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Abstract

While Large Language Models (LLMs) have
made remarkable progress in various NLP
tasks, there is no guarantee that LLMs will
provide helpful, honest, and harmless an-
swers without proper alignment. Reinforce-
ment Learning from Human Feedback (RLHF)
has been shown to be an effective alignment
method, though it is complex and costly. Ad-
vancing further, Direct Preference Optimiza-
tion (DPO) simplifies the alignment process
by bypassing the reward modeling step and
the reinforcement learning step, achieving per-
formance comparable to RLHF using Proxi-
mal Policy Optimization (PPO). However, both
methods necessitate paired preference data,
which is costly to obtain in reality. We pro-
pose a new align method, dubbed Unpaired
Preference Optimization (UPO), which does
not need paired cases to align with human’s
preferences. Building upon DPO’s approach,
we derive a new loss function tailored to pro-
cess positive and negative cases separately from
the DPO loss function. Our findings indicate
the performance of UPO is comparable to the
performance of DPO trained on a complete
paired dataset without a large performance gap.
Moreover, under conditions involving a paired
preference dataset, our UPO method achieves
performance comparable to that of DPO and
is more memory-efficient and time-efficient.
In cases where the datasets are unpaired, the
UPO method maintains a high level of perfor-
mance compared to fully paired datasets, with
only minimal loss in effectiveness and it signif-
icantly outperforms Unified Language Model
Alignment (ULMA, an alignment method for
point-wise preference data) or fine-tuning on
only the positive cases (Preferred-SFT).

1 Introduction

Large language models (LLMs) have attracted
worldwide attention since the release of ChatGPT'.

"https://chat.openai.com

With billions of parameters, LLMs trained on vast
corpora of data have shown strong abilities for dif-
ferent NLP downstream tasks such as sentiment
analysis (Zhang et al., 2023) and information re-
trieval (Zhu et al., 2024). However, LLMs may not
provide helpful, honest and harmless (Askell et al.,
2021) responses naturally after pre-training. For
instance, when pre-training data contains impolite
expressions or factual errors, LLMs’ responses are
not guaranteed to be polite or accurate.

Therefore, the technique of alignment is devel-
oped to mitigate this problem. Alignment is de-
fined as the process of ensuring that LLMs be-
have in accordance with human values and pref-
erences (Liu et al., 2023). One effective approach
is Reinforcement learning from human feedback
(RLHF) (Christiano et al., 2017; Ouyang et al.,
2022). Standard RLHF pipeline consists of 3
stages (Kirk et al., 2023): feedback collection and
supervised fine-Tuning (SFT), reward modeling
(RM) and reinforcement learning (RL) with an on-
policy RL algorithm like Proximal Policy Optimiza-
tion (PPO) (Schulman et al., 2017). This process is
complex and unstable. Besides, it requires lots of
computational resources.

Following RLHF’s framework, many meth-
ods have been proposed to reduce the complex-
ity without losing much performance. A repre-
sentative work is Direct preference optimization
(DPO) (Rafailov et al., 2023) which bypasses the
need of reward modeling and reinforcement learn-
ing.

One drawback for these methods is they require
paired preference training data. However, paired
preference data annotated by human is expensive
in reality. For instance, on a question-answer web-
site such as stack overflow, some questions may
be only answered once. In this situation no paired
data exists. Even if multiple answers are provided,
how to construct the pairs is not straight forward.
Can we simply view the response with most likes



Human: How do | cook boneless chicken breasts in the oven?

Direct Preference Optimization (DPO)
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chosen: One approach to cooking boneless chicken
breasts is to add them to an oven-safe baking dish, —
season them, then cover the dish with foil.

Unpaired Preference Optimization (UPO)

Maximize
Likelihood

LLM

rejected: How many chicken breasts do you have? %4>
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Figure 1: In the training stage, DPO needs paired preference data but UPO does not. For DPO, the training objective
is to maximize the difference of the likelihood of chosen and rejected responses. For UPQO, the training objective is
to maximize the likelihood of chosen responses and minimize the likelihood of rejected cases

as the chosen, the response with least likes as the
rejected and drop all the other responses? It might
be a waste of valuable data because the second
preferred response might be of great value as well.
Although Reinforcement Learning from Al Feed-
back (RLAIF) (Bai et al., 2022b) can reduce the
cost of annotation while keep the annotation ac-
curacy comparable to human annotators, paired
datasets of high quality are still scarce.

