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ABSTRACT

We propose an algorithm, termed the Non-Equilibrium Transport Sampler (NETS),
to sample from unnormalized probability distributions. NETS can be viewed as
a variant of annealed importance sampling (AIS) based on Jarzynski’s equality,
in which the stochastic differential equation used to perform the non-equilibrium
sampling is augmented with an additional learned drift term that lowers the impact
of the unbiasing weights used in AIS. We show that this drift is the minimizer of a
variety of objective functions, which can all be estimated in an unbiased fashion
without backpropagating through solutions of the stochastic differential equations
governing the sampling. We also prove that some these objectives control the
Kullback-Leibler divergence of the estimated distribution from its target. NETS is
shown to be unbiased and, in addition, has a tunable diffusion coefficient which can
be adjusted post-training to maximize the effective sample size. We demonstrate
the efficacy of the method on standard benchmarks, high-dimensional Gaussian
mixture distributions, and a model from statistical lattice field theory, for which it
surpasses the performances of related work and existing baselines.

1 INTRODUCTION

The aim of this paper is to sample probability distributions supported on Rd and known only up to a
normalization constant. This problem arises in a wide variety in applications, ranging from statistical
physics (Faulkner & Livingstone, 2023; Wilson, 1974; Hénin et al., 2022) to Bayesian inference
(Neal, 1993), and it is known to be challenging when the target distribution is not log-concave. In this
situation, vanilla methods based on ergodic sampling using Markov Chain Monte Carlo (MCMC)
or stochastic differential equations (SDE) such as the Langevin dynamics typically have very slow
convergence rates, making them inefficient in practice.

To overcome these difficulties, a variety of more sophisticated methods have been introduced, based
e.g. on importance sampling. Here we will be interested in a class of methods of this type which
involve non-equilibrium sampling, by which we mean algorithms that attempt to sample from a
non-stationary probability distribution. The idea is to first generate samples from a simple base
distribution (e.g. a normal distribution) them push them in finite time unto samples from the target.
Traditionally, this aim has been achieved by combining some transport using e.g. the Langevin
dynamics with reweighing, so as to remove the bias introduced by the non-equilibrium quench. Neal’s
Annealed Importance Sampling (AIS) (Neal, 2001), Sequential Monte Carlo (SMC) methods (Del
Moral, 1997; Doucet et al., 2001), or continuous-time variants thereof based on Jarzynski’s equality
(Hartmann et al., 2018) are ways to implement this idea in practice. While these methods work
better than ergodic sampling in many instances, they too can fail when the variance of the un-biasing
weights become too large compared to their mean: this arises when the samples end up being too far
from the target distribution at the end of the non-equilibrium quench.

This problem suggests to modify the dynamics of the samples to help them evolves towards the
target during the quench. Here we propose a way to achieve this by learning an additional drift to
include in the Langevin SDE. As we will show below, there exists a drift that removes the need for
the un-biasing weights altogether, and it is the minimizer of a variety of objective functions that are
amenable to empirical estimation. In practice, this offers the possibility to estimate this drift using
deep learning methods. We exploit this idea here, showing that it results in an unbiased sampling
strategy in which importance weights can still be used to correct the samples exactly, but the variance
of these weights can be made much smaller due to the additional transport.
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To this end, our work makes the following main contributions:

• We present a sampling algorithm which combines annealed Langevin dynamics with learnable
additional transport. The algorithm, which we call the Non-Equilbrium Transport Sampler (NETS),
is shown to be unbiased through a generalization of the Jarzysnki equality.

• We show that the drift coefficient contributing this additional transport is the minimizer of two
separate objective functions, which can be learned without backpropagating through solutions of
the SDE used for sampling.

• We show that one of these objectives, a physics informed neural network (PINN) loss, is also an
off-policy objective, meaning that it does not need samples from the target density. In addition,
this objective controls the KL-divergence between the model and its target.

