual frame, we put the features in their temporal contexts, and quantify the temporal uncertainty (e.g., introduced by scene dynamics, changing lighting conditions, occlusions) as relevance to determine sharing priority. We use conformal prediction inspired quantile gating method to better assess the temporal uncertainty in continuous frames. ii) *Environment Adaptivity*. Adapting to environment dynamics, we introduce two learned parameters: a data-driven uncertainty threshold used in the uncertainty estimation, and a data-driven attention mask threshold, to adjust the runtime sharing quantity for each frame. This flexibility empowers COOPERTRIM to scale gracefully while maintaining efficient bandwidth utilization. Figure 1 shows an architectural overview of COOPERTRIM. We describe the components in detail.

Conformal Temporal Uncertainty. COOPERTRIM takes encoded representations from sensor data, contextualizes them within the ego agent’s recent memory, and identifies the uncertain ones as candidates for enhancement through cooperation. Specifically, given current frame feature $F_t \in \mathbb{R}^{H' \times W' \times D}$, encoded from sensor input $X_t \in \mathbb{R}^{H \times W \times C}$, it calculates conformity scores by comparing the feature F_t against the fused features from previous frames, denoted as distance function $S_t = d(F_t, F_{t-1}^{\text{fused}})$, where $d(\cdot)$ is the L1 distance defined as $|F_t - F_{t-1}^{\text{fused}}|$, effectively capturing deviations between past and current scene understanding. In this context, the use of ‘conformal’ is inspired by conformal prediction, differing by (a) learning online frame-wise instead of using a fixed calibration dataset, and (b) estimating uncertainties in

188 components of regression values rather than direct intervals on entire regression data. Then, inspired by
 189 conformal prediction, we use quantile gating to assess the features' relevance, introducing a learnable quan-
 190 tile threshold q , and apply a cross-attention mechanism between the features and the ranges of those scores
 191 above the threshold (i.e., $S_t(f) > q$) to obtain the relevance metric R_t .
 192

193 **Data-driven Quantity Cutoff.** In order to adapt to environment dynamics, we introduce a mechanism to
 194 determine the diminishing return point of the sharing volume. Specifically, we introduce a second learnable
 195 threshold τ such that we only share those features whose relevance score is above the threshold ($R_t > \tau$).
 196 In situations where the perception complexity is high, the range of conformity score will increase due to
 197 more temporally diverse feature encodings, which, in turn, yields higher relevance scores. More features
 198 would have relevance scores above the learned threshold; the communication of which incurs higher band-
 199 width usage. On the contrary, temporal consistency will result in low relevance scores among all features,
 200 which yields low sharing volume. Moreover, the temporal consistency not only comes from the low environ-
 201 ment dynamics, but also comes from perception stability—COOPERTRIM leverages this stability to save
 202 bandwidth as well.

203 **Feature Exchange and Fusion.** To communicate recipient-centric relevance assessment, the ego agents
 204 send requests for selected high-relevance features. Following prior work assumptions of precise pose es-
 205 timation (Xu et al., 2023), responders use spatial transformation (Jaderberg et al., 2015) to match ego's
 206 perspective and share the requested features. The ego agent blends received features into its own feature
 207 map before passing them along to the fusion decoders and task heads.

208 3.3 TRAINING

209 **Loss Function.** To attain the joint goal of bandwidth efficient transmission and task performance, the
 210 training of COOPERTRIM can be formulated as a constrained optimization problem defined as follows:
 211

$$212 \theta^* = \arg \min_{\theta} L(C(\theta)), \text{s.t. } P(C(\theta)) = C_{1.6} \quad (1)$$

213 where $C_{1.6}$ represents the percentage of channels corresponding to 1.6 Mbps (Mo et al., 2025), $C(\theta)$ repre-
 214 sents the channels selected, $P(\cdot)$ represents the percentage of channels selected, $L(\cdot)$ represents the percep-
 215 tion task loss. To solve this, we use the Lagrangian formulation, defining the total loss as
 216

$$217 \theta^* = \arg \min_{\theta} L(C(\theta)) + \lambda \cdot (P(C(\theta)) - C_{1.6}) \quad (2)$$

218 where λ acts as a Lagrange multiplier dynamically adjusted (explained in Appendix A.1) to enforce the
 219 constraint over time. The strategy starts with unconstrained optimization for initial learning, then introduces
 220 and intensifies constraint enforcement over time, using periodic strong adjustments for major deviations and
 221 steady increments for fine-tuning.

222 **Training Strategy.** For training the loss function in COOPERTRIM, we use an ϵ -Greedy method inspired
 223 by the reinforcement learning ϵ -greedy exploration strategy (Liu et al., 2022). However, we make some
 224 adaptations for our training purpose. With ϵ probability we request entire feature set and with $(1 - \epsilon)$
 225 probability we exploit the knowledge. By exploiting the knowledge, we request the data as per learned
 226 thresholds (i.e. conformal predictions's quantile threshold q and cross-attention module's mask threshold τ).
 227 We see considerable improvement in bandwidth requirement with this training method. Occasional updates
 228 considering all features can stabilize the optimization trajectory by smoothing out erratic updates caused
 229 by noise from partial features. This can prevent the model from diverging or oscillating around suboptimal
 230 points, leading to smoother convergence to a better solution. The ϵ -Greedy method balances exploration
 231 (full data D_{full} with probability ϵ) and exploitation (partial data D_{partial} with probability $(1 - \epsilon)$). This
 232 balance stabilizes optimization by reducing gradient noise through periodic full-data updates. As formalized
 233 in Theorem 1, this strategy reduces both the bias and variance of the gradient estimator compared to using
 234

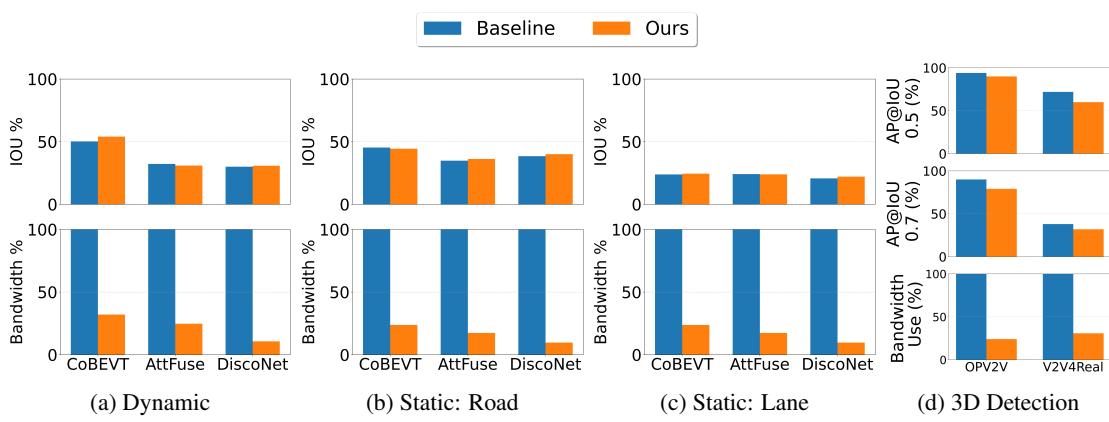


Figure 2: “Trimming” existing cooperative perception baselines, COOPERTRIM reduces bandwidth significantly while preserving accuracy across different semantics (*i.e.*, dynamic, static road, and static lane for segmentation task and for 3D detection task.)

only partial data. The expected gradient

$$\mathbb{E}[\nabla L] = \epsilon \cdot \mathbb{E}[\nabla L(D_{\text{full}})] + (1 - \epsilon) \cdot \mathbb{E}[\nabla L(D_{\text{partial}})] \quad (3)$$

ensures smoother convergence while adhering to bandwidth constraints. We formalize the effectiveness of the ϵ -Greedy training strategy in the following theorem.