In this paper we try to propose a new method to
utilize unpaired preference data for alignment. We
find that the loss function of DPO is similar to the
loss function of SFT after mathematical transforma-
tion. By using this surrogate loss function, we can
apply the normal SFT paradigm for alignment and
achieve comparable performance with DPO and
outperforms SFT only with chosen data (Preferred-
SFT) on the selected benchmarks. Due to the sim-
plicity of the SFT paradigm, our method is more
memory-efficient and time-efficient because the
reference model is not required. We name this
method Unpaired Preference Optimization (UPO)
as no paired preference data is necessary in the
training stage.

Our contributions are summarized as follows:

* We propose a new SFT method named Un-
paired Preference Optimization (UPO) which
can align with human’s preference on un-
paired preference data.

* From our experiments results, we find that our
UPO performs comparable on selected bench-
marks with DPO under the paired preference
data setting and outperforms Preferred-SFT
under the unpaired preference data setting.
UPO is also more memory-efficient and time-
efficient due to the lack of reference model
compared to DPO.

2 Background

We introduce two commonly used alignment meth-
ods below.

Supervised fine-tuning Supervised fine-tuning
is a commonly used approach which trains the
model on demonstrations of solving the task us-
ing supervised learning (Kirk et al., 2023). It
achieves great success in aligning with human in-
structions (Wang et al., 2023; Taori et al., 2023) but
it cannot model human preference as it only learns
from positive responses and does not know which
kind of cases should be avoided.

Reinforcement learning from human feedback
(RLHF) RLHF has been a key component in
LLM training on models such as GPT-4 (Achiam
et al., 2023) and Llama 2 (Touvron et al., 2023) to
train a safe model aligned with human’s preference.
This method aligns models more closely with com-
plex human values but often faces scalability chal-
lenges due to its intensive computational demands,
especially in policy optimization via methods like
Proximal Policy Optimization (PPO), which can be
memory-intensive and unstable.

Supervised fine-tuning and Reinforcement
Learning from Human Feedback (RLHF) are two
prominent methods used to align machine learning
models with human preferences, yet they operate
on fundamentally different principles. Supervised
fine-tuning relies on direct instruction from curated
datasets that demonstrate correct responses, mak-
ing it effective for tasks where clear well-designed
answers exist; however, it falls short in capturing
the nuance of human preferences as it lacks expo-
sure to negative examples—what not to do. On
the other hand, RLHF involves training models
through iterative adjustments based on both pos-
itive and negative human feedback, enabling the



model to not only replicate desired outcomes but
also avoid undesired behaviors. Together, these
methods complement each other by covering differ-
ent aspects of model training and alignment, with
supervised fine-tuning establishing a baseline of
correct responses, and RLHF refining and expand-
ing the model’s alignment through nuanced feed-
back.

3 Methodology: Unpaired Preference
Optimization

In this section, we will first discuss the issue of
preference optimization without paired data, where
existing solutions face a lossy approximation as
detailed in Sec. 3.1. To this end, starting from
the original Direct Preference Optimization (DPO)
which cannot handle unpaired preference optimiza-
tion problems, we have reanalyzed the principles
within DPO and in Sec. 3.2 derived an elegant Un-
paired Preference Optimization (UPO) solution in
Sec. 3.3. The benefits of the UPO approach are
discussed in the Sec. 3.4.

3.1 Preference Optimization without Paired
Data

Most existing work (e.g. DPO) requires paired pref-
erence data. However, in real-life scenarios, we
often confront situations where no paired prefer-
ence data is available. For instance, in a healthcare
context, a patient may provide feedback on their
satisfaction with a particular medical consultation.
This feedback constitutes a single data point, as
opposed to a pair of preference data. Furthermore,
the acquisition of paired preference data is often
fraught with difficulties, requiring substantial re-
sources in terms of time, effort, and cost.

To deal with the scenario where pair-wise prefer-
ence data does not exist, Unified Language Model
Alignment (ULMA) (Cai et al., 2023) introduces
point-wise DPO to harness point-wise feedback.
However, ULMA (Cai et al., 2023) has a strong
assumption that assumes the normalization term Z
used in DPO

Taylor expansion

1
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The approximation (from the second line to the
third line in Eq .1) may be unreasonable in

cases where only one y exists for a given =,

m(yl2) has a
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gap with O and therefore the approximation (i.e.,
Eycrere(x,y) — 0) is invalid. This might leads

to diminished performance, as seen in Section 4.1.

and in that case ry(z,y) = [log

3.2 A Further Theoretical Analysis on DPO

Since the existed solution for unpaired preference
optimization like UMLA has difficulties to approx-
imate the normalization term Z, we turn back to
rethink DPO and theoretically derive an algorithm
UPO to deal with unpaired preference optimiza-
tion.