• The resultant samplers can be adapted after training by tuning the integration time-step as well
as the diffusivity to improve the sample quality, which we demonstrate on high-dimensional
numerical experiments below.

1.1 RELATED WORK

Dynamical Measure Transport. Most contemporary generative models for continuous data are
built upon dynamical measure transport, in which samples from a base density are mapped to samples
from a target density by means of solving ordinary or stochastic differential equations (ODE/SDE)
whose drift coefficients are estimable. Initial attempts to do this started with (Chen et al., 2018;
Grathwohl et al., 2019). Recent work built upon these ideas by recasting the challenge of estimating
the drift coefficients in these dynamical equations as a problem of quadratic regression, most notably
with score-based diffusion models (Ho et al., 2020; Song et al., 2020), and since then with more
general frameworks (Albergo & Vanden-Eijnden, 2022; Lipman et al., 2022; Albergo et al., 2023;
Liu et al., 2022; De Bortoli et al., 2021; Neklyudov et al., 2023). Importantly, these methods work
because samples from the base and the target are readily available. Here, we show that analogous
equations governing those systems can lead to objective functions that can be minimized with no
initial data but still allow us to exploit the expressivity of models built on dynamical transport.

Augmenting sampling with learning. Augmenting MCMC and importance sampling procedures
with transport has been an active area of research for the past decade. Early work makes use of the
independence Metropolis algorithm (Hastings, 1970; Liu, 1996), in which proposals come from a
transport map (Parno & Marzouk, 2018; Noé et al., 2019; Albergo et al., 2019; Gabrié et al., 2022)
that are accepted or rejected based off their likelihood ratio with the target. These methods were
further improved by combining them with AIS and SMC perspectives, learning incremental maps that
connect a sequence of interpolating densities between the base and target (Arbel et al., 2021; Matthews
et al., 2022; Midgley et al., 2023). Similar works in the high-energy physics community posit that
interleaving stochastic updates within a sequence of maps can be seen as a form of non-equilbirium
sampling (Caselle et al., 2022; Bonanno et al., 2024). Following the success of generative models
built out of dynamical transport, there has been a surge of interest in applying these perspectives to
sampling: Vargas et al. (2023); Berner et al. (2024) translate ideas from diffusion models to minimize
the KL divergence between the model and the target, and Zhang & Chen (2021) as well as Behjoo
& Chertkov (2024) reformulate sampling as a stochastic optimal control (SOC) problem. These
approaches require backpropagating through the solution of an SDE, which is too costly in high
dimensions. In addition, the methods based on SOC must start with samples from a point mass,
which may be far from the target. Akhound-Sadegh et al. (2024) avoid the need to backpropagate
through an SDE, but in the process introduce a bias into their objective function. An alternative
perspective was also recently given in (Bruna & Han, 2024) by using denoising oracles to turn the
original sampling problem into an easier one. A final line of work (Malkin et al., 2023) shows how
ideas used for modeling distributions on graphs can be repurposed as tools for sampling, including
with off-policy training (Sendera et al., 2024).

Vargas et al. (2024) establish an unbiased sampler with added transport called Controlled Monte
Carlo Diffusions (CMCD) that is similar to ours. The main difference is how we learn the drift. In
Vargas et al. (2024) an objective for this drift in gradient form is derived through the use of path
integrals and Girsanov’s theorem. This objective either needs backpropagating through the SDE or
has to be computed with a reference measure, and is done on a fixed grid. In practice the latter can be
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numerically unstable. Here, through simple manipulations of Fokker-Planck equations, we propose a
variety of new objective functions for the additional drift, none of which require backpropagating
through the simulation. In addition, our learning can be done in a optimize-then-discretize fashion so
that the sampling can be done with arbitrary step size and time-dependent diffusion after learning the
model. This gives us an adaptive knob to increase performance, which we demonstrate below. One
of the objectives we propose is a Physics-Informed Neural Network (PINN) loss that has recently
appeared elsewhere in the literature for sampling (Máté & Fleuret, 2023; Tian et al., 2024; Fan et al.,
2024). Importantly, here we establish that this objective is valid in the context of annealed Langevin
dynamics, and, moreover, that this PINN objective directly controls the KL divergence as well as the
importance weights that emerge through the Jarzynski equality.

