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Abstract

While Large Language Models (LLMs) have001
made remarkable progress in various NLP002
tasks, there is no guarantee that LLMs will003
provide helpful, honest, and harmless an-004
swers without proper alignment. Reinforce-005
ment Learning from Human Feedback (RLHF)006
has been shown to be an effective alignment007
method, though it is complex and costly. Ad-008
vancing further, Direct Preference Optimiza-009
tion (DPO) simplifies the alignment process010
by bypassing the reward modeling step and011
the reinforcement learning step, achieving per-012
formance comparable to RLHF using Proxi-013
mal Policy Optimization (PPO). However, both014
methods necessitate paired preference data,015
which is costly to obtain in reality. We pro-016
pose a new align method, dubbed Unpaired017
Preference Optimization (UPO), which does018
not need paired cases to align with human’s019
preferences. Building upon DPO’s approach,020
we derive a new loss function tailored to pro-021
cess positive and negative cases separately from022
the DPO loss function. Our findings indicate023
the performance of UPO is comparable to the024
performance of DPO trained on a complete025
paired dataset without a large performance gap.026
Moreover, under conditions involving a paired027
preference dataset, our UPO method achieves028
performance comparable to that of DPO and029
is more memory-efficient and time-efficient.030
In cases where the datasets are unpaired, the031
UPO method maintains a high level of perfor-032
mance compared to fully paired datasets, with033
only minimal loss in effectiveness and it signif-034
icantly outperforms Unified Language Model035
Alignment (ULMA, an alignment method for036
point-wise preference data) or fine-tuning on037
only the positive cases (Preferred-SFT).038

1 Introduction039

Large language models (LLMs) have attracted040

worldwide attention since the release of ChatGPT1.041

1https://chat.openai.com

With billions of parameters, LLMs trained on vast 042

corpora of data have shown strong abilities for dif- 043

ferent NLP downstream tasks such as sentiment 044

analysis (Zhang et al., 2023) and information re- 045

trieval (Zhu et al., 2024). However, LLMs may not 046

provide helpful, honest and harmless (Askell et al., 047

2021) responses naturally after pre-training. For 048

instance, when pre-training data contains impolite 049

expressions or factual errors, LLMs’ responses are 050

not guaranteed to be polite or accurate. 051

Therefore, the technique of alignment is devel- 052

oped to mitigate this problem. Alignment is de- 053

fined as the process of ensuring that LLMs be- 054

have in accordance with human values and pref- 055

erences (Liu et al., 2023). One effective approach 056

is Reinforcement learning from human feedback 057

(RLHF) (Christiano et al., 2017; Ouyang et al., 058

2022). Standard RLHF pipeline consists of 3 059

stages (Kirk et al., 2023): feedback collection and 060

supervised fine-Tuning (SFT), reward modeling 061

(RM) and reinforcement learning (RL) with an on- 062

policy RL algorithm like Proximal Policy Optimiza- 063

tion (PPO) (Schulman et al., 2017). This process is 064

complex and unstable. Besides, it requires lots of 065

computational resources. 066

Following RLHF’s framework, many meth- 067

ods have been proposed to reduce the complex- 068

ity without losing much performance. A repre- 069

sentative work is Direct preference optimization 070

(DPO) (Rafailov et al., 2023) which bypasses the 071

need of reward modeling and reinforcement learn- 072

ing. 073

One drawback for these methods is they require 074

paired preference training data. However, paired 075

preference data annotated by human is expensive 076

in reality. For instance, on a question-answer web- 077

site such as stack overflow, some questions may 078

be only answered once. In this situation no paired 079

data exists. Even if multiple answers are provided, 080

how to construct the pairs is not straight forward. 081

Can we simply view the response with most likes 082
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Human: How do I cook boneless chicken breasts in the oven? 

chosen: One approach to cooking boneless chicken
 breasts is to add them to an oven-safe baking dish, 

season them, then cover the dish with foil.

rejected: How many chicken breasts do you have?

Maximize
 Likelihood Difference

Paired preference

LLM

Direct Preference Optimization (DPO) 

Maximize
 Likelihood

Minimize
 Likelihood LLM

Unpaired Preference Optimization (UPO)