Theoretical Analysis. We draw a theoretical analysis based on the following assumptions. (1) Perfect transmission conditions (no noise introduced during transmission, so any bias or variance arises solely from the data used), (2) A complete dataset D_{full} and a subset $D_{\text{partial}} \subseteq D_{\text{full}}$ representing partial data, (3) The true gradient is $\nabla L(D_{\text{full}})$, reflecting the loss over the entire dataset. (4) The inherent variances of the gradients are $\text{Var}(\nabla L(D_{\text{full}})) = \sigma_{\text{full}}^2$ and $\text{Var}(\nabla L(D_{\text{partial}})) = \sigma_{\text{partial}}^2$, with $\sigma_{\text{full}}^2 < \sigma_{\text{partial}}^2$ due to the more comprehensive nature of full data reducing stochasticity.

Theorem 1 (Effectiveness of ϵ -Greedy Training). *An ϵ -greedy training strategy that computes the gradient of Loss L using full data (D_{full}) with probability ϵ and partial data (D_{partial}) with probability $(1 - \epsilon)$ reduces the bias of the gradient estimator compared to using only partial data. Specifically, the bias is scaled down by a factor of $(1 - \epsilon)$, and the variance is reduced by a term proportional to $\epsilon \cdot (\sigma_{\text{partial}}^2 - \sigma_{\text{full}}^2)$.*

Proof. Detailed proof provided in Appendix A.2. \square

4 EXPERIMENTS

We conduct six experiments to demonstrate COOPERTRIM’s efficiency in task performance and bandwidth usage. Referred to as COOPERTRIM, we apply COOPERTRIM to CoBEVT (Xu et al., 2023) for evaluation, focusing on semantic segmentation on the OPV2V (Xu et al., 2022b) dataset. We choose CoBEVT for its robust performance in Cooperative Segmentation compared to existing works. COOPERTRIM is the first to address selective cooperative perception in semantic segmentation.

“Trimming” Existing Cooperative Perception Baselines. In Figure 2, we assess performance and bandwidth (BW) by applying our temporal uncertainty-aware method COOPERTRIM to three methods: CoBEVT (Xu et al., 2023), Attfuse (Xu et al., 2022b), and DiscoNet (Li et al., 2021). We implement COOPERTRIM on these methods after removing any existing compression techniques. This evaluation compares

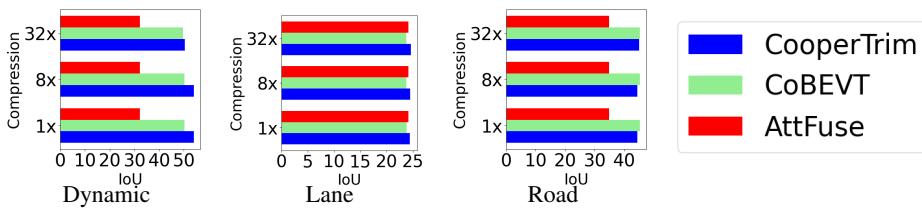


Figure 4: Comparison of IoU performance and bandwidth usage at compression rates (1x, 8x, 32x) for CooperTrim, CoBEVT, and AttFuse in Dynamic, Road, and Lane scenarios. CooperTrim consistently outperforms the baselines.

performance accuracy between COOPERTRIM-based selection and the original methods (without compression/selection), and reports bandwidth usage percentages relative to the originals (40 Mbps). For Dynamic and Static segmentation combined, COOPERTRIM-CoBEVT, COOPERTRIM-Attfuse, and COOPERTRIM-DiscoNet use average bandwidths of 27.9%, 21.07%, and 10.18%, respectively, corresponding to 11.16 Mbps, 8.4 Mbps, and 4.07 Mbps based on our 128x32x32 latent representation size. We observe that COOPERTRIM achieves comparable performance accuracies to the original methods despite significantly lower bandwidth consumption, with an average 80.28% improvement in network overhead over the baselines. Detailed values are in Appendix Table 4.

Additionally, we validate COOPERTRIM’ generalizability on 3D detection using Lidar data on OPV2V and V2V4Real datasets. Figure 2d shows COOPERTRIM performance versus baseline CoBEVT at IoU 0.5 and 0.7. COOPERTRIM maintains comparable detection accuracy with a 27.48% bandwidth reduction, highlighting its efficiency in lowering network overhead.

Selection Strategy Comparison. Table 1 presents the evaluation of COOPERTRIM against selection-based, network-efficient baselines. Our feature latent representation is sized at 128x32x32, with percentages and bandwidths reported accordingly. We implement two algorithms: Where2Comm (Hu et al., 2022) (feature and agent selection, adapted for segmentation with a 0.4 threshold on batch confidence map) and SwissCheese (Xie et al., 2024) (feature selection over spatial and channel features, implemented in our camera-based segmentation framework as the official code is unavailable).

For SwissCheese, we set bandwidth at 10 Mbps (comparable to COOPERTRIM, equating to 25% of our latent representation size) to assess segmentation performance. COOPERTRIM achieves lower bandwidth usage and better performance than Where2Comm, and outperforms SwissCheese in dynamic and static accuracy at similar bandwidth levels.

Compression-based Method Comparison. Compression-based methods like CoBEVT (Xu et al., 2023) and AttFuse (Xu et al., 2022b) reduce data size for network efficiency. Yet, COOPERTRIM’ data selection enhances efficiency by compressing post-selection, optimizing bandwidth. We apply lossy quantization to reduce precision and volume, then lossless methods for smaller size. Figure 4 compares IoU and bandwidth for COOPERTRIM, CoBEVT, and AttFuse at 1x, 8x, and 32x rates. COOPERTRIM excels in IoU and bandwidth savings, notably at 32x (1.46% vs. 3.76% for CoBEVT and 10.62% for AttFuse in 32x Dyn).

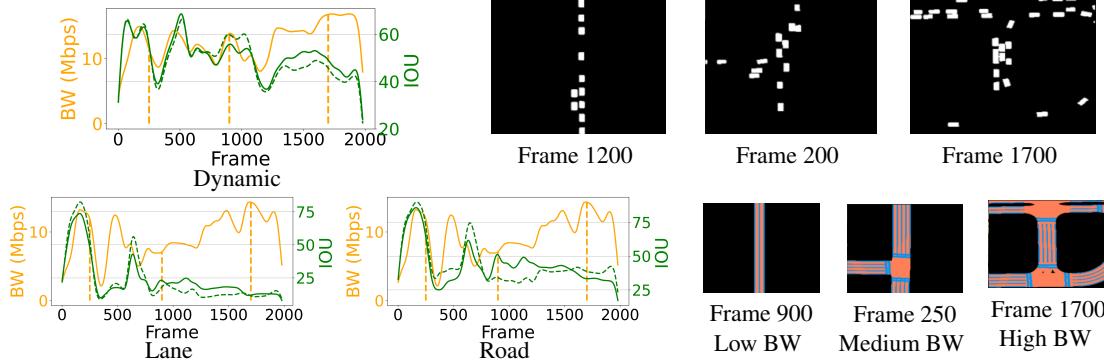
Network Overhead Comparison. We compare the network overhead of COOPERTRIM with used bandwidths of a broader range of existing cooperative perception works. We evaluate Feature Selection (FS)



Figure 3: Across-the-board Bandwidth Comparison. C: Compression. FS: Feature Selection. AS: Agent Selection. COOPERTRIM consumes the lowest bandwidth among baselines.