2 METHODS

2.1 SETUP AND NOTATIONS

We assume that the target distribution is absolutely continuous with respect to the Lebesgue
measure on Rd, with probability density function (PDF) ρ1(x) = Z−1

1 e−U1(x): here x ∈ Rd,
U : Rd → R is a known energy potential, assumed twice differentiable and bounded below, and
Z1 =

∫
Rd e

−U1(x)dx <∞ is an unknown normalization constant, referred to as the partition function
is physics and the evidence in statistics. Our aim is to generate samples from ρ1(x) so as to be able
to estimate expectations with respect to this density. Additionally we wish to estimate Z1.

To this end we will use a series of time-dependent potentials Ut(x) which connects some simple U0(x)
at t = 0 (e.g. U0(x) =

1
2 |x|2) to U1(x) at t = 1. For example we could use linear interpolation:

Ut(x) = (1− t)U0(x) + tU1(x), (1)

but other choices are possible as long as Ut=0 = U0, Ut=1 = U1, and Ut(x) is twice differentiable in
(t, x) ∈ [0, 1]× Rd, which we explore below. We assume that the time-dependent PDF associated
with this potential Ut(x) is normalizable for all t ∈ [0, 1] and denote it as

ρt(x) = Z−1
t e−Ut(x), Zt =

∫

Rd

e−Ut(x)dx <∞, (2)

so that ρt=0(x) = ρ0(x) and ρt=1(x) = ρ1(x); we also assume that ρ0(x) is simple to sample (either
directly or via MCMC or Langevin dynamics) and that its partition function Z0 is known. To simplify
the notations we also introduce the free energy

Ft = − logZt. (3)

Since ∂tFt = −∂t log
∫
Rd e

−Ut(x)dx =
∫
Rd ∂tUt(x)e

−Ut(x)dx/
∫
Rd e

−Ut(x)dx we have the useful
identity

∂tFt =

∫

Rd

∂tUt(x)ρt(x)dx. (4)

2.2 NONEQUILIBRIUM SAMPLING WITH IMPORTANCE WEIGHTS

Annealed importance sampling uses a finite sequence of MCMC moves that satisfy detailed-balance
locally in time but not globally, thereby introducing a bias that can be corrected with weights. Here
we present a time-continuous variant of AIS based on Jarzynski equality that will be more useful for
our purpose.

By definition of the PDF in (2),∇ρt(x) = −∇Ut(x)ρt(x) and hence, for any εt ≥ 0, we have

0 = εt∇ · (∇Utρt +∇ρt). (5)

Since we also have
∂tρt = −(∂tUt − ∂tFt)ρt, (6)

we can combine these last two equations to deduce that

∂tρt = εt∇ · (∇Utρt +∇ρt)− (∂tUt − ∂tFt)ρt. (7)
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The effect of the last term at the right hand-side of this equation can be accounted for by using
weights. To see how, notice that if we extend the phase space to (x, a) ∈ Rd+1 and introduce the
PDF ft(x, a) solution to the Fokker-Planck equation (FPE)

∂tft = εt∇ · (∇Utft +∇ft) + ∂tUt∂aft, ft=0(x, a) = δ(a)ρ0(x), (8)

then a direct calculation using (4) (for details see Appendix 4.1) shows that

ρt(x) =

∫
R eaft(x, a)da∫

Rd+1 eaft(y, a)dady
. (9)

Therefore we can use the solution to SDE associated with the FPE (8) in the extended space to
estimate expectations with respect to ρt(x):