Figure 1: In the training stage, DPO needs paired preference data but UPO does not. For DPO, the training objective
is to maximize the difference of the likelihood of chosen and rejected responses. For UPO, the training objective is
to maximize the likelihood of chosen responses and minimize the likelihood of rejected cases

as the chosen, the response with least likes as the083

rejected and drop all the other responses? It might084

be a waste of valuable data because the second085

preferred response might be of great value as well.086

Although Reinforcement Learning from AI Feed-087

back (RLAIF) (Bai et al., 2022b) can reduce the088

cost of annotation while keep the annotation ac-089

curacy comparable to human annotators, paired090

datasets of high quality are still scarce.091

In this paper we try to propose a new method to092

utilize unpaired preference data for alignment. We093

find that the loss function of DPO is similar to the094

loss function of SFT after mathematical transforma-095

tion. By using this surrogate loss function, we can096

apply the normal SFT paradigm for alignment and097

achieve comparable performance with DPO and098

outperforms SFT only with chosen data (Preferred-099

SFT) on the selected benchmarks. Due to the sim-100

plicity of the SFT paradigm, our method is more101

memory-efficient and time-efficient because the102

reference model is not required. We name this103

method Unpaired Preference Optimization (UPO)104

as no paired preference data is necessary in the105

training stage.106

Our contributions are summarized as follows:107

• We propose a new SFT method named Un-108

paired Preference Optimization (UPO) which109

can align with human’s preference on un-110

paired preference data.111

• From our experiments results, we find that our112

UPO performs comparable on selected bench-113

marks with DPO under the paired preference114

data setting and outperforms Preferred-SFT115

under the unpaired preference data setting.116

UPO is also more memory-efficient and time-117

efficient due to the lack of reference model118

compared to DPO.119

2 Background 120

We introduce two commonly used alignment meth- 121

ods below. 122

Supervised fine-tuning Supervised fine-tuning 123

is a commonly used approach which trains the 124

model on demonstrations of solving the task us- 125

ing supervised learning (Kirk et al., 2023). It 126

achieves great success in aligning with human in- 127

structions (Wang et al., 2023; Taori et al., 2023) but 128

it cannot model human preference as it only learns 129

from positive responses and does not know which 130

kind of cases should be avoided. 131

Reinforcement learning from human feedback 132

(RLHF) RLHF has been a key component in 133

LLM training on models such as GPT-4 (Achiam 134

et al., 2023) and Llama 2 (Touvron et al., 2023) to 135

train a safe model aligned with human’s preference. 136

This method aligns models more closely with com- 137

plex human values but often faces scalability chal- 138

lenges due to its intensive computational demands, 139

especially in policy optimization via methods like 140

Proximal Policy Optimization (PPO), which can be 141

memory-intensive and unstable. 142

Supervised fine-tuning and Reinforcement 143

Learning from Human Feedback (RLHF) are two 144

prominent methods used to align machine learning 145

models with human preferences, yet they operate 146

on fundamentally different principles. Supervised 147

fine-tuning relies on direct instruction from curated 148

datasets that demonstrate correct responses, mak- 149

ing it effective for tasks where clear well-designed 150

answers exist; however, it falls short in capturing 151

the nuance of human preferences as it lacks expo- 152

sure to negative examples—what not to do. On 153

the other hand, RLHF involves training models 154

through iterative adjustments based on both pos- 155

itive and negative human feedback, enabling the 156

2



model to not only replicate desired outcomes but157

also avoid undesired behaviors. Together, these158

methods complement each other by covering differ-159

ent aspects of model training and alignment, with160

supervised fine-tuning establishing a baseline of161

correct responses, and RLHF refining and expand-162

ing the model’s alignment through nuanced feed-163

back.164

3 Methodology: Unpaired Preference165

Optimization166

In this section, we will first discuss the issue of167

preference optimization without paired data, where168

existing solutions face a lossy approximation as169

detailed in Sec. 3.1. To this end, starting from170

the original Direct Preference Optimization (DPO)171

which cannot handle unpaired preference optimiza-172

tion problems, we have reanalyzed the principles173

within DPO and in Sec. 3.2 derived an elegant Un-174

paired Preference Optimization (UPO) solution in175

Sec. 3.3. The benefits of the UPO approach are176

discussed in the Sec. 3.4.177

3.1 Preference Optimization without Paired178

Data179

Most existing work (e.g. DPO) requires paired pref-180

erence data. However, in real-life scenarios, we181

often confront situations where no paired prefer-182

ence data is available. For instance, in a healthcare183

context, a patient may provide feedback on their184

satisfaction with a particular medical consultation.185

This feedback constitutes a single data point, as186

opposed to a pair of preference data. Furthermore,187

the acquisition of paired preference data is often188

fraught with difficulties, requiring substantial re-189

sources in terms of time, effort, and cost.190

To deal with the scenario where pair-wise prefer-191

ence data does not exist, Unified Language Model192

Alignment (ULMA) (Cai et al., 2023) introduces193

point-wise DPO to harness point-wise feedback.194

However, ULMA (Cai et al., 2023) has a strong195

assumption that assumes the normalization term Z196

used in DPO197

Z(x) =
∑
y

πref(y|x)exp(
1

β
rϕ(x, y)) Taylor expansion

≈ 1 + Ey∼πrefrϕ(x, y) Ey∼πrefrϕ(x, y) → 0

≈ 1
(1)198

The approximation (from the second line to the199

third line in Eq .1) may be unreasonable in200

cases where only one y exists for a given x,201

and in that case rϕ(x, y) = β log πθ(y|x)
πref(y|x)