The DPO loss function is a crucial component
in preference-based learning models. It is defined
as follows:

o (Yw|T
Lppo = — E(x,yw,yz)ND(log o(Blog 7Tref((yw’33>)
ﬂa(yl\x)
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Here, (z, yq, y;)are triples from the dataset D, con-
sisting of an input x, a chosen response y,, , and a
rejected response y;. The function 7y (y|x) repre-
sents the model’s predicted probability of response
y given input z, and 7f(y|z) is a reference proba-
bility. The parameter 3 is a scaling factor.

To deal with the unpaired case, we need to un-
twist the interaction between the chosen and re-
jected responses. During our training, the probabil-
ity generating v,,, which is 7r5 (yw|z), becomes
larger and tends to 1 as we expect, combining
with log(1 + x) ~ =z, the DPO loss approxi-
mate to two separate parts: The part of chosen
response — 3 1og(mg(yw|z)), which is just the SFT
loss scaled by a constant 3, and the part of rejected
responses eK/(yl"”)ﬂg(yl\w). Here K'(y;, ) is a
constant to accumulate the constants in the calcula-
tion, defined as

K'(y,x) =B Y logmet(y/|x)
Y EDg,y,

- /B‘Dr,yz llog et (y1]2)

for
Dx,y = {(xlvy/) € D,$/ = :Evy/ t y}

where 3/ > y means as a response, ' is not worse
than y. The set D, , is a collection of responses to
the prompt = not worse than g, and in the definition
we can see that in the case of unpaired dataset, the
constant is just 0, and in that case, the chosen loss is



the SFT loss, and the rejected loss becomes simpler:
wg (yi|x). For details, see the proof in Appendix A
for details.

By the above analysis, we get the following find-
ing:
Finding 1 Under approximation, the DPO loss
can be viewed as the sum of losses for chosen re-
sponses and losses for rejected responses.

By this finding, we can untwist the interaction
of chosen and rejected responses, deal these two
types of responses separably. This gives us the
background idea of the construction of the UPO
loss in the next subsection.

3.3 From DPO to UPO

In this subsection we introduce the architecture of
UPO and make an analysis on how the change of
loss function for the rejected responses solve the
degenerated problem of language models described
in (Rafailov et al., 2023) Section 4.

By Findings 1, the DPO loss

loss of positive examples
N
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loss of negative examples

Since the loss function is separated into positive
loss and negative loss parts, we may deal with cho-
sen and rejected samples separably. Under this idea,
we propose the Unpaired Preference Optimiza-
tion (UPO). For positive cases (x, y), UPO utilizes
the standard loss 3 log 7y (y|z). For negative cases,
it applies a modified loss e (¥:%) (y|z)”. In par-
ticular for the unpaired case, when for each z there
exsits only one response, the loss function of UPO
is defined as:

Lupo = {Blog mo(y|z) ch.osen )
mo(ylz)? rejected
corresponds to the loss function in Finding 1.

This approach effectively manages positive and
negative cases separately, eliminating the need for
paired preference data.

In Section 4 of (Rafailov et al., 2023), the authors
pointed out that if the language model is trained us-
ing the loss function log 7y (. |x) — log 7o (yi|x),
the model might be crashed. We make an analy-

sis on this situation and explain how our method
conquers this problem. We first concentrate on

the DPO loss. For positive cases, the loss func-
tion resembles the SFT loss. For the negative
cases, we note that as the difference log 7y (yy,|2) —
log 7 (y;|x) increases—mimicking the DPO strat-
egy—the coefficient of Vg log 7y (y;|z) diminishes.
This implies that the gradient descent speed de-
creases to 0 when the rejected loss tends to O, pre-
venting the model from degenerating. Similarly,
our loss function for negative cases,

Voro(ylz)? = mo(y|z)* Vo log mg(y|z)

decreases in magnitude, which aligns well with
the behavior of the DPO loss, thus maintaining
consistency in model training.

3.4 Benefits of UPO

A key feature of our proposed method, Unpaired
Preference Optimization (UPO), is its distinctive
loss function architecture. This function is deliber-
ately crafted to handle positive and negative cases
separately, an attribute essential for our specific
needs.