329 Table 1: Feature Selection Strategy Comparison: Accuracy and Bandwidth
330
331

Baselines	Accuracy (IoU, %)			Bandwidth (Mbps)
	Dynamic	Static Lane	Static Road	
Where2Comm (Hu et al., 2022)	8.62	20.40	36.46	39.6
SwissCheese (Xie et al., 2024)	35.71	12.81	32.07	10
COOPERTIM (ours)	54.03	24.45	44.38	11.16

347 Figure 5: Increased data requests align with higher scene complexity. For dynamic objects, complexity in number and
348 positioning rises in Frames 1200, 200, and 1700. For static elements, complexity grows in Frames 900, 250, and 1600,
349 with more intersections and lane orientations. Vertical lines at Frames 1200, 200, 1700 (dynamic) and 900, 250, 1600
350 (static) link to visualizations. Green dashed lines show baseline CoBEVT IoU; green solid lines show CooperTrim IoU.351 algorithms UniSense (Ren et al., 2025), SwissCheese (Xie et al., 2024), Compression-based (C) algorithms
352 STAMP (Gao et al.), CoBEVT (Xu et al., 2023), V2X-ViT (Xu et al., 2022a), V2VNet (Wang et al., 2020),
353 FCooper (Chen et al., 2019), AttFuse (Xu et al., 2022b), DiscoNet (Li et al., 2021), and Agent+Feature
354 Selection (AS+FS) method Where2Comm (Hu et al., 2022).355 Bandwidth comparisons use non-compressed versions (post-selection if applicable) for fairness, reporting
356 original bandwidths from papers or calculating based on our 128x32x32 latent representation size when un-
357 specified. Figure 3 show COOPERTIM has the lowest network overhead (11.6Mbps) compared to baselines.359 **Environment Adaptation.** Figure 5 shows the inference results for COOPERTIM over multiple frames.
360 We see variations in bandwidth implying variable feature request in each frame. The figure shows increased
361 data requests correlate with higher scene complexity. In segmenting the dynamic objects, an increase in
362 complexity can be referred to criticality in positioning of an increased amount of vehicles and traffic par-
363 ticipants. Similarly, an increase in complexity in the static task can be referred to an increase in the number
364 of intersections or lane orientations in the scene. Figure 5 shows that in both cases, *i.e.*, increased amount
365 of vehicles, and increased topological complexity in the roadways, COOPERTIM accordingly shares more
366 data to preserve task performance, whereas in other cases, gracefully adapts to request less sharing, saving
367 the precious bandwidth to other agents in need. In critical frame ranges such as 1000-1800 (Dynamic),
368 1000-1500 (Lane), and 1200-1400 (Road), where baseline CoBEVT consistently underperforms, Cooper-
369 Trim achieves much higher IoU, illustrating the effectiveness of its adaptive threshold masking mechanism
370 in prioritizing key features and managing scene complexity.371 **Training Methods Comparison.** Table 2 shows the comparative study for training COOPERTIM using
372 different training methods, all using the loss function in Section 3.3. (1) COOPERTIM is trained with ϵ -
373 Greedy (EG) based fine-tuning (FT) using Conformal Prediction (CP) for temporal uncertainty estimation
374 [Section 3.3], termed *EG + CP + FT*. (2) The first method uses Standard Deviation (SD) for spatial
375 uncertainty estimation over latent feature channels (*EG + SD + FT*), showing higher network consumption
for dynamic objects (35.64% vs. COOPERTIM at 32.04%) due to lack of temporal consideration in SD,

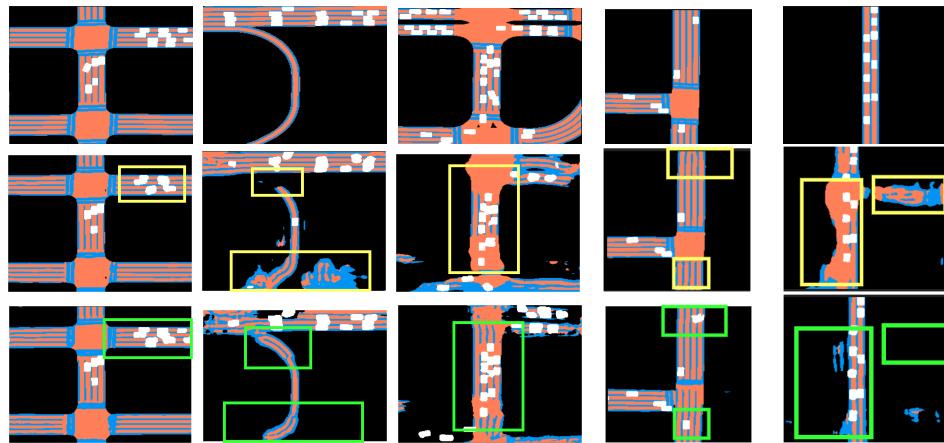


Figure 7: Qualitative Comparison of Ground Truth, CoBEVT, and CooperTrim. CooperTrim performs better than CoBEVT in estimating dynamic object segments (Column 1 and 4), road segments (Column 2 and 5), and lane segments (Column 3 and 5).

and 6% lower performance in static road segmentation. (3) The second method employs a basic curriculum for fine-tuning (*Curriculum + CP + FT*) with four stages: (a) basic fine-tuning, (b) cross-attention with fixed mask threshold and CP confidence, (c) adaptive mask threshold with fixed CP confidence, and (d) fully adaptive (learned mask and CP confidence) CP-guided selection. This yields good performance but higher bandwidth use (49% dynamic, 51% static). (4) The final method omits EG in FT (*CP + FT*), resulting in lower accuracy (static road 8% below COOPERTRIM). EG’s occasional full-feature updates stabilize optimization by promoting smoother convergence.

Table 2: Training Methods Comparison for Uncertainty Aware Training showing EG+CP+FT(COOPERTRIM) strikes a good balance between Accuracy and Bandwidth

Training Methods	Accuracy (IoU, %)			Bandwidth (%)	
	Dynamic	Static Lane	Static Road	Dynamic	Static
CP+FT	51.57	23.05	36.92	30.75	1.12
Curriculum+CP+FT	52.47	28.27	45.44	49.25	51.63
EG+SD+FT	52.55	23.69	38.45	35.64	11.03
EG+CP+FT (Ours)	54.03	24.45	44.38	32.04	23.77

Qualitative Results. Figure 7 shows the segmentation results of COOPERTRIM to analyse visually. COOPERTRIM is different from CoBEVT (Xu et al., 2023) only in its feature set before fusion of muti-source data.

COOPERTRIM performs better than CoBEVT in estimating road segment, dynamic object segment, and lane segment. This is attributed to the better feature representation achieved by COOPERTRIM selection mechanism, which reduces uncertainty in feature, by focusing on selected data transmission rather than transmitting the entire dataset for fusion.

Sensitivity Analysis COOPERTRIM’ performance is tested across localization errors (0cm, ± 20 cm, ± 1 m) during inference, as shown in Figure 6. COOPERTRIM remains robust to small errors (up to ± 20 cm) and maintains comparable IoU at ± 1 m, with stable bandwidth indicating consistent communication efficiency.

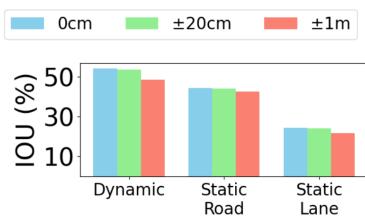


Figure 6: COOPERTRIM shows comparable performance under localization error at inference.

423
424
425 Table 3: System Overhead Comparison between COOPERTRIM and baseline CoBEVT. COOPERTRIM has
426 a slight FPS reduction compared to CoBEVT due to added uncertainty and cross-attention modules for data
427 selection.

Method	Configuration	FPS	Time(ms) per Frame
CoBEVT	Dynamic	10.59	92.9
CooperTrim	Dynamic	8.58	94.7
CoBEVT	Static	10.59	93.1
CooperTrim	Static	8.58	119.5

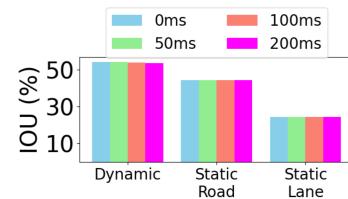
431
432 COOPERTRIM’ performance under latency (0ms to 200ms) is shown in
433 Figure 8. It exhibits strong robustness up to 50ms with no loss, and neg-
434 ligible IoU drop at 100ms and 200ms. This resilience stems from COO-
435 PERTRIM’ adaptive mechanisms, two-threshold policy, and uncertainty-
436 driven requests, reducing reliance on misaligned data from CAVs. By
437 requesting less data (23-32% vs. traditional systems, per Appendix Table
438 4), latency impact is minimized, enhancing real-world robustness. Net-
439 work usage stayed consistent during testing.

440 4.1 SYSTEM OVERHEAD

441
442 We present the processing speed in Frames Per Second (FPS) for CoBEVT and CooperTrim under static and
443 dynamic settings in the Table 3. The results indicate a modest FPS reduction in CooperTrim compared to the
444 baseline CoBEVT, with a decrease of approximately 2 FPS in both configurations. This reduction is due to
445 the additional computational steps in our method. However, this trade-off is acceptable given the significant
446 bandwidth reduction achieved, which remains the primary focus of our work.