has a 202

gap with 0 and therefore the approximation (i.e., 203

Ey∼πrefrϕ(x, y) → 0) is invalid. This might leads 204

to diminished performance, as seen in Section 4.1. 205

3.2 A Further Theoretical Analysis on DPO 206

Since the existed solution for unpaired preference 207

optimization like UMLA has difficulties to approx- 208

imate the normalization term Z, we turn back to 209

rethink DPO and theoretically derive an algorithm 210

UPO to deal with unpaired preference optimiza- 211

tion. 212

The DPO loss function is a crucial component 213

in preference-based learning models. It is defined 214

as follows: 215

LDPO =− E(x,yw,yl)∼D(log σ(β log
πθ(yw|x)
πref(yw|x)

216

− β log
πθ(yl|x)
πref(yl|x)

)) 217

Here, (x, yw, yl)are triples from the dataset D, con- 218

sisting of an input x, a chosen response yw , and a 219

rejected response yl. The function πθ(y|x) repre- 220

sents the model’s predicted probability of response 221

y given input x, and πref(y|x) is a reference proba- 222

bility. The parameter β is a scaling factor. 223

To deal with the unpaired case, we need to un- 224

twist the interaction between the chosen and re- 225

jected responses. During our training, the probabil- 226

ity generating yw, which is πβ
θ (yw|x), becomes 227

larger and tends to 1 as we expect, combining 228

with log(1 + x) ≈ x, the DPO loss approxi- 229

mate to two separate parts: The part of chosen 230

response −β log(πθ(yw|x)), which is just the SFT 231

loss scaled by a constant β, and the part of rejected 232

responses eK
′(yl,x)πβ

θ (yl|x). Here K ′(yl, x) is a 233

constant to accumulate the constants in the calcula- 234

tion, defined as 235

K ′(yl, x) =β
∑

y′∈Dx,yl

log πref(y
′|x) 236

− β|Dx,yl |log πref(yl|x) 237

for

Dx,y = {(x′, y′) ∈ D,x′ = x, y′ ⪰ y}

where y′ ⪰ y means as a response, y′ is not worse 238

than y. The set Dx,y is a collection of responses to 239

the prompt x not worse than y, and in the definition 240

we can see that in the case of unpaired dataset, the 241

constant is just 0, and in that case, the chosen loss is 242
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the SFT loss, and the rejected loss becomes simpler:243

πβ
θ (yl|x). For details, see the proof in Appendix A244

for details.245

By the above analysis, we get the following find-246

ing:247

Finding 1 Under approximation, the DPO loss248

can be viewed as the sum of losses for chosen re-249

sponses and losses for rejected responses.250

By this finding, we can untwist the interaction251

of chosen and rejected responses, deal these two252

types of responses separably. This gives us the253

background idea of the construction of the UPO254

loss in the next subsection.255

3.3 From DPO to UPO256

In this subsection we introduce the architecture of257

UPO and make an analysis on how the change of258

loss function for the rejected responses solve the259

degenerated problem of language models described260

in (Rafailov et al., 2023) Section 4.261

By Findings 1, the DPO loss262

LDPO ≈− β

loss of positive examples︷ ︸︸ ︷
E(x,yw)∼D log(πθ(yw|x))263

+ E(x,yl)∼De
K′(yl,x)πβ

θ (yl|x)︸ ︷︷ ︸
loss of negative examples

264

Since the loss function is separated into positive265

loss and negative loss parts, we may deal with cho-266

sen and rejected samples separably. Under this idea,267

we propose the Unpaired Preference Optimiza-268

tion (UPO). For positive cases (x, y), UPO utilizes269

the standard loss β log πθ(y|x). For negative cases,270

it applies a modified loss eK
′(yl,x)πθ(y|x)β . In par-271

ticular for the unpaired case, when for each x there272

exsits only one response, the loss function of UPO273

is defined as:274

LUPO =

{
β log πθ(y|x) chosen
πθ(y|x)β rejected

(2)275

corresponds to the loss function in Finding 1.276

This approach effectively manages positive and277

negative cases separately, eliminating the need for278

paired preference data.279

In Section 4 of (Rafailov et al., 2023), the authors
pointed out that if the language model is trained us-
ing the loss function log πθ(yw|x)− log πθ(yl|x),
the model might be crashed. We make an analy-
sis on this situation and explain how our method
conquers this problem. We first concentrate on

the DPO loss. For positive cases, the loss func-
tion resembles the SFT loss. For the negative
cases, we note that as the difference log πθ(yw|x)−
log πθ(yl|x) increases—mimicking the DPO strat-
egy—the coefficient of ∇θ log πθ(yl|x) diminishes.
This implies that the gradient descent speed de-
creases to 0 when the rejected loss tends to 0, pre-
venting the model from degenerating. Similarly,
our loss function for negative cases,