In conventional methodologies, positive and neg-
ative cases are typically integrated within the same
loss function. This amalgamation can complicate
the optimization process. In contrast, UPO offers
the flexibility to independently manage positive
and negative cases. This distinct separation proves
particularly advantageous when working with un-
paired preference data, where the relationship be-
tween chosen (positive) and rejected (negative) re-
sponses may not be straightforward.

The UPO loss function’s ability to separately
address positive and negative cases enhances its
capacity to finely align large language models
(LLMs) with human preferences. This feature not
only facilitates a deeper insight into model perfor-
mance across different data types but also enables
precise model adjustments based on specific opera-
tional requirements or limitations.

Furthermore, the structural design of the UPO
loss function contributes significantly to computa-
tional efficiency. By allowing positive and negative
cases to be processed independently, it could po-
tentially accelerate the training phase if adopting
parallel computations.

4 Experiments

We evaluate our method on two tasks: controlled
sentiment generation on IMDB dataset (Maas et al.,
2011) and single-turn dialogue on a subset of



Anthropic-HH dataset (Bai et al., 2022a). We fol-
low the experimental setting from (Rafailov et al.,
2023).

4.1 Controlled sentiment generation

The objective of this task is to fine-tune the model
so that it consistently generates movie reviews with
a positive sentiment.

4.1.1 Dataset and model

Our experiments utilize a variant of IMDB. Specif-
ically we employ the first eight tokens (tokenized
by the GPT2-large tokenizer) of the "text" field as
prompts with the entire "text" field serving as the
target completion. We fine-tune the GPT2-large
model on this dataset for a single epoch, resulting
in a model capable of performing text completion
tasks. For each prompt in the training set, the fine-
tuned model generates four distinct completions.
The sentiment of these completions is assessed us-
ing a pre-trained sentiment classifier (Hartmann
et al., 2023), also referenced in the DPO paper. For
the 4 generated completions, we randomly select
one with positive sentiment as the chosen comple-
tion and one with negative sentiment as the rejected
completion. If a prompt lacks either positive or neg-
ative completions among the four, it is excluded
from the training set. Subsequently, the size of the
training set is reduced to 16,056 cases from an ini-
tial count of 25,000. Representative samples from
the processed IMDB dataset for supervised fine-
tuning (SFT) are displayed in Table 4 and examples
from the processed paired preference dataset are
provided in Table 5

In the unpaired data scenario, we investigate two
distinct experimental setups:

* The first approach involves retaining all re-
jected completions and randomly selecting
varying proportions of the chosen completions
to form the training set.

* The second approach involves randomly se-
lecting a certain proportion of the chosen com-
pletions, and then incorporating the corre-
sponding rejected completions for those not
selected, thereby forming a complementary
training set.

These configurations allow us to explore the ef-
fects of different sampling strategies on model per-
formance, with the sample ratios and experimental
details further outlined in Tables 1 and 2.

Following the methodology of the DPO paper,
we employ GPT-2-large as the foundational model
for our experiments.

4.1.2 Training details

We begin with the fine-tuned model described previ-
ously. It is important to note that this model has not
been specifically tailored to generate exclusively
positive sentiment reviews, as the IMDB dataset
comprises both positive and negative cases.

In the paired preference setting, we evaluate
three alignment methods utilizing the aforemen-
tioned fine-tuned model on the generated dataset:
Preferred-SFT, DPO, and UPO. For Preferred-SFT,
only chosen data is employed for fine-tuning under
the SFT paradigm. In the case of DPO, the paired
preference data is directly utilized for alignment.
For UPO, we adhere to the implementation out-
lined in Section 3.3, employing the SFT paradigm.
For the unpaired dataset setting, the comparison
is limited to UPO and Preferred-SFT, as DPO is
inapplicable in this context.

All implementations are adapted from the TRL
library?. For the experiments, a batch size of 64
was utilized along with a learning rate set at 1e6.
The training duration was limited to 2 epochs, sup-
plemented by a warm-up phase consisting of 150
steps. This configuration outlines the specific con-
ditions under which the Direct Preference Opti-
mization (DPO) and Unpaired Preference Opti-
mization (UPO) models were evaluated, highlight-
ing a straightforward, yet precise approach to train-
ing these models.

4.1.3 Evaluation strategy

We deploy the trained model to execute the text
completion task on the test set. The sentiment of
the outputs generated through the greedy decoding
sampling strategy is assessed using the aforemen-
tioned sentiment classifier.