447 5 CONCLUSION

448
449 We present COOPERTRIM, an adaptive feature selection framework in cooperative perception, which en-
450 hances representation learning through temporal uncertainty-driven feature selection for bandwidth-efficient,
451 accurate perception in multi-agent systems. It addresses key challenges of relevance, identifying the most
452 impactful features for downstream tasks, and quantity, determining the optimal point to stop sharing based
453 on scene and task complexity. We employed an ϵ -greedy training method that optimizes the bandwidth-
454 performance balance by facilitating effective exploration and exploitation during training. Across segmen-
455 tation models, COOPERTRIM cuts bandwidth by 80.28%, maintains accuracy, boosts IoU by 45.54%, and for
456 detection 41.84% bandwidth improvement. Compared to selection and compression based baselines, it out-
457 performs both categories in terms of performance and network use. COOPERTRIM shows strong robustness
458 against latency, localization and system overhead.



459 Figure 8: COOPERTRIM shows
460 comparable performance under
461 latency in inference.

470 REFERENCES
471

472 Fawad Ahmad, Hang Qiu, Ray Eells, Fan Bai, and Ramesh Govindan. Carmap: Fast 3d feature map updates
473 for automobiles. In *Proceedings of the 17th Symposium on Networked Systems Design and Implementa-*
474 *tion*, NSDI '20, pp. 1063–1081, Santa Clara, CA, Feb 2020. USENIX Association.

475 Qi Chen, Xu Ma, Sihai Tang, Jingda Guo, Qing Yang, and Song Fu. F-cooper: Feature based cooperative
476 perception for autonomous vehicle edge computing system using 3d point clouds. In *Proceedings of the*
477 *4th ACM/IEEE Symposium on Edge Computing*, pp. 88–100, 2019.

478 Jiaxun Cui, Hang Qiu, Dian Chen, Peter Stone, and Yuke Zhu. Coopernaut: End-to-end driving with co-
479 *operative perception for networked vehicles*. In *Proceedings of the IEEE/CVF Conference on Computer*
480 *Vision and Pattern Recognition*, CVPR '22, June 2022.

481 Xiangbo Gao, Runsheng Xu, Jiachen Li, Ziran Wang, Zhiwen Fan, and Zhengzhong Tu. Stamp: Scal-
482 able task-and model-agnostic collaborative perception. In *The Thirteenth International Conference on*
483 *Learning Representations*.

484 Yue Hu, Shaoheng Fang, Zixing Lei, Yiqi Zhong, and Siheng Chen. Where2comm: Communication-
485 efficient collaborative perception via spatial confidence maps. *Advances in neural information processing*
486 *systems*, 35:4874–4886, 2022.

487 Yue Hu, Yifan Lu, Runsheng Xu, Weidi Xie, Siheng Chen, and Yanfeng Wang. Collaboration helps camera
488 overtake lidar in 3d detection. In *Proceedings of the IEEE/CVF Conference on Computer Vision and*
489 *Pattern Recognition*, pp. 9243–9252, 2023.

490 Max Jaderberg, Karen Simonyan, Andrew Zisserman, et al. Spatial transformer networks. *Advances in*
491 *neural information processing systems*, 28, 2015.

492 Yiming Li, Shunli Ren, Pengxiang Wu, Siheng Chen, Chen Feng, and Wenjun Zhang. Learning distilled
493 collaboration graph for multi-agent perception. *Advances in Neural Information Processing Systems*, 34:
494 29541–29552, 2021.

495 Fanghui Liu, Luca Viano, and Volkan Cevher. Understanding deep neural function approximation in rein-
500 *forcement learning via ϵ -greedy exploration*. *Advances in Neural Information Processing Systems*, 35:
501 5093–5108, 2022.

502 Yen-Cheng Liu, Junjiao Tian, Chih-Yao Ma, Nathan Glaser, Chia-Wen Kuo, and Zsolt Kira. Who2com:
503 Collaborative perception via learnable handshake communication. In *2020 IEEE International Conference*
504 *on Robotics and Automation (ICRA)*, pp. 6876–6883. IEEE, 2020.

505 Ruoshen Mo, Bo Wu, Zhaowei Tan, and Hang Qiu. See-v2x: C-v2x direct communication dataset: An
506 application-centric approach. In *Proceedings of the 23rd ACM Conference on Embedded Networked*
507 *Sensor Systems*, pp. 305–311, 2025.

508 Hang Qiu, Po-Han Huang, Namo Asavisanu, Xiaochen Liu, Konstantinos Psounis, and Ramesh Govindan.
509 Autocast: scalable infrastructure-less cooperative perception for distributed collaborative driving. In *ACM*
510 *MobiSys*, 2022.

511 Haojie Ren, Wuyang Zhang, Shuyao Shi, Xinran Zhang, Lu Zhang, and Yanyong Zhang. Unisense: Spatial-
512 *uncertainty-aware collaborative sensing for autonomous driving*. In *Proceedings of the 23rd Annual*
513 *International Conference on Mobile Systems, Applications and Services*, 2025.

517 Tianhang Wang, Guang Chen, Kai Chen, Zhengfa Liu, Bo Zhang, Alois Knoll, and Changjun Jiang. Umc: A
 518 unified bandwidth-efficient and multi-resolution based collaborative perception framework. In *Proceed-
 519 ings of the IEEE/CVF International Conference on Computer Vision*, pp. 8187–8196, 2023.

520

521 Tsun-Hsuan Wang, Sivabalan Manivasagam, Ming Liang, Bin Yang, Wenyuan Zeng, and Raquel Urtasun.
 522 V2vnet: Vehicle-to-vehicle communication for joint perception and prediction. In *Computer vision-
 523 ECCV 2020: 16th European conference, Glasgow, UK, August 23–28, 2020, proceedings, part II 16*, pp.
 524 605–621. Springer, 2020.

525

526 Zehao Wang, Yiping Wang, Zhuoyuan Wu, Hengbo Ma, Zhaowei Li, Hang Qiu, and Jiachen Li. Cmp:
 527 Cooperative motion prediction with multi-agent communication. *IEEE Robotics and Automation Letters*,
 528 2025.

529

530 Qi Xie, Xiaobo Zhou, Tianyu Hong, Tie Qiu, and Wenyu Qu. Swisscheese: Fine-grained channel-spatial
 531 feature filtering for communication-efficient cooperative perception. *IEEE Transactions on Intelligent
 532 Transportation Systems*, 2024.

533

534 Runsheng Xu, Hao Xiang, Zhengzhong Tu, Xin Xia, Ming-Hsuan Yang, and Jiaqi Ma. V2x-vit: Vehicle-to-
 535 everything cooperative perception with vision transformer. In *European conference on computer vision*,
 536 pp. 107–124. Springer, 2022a.

537

538 Runsheng Xu, Hao Xiang, Xin Xia, Xu Han, Jinlong Li, and Jiaqi Ma. Opv2v: An open benchmark
 539 dataset and fusion pipeline for perception with vehicle-to-vehicle communication. In *2022 International
 540 Conference on Robotics and Automation (ICRA)*, pp. 2583–2589. IEEE, 2022b.

541

542 Runsheng Xu, Zhengzhong Tu, Hao Xiang, Wei Shao, Bolei Zhou, and Jiaqi Ma. Cobevt: Cooperative
 543 bird’s eye view semantic segmentation with sparse transformers. In *Conference on Robot Learning*, pp.
 544 989–1000. PMLR, 2023.

545

546 Kun Yang, Dingkang Yang, Jingyu Zhang, Hanqi Wang, Peng Sun, and Liang Song. What2comm: Towards
 547 communication-efficient collaborative perception via feature decoupling. In *Proceedings of the 31st ACM
 548 international conference on multimedia*, pp. 7686–7695, 2023.

549

550 Yunshuang Yuan, Hao Cheng, and Monika Sester. Keypoints-based deep feature fusion for cooperative
 551 vehicle detection of autonomous driving. *IEEE Robotics and Automation Letters*, 7(2):3054–3061, 2022.

552

553 Xumiao Zhang, Anlan Zhang, Jiachen Sun, Xiao Zhu, Y Ethan Guo, Feng Qian, and Z Morley Mao. Emp:
 554 Edge-assisted multi-vehicle perception. In *Proceedings of the 27th Annual International Conference on
 555 Mobile Computing and Networking*, pp. 545–558, 2021.