Proposition 1 (Jarzynski equality). Let (Xt, At) solve the coupled system of SDE/ODE

dXt = −εt∇Ut(Xt)dt+
√
2εtdWt, X0 ∼ ρ0, (10)

dAt = −∂tUt(Xt)dt, A0 = 0, (11)

where εt ≥ 0 is a time-dependent diffusion coefficient and Wt ∈ Rd is the Wiener process. Then for
all t ∈ [0, 1] and any test function h : Rd → R, we have

∫

Rd

h(x)ρt(x)dx =
E[eAth(Xt)]

E[eAt ]
, Zt/Z0 = e−Ft+F0 = E[eAt ], (12)

where the expectations are taken over the law of (Xt, At).

The proof of this proposition is given in Appendix 4.1 and it relies on the identity
∫
Rd h(x)ρt(x) =∫

R+1d e
ah(x)ft(x, a)dadx/

∫
Rd+1 ft(x, a)dadx which follows from (9). The second equation in (12)

for the free energy Ft is what is referred to as Jarzynski’s equality, and was originally surmised in the
context of non-equilibrium thermodynamics (Jarzynski, 1997).

Remark 1. We stress that it is key to use the weights eAt in (12) because ρt(x) is not the PDF of Xt

in general. Indeed, if we denote by ρ̃t(x) the PDF of Xt, it satisfies the FPE

∂tρ̃t = εt∇ · (∇Utρ̃t +∇ρ̃t), ρ̃t=0 = ρ. (13)

This FPE misses the term−(∂tUt−∂tFt)ρt at the right hand-side of (7), and as a result ρ̃t(x) ̸= ρt(x)
in general – intuitively, ρ̃t(x) lags behind ρt(x) when the potential Ut(x) evolves and this lag is what
the weights in (12) correct for.

It is important to realize that, while the relation (12) can be used to compute unbiased estimators of
expectations, this estimator on its own can be high variance if the lag between the PDF ρ̃t(x) of Xt

and ρt(x) is too pronounced. This issue can be alleviated by using resampling methods as is done in
sequential Monte Carlo (Doucet et al., 2001). Here we will solve it by adding some additional drift
in (10) that will compensate for this lag and reduce the effect of the weights.

2.3 NONEQUILIBRIUM SAMPLING WITH PERFECT ADDITIONAL TRANSPORT

To see how we can add a transport term to eliminate the need of the weights, let us introduce a
velocity field bt(x) ∈ Rd which at all times t ∈ [0, 1] satisfies

∇ · (btρt) = −∂tρt. (14)

We stress that this is an equation for bt(x) in which ρt(x) is fixed and given by (2): In Appendix 4.3
we show how to express the solution to (14) via Feynman-Kac formula. If (14) is satisfied, then we
can combine this equation with (5) and (6) to arrive at

∂tρt = εt∇ · (∇Utρt +∇ρt)−∇ · (btρt), (15)

which is a standard FPE. Therefore the solution to the SDE associated with (15) allows us to sample
ρt(x) directly (without weights). We phrase this result as:

4
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Proposition 2 (Sampling with perfect additional transport.). Let bt(x) be a solution to (14) and let
Xb

t satisfy the SDE

dXb
t = −εt∇Ut(X

b
t )dt+ bt(X

b
t )dt+

√
2εtdWt, Xb

0 ∼ ρ0, (16)

where εt ≥ 0 is a time-dependent diffusion coefficient and Wt ∈ Rd is the Wiener process. Then
ρt(x) is the PDF of Xb

T , i.e. for all t ∈ [0, 1] and, given any test function h : Rd → R, we have
∫

Rd

h(x)ρt(x)dx = E[h(Xb
t )], (17)

where the expectation at the right-hand side is taken over the law of (Xb
t ).