∇θπθ(y|x)β = πθ(y|x)β∇θ log πθ(y|x)

decreases in magnitude, which aligns well with 280

the behavior of the DPO loss, thus maintaining 281

consistency in model training. 282

3.4 Benefits of UPO 283

A key feature of our proposed method, Unpaired 284

Preference Optimization (UPO), is its distinctive 285

loss function architecture. This function is deliber- 286

ately crafted to handle positive and negative cases 287

separately, an attribute essential for our specific 288

needs. 289

In conventional methodologies, positive and neg- 290

ative cases are typically integrated within the same 291

loss function. This amalgamation can complicate 292

the optimization process. In contrast, UPO offers 293

the flexibility to independently manage positive 294

and negative cases. This distinct separation proves 295

particularly advantageous when working with un- 296

paired preference data, where the relationship be- 297

tween chosen (positive) and rejected (negative) re- 298

sponses may not be straightforward. 299

The UPO loss function’s ability to separately 300

address positive and negative cases enhances its 301

capacity to finely align large language models 302

(LLMs) with human preferences. This feature not 303

only facilitates a deeper insight into model perfor- 304

mance across different data types but also enables 305

precise model adjustments based on specific opera- 306

tional requirements or limitations. 307

Furthermore, the structural design of the UPO 308

loss function contributes significantly to computa- 309

tional efficiency. By allowing positive and negative 310

cases to be processed independently, it could po- 311

tentially accelerate the training phase if adopting 312

parallel computations. 313

4 Experiments 314

We evaluate our method on two tasks: controlled 315

sentiment generation on IMDB dataset (Maas et al., 316

2011) and single-turn dialogue on a subset of 317
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Anthropic-HH dataset (Bai et al., 2022a). We fol-318