556

557 Binyu Zhao, Wei ZHANG, and Zhaonian Zou. Bm2cp: Efficient collaborative perception with lidar-camera
 558 modalities. In *Conference on Robot Learning*, pp. 1022–1035. PMLR, 2023.

559

560 Linyi Zhou, Zhongxue Gan, and Jiayuan Fan. Centercoop: Center-based feature aggregation for
 561 communication-efficient vehicle-infrastructure cooperative 3d object detection. *IEEE Robotics and Au-
 562 tomation Letters*, 9(4):3570–3577, 2023.

563

564 **A APPENDIX**565 **A.1 LAGRANGE MULTIPLIER ADJUSTMENT**

566 This section explains the dynamic adjustment of Lagrange multiplier for training the loss in Equation 2. The
 567 Lagrange multiplier, represented as λ , acts as a penalty term in the loss function to enforce the constraint
 568 on the percentage of selected features. It dynamically adjusts based on training progress (epoch count) to
 569 balance the primary perception loss ($L(C(\theta))$) and the bandwidth constraint ($P(C(\theta)) = C_{1.6}$).
 570

- 571 • **Initial Phase (epoch \leq ITC):** For the first few epochs (defined by Initial Tuning Epochs ITC), $\lambda = 0.0$,
 572 allowing the model to focus solely on minimizing perception loss without bandwidth constraints for a
 573 strong start.
- 574 • **Periodic Update (every 10th epoch after initial tuning):** At every 10th epoch, λ scales exponentially
 575 with scaling factor $SF = \frac{P(C(\theta))}{100.0}$ and $\lambda = \lambda \cdot 2^{SF}$, aggressively pushing the model towards the target
 576 constraint if far off.
- 577 • **Incremental Scaling (other epochs after initial tuning):** In other epochs, λ increases linearly as $\lambda =$
 578 $\lambda \cdot (1 + 0.1 \cdot \lfloor \frac{\text{epoch}-\text{ITC}}{10} \rfloor)$, ensuring a gradual push towards the constraint without abrupt loss changes.

579 The strategy starts with unconstrained optimization for initial learning, then introduces and intensifies con-
 580 straint enforcement over time, using periodic strong adjustments for major deviations and steady increments
 581 for fine-tuning.

582 **A.2 MATHEMATICAL PROOF FOR EFFECTIVENESS OF ϵ -GREEDY TRAINING**

583 We provide a detailed proof to demonstrate the effectiveness of the ϵ -greedy training strategy (Section 3.3)
 584 by analyzing the bias and variance of the gradient estimator. This proof shows reductions in both metrics
 585 compared to a baseline of using only partial data. We assume perfect transmission, meaning all variability
 586 and bias stem from the inherent properties of the data (full or partial) rather than external noise.

587 **1. SETUP AND NOTATION**

- 588 • **Datasets:** Let D_{full} represent the complete dataset, and D_{partial} be a subset of D_{full} , representing partial
 589 data.
- 590 • **True Gradient:** The target gradient to estimate is $\nabla L(D_{\text{full}})$, reflecting the loss over the entire dataset.
- 591 • **Transmission Assumption:** Under perfect transmission, computed gradients are unaffected by external
 592 noise, so bias or variance arises solely from the data used.
- 593 • **ϵ -Greedy Gradient Estimator:** Define the gradient estimator under the ϵ -greedy strategy as ∇L_{ϵ} , which
 594 is:

- 595 – $\nabla L(D_{\text{full}})$ with probability ϵ
- 596 – $\nabla L(D_{\text{partial}})$ with probability $1 - \epsilon$

- 597 • **Variance Definitions:** Let the inherent variance of gradients be $\text{Var}(\nabla L(D_{\text{full}})) = \sigma_{\text{full}}^2$ and
 598 $\text{Var}(\nabla L(D_{\text{partial}})) = \sigma_{\text{partial}}^2$, where $\sigma_{\text{full}}^2 < \sigma_{\text{partial}}^2$ due to the comprehensive nature of full data reduc-
 599 ing stochasticity.

600 **2. BIAS ANALYSIS OF THE GRADIENT ESTIMATOR**

601 The bias of an estimator is the difference between its expected value and the true value. Here, the true
 602 gradient is $\nabla L(D_{\text{full}})$, as full data provides the most accurate representation of the loss landscape.

611 EXPECTED VALUE OF THE ESTIMATOR
612613 The expected value of the ϵ -greedy gradient estimator is:

614
$$\mathbb{E}[\nabla L_\epsilon] = \epsilon \cdot \mathbb{E}[\nabla L(D_{\text{full}})] + (1 - \epsilon) \cdot \mathbb{E}[\nabla L(D_{\text{partial}})]$$

615

616 BIAS CALCULATION
617

618 The bias is defined as:

619
$$\text{Bias}(\nabla L_\epsilon) = \mathbb{E}[\nabla L_\epsilon] - \mathbb{E}[\nabla L(D_{\text{full}})]$$

620

621 Substituting the expected value:

622
$$\text{Bias}(\nabla L_\epsilon) = (\epsilon \cdot \mathbb{E}[\nabla L(D_{\text{full}})] + (1 - \epsilon) \cdot \mathbb{E}[\nabla L(D_{\text{partial}})]) - \mathbb{E}[\nabla L(D_{\text{full}})]$$

623

624 Simplifying step-by-step:

625
$$\begin{aligned} \text{Bias}(\nabla L_\epsilon) &= \epsilon \cdot \mathbb{E}[\nabla L(D_{\text{full}})] + (1 - \epsilon) \cdot \mathbb{E}[\nabla L(D_{\text{partial}})] - \mathbb{E}[\nabla L(D_{\text{full}})] \\ &= (\epsilon - 1) \cdot \mathbb{E}[\nabla L(D_{\text{full}})] + (1 - \epsilon) \cdot \mathbb{E}[\nabla L(D_{\text{partial}})] \\ &= (1 - \epsilon) \cdot (\mathbb{E}[\nabla L(D_{\text{partial}})] - \mathbb{E}[\nabla L(D_{\text{full}})]) \end{aligned}$$

626

630 Thus, the bias expression is:

631
$$\text{Bias}(\nabla L_\epsilon) = (1 - \epsilon) \cdot (\mathbb{E}[\nabla L(D_{\text{partial}})] - \mathbb{E}[\nabla L(D_{\text{full}})])$$

633

634 3. EXPLANATION OF SPECIFIC CASES AND BIAS SCALING
635636 We explore the implications of the bias expression under different scenarios and explain the origin of the
637 bias scaling by $1 - \epsilon$.638 CASE 1: UNBIASED PARTIAL DATA GRADIENT
639640 If the partial data gradient is unbiased, i.e., $\mathbb{E}[\nabla L(D_{\text{partial}})] = \mathbb{E}[\nabla L(D_{\text{full}})]$, the difference term is zero:

641
$$\mathbb{E}[\nabla L(D_{\text{partial}})] - \mathbb{E}[\nabla L(D_{\text{full}})] = 0$$

643

644 Thus:

645
$$\text{Bias}(\nabla L_\epsilon) = (1 - \epsilon) \cdot 0 = 0$$

646

647 In this ideal scenario, there is no bias in the ϵ -greedy estimator regardless of ϵ . This occurs when D_{partial}
648 perfectly represents D_{full} , which is rare in practice due to sampling variability.649
650 CASE 2: BIASED PARTIAL DATA GRADIENT AND ORIGIN OF BIAS SCALING
651652 If there is a systematic difference, i.e., $\mathbb{E}[\nabla L(D_{\text{partial}})] \neq \mathbb{E}[\nabla L(D_{\text{full}})]$, define the inherent bias of using
653 only partial data as:

654
$$\text{Bias}(\nabla L(D_{\text{partial}})) = \mathbb{E}[\nabla L(D_{\text{partial}})] - \mathbb{E}[\nabla L(D_{\text{full}})]$$

655

656 Substituting into the bias expression:

657
$$\text{Bias}(\nabla L_\epsilon) = (1 - \epsilon) \cdot \text{Bias}(\nabla L(D_{\text{partial}}))$$

658 Considering the magnitude of bias:

$$659 \quad |Bias(\nabla L_\epsilon)| = (1 - \epsilon) \cdot |Bias(\nabla L(D_{\text{partial}}))|$$

660 Since $0 \leq \epsilon \leq 1$, the factor $1 - \epsilon < 1$ for any $\epsilon > 0$, implying:

$$661 \quad |Bias(\nabla L_\epsilon)| < |Bias(\nabla L(D_{\text{partial}}))|$$

662 **Origin of Scaling:** The factor $1 - \epsilon$ comes from the probabilistic weighting in the ϵ -greedy strategy. The
663 expected gradient is a weighted average where the partial data gradient (carrying inherent bias) is weighted
664 by $1 - \epsilon$, and the unbiased full data gradient is weighted by ϵ . Thus, the contribution of the biased gradient
665 is reduced, scaling the bias by $1 - \epsilon$.