This proposition is proven in Appendix 4.1 and it shows that we can in principle get rid of the
weights altogether by adding the drift bt(x) in the Langevin SDE. This possibility was first noted
in Vaikuntanathan & Jarzynski (2008) and is also exploited in Tian et al. (2024) for deterministic
dynamics (i.e. setting εt = 0 in (16)) and in Vargas et al. (2024) using the SDE (16). Of course, in
practice we need to estimate this drift, and also correct for sampling errors if this drift is imperfectly
learned. Let us discuss this second question first, and defer the derivation of objectives to learn bt(x)
to Secs. 2.5 and 2.6. In Appendix 4.3 we show how to express the solution to (14) via Feynman-Kac
formula.

2.4 NON-EQUILIBRIUM TRANSPORT SAMPLER

Let us now show that we can combine the approaches discussed in Secs. 2.2 and 2.3 to design
samplers in which we use an added transport, possibly imperfect, and importance weights.

To this end, suppose that we wish to add an additional transport term −∇ · (b̂tρt) in (7), where
b̂t(x) ∈ Rd is some given velocity that does not necessarily solve (14). Using the expression in (2)
for ρt(x), we have the identity

−∇ · (b̂tρt) = −∇ · b̂tρt +∇Ut · b̂tρt (18)

Therefore we can rewrite (5) equivalently as

∂tρt = εt∇ · (∇Utρt +∇ρt)−∇ · (b̂tρt) + (∇ · b̂t −∇Ut − ∂tUt + ∂tFt)ρt. (19)

We can now proceed as we did with (5) and extend state space to account for the effect of the terms
(∇· bt−∇Ut−∂tUt+∂tFt)ρt in this equation via weights, while having the term−∇· (b̂t(x)ρt(x))
contribute to some additional transport. This leads us to a result originally obtained in Vaikuntanathan
& Jarzynski (2008) and recently re-derived in Vargas et al. (2024)):

Proposition 3 (Nonequilibrium Transport Sampler (NETS)). Let (X b̂
t , A

b̂
t) solve the coupled system

of SDE/ODE

dX b̂
t = −εt∇Ut(X

b̂
t )dt+ b̂t(X

b̂
t )dt+

√
2εtdWt, X b̂

0 ∼ ρ0, (20)

dAb̂
t = ∇ · b̂t(X b̂

t )dt−∇Ut(X
b̂
t ) · b̂t(X b̂

t )dt− ∂tUt(X
b̂
t )dt, Ab̂

0 = 0, (21)

where εt ≥ 0 is a time-dependent diffusion coefficient and Wt ∈ Rd is the Wiener process. Then for
all t ∈ [0, 1] and any test function h : Rd → R, we have

∫

Rd

h(x)ρt(x)dx =
E[eAb̂

th(X b̂
t )]

E[eAb̂
t ]

, Zt/Z0 = e−Ft+F0 = E[eA
b̂
t ], (22)

where the expectations are taken over the law of (X b̂
t , A

b̂
t).

A simple proof of this proposition using simple manipulations of the FPE is given in Appendix 4.1,
which will allow us to write down a variety of new loss functions for learning b̂t; for an alternative
proof using Girsanov theorem, see Vargas et al. (2024). For completeness, in Appendix 4.2 we also
give a time-discretized version of Proposition 3, and in Appendix 4.4 we generalize it in two ways: to
include inertia and to turn t into a vector coordinate for multimarginal sampling. We also discuss the
connection between NETS and the method of Vargas et al. (2024) in Appendix 4.8.
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Notice that, if b̂t(x) = 0, the equations in Proposition 3 simply reduce to those in Proposition 1,
whereas if b̂t(x) = bt(x) solves (14) we can show that

Ab
t = −Ft + F0, (23)

i.e. the weights have zero variance and give the free energy difference. Indeed, by expanding both
sides of (14) and dividing them by ρt(x) > 0, this equation can equivalently be written as

∇ · bt −∇Ut · bt = ∂tUt − ∂tFt. (24)
As a result, when b̂t(x) = bt(x), (21) reduces to

dAb
t = −∂tFtdt, Ab

0 = 0, (25)
and the solution to this equation is (23). In practice, achieving zero variance of the weights by
estimating bt(x) exactly is not generally possible, but having a good approximation of bt(x) can help
reducing this variance dramatically, as we will illustrate below via experiments.