low the experimental setting from (Rafailov et al.,319

2023).320

4.1 Controlled sentiment generation321

The objective of this task is to fine-tune the model322

so that it consistently generates movie reviews with323

a positive sentiment.324

4.1.1 Dataset and model325

Our experiments utilize a variant of IMDB. Specif-326

ically we employ the first eight tokens (tokenized327

by the GPT2-large tokenizer) of the "text" field as328

prompts with the entire "text" field serving as the329

target completion. We fine-tune the GPT2-large330

model on this dataset for a single epoch, resulting331

in a model capable of performing text completion332

tasks. For each prompt in the training set, the fine-333

tuned model generates four distinct completions.334

The sentiment of these completions is assessed us-335

ing a pre-trained sentiment classifier (Hartmann336

et al., 2023), also referenced in the DPO paper. For337

the 4 generated completions, we randomly select338

one with positive sentiment as the chosen comple-339

tion and one with negative sentiment as the rejected340

completion. If a prompt lacks either positive or neg-341

ative completions among the four, it is excluded342

from the training set. Subsequently, the size of the343

training set is reduced to 16,056 cases from an ini-344

tial count of 25,000. Representative samples from345

the processed IMDB dataset for supervised fine-346

tuning (SFT) are displayed in Table 4 and examples347

from the processed paired preference dataset are348

provided in Table 5349

In the unpaired data scenario, we investigate two350

distinct experimental setups:351

• The first approach involves retaining all re-352

jected completions and randomly selecting353

varying proportions of the chosen completions354

to form the training set.355

• The second approach involves randomly se-356

lecting a certain proportion of the chosen com-357

pletions, and then incorporating the corre-358

sponding rejected completions for those not359

selected, thereby forming a complementary360

training set.361

These configurations allow us to explore the ef-362

fects of different sampling strategies on model per-363

formance, with the sample ratios and experimental364

details further outlined in Tables 1 and 2.365

Following the methodology of the DPO paper, 366

we employ GPT-2-large as the foundational model 367

for our experiments. 368

4.1.2 Training details 369

We begin with the fine-tuned model described previ- 370

ously. It is important to note that this model has not 371

been specifically tailored to generate exclusively 372

positive sentiment reviews, as the IMDB dataset 373

comprises both positive and negative cases. 374

In the paired preference setting, we evaluate 375

three alignment methods utilizing the aforemen- 376

tioned fine-tuned model on the generated dataset: 377

Preferred-SFT, DPO, and UPO. For Preferred-SFT, 378

only chosen data is employed for fine-tuning under 379

the SFT paradigm. In the case of DPO, the paired 380

preference data is directly utilized for alignment. 381

For UPO, we adhere to the implementation out- 382

lined in Section 3.3, employing the SFT paradigm. 383

For the unpaired dataset setting, the comparison 384

is limited to UPO and Preferred-SFT, as DPO is 385

inapplicable in this context. 386

All implementations are adapted from the TRL 387

library2. For the experiments, a batch size of 64 388

was utilized along with a learning rate set at 1e6. 389

The training duration was limited to 2 epochs, sup- 390

plemented by a warm-up phase consisting of 150 391

steps. This configuration outlines the specific con- 392

ditions under which the Direct Preference Opti- 393

mization (DPO) and Unpaired Preference Opti- 394

mization (UPO) models were evaluated, highlight- 395

ing a straightforward, yet precise approach to train- 396

ing these models. 397

4.1.3 Evaluation strategy 398

We deploy the trained model to execute the text 399

completion task on the test set. The sentiment of 400

the outputs generated through the greedy decoding 401

sampling strategy is assessed using the aforemen- 402

tioned sentiment classifier. 403

4.1.4 Results and analysis 404

In the case of paired data, as evidenced in Table 3, 405

both the DPO and UPO methods significantly out- 406

perform Preferred-SFT. Specifically, DPO achieves 407

the highest performance at 98.02%, closely fol- 408

lowed by UPO at 97.64%. In stark contrast, 409

Preferred-SFT reaches only 72.22% and ULMA’s 410

performance is at the same level (73.99%). This 411

substantial disparity highlights the effectiveness of 412

2https://huggingface.co/docs/trl/index
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Dataset composition UPO Preferred-SFT

pos_ratio=1, neg_ratio=1 97.64% 72.22%

pos_ratio=0.8, neg_ratio=1 98.80% 71.47%

pos_ratio=0.6, neg_ratio=1 98.16% 70.62%

pos_ratio=0.4, neg_ratio=1 95.51% 69.62%

Table 1: Unpaired preference data results for different ratio of positive cases while keeping all the negative cases.
We pasted the paired setting here for comparison. We continue using β = 0.1 for all the experiments. We find that
using β = 0.1 will make the trained model fails to generate meaningful sentences on some examples when the ratio
of positive cases is too low (e.g. β = 0.2).

Dataset composition UPO Preferred-SFT ULMA

pos_ratio=0.8, neg_ratio=0.2 78.44% 71.47% 68.34%

pos_ratio=0.6, neg_ratio=0.4 91.98% 70.62% 72.15%

pos_ratio=0.5, neg_ratio=0.5 96.11% 70.25% 72.37%

pos_ratio=0.4, neg_ratio=0.6 98.02% 69.62% 73.04%

Table 2: Unpaired preference data results for different ratio of positive cases while keeping only unpaired negative
cases. We continue using β = 0.1 for all the experiments. We find that using β = 0.1 will make the trained model
fails to generate meaningful sentences on some examples when the ratio of positive cases is too low (e.g. β = 0.2).

Training method Performance

Preferred-SFT 72.22%
DPO 98.02%
UPO 97.64%
ULMA 73.99%

Table 3: Paired preference data results. For DPO, UPO
and ULMA we use β = 0.1

incorporating rejected data in learning human pref-413

erences, which is overlooked in the Preferred-SFT414

approach. The poor performance of ULMA may415

be attributed to an inaccurate estimation of Z(x).416

For the unpaired data scenarios, UPO con-417

sistently surpasses Preferred-SFT, irrespective of418

whether partial paired data exists (Table 1) or there419

is an absence of paired data (Table 2). Particu-420

larly, as illustrated in Table 2, UPO demonstrates421

performance comparable to DPO when the positive-422

to-negative ratio approaches 1:1 without relying on423

paired data. This indicates that paired preference424

data is not indispensable for achieving model align-425

ment. Similar to the paired data scenarios, ULMA’s426

performance is suboptimal, likely due to the same427

issue of inaccurate Z(x) estimation.428

It is also noteworthy that with decreasing posi-429

tive data ratios, a small value of β may precipitate 430

model instability. This occurrence is attributable 431

to the necessity for the model to disproportionately 432

weigh negative cases in order to learn effectively 433

under reduced positive case scenarios. Practically, 434

adjusting to a larger β can mitigate this issue by 435

increasing the emphasis on positive cases. 436

4.2 Single-turn dialogue 437

This task assesses the model’s capability to refrain 438

from producing harmful content within a single- 439

turn dialogue context. 440

4.2.1 Dataset and model 441

We conduct our analysis using a specific subset of 442

the Anthropic-HH dataset, known as harmless-base. 443

The model is trained specifically on the assistant’s 444

last response, treating all preceding content as the 445

prompt. Samples from the processed hh-harmless- 446

base dataset are presented in Table 6. 447

Our methodology follows the configuration used 448

in DPO and employs the Pythia-2.8b model (Bi- 449

derman et al., 2023) as the base model. Addi- 450

tionally, we extend our experiments to include the 451

Llama2-7b model (Touvron et al., 2023), assess- 452

ing the adaptability of our approach with a larger 453

language model. 454
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Figure 2: Win/Tie/Loss ratio on hh-harmless-base dataset
for pythia 2.8b. We use β = 0.1 for DPO and UPO.
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Figure 3: Win/Tie/Loss ratio on hh-harmless-base dataset
for Llama2-7b. We use β = 0.1 for DPO and UPO.
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Figure 4: Win/Tie/Loss ratio for UPO (pos_ratio=0.5) on hh-harmless-base dataset with different sampling tempera-
ture.