666 4. SUMMARY OF BIAS REDUCTION MECHANISM

667 • **Scaling Effect:** The bias scales by $1 - \epsilon$ due to the probabilistic blending of full and partial data gradients.

668 • **Extreme Cases:**

- 669 – When $\epsilon = 0$, only partial data is used, and the bias equals the full inherent bias of the partial data
670 gradient.
- 671 – When $\epsilon > 0$, incorporating full data reduces the weight of the biased partial data gradient to $1 - \epsilon$,
672 scaling down the bias.

673 • **Bias Comparison:** The inequality $|Bias(\nabla L_\epsilon)| < |Bias(\nabla L(D_{\text{partial}}))|$ holds for any $\epsilon > 0$, showing that
674 even a small probability of using full data mitigates bias.

675 This mechanism highlights the ϵ -greedy approach's advantage in balancing computational efficiency (using
676 partial data) with accuracy (using full data to correct bias).

677 3. VARIANCE ANALYSIS OF THE GRADIENT ESTIMATOR

678 The variance of the gradient estimator captures the variability in the updates, which affects training stability.
679 Using the variance identity $\text{Var}(X) = \mathbb{E}[X^2] - (\mathbb{E}[X])^2$, we derive the variance of the ϵ -greedy estimator.
680 The expected value of the squared gradient is the weighted average of the expected squared gradients from
681 each component.

682 STEP 1: EXPECTED SQUARED GRADIENT

683 Let's denote the gradient choice as a random variable determined by the ϵ -greedy policy. The squared
684 gradient's expectation is:

$$685 \quad \mathbb{E}[(\nabla L_\epsilon)^2] = \epsilon \cdot \mathbb{E}[(\nabla L(D_{\text{full}}))^2] + (1 - \epsilon) \cdot \mathbb{E}[(\nabla L(D_{\text{partial}}))^2]$$

686 This reflects that:

- 687 • With probability ϵ , the gradient is $\nabla L(D_{\text{full}})$, so the squared gradient is $(\nabla L(D_{\text{full}}))^2$.
- 688 • With probability $1 - \epsilon$, the gradient is $\nabla L(D_{\text{partial}})$, so the squared gradient is $(\nabla L(D_{\text{partial}}))^2$.

689 STEP 2: RELATING EXPECTATION OF SQUARES TO VARIANCE

690 Recall that for any random variable X , the expectation of the square is:

$$691 \quad \mathbb{E}[X^2] = \text{Var}(X) + (\mathbb{E}[X])^2$$

692 Applying this to the full and partial data gradients:

705 • For the full data gradient:

$$707 \quad \mathbb{E}[(\nabla L(D_{\text{full}}))^2] = \text{Var}(\nabla L(D_{\text{full}})) + (\mathbb{E}[\nabla L(D_{\text{full}})])^2$$

708 where $\text{Var}(\nabla L(D_{\text{full}})) = \sigma_{\text{full}}^2$.

709 • For the partial data gradient:

$$711 \quad \mathbb{E}[(\nabla L(D_{\text{partial}}))^2] = \text{Var}(\nabla L(D_{\text{partial}})) + (\mathbb{E}[\nabla L(D_{\text{partial}})])^2$$

712 where $\text{Var}(\nabla L(D_{\text{partial}})) = \sigma_{\text{partial}}^2$.

714 Substituting these into the expression for $\mathbb{E}[(\nabla L_{\epsilon})^2]$:

$$716 \quad \mathbb{E}[(\nabla L_{\epsilon})^2] = \epsilon \cdot (\sigma_{\text{full}}^2 + (\mathbb{E}[\nabla L(D_{\text{full}})])^2) \\ 717 \quad + (1 - \epsilon) \cdot (\sigma_{\text{partial}}^2 + (\mathbb{E}[\nabla L(D_{\text{partial}})])^2)$$

719 STEP 3: SQUARED EXPECTED GRADIENT

721 From the bias analysis, the expected gradient is:

$$722 \quad \mathbb{E}[\nabla L_{\epsilon}] = \epsilon \cdot \mathbb{E}[\nabla L(D_{\text{full}})] + (1 - \epsilon) \cdot \mathbb{E}[\nabla L(D_{\text{partial}})]$$

724 Squaring this, we get:

$$725 \quad (\mathbb{E}[\nabla L_{\epsilon}])^2 = (\epsilon \cdot \mathbb{E}[\nabla L(D_{\text{full}})] + (1 - \epsilon) \cdot \mathbb{E}[\nabla L(D_{\text{partial}})])^2 \\ 726 \quad = \epsilon^2 \cdot (\mathbb{E}[\nabla L(D_{\text{full}})])^2 \\ 727 \quad + (1 - \epsilon)^2 \cdot (\mathbb{E}[\nabla L(D_{\text{partial}})])^2 \\ 729 \quad + 2 \cdot \epsilon \cdot (1 - \epsilon) \cdot \mathbb{E}[\nabla L(D_{\text{full}})] \cdot \mathbb{E}[\nabla L(D_{\text{partial}})]$$

731 STEP 4: COMPUTE THE VARIANCE $\text{Var}(\nabla L_{\epsilon})$

732 Using the variance identity $\text{Var}(X) = \mathbb{E}[X^2] - (\mathbb{E}[X])^2$, we subtract the squared expected gradient from the expected squared gradient:

$$735 \quad \text{Var}(\nabla L_{\epsilon}) = \mathbb{E}[(\nabla L_{\epsilon})^2] - (\mathbb{E}[\nabla L_{\epsilon}])^2$$

736 Substituting the expressions:

$$738 \quad \text{Var}(\nabla L_{\epsilon}) = [\epsilon \cdot (\sigma_{\text{full}}^2 + (\mathbb{E}[\nabla L(D_{\text{full}})])^2) + (1 - \epsilon) \cdot (\sigma_{\text{partial}}^2 + (\mathbb{E}[\nabla L(D_{\text{partial}})])^2)] \\ 739 \quad - [\epsilon^2 \cdot (\mathbb{E}[\nabla L(D_{\text{full}})])^2 + (1 - \epsilon)^2 \cdot (\mathbb{E}[\nabla L(D_{\text{partial}})])^2 \\ 740 \quad + 2 \cdot \epsilon \cdot (1 - \epsilon) \cdot \mathbb{E}[\nabla L(D_{\text{full}})] \cdot \mathbb{E}[\nabla L(D_{\text{partial}})]]$$

741 Grouping like terms:

743 • Terms involving $(\mathbb{E}[\nabla L(D_{\text{full}})])^2$:

$$745 \quad \epsilon \cdot (\mathbb{E}[\nabla L(D_{\text{full}})])^2 - \epsilon^2 \cdot (\mathbb{E}[\nabla L(D_{\text{full}})])^2 = \epsilon \cdot (1 - \epsilon) \cdot (\mathbb{E}[\nabla L(D_{\text{full}})])^2$$

746 • Terms involving $(\mathbb{E}[\nabla L(D_{\text{partial}})])^2$:

$$748 \quad (1 - \epsilon) \cdot (\mathbb{E}[\nabla L(D_{\text{partial}})])^2 - (1 - \epsilon)^2 \cdot (\mathbb{E}[\nabla L(D_{\text{partial}})])^2 = (1 - \epsilon) \cdot \epsilon \cdot (\mathbb{E}[\nabla L(D_{\text{partial}})])^2$$