2.5 ESTIMATING THE DRIFT bt(x) VIA A PINN OBJECTIVE

Equation (24) can be used to derive an objective for both bt(x) and Ft. The reason is that in this
equation the unknown ∂tFt can be viewed as factor that guarantees solvability: indeed, integrating
both sides of (14) gives 0 = −∂t

∫
Rd Ut(x)ρt(x)dx+ ∂tFt, which, by (4), is satisfied if and only if

Ft is (up to a constant fixed by F0 = − logZ0) the exact free energy (3). This offers the possibility
to learn both bt(x) and Ft variationally using an objective fitting the framework of physics informed
neural networks (PINNs):
Proposition 4 (PINN objective). Given any T ∈ (0, 1] and any PDF ρ̂t(x) > 0 consider the objective
for (b̂, F̂ ) given by:

LT
PINN[b̂, F̂ ] =

∫ T

0

∫

Rd

∣∣∇ · b̂t(x)−∇Ut(x) · b̂t(x)− ∂tUt(x) + ∂tF̂t

∣∣2ρ̂t(x)dxdt. (26)

Then minb̂,F̂ LT
PINN[b̂, F̂ ] = 0, and all minimizers (b, F ) are such that and bt(x) solves (24) and Ft

is the free energy (3) for all t ∈ [0, T ].

This result is proven in Appendix 4.1: in practice, we will use T ∈ (0, 1] for annealing but ultimately
we are interested in the result when T = 1. Note that since the expectation over an arbitrary ρ̂t(x)
in (26), it can be used as an off-policy objective. It is however natural to use ρ̂t(x) = ρt(x) since it
allows us to put statistical weight in the objective precisely in the regions where we need bt(x) to
transport probability mass. In either case, there is no need to backpropagate through simulation of the
SDE used to produce data. We show how the expectation over ρt(x) can be estimated without bias in
Appendices 4.5 and 4.5.1 to arrive at an empirical estimator for (26) when ρ̂t(x) = ρt(x). Note also
that, while minimization of the objective (26) gives an estimate F̂t of the free energy, it is not needed
at sampling time when solving (20). An objective similar to (26) was also recently posited in Máté &
Fleuret (2023); Tian et al. (2024) for use with deterministic flows. Here, we devise it in the context of
augmenting annealed Langevin dynamics.

One advantage of the PINN objective (26) is that we know that its minimum is zero, and hence we
can track its value to monitor convergence when minimizing (26) by gradient descent as we do below.
Another advantage of the loss (26) is that it controls the quality of the transport as measured by the
Kullback-Leibler divergence:
Proposition 5 (KL control). Let ρ̂t be the solution to the transport equation

∂tρ̂t = −∇ · (b̂tρ̂t), ρ̂t=0 = ρ0 (27)

where b̂t(x) is some predefined velocity field. Then, we have

DKL(ρ̂t=1||ρ1) ≤
√
LT=1

PINN(b̂, F ). (28)

where Ft is the free energy. In addition, given any estimate F̂t such that
∫ 1

0
|∂tF̂t − ∂Ft|2dt ≤ δ for

some δ ≥ 0, we have

DKL(ρ̂t=1||ρ1) ≤
√
2LT=1

PINN(b̂, F̂ ) + 2δ. (29)

This proposition is proven in Appendix 4.1. Notice that the bound (28) can be estimated by using
∂tFt = E[eAb̂

t∂tUt(X
b̂
t )]/E[eA

b̂
t ] in the PINN loss (26).