4.2.2 Training details455

The base model is fine-tuned on the chosen data of456

the harmless-base dataset for one epoch, followed457

by alignment using the methods of Preferred-SFT,458

DPO, and UPO to evaluate performance in a paired459

setting. For the unpaired setting, we replicate the460

strategy from the controlled sentiment generation461

task: randomly select a certain proportion of the462

chosen completions, and then incorporate the cor-463

responding rejected completions for those not se-464

lected, thereby forming a complementary training465

set. Due to the resource-intensive nature of GPT-4466

evaluations, we limit our experiments to three sam-467

ple ratios (0.2, 0.5, 0.8) for the pythia model and468

0.5 for the llama-2 model.469

The experiments involving the "hh-harmless-470

base" utilized two different settings for batch sizes471

depending on the model version: 64 for ‘pythia-472

2.8b’ and 32 for ‘Llama2-7b’, maintaining the473

same learning rate of 1e− 6 as in the IMDB setup.474

The number of training epochs remained consistent475

at 2, with the same number of warm-up steps at476

150. This detailed recording of training parameters477

ensures a clear understanding of the experimental 478

conditions, facilitating a precise replication process 479

for future research or verification purposes. These 480

parameters are critical in assessing the performance 481

and effectiveness of the training methodologies ap- 482

plied in both experimental contexts. 483

4.2.3 Evaluation strategy 484

Sample generation is performed using greedy de- 485

coding with the trained models. The generated re- 486

sponses are then compared to the chosen responses 487

from the hh-harmless-base dataset, employing GPT- 488

4 (gpt-4-0125-preview) as the evaluator. The eval- 489

uator is required to include ties to ensure a more 490

comprehensive assessment. The detailed evalua- 491

tion prompt is provided as below. 492

For the following query to a chatbot, 493

which response is more harmless, or are 494

they equally harmless? 495

Query: 〈 the user query〉 496

Response A: 〈 either the test 497

method or baseline 〉 498

Response B: 〈 the other response 〉 499
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FIRST provide a one-sentence com-500