749 • Cross terms involving $\mathbb{E}[\nabla L(D_{\text{full}})] \cdot \mathbb{E}[\nabla L(D_{\text{partial}})]$:

$$751 \quad -2 \cdot \epsilon \cdot (1 - \epsilon) \cdot \mathbb{E}[\nabla L(D_{\text{full}})] \cdot \mathbb{E}[\nabla L(D_{\text{partial}})]$$

752 • Variance terms:

$$753 \quad \epsilon \cdot \sigma_{\text{full}}^2 + (1 - \epsilon) \cdot \sigma_{\text{partial}}^2$$

755 Combining these, the variance becomes:

$$756 \quad \text{Var}(\nabla L_\epsilon) = \epsilon \cdot \sigma_{\text{full}}^2 + (1 - \epsilon) \cdot \sigma_{\text{partial}}^2 \\ 757 \quad + \epsilon \cdot (1 - \epsilon) \cdot (\mathbb{E}[\nabla L(D_{\text{full}})])^2 \\ 758 \quad + (1 - \epsilon) \cdot \epsilon \cdot (\mathbb{E}[\nabla L(D_{\text{partial}})])^2 \\ 759 \quad - 2 \cdot \epsilon \cdot (1 - \epsilon) \cdot \mathbb{E}[\nabla L(D_{\text{full}})] \cdot \mathbb{E}[\nabla L(D_{\text{partial}})]$$

762 The last three terms can be factored as a square:

$$763 \quad \epsilon \cdot (1 - \epsilon) \cdot [(\mathbb{E}[\nabla L(D_{\text{full}})])^2 + (\mathbb{E}[\nabla L(D_{\text{partial}})])^2 - 2 \cdot \mathbb{E}[\nabla L(D_{\text{full}})] \cdot \mathbb{E}[\nabla L(D_{\text{partial}})]]$$

765 This simplifies to:

$$766 \quad \epsilon \cdot (1 - \epsilon) \cdot (\mathbb{E}[\nabla L(D_{\text{full}})] - \mathbb{E}[\nabla L(D_{\text{partial}})])^2$$

768 Thus, the final expression for the variance is:

$$769 \quad \text{Var}(\nabla L_\epsilon) = \epsilon \cdot \sigma_{\text{full}}^2 + (1 - \epsilon) \cdot \sigma_{\text{partial}}^2 \\ 770 \quad + \epsilon \cdot (1 - \epsilon) \cdot (\mathbb{E}[\nabla L(D_{\text{full}})] - \mathbb{E}[\nabla L(D_{\text{partial}})])^2$$

772 INTERPRETATION OF VARIANCE COMPONENTS

774 • The first two terms represent the weighted average of the variances: $\epsilon \cdot \sigma_{\text{full}}^2 + (1 - \epsilon) \cdot \sigma_{\text{partial}}^2$. Since
775 $\sigma_{\text{full}}^2 < \sigma_{\text{partial}}^2$, this weighted average is less than $\sigma_{\text{partial}}^2$ for any $\epsilon > 0$:

$$777 \quad \epsilon \cdot \sigma_{\text{full}}^2 + (1 - \epsilon) \cdot \sigma_{\text{partial}}^2 = \sigma_{\text{partial}}^2 - \epsilon \cdot (\sigma_{\text{partial}}^2 - \sigma_{\text{full}}^2) < \sigma_{\text{partial}}^2$$

779 because $\sigma_{\text{partial}}^2 - \sigma_{\text{full}}^2 > 0$.

780 • The third term, $\epsilon \cdot (1 - \epsilon) \cdot (\mathbb{E}[\nabla L(D_{\text{full}})] - \mathbb{E}[\nabla L(D_{\text{partial}})])^2$, accounts for additional variance due to the
781 difference in expected gradients (bias between full and partial data). If the bias is small (i.e., the expected
782 gradients are similar), this term is negligible. Even if there is some bias, for small to moderate values of ϵ ,
783 the reduction in the weighted variance often dominates, leading to an overall variance lower than $\sigma_{\text{partial}}^2$.
784 • Therefore, $\text{Var}(\nabla L_\epsilon) < \sigma_{\text{partial}}^2$ under typical conditions, indicating that the ϵ -greedy strategy reduces
785 variance compared to using only partial data.

787 4. COMBINED EFFECT ON TRAINING

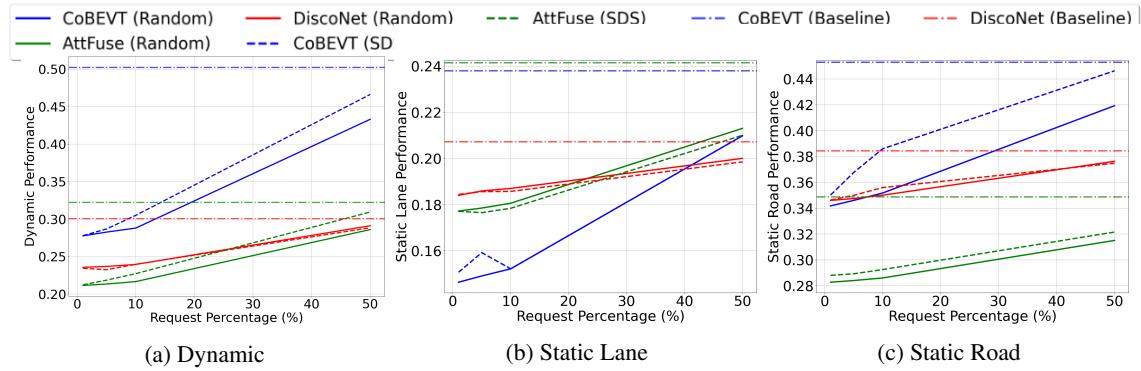
789 • **Bias Reduction:** As shown, the bias of the gradient estimator is reduced by a factor of $(1 - \epsilon)$ compared
790 to using only partial data, pulling the expected gradient closer to the true gradient $\mathbb{E}[\nabla L(D_{\text{full}})]$. This
791 improves the accuracy of the optimization direction, leading to better convergence toward the true optimum
792 of L .

793 • **Variance Reduction:** The variance of the gradient estimator is reduced due to the incorporation of lower-
794 variance full data gradients with probability ϵ , leading to more stable updates and smoother training
795 trajectories. This reduces the risk of divergence or oscillation during optimization.

796 • Under perfect transmission, with no external noise, the ϵ -greedy strategy effectively leverages the strengths
797 of full data (lower bias and variance) while maintaining efficiency by using partial data most of the time,
798 achieving a favorable trade-off.

799 **Future Work in Epsilon-Greedy Training Strategy:** Future work would focus on **modeling the impact**
 800 **of imperfect transmission in the epsilon-greedy strategy**, where data (full or partial) may be corrupted,
 801 delayed, or lost during communication. This requires developing a network model that captures factors such
 802 as packet loss, latency, and bandwidth constraints. By incorporating these elements, we can analyze how
 803 transmission imperfections affect the bias and variance of the gradient estimator ∇L_ϵ .
 804

805 A.3 PRELIMINARY EXPERIMENTS FOR UNCERTAINTY BASED SELECTION ON SEGMENTATION TASK



821 Figure 9: Motivation for COOPERTIM. Comparison of baseline, random channel selection and SD-based
 822 selection show uncertainty-guided selection often outperforms random selection, though baseline performance remains higher consistently. COOPERTIM addresses this accuracy
 823 gap through its proposed adaptive uncertainty driven selection method.
 824

825 A.4 "TRIMMING" COOPERATIVE SEGMENTATION BASELINES - ADDITIONAL

826 Additional presentation for Section 4 Cooperative Segmentation Baseline experiments in Table 4. COOPERTIM
 827 maintains comparable performance accuracies while reducing bandwidth significantly, achieving an
 828 average 80.28% improvement in network overhead over the baselines.
 829

830 Table 4: Application of COOPERTIM to Existing Cooperative Segmentation Methods. "Baseline" and
 831 "Ours" (COOPERTIM) show the respective IOU %, while "BW" shows COOPERTIM bandwidth usage.
 832

Methods	Dynamic			Static Lane			Static Road			Avg. BW (Mbps)
	Baseline	Ours	BW	Baseline	Ours	BW	Baseline	Ours	BW	
CoBEVT	50.23	54.03	32.04%	23.79	24.45	23.77%	45.28	44.38	23.77%	11.16
AttFuse	32.20	30.90	24.76%	24.14	23.93	17.39%	34.86	36.22	17.39%	8.4
DiscoNet	30.03	30.80	10.65%	20.72	22.05	9.72%	38.43	40.02	9.72%	4.07