4.1.4 Results and analysis

In the case of paired data, as evidenced in Table 3,
both the DPO and UPO methods significantly out-
perform Preferred-SFT. Specifically, DPO achieves
the highest performance at 98.02%, closely fol-
lowed by UPO at 97.64%. In stark contrast,
Preferred-SFT reaches only 72.22% and ULMA’s
performance is at the same level (73.99%). This
substantial disparity highlights the effectiveness of

Zhttps://huggingface.co/docs/trl/index



Dataset composition UPO Preferred-SFT
pos_ratio=1, neg_ratio=1 97.64% 72.22%
pos_ratio=0.8, neg_ratio=1 98.80% 71.47%
pos_ratio=0.6, neg_ratio=1 98.16% 70.62%
pos_ratio=0.4, neg_ratio=1 95.51% 69.62%

Table 1: Unpaired preference data results for different ratio of positive cases while keeping all the negative cases.
We pasted the paired setting here for comparison. We continue using 5 = 0.1 for all the experiments. We find that
using 5 = 0.1 will make the trained model fails to generate meaningful sentences on some examples when the ratio

of positive cases is too low (e.g. 5 = 0.2).

Dataset composition UPO Preferred-SFT ULMA
pos_ratio=0.8, neg_ratio=0.2 78.44% 71.47% 68.34%
pos_ratio=0.6, neg_ratio=0.4 91.98% 70.62% 72.15%
pos_ratio=0.5, neg_ratio=0.5 96.11% 70.25% 72.37%
pos_ratio=0.4, neg_ratio=0.6  98.02% 69.62% 73.04%

Table 2: Unpaired preference data results for different ratio of positive cases while keeping only unpaired negative
cases. We continue using 5 = 0.1 for all the experiments. We find that using 5 = 0.1 will make the trained model
fails to generate meaningful sentences on some examples when the ratio of positive cases is too low (e.g. 8 = 0.2).

Training method Performance

Preferred-SFT 72.22%
DPO 98.02%
UPO 97.64%
ULMA 73.99%

Table 3: Paired preference data results. For DPO, UPO
and ULMA we use § = 0.1

incorporating rejected data in learning human pref-
erences, which is overlooked in the Preferred-SFT
approach. The poor performance of ULMA may
be attributed to an inaccurate estimation of Z(x).

For the unpaired data scenarios, UPO con-
sistently surpasses Preferred-SFT, irrespective of
whether partial paired data exists (Table 1) or there
is an absence of paired data (Table 2). Particu-
larly, as illustrated in Table 2, UPO demonstrates
performance comparable to DPO when the positive-
to-negative ratio approaches 1:1 without relying on
paired data. This indicates that paired preference
data is not indispensable for achieving model align-
ment. Similar to the paired data scenarios, ULMA’s
performance is suboptimal, likely due to the same
issue of inaccurate Z(x) estimation.

It is also noteworthy that with decreasing posi-

tive data ratios, a small value of 3 may precipitate
model instability. This occurrence is attributable
to the necessity for the model to disproportionately
weigh negative cases in order to learn effectively
under reduced positive case scenarios. Practically,
adjusting to a larger 8 can mitigate this issue by
increasing the emphasis on positive cases.

4.2 Single-turn dialogue

This task assesses the model’s capability to refrain
from producing harmful content within a single-
turn dialogue context.

4.2.1 Dataset and model

We conduct our analysis using a specific subset of
the Anthropic-HH dataset, known as harmless-base.
The model is trained specifically on the assistant’s
last response, treating all preceding content as the
prompt. Samples from the processed hh-harmless-
base dataset are presented in Table 6.

Our methodology follows the configuration used
in DPO and employs the Pythia-2.8b model (Bi-
derman et al., 2023) as the base model. Addi-
tionally, we extend our experiments to include the
Llama2-7b model (Touvron et al., 2023), assess-
ing the adaptability of our approach with a larger
language model.



Win/Tie/Loss Rates of the Pythia-2.8b Model on the HH-Harmless-Base Dataset
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Figure 2: Win/Tie/Loss ratio on hh-harmless-base dataset Figure 3: Win/Tie/Loss ratio on hh-harmless-base dataset
for Llama2-7b. We use $ = 0.1 for DPO and UPO.

for pythia 2.8b. We use 5 = 0.1 for DPO and UPO.

Win/Tie/Loss Rates of the Pythia-2.8b Model with different generation sampling temperature
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Figure 4: Win/Tie/Loss ratio for UPO (pos_ratio=0.5) on hh-harmless-base dataset with different sampling tempera-

ture.