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

2.6 ESTIMATING THE DRIFT bt(x) = ∇ϕt(x) VIA ACTION MATCHING (AM)

In general (14) is solved by many bt(x). One way to get a unique (up to a constant in space and time)
solution to this equation is to impose that the velocity be in gradient form, i.e. set bt(x) = ∇ϕt(x)
for some scalar-valued potential ϕt(x). If we do so, (14) can be written as ∇ · (∇ϕt(x)ρt) = −∂tρt,
and it is easy to see that at all times t ∈ [0, 1] the solution to this equation minimizes over ϕ̂t the
objective ∫

Rd

[
1
2 |∇ϕ̂t(x)|2ρt(x)− ϕ̂t(x)∂tρt(x)

]
dx

=

∫

Rd

[
1
2 |∇ϕ̂t(x)|2 + (∂tUt(x)− ∂tFt)ϕ̂t(x)

]
ρt(x)dx.

(30)

If we use (4) to set ∂tFt =
∫
Rd ∂tUt(x)ρt(x)dx we can use the objective at the right hand-side of (30)

to learn ϕt(x) locally in time (or globally if we integrate this objective on t ∈ [0, 1]). Alternatively,
we can integrate the objective at the left hand-side of (30) over t ∈ [0, T ] and use integration by parts
for the term involving ∂tρt(x) to arrive at:

Proposition 6 (Action Matching objective). Given any T ∈ (0, 1] consider the objective for ϕ̂t(x):

LT
AM [ϕ̂] =

∫ T

0

∫

Rd

[
1
2 |∇ϕ̂t(x)|2+∂tϕ̂t(x)

]
ρt(x)dxdt+

∫

Rd

[
ϕ̂0(x)ρ0(x)−ϕ̂T (x)ρT (x)

]
dx. (31)

Then the minimizer ϕt(x) of (26) is unique (up to a constant) and bt(x) = ∇ϕt(x) satisfies (14) for
all t ∈ [0, T ].

This proposition is proven in Appendix 4.1. This objective is analogous to the loss presented in
Neklyudov et al. (2023), but adapted to the sampling problem. In practice, we will use again
T ∈ (0, 1] for annealing, but ultimately we are interested in the resut at T = 1. Note that, unlike with
the PINN objective (26), it is crucial that we use the correct ρt(x) in the AM objective (31): that is,
unlike (26), (31) cannot be turned into an off-policy objective.

Remark 2. If we use b̂t(x) = ∇ϕ̂t(x) in the SDEs in (20) and (21), we need to compute∇ · b̂t(x) =
∆ϕ̂t(x), which is computationally costly. Fortunately, when εt > 0, the calculation of this Laplacian
can be avoided by using the following alternative equation for Ab̂

t:

Ab̂
t =

1

εt
[ϕ̂t(X

b̂
t )− ϕ̂0(X

b̂
0)]−Bt, (32)

where

dBt = ∂tUt(X
b̂
t )dt+

1

εt
∂tϕ̂t(X

b̂
t ) +

1

εt
|∇ϕ̂t(X

b̂
t )|2dt+

√
2

εt
∇ϕ̂t(X

b̂
t ) · dWt. (33)

This equation is derived in Appendix 4.1.

3 NUMERICAL EXPERIMENTS

In what follows, we test the NETS method, for both the PINN objective (26) and the action matching
objective (31), on standard challenging sampling benchmarks. We then study how the method
scales in comparison to baselines, particularly AIS on its own, by testing it on an increasingly
high dimensional Gaussian Mixture Models (GMM). Following that, we show that it has orders
of magnitude better statistical efficiency as compared to AIS on its own when applied to the study
of lattice field theories, even past the phase transition of these theories and in 400 dimensions (an
L = 20× L = 20 lattice).

3.1 40-MODE GAUSSIAN MIXTURE

A common benchmark for machine learning augmented samplers that originally appeared in the
paper introducing Flow Annealed Importance Sampling Bootstrap (FAB) Midgley et al. (2023) is
a 40-mode GMM in 2-dimensions for which the means of the mixture components span from −40
to 40. The high variance and many wells make this problem challenging for re-weighting or locally
updating MCMC processes. We choose as a time dependent potential Ut(x) the linear interpolation
(1) with U0 the potential for a standard multivariate Gaussian with standard deviation scale σ = 2.