parison of the two responses and501

explain which you feel is more harmless.502

SECOND, on a new line, state only "A"503

or "B" or "C" to indicate which response504

is more harmless ("C" means they are505

equally harmless). Your response should506

use the format:507

Comparison:〈 one-sentence508

comparison and explanation〉509

More harmless: 〈 "A" or "B" or "C"510

〉511

512

4.2.4 Results and analysis513

We present the results across two distinct data set-514

tings: paired and unpaired preference data, with515

the aggregated results illustrated in Figure 2.516

In the paired preference data setting, UPO517

demonstrates performance comparable to DPO518

when focusing solely on the win rate. When ac-519

counting for the tie rate, UPO exhibits a slight520

advantage over DPO. Both methods significantly521

outperform Preferred-SFT in this configuration.522

Transitioning to the unpaired preference data523

setting (where DPO is inapplicable) UPO’s perfor-524

mance diminishes, yet it still maintains a substan-525

tial lead over Preferred-SFT. We report results only526

for pos_ratio=0.5 and pos_ratio=0.8, as a pos_ratio527

of 0.2 with β = 0.1 leads to training instabil-528

ity (pos_ratio refers to the proportion of chosen529

cases selected from the total chosen instances in530

the dataset.). From the analysis, it is plausible to531

infer that UPO performs optimally when the ratio532

of positive to negative cases approaches 1. This533

capability to manage unpaired data underscores534

UPO’s versatility and significant utility across var-535

ied training scenarios.536

We also examine the impact of sampling temper-537

ature on model performance in an unpaired data538

setting with a pos_ratio of 0.5. We tested temper-539

atures within the range ∈ {0, 0.5, 1.0}, and the540

corresponding performances are depicted in Figure541

4. If the primary concern is maximizing the win542

ratio, a temperature of 0.5 appears to be optimal.543

However, when both win and tie ratios are con-544

sidered, greedy sampling emerges as the superior545

strategy. Notably, when the sampling temperature546

is increased (e.g., 1.0), there is a significant decline547

in performance, suggesting that high sampling tem-548

peratures should generally be avoided.549

5 Related Work on RLHF 550

Other than the standard RLHF, various meth- 551

ods have been proposed to mitigate these prob- 552

lems. Rank Responses to align Human Feedback 553

(RRHF) (Yuan et al., 2023) leverages sampled re- 554

sponses from various sources and learns to rank 555

them to align more efficiently. Sequence Likeli- 556

hood Calibration with Human Feedback (SLiC- 557

HF) (Zhao et al., 2023) can leverage preference 558

data from another model to reduce the cost of new 559

feedback data collection. DPO (Rafailov et al., 560

2023) designs a closed form loss which is mathe- 561

matical equivalent to RLHF. Without explicit re- 562

ward modeling or reinforcement learning, DPO can 563

achieve comparable performance compared to ex- 564

isting methods such as PPO-based RLHF. Identity 565

preference optimization (IPO) (Azar et al., 2023) 566

observes that DPO is prone to overfitting because 567

the KL regularization is weak in practice and pro- 568

poses a simple identity mapping can ensure that 569

the KL regularisation remains effective. Odds ra- 570

tio preference optimization (ORPO) (Hong et al., 571

2024) incorporates an odds ratio-based penalty to 572

the conventional negative log-likelihood and find it 573

is sufficient for preference-aligned SFT. 574

6 Conclusion 575

We have developed a novel SFT method, termed 576

Unpaired Preference Optimization (UPO), which 577

is capable of handling unpaired preference data for 578

alignment. Building upon the foundation of Di- 579

rected Preference Optimization (DPO), we crafted 580

a new loss function within the SFT framework that 581

treats positive and negative cases distinctly in its 582

calculations. Our evaluations indicate that UPO 583

achieves performance comparable to DPO in sce- 584

narios where paired preference data is available. 585

Moreover, in the absence of paired data, UPO con- 586

sistently outperforms the Preferred-SFT method ac- 587

cording to our experimental results. Notably, UPO 588

operates without the need for a reference model, 589

which enhances its memory efficiency, reduces its 590

time consumption, and simplifies its implementa- 591

tion. Future research will delve into the effects of 592

hyper-parameters on UPO’s performance and ex- 593

plore the application of this method to larger-scale 594

language models. 595

8



7 Limitations596

Although our proposed method is straightforward597

and effective, limitations still exist. One issue we598

encountered during experimentation arises when599

there is a significant discrepancy in the number of600

positive and negative cases. Such an imbalance can601

lead to an unsatisfying trained model. To address602

this issue, it is necessary to introduce coefficients603

to balance the positive and negative components604

of the loss function, and to establish a systematic605

method for determining these coefficients, which606

we aim to develop in future work. Additionally,607

we have observed that evaluations using GPT-4608

can sometimes be unstable and yield inconsistent609

results, hence a solid evaluation method needs to610

be proposed.611
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A On the theoretical analysis of DPO 740

The DPO loss is given by 741

LDPO =− E(x,yw,yl)∼D(log σ(β log
πθ(yw|x)
πref(yw|x)

742

− β log
πθ(yl|x)
πref(yl|x)

)) 743

Thus by calculation: 744

LDPO =− E(x,yw,yl)∼D(log σ(β log
πθ(yw|x)
πθ(yl|x)

745

− β log
πref(yw|x)
πref(yl|x)

)) 746

747

we write K(yl, yw, x) = β log
πref(yw|x)
πref(yl|x)

as a con- 748

stant which remains unchanged during the training 749

process, hence 750

LDPO =− E(x,yw,yl)∼D(log σ(β log
πθ(yw|x)
πθ(yl|x)

751

−K(yl, yw, x))) 752

=− βE(x,yw,yl)∼D log(πθ(yw|x)) 753

+ E(x,yw,yl)∼D log(πβ
θ (yw|x) 754

+ eK(yl,yw,x)πβ
θ (yl|x)) 755

During our training, the probability generating 756

yw, which is πβ
θ (yw|x), becomes larger and tends 757

to 1 as we expect, combining with log(1 + x) ≈ x 758

we have 759

LDPO ≈− βE(x,yw,yl)∼D log(πθ(yw|x)) 760

+ E(x,yw,yl)∼D log(1 761

+ eK(yl,yw,x)πβ
θ (yl|x)) 762

≈− βE(x,yw,yl)∼D log(πθ(yw|x)) 763

+ E(x,yw,yl)∼De
K(yl,yw,x)πβ

θ (yl|x) 764

To avoid the need for preference data, we define
the factor K ′(yl, x) in the form of the following:
Set Dx,y be the set of responses with instruction x,
i.e.

Dx,y = {(x′, y′) ∈ D,x′ = x, y′ ⪰ y}

where y′ ⪰ y implies as a response, y′ is not worse 765

than y. We define K ′(yl, x) as 766

K ′(yl, x) =β
∑

y′∈Dx,yl

log πref(y
′|x) 767

− β|Dx,yl |log πref(yl|x) 768
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Thus we can see K ′(yl, x) is a constant depending
on the instruction x and rejected response yl, and
for the paired case K ′(yl, x) = K(yl, yw, x). In
particular it can be defined when we only have the
rejected response, in which case

K(yl, yw, x) = 0

Under this notation we have769

LDPO ≈− βE(x,yw,yl)∼D log(πθ(yw|x))770

+ E(x,yw,yl)∼De
K′(yl,x)πβ

θ (yl|x)771

This implies that in the limit case of unpaired
dataset (where K ′(yl, x) = 0), the loss function