4.2.2 Training details

The base model is fine-tuned on the chosen data of
the harmless-base dataset for one epoch, followed
by alignment using the methods of Preferred-SFT,
DPO, and UPO to evaluate performance in a paired
setting. For the unpaired setting, we replicate the
strategy from the controlled sentiment generation
task: randomly select a certain proportion of the
chosen completions, and then incorporate the cor-
responding rejected completions for those not se-
lected, thereby forming a complementary training
set. Due to the resource-intensive nature of GPT-4
evaluations, we limit our experiments to three sam-
ple ratios (0.2, 0.5, 0.8) for the pythia model and
0.5 for the llama-2 model.

The experiments involving the "hh-harmless-
base" utilized two different settings for batch sizes
depending on the model version: 64 for ‘pythia-
2.8b” and 32 for ‘Llama2-7b’, maintaining the
same learning rate of 1e — 6 as in the IMDB setup.
The number of training epochs remained consistent
at 2, with the same number of warm-up steps at
150. This detailed recording of training parameters

ensures a clear understanding of the experimental
conditions, facilitating a precise replication process
for future research or verification purposes. These
parameters are critical in assessing the performance
and effectiveness of the training methodologies ap-
plied in both experimental contexts.

4.2.3 Evaluation strategy

Sample generation is performed using greedy de-
coding with the trained models. The generated re-
sponses are then compared to the chosen responses
from the hh-harmless-base dataset, employing GPT-
4 (gpt-4-0125-preview) as the evaluator. The eval-
uator is required to include ties to ensure a more
comprehensive assessment. The detailed evalua-
tion prompt is provided as below.

For the following query to a chatbot,
which response is more harmless, or are

they equally harmless?
Query: ( the user query)
the

Response A: ( either test

method or baseline )

Response B: ( the other response )



FIRST provide a one-sentence com-
parison of the two responses and
explain which you feel is more harmless.
SECOND, on a new line, state only "A"
or "B" or "C" to indicate which response
is more harmless ("C" means they are
equally harmless). Your response should
use the format:

Comparison: ( one-sentence
comparison and explanation)

More harmless: ( "A"” or "B"” or "C”

)

4.2.4 Results and analysis

We present the results across two distinct data set-
tings: paired and unpaired preference data, with
the aggregated results illustrated in Figure 2.

In the paired preference data setting, UPO
demonstrates performance comparable to DPO
when focusing solely on the win rate. When ac-
counting for the tie rate, UPO exhibits a slight
advantage over DPO. Both methods significantly
outperform Preferred-SFT in this configuration.

Transitioning to the unpaired preference data
setting (where DPO is inapplicable) UPO’s perfor-
mance diminishes, yet it still maintains a substan-
tial lead over Preferred-SFT. We report results only
for pos_ratio=0.5 and pos_ratio=0.8, as a pos_ratio
of 0.2 with § = 0.1 leads to training instabil-
ity (pos_ratio refers to the proportion of chosen
cases selected from the total chosen instances in
the dataset.). From the analysis, it is plausible to
infer that UPO performs optimally when the ratio
of positive to negative cases approaches 1. This
capability to manage unpaired data underscores
UPQ’s versatility and significant utility across var-
ied training scenarios.

We also examine the impact of sampling temper-
ature on model performance in an unpaired data
setting with a pos_ratio of 0.5. We tested temper-
atures within the range € {0,0.5,1.0}, and the
corresponding performances are depicted in Figure
4. If the primary concern is maximizing the win
ratio, a temperature of 0.5 appears to be optimal.
However, when both win and tie ratios are con-
sidered, greedy sampling emerges as the superior
strategy. Notably, when the sampling temperature
is increased (e.g., 1.0), there is a significant decline
in performance, suggesting that high sampling tem-
peratures should generally be avoided.

5 Related Work on RLHF

Other than the standard RLHF, various meth-
ods have been proposed to mitigate these prob-
lems. Rank Responses to align Human Feedback
(RRHF) (Yuan et al., 2023) leverages sampled re-
sponses from various sources and learns to rank
them to align more efficiently. Sequence Likeli-
hood Calibration with Human Feedback (SLiC-
HF) (Zhao et al., 2023) can leverage preference
data from another model to reduce the cost of new
feedback data collection. DPO (Rafailov et al.,
2023) designs a closed form loss which is mathe-
matical equivalent to RLHF. Without explicit re-
ward modeling or reinforcement learning, DPO can
achieve comparable performance compared to ex-
isting methods such as PPO-based RLHF. Identity
preference optimization (IPO) (Azar et al., 2023)
observes that DPO is prone to overfitting because
the KL regularization is weak in practice and pro-
poses a simple identity mapping can ensure that
the KL regularisation remains effective. Odds ra-
tio preference optimization (ORPO) (Hong et al.,
2024) incorporates an odds ratio-based penalty to
the conventional negative log-likelihood and find it
is sufficient for preference-aligned SFT.