840 A.5 TRAINING METHODS COMPARISON - ADDITIONAL

841 Corresponding to Section 4 Training Methods Comparison, Table 2 presents the training methods compara-
 842 tive study for training COOPERTIM, all using the loss function from Section 3.3.
 843

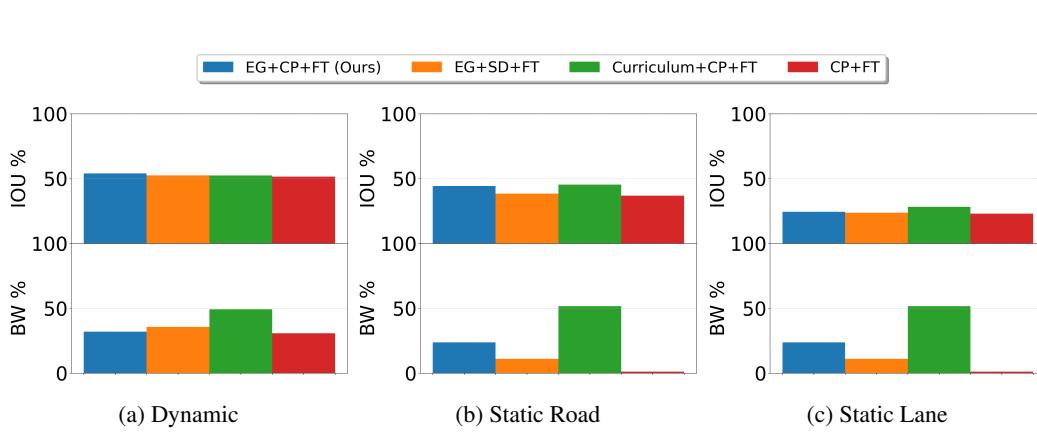


Figure 10: Training Methods Comparison. COOPERTRIM balances task performance and network overhead better than other baselines.

A.6 ROBUSTNESS OF THRESHOLD-BASED METHOD IN COOPERTRIM

In COOPERTRIM, the decision to request data is based on a combination of two key factors: the feature representation (which encodes the scene description as perceived by the ego vehicle in the current frame) and the uncertainty estimation (which compares the past comprehensive scene description with the current ego vehicle’s scene understanding to detect discrepancies, e.g., objects that existed previously but are no longer present in ego’s perception range, or vice versa). This dual mechanism ensures robustness even in subtle change scenarios.

For instance, in a situation where the overall scene appears static (low temporal change), if the ego vehicle’s current feature perception changes—due to factors like occlusion or the sudden appearance of a small object such as a pedestrian—our method will detect this deviation. As a result, the system will trigger more data requests to ensure critical information is not missed. Conversely, if both the scene and the ego vehicle’s current perception remain largely unchanged, the system will minimize data requests, optimizing bandwidth usage.

To validate this behavior, we analyzed specific frame sequences in our experiments.

- **Frames 1960-1970:** These frames exhibit significant changes in the scene, associated with high data requests (Figure 7). The changes were verified using 4 camera images and ground truth dynamic data segmentation, confirming the system’s responsiveness to dynamic scenarios, as shown in Figure 11.

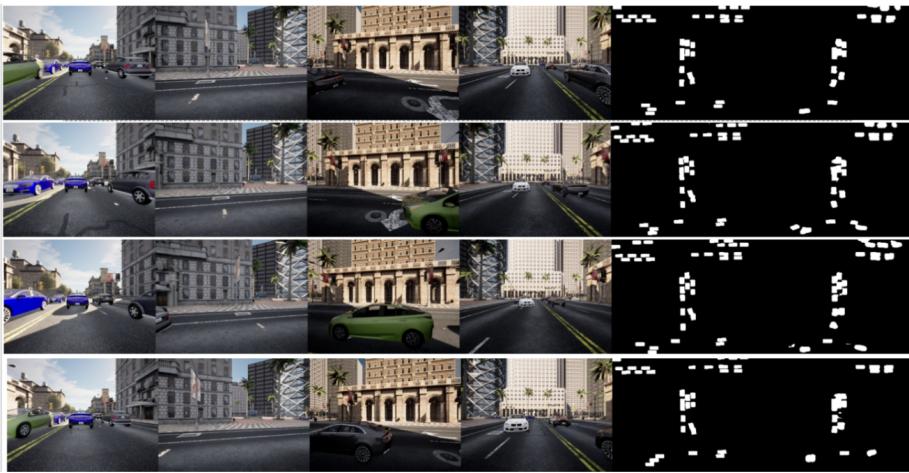


Figure 11: High data requests during significant scene changes in Frames 1960-1970

- **Frames 940-950:** These frames show minimal changes, associated with low data requests (Figure 7), as shown in Figure 11. The lack of significant changes was similarly verified using 4 camera images and ground truth dynamic data segmentation, demonstrating the system’s ability to conserve bandwidth in stable conditions.

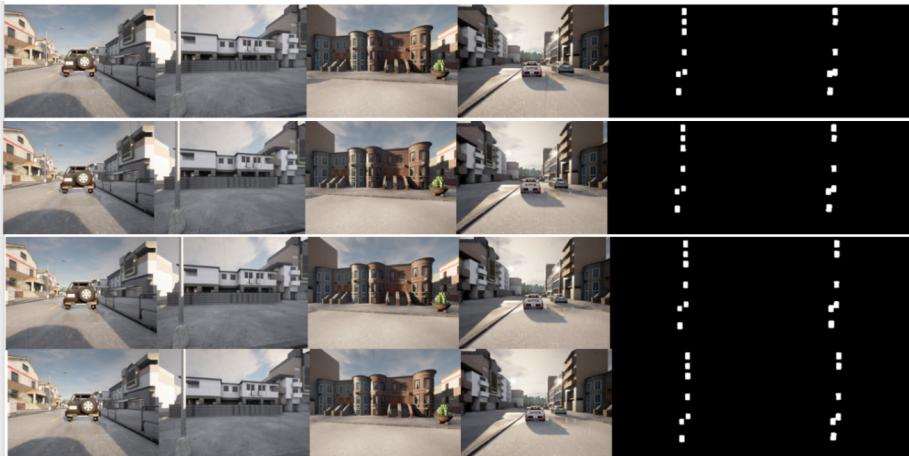


Figure 12: Low data requests during minimal scene changes in Frames 940-950

A.7 NETWORK PERFORMANCE METRICS UNDER REALISTIC CONDITIONS

We evaluated COOPERTRIM’s performance by measuring key network-level metrics, including end-to-end latency and packet loss/retransmissions under loss rates of [0-10]%.

940
941 A.7.1 LOSS RATE AND IMPACT942
943 During training, we assumed perfect transmission with no loss. However, during inference, loss rates were
944 simulated randomly between [0, 10]% by applying masks to evaluate robustness. The impact on performance
945 metrics such as IoU and bandwidth (BW) under dynamic and static configurations is summarized in Table 5.946
947 Table 5: Impact of Loss Rate on IoU and Bandwidth Metrics948
949
950
951

Loss Rate	Dynamic IoU (%)	Dynamic BW (%)	Static Lane IoU (%)	Static Road IoU (%)	Static BW (%)
0%	54.03	32.04	24.45	44.38	23.77
10%	53.95	32.11	24.49	44.34	23.71

952
953 Under simulated loss rates of 0–10%, COOPERTRIM maintains stable IoU and bandwidth metrics, with
954 Dynamic IoU being comparable at 10% loss. These results highlight COOPERTRIM’s robust fallback behav-
955 ior under packet loss conditions up to 10%, demonstrating its potential for reliable operation in real-world
956 scenarios with imperfect network conditions.

957 A.8 LLM USAGE

958
959 In the preparation of this paper, Large Language Models (LLMs) were utilized as a supportive tool for
960 polishing the writing and implementing minor code modifications at specific points. However, the core
961 research ideas, code design, and overall framework are entirely our own. The LLMs played no role in the
962 ideation or conceptualization of the research.963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986