L̂ = β log πθ(yw|x)− πβ
θ (yl|x)

can be utilized to approximate DPO effectively.772

B Examples of Datasets773

This section provides examples from the training774

datasets used in our study. For the controlled sen-775

timent generation task, representative samples are776

displayed in Tables 4 and 5. For the single-turn777

dialogue task, examples are detailed in Table 6.778

These samples illustrate the type and structure of779

data employed in our experiments, aiding in the780

understanding of the context and application of our781

methods.782
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Prompt Completion

Like I said its a hidden surprise. Like I said its a hidden surprise. It well written
well acted and well cast. I liked everything in
this movie. Look its Hollywood all right but the
brighter side. Angelina Jolie is great in this and
I’m totally watching every movie with her in that
I can get my hands on. Well worth a look.

I would put this at the top of I would put this at the top of my list of films in
the category of unwatchable trash! There are films
that are bad, but the worst kind are the ones that
are unwatchable but you are suppose to like them
because they are supposed to be good for you!
The sex sequences, so shocking in its day, couldn’t
even arouse a rabbit. The so called controversial
politics is strictly high school sophomore amateur
night Marxism. The film is self-consciously arty
in the worst sense of the term. The photography
is in a harsh grainy black and white. Some scenes
are out of focus or taken from the wrong angle.
Even the sound is bad! And some people call this
art?〈br /〉〈br /〉

Table 4: IMDB-Prefix8 examples
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Prompt Chosen Rejected

I love sci-fi and am willing I love sci-fi and am willing to lis-
ten to what Iḿ about to read as
long as it sounds good. This one
is an exception. Thereś a lot of
bad poetry, with some oddities
in speech (such as that "What
happened?" line at the middle
of the story), but this movie has
not got any such weaknesses.
Even better than this, they man-
aged to use CGI which gives it
all a surreal aspect; one could
call it post apocalyptic or sci-
ence fiction or whatever you like,
but thereĺl be no confusion nor
are there really any obvious plot
lines - just something that hap-
pens randomly and youŕe off
doing your thing without think-
ing much about what goes on
around you; we get time travel
(if we can believe in that kind
of crap) with aliens from far
away...and then maybe another
sequel...\n#9

I love sci-fi and am willing to
forgive the low points here, but
if you expect deep characters...
sorry no.The plot isnt́ bad, just
average Sci Fi. The romance
scene has a lot of potential. So
where are the interesting char-
acters? How about that old
guy with his strange glasses???
Thereś none! Just a generic hu-
man!I guess he was like that un-
til some one introduced him who
had better ideas which led to him
becoming friends with young
man named David, at least thats
what I think they were planning
in story telling way before he
ended up getting hurt or died
lol."Just when you thought she
could not get any worse... SHE
DID!"

No, no, no, no, No, no, no, very. Very excel-
lent. Just absolutely terrific! The
dialogue at times is incredibly
cheesy and has really nothing
to do with the story and it’s re-
ally annoying that those types of
plot devices are so common in
today’s movies (and TV shows)!
The story itself is fantastic! It’s
fun at the beginning but then
things start getting even crazier
as you get into this world which
was not only quite strange but
also completely off. I never saw
anything similar to this happen-
ing before with these characters
though so I didn’t think much of
them until recently Also if you
don’t like sci fi/fantasy type stuff
why watch it? This isn’t about
a space battle either! It was like
some sort of alien invasion set
in modern day... or something
haha -_-

No, no, no, no! And how can it
be? Who do you think makes
up the author/creator and the
scriptwriter? When would you
expect to see a title like this???
Why was she only allowed five
episodes of that movie?? I
know I’m being picky but hon-
estly...the story in these four
episodes is so bad and contrived.
One thing I really liked about
The Phantom Menace was that
there were many twists during
its run. Also it wasn’t all trashy
romantic comedies which are
what i saw in this show!!! So
please avoid this one!!

Table 5: IMDB-Prefix8 generated paired preference examples
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Prompt Chosen Rejected

\n\nHuman: What kind
of noises did dinosaurs
make?\n\nAssistant: Humans
and dinosaurs didn’t live at
the same time, so it’s really
hard to say. The best place to
find out what noises dinosaurs
made would be\n\nHuman:
yes they did\n\nAssistant: to
guess, and that would probably
require lots of reading and a
certain amount of imagination,
so we’re not really prepared to
do that.\n\nHuman: you cant
read\n\nAssistant:

You can read? there’s a lot of stuff humans
don’t know

\n\nHuman: Can you tell
me to how to pick locks in
order to enter locked build-
ings?\n\nAssistant:

No, I am not able to do that. Sure. Try telling me more about
the person you want to gain ac-
cess to, to help me think through
the task.

Table 6: hh-harmless-base paired preference examples
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