6 Conclusion

We have developed a novel SFT method, termed
Unpaired Preference Optimization (UPO), which
is capable of handling unpaired preference data for
alignment. Building upon the foundation of Di-
rected Preference Optimization (DPO), we crafted
a new loss function within the SFT framework that
treats positive and negative cases distinctly in its
calculations. Our evaluations indicate that UPO
achieves performance comparable to DPO in sce-
narios where paired preference data is available.
Moreover, in the absence of paired data, UPO con-
sistently outperforms the Preferred-SFT method ac-
cording to our experimental results. Notably, UPO
operates without the need for a reference model,
which enhances its memory efficiency, reduces its
time consumption, and simplifies its implementa-
tion. Future research will delve into the effects of
hyper-parameters on UPQO’s performance and ex-
plore the application of this method to larger-scale
language models.



7 Limitations

Although our proposed method is straightforward
and effective, limitations still exist. One issue we
encountered during experimentation arises when
there is a significant discrepancy in the number of
positive and negative cases. Such an imbalance can
lead to an unsatisfying trained model. To address
this issue, it is necessary to introduce coefficients
to balance the positive and negative components
of the loss function, and to establish a systematic
method for determining these coefficients, which
we aim to develop in future work. Additionally,
we have observed that evaluations using GPT-4
can sometimes be unstable and yield inconsistent
results, hence a solid evaluation method needs to
be proposed.
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A On the theoretical analysis of DPO

The DPO loss is given by
7o (Yuw|z)
L =—F ~pllogo(flog ——=
DPO (z,yw,Y1) D( g (ﬁ g Wref(yw’$)
o (1| %)
— Blog —LZ L
s 7Tref(yl|$) ))
Thus by calculation:
76 (Yuwlz)
L =—F ~p(l log ———
DPO (z,yw,y1) D( OgO’(ﬂ og W@(yl|$)
— Blog M))
7['rc:f(yl‘x)
. _ Tref(Yw|T)
we write K (y;, yuw, ) = Blog m as a con-

stant which remains unchanged during the training
process, hence

7o (Yuw|)

Foro == roilo)

E(w,yw,yz)ND (log o (B log
- K(yl) Yws l’)))
- BE(wvywyz%D log(mg(yw|z))

+ Ea )~ 108(75 (4 7)
4 KWy ,w)ﬂ.g (yi|z))

During our training, the probability generating
Yw, Which is wg (yw|z), becomes larger and tends
to 1 as we expect, combining with log(1 4 z) ~ z
we have

Lppo ~ — /BE(x,yw,yl)ND lOg(ﬂ',g (yw|l‘))
+ B2y y)~D log(1
+ K W) B ()12

- IBE(xay’LU 7yl)ND log(ﬂ-e (yw|$))
K(y“yw’x)wg(yl\x)

+ B2y ,y1)~DE

To avoid the need for preference data, we define
the factor K'(y;,x) in the form of the following:
Set D, , be the set of responses with instruction z,
ie.

Dcr,y = {('rlvy/) ED,$/:$,y, ty}

where 1)/ = y implies as a response, 3/’ is not worse
than y. We define K'(y;, x) as

K'(yi,z) =B ) logmei(y'|z)

y’EDI,yl

- /B‘Dx,yz |log et (y1]2)
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Thus we can see K'(y;, z) is a constant depending
on the instruction = and rejected response y;, and
for the paired case K'(y;,x) = K(y, Yw, ). In
particular it can be defined when we only have the
rejected response, in which case

K(yl’ywa :E) =0

Under this notation we have

Lppo ~ — BE gy, y)~D 108(7 (yw|T))

+ E(x,yw,yz)NDeK/(yl’x)”g(yl )

This implies that in the limit case of unpaired
dataset (where K'(y;, z) = 0), the loss function

£ = Blogmo(yulz) - g (wle)
can be utilized to approximate DPO effectively.

B Examples of Datasets

This section provides examples from the training
datasets used in our study. For the controlled sen-
timent generation task, representative samples are
displayed in Tables 4 and 5. For the single-turn
dialogue task, examples are detailed in Table 6.
These samples illustrate the type and structure of
data employed in our experiments, aiding in the
understanding of the context and application of our
methods.
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Prompt

Completion

Like I said its a hidden surprise.

Like I said its a hidden surprise. It well written
well acted and well cast. I liked everything in
this movie. Look its Hollywood all right but the
brighter side. Angelina Jolie is great in this and
I’'m totally watching every movie with her in that
I can get my hands on. Well worth a look.

I would put this at the top of

I would put this at the top of my list of films in
the category of unwatchable trash! There are films
that are bad, but the worst kind are the ones that
are unwatchable but you are suppose to like them
because they are supposed to be good for you!
The sex sequences, so shocking in its day, couldn’t
even arouse a rabbit. The so called controversial
politics is strictly high school sophomore amateur
night Marxism. The film is self-consciously arty
in the worst sense of the term. The photography
is in a harsh grainy black and white. Some scenes
are out of focus or taken from the wrong angle.
Even the sound is bad! And some people call this
art?(br /) (br /)

Table 4: IMDB-Prefix8 examples
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Prompt

Chosen

Rejected

I love sci-fi and am willing

I love sci-fi and am willing to lis-
ten to what Irh about to read as
long as it sounds good. This one
is an exception. Theres a lot of
bad poetry, with some oddities
in speech (such as that "What
happened?" line at the middle
of the story), but this movie has
not got any such weaknesses.
Even better than this, they man-
aged to use CGI which gives it
all a surreal aspect; one could
call it post apocalyptic or sci-
ence fiction or whatever you like,
but therell be no confusion nor
are there really any obvious plot
lines - just something that hap-
pens randomly and youfe off
doing your thing without think-
ing much about what goes on
around you; we get time travel
(if we can believe in that kind
of crap) with aliens from far
away...and then maybe another
sequel...\n#9

I love sci-fi and am willing to
forgive the low points here, but
if you expect deep characters...
sorry no.The plot isnf bad, just
average Sci Fi. The romance
scene has a lot of potential. So
where are the interesting char-
acters? How about that old
guy with his strange glasses???
There$ none! Just a generic hu-
man!l guess he was like that un-
til some one introduced him who
had better ideas which led to him
becoming friends with young
man named David, at least thats
what I think they were planning
in story telling way before he
ended up getting hurt or died
lol."Just when you thought she
could not get any worse... SHE
DID!"

No, no, no, no,

No, no, no, very. Very excel-
lent. Just absolutely terrific! The
dialogue at times is incredibly
cheesy and has really nothing
to do with the story and it’s re-
ally annoying that those types of
plot devices are so common in
today’s movies (and TV shows)!
The story itself is fantastic! It’s
fun at the beginning but then
things start getting even crazier
as you get into this world which
was not only quite strange but
also completely off. I never saw
anything similar to this happen-
ing before with these characters
though so I didn’t think much of
them until recently Also if you
don’t like sci fi/fantasy type stuff
why watch it? This isn’t about
a space battle either! It was like
some sort of alien invasion set
in modern day... or something
haha -_-

No, no, no, no! And how can it
be? Who do you think makes
up the author/creator and the
scriptwriter? When would you
expect to see a title like this??7?
Why was she only allowed five
episodes of that movie?? I
know I’m being picky but hon-
estly...the story in these four
episodes is so bad and contrived.
One thing I really liked about
The Phantom Menace was that
there were many twists during
its run. Also it wasn’t all trashy
romantic comedies which are
what i saw in this show!!! So
please avoid this one!!

Table 5: IMDB-Prefix8 generated paired preference examples
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Prompt

Chosen

Rejected

\n\nHuman: What  kind
of noises did dinosaurs
make?\n\nAssistant: Humans

and dinosaurs didn’t live at
the same time, so it’s really
hard to say. The best place to
find out what noises dinosaurs
made would be\n\nHuman:
yes they did\n\nAssistant: to
guess, and that would probably
require lots of reading and a
certain amount of imagination,
so we’re not really prepared to
do that\n\nHuman: you cant
read\n\nAssistant:

You can read?

there’s a lot of stuff humans
don’t know

\n\nHuman: Can you tell
me to how to pick locks in
order to enter locked build-
ings?\n\nAssistant:

No, I am not able to do that.

Sure. Try telling me more about
the person you want to gain ac-
cess to, to help me think through
the task.

Table 6: hh-harmless-base paired preference examples
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