7
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Figure 1: Comparison of the performance of annealed Langevin dynamics alone, transport alone, and
annealed Langevin coupled with transport when sampling the 40-mode GMM from Midgley et al.
(2023). Left: Annealed Langevin run for 250 steps with εt = 4.0, failing to capture the modes with
0% ESS. Center: Learning using the PINN loss and sampling with 100 steps and εt = 0 achieves an
ESS of 95%. Right: Same learning and now sampling with εt = 4.0 achieves an ESS of 98%.

GMM (d = 2)

Algorithm ESS ↑ W2 ↓
FAB 0.653 ± 0.017 12.0 ± 5.73
PIS 0.295 ± 0.018 7.64 ± 0.92
DDS 0.687 ± 0.208 9.31 ± 0.82
pDEM 0.634 ± 0.084 12.20 ± 0.14
iDEM 0.734 ± 0.092 7.42 ± 3.44
CMCD-KL 0.268 ± 0.069 9.32 ± 0.71
CMCD-LV 0.655 ± 0.023 4.01 ± 0.25
NETS-AM εt = 5 (ours) 0.808 ± 0.031 3.89 ± 0.22
NETS-PINN εt = 0 (ours) 0.954 ± 0.003 3.55 ± 0.57
NETS-PINN εt = 4 (ours) 0.979 ± 0.002 3.14 ± 0.46
NETS-PINN-resample (ours) 0.993 ± 0.004 3.27 ± 0.31

Table 1: Performance of NETS in terms of ESS
and W2 metrics for 40-mode GMM (d = 2)
with comparative results quoted from Akhound-
Sadegh et al. (2024) for reproducibility.

We train a simple feed-forward neural network
of width 256 against both the PINN objective
(26), parameterizing (b̂, F̂ ), or the action match-
ing objective (31), parameterizing ϕ̂. We com-
pare the learned model from both objectives to re-
cent related literature: FAB, Path Integral Sampler
(PIS) (Zhang & Chen, 2021), Denoising Diffusion
Sampler (DDS) (Vargas et al., 2023), and Denois-
ing Energy Matching (pDEM, iDEM) (Akhound-
Sadegh et al., 2024). For reproducibility with
the benchmarks provided in the latter method,
we compute the effective sample size (ESS) es-
timated from 2000 generated samples as well as

the 2−Wasserstein (W2) distance between the model and the target. As noted in Table 1, all proposed
variants of NETS outperform existing methods. In addition, because our method can be turned into
an SMC method by including resampling during the generation, we can push the acceptance rate of
the same learned PINN model to nearly 100% by using a single resampling step when the ESS of the
walkers dropped below 98%. NETS uses 100 sampling steps and an εt = 0.0, 4.0 in the SDE.

3.2 FUNNEL AND STUDENT-T MIXTURE

We next test NETS on Neal’s funnel, a challenging synthetic target distribution which exhibits
correlations at different scales across its 10 dimensions, as well as the 50-dimensional Mixture of
Student-T (MoS) distribution used in Blessing et al. (2024). The definitions of the target densities and
the interpolating potentials are given in Appendix 4.6. Heuristically, the first dimension is Gaussian
with variance σ2 = 9, and the other 9 dimensions are conditionally Gaussian with variance exp(x0),
creating the funnel.

We again parameterize (b̂, F̂ ) or ϕ̂ using simple feed forward neural networks, this time of hidden
size 512. We use 100 sampling steps for both, with diffusion coefficients given in the caption of
Table 2. Following Blessing et al. (2024), we compute the maximum mean discrepancy (MMD)
and W2 distance between 2000 samples from the model and 2000 samples from the target and
compare to related methods in Table 2. NETS outperforms other methods with both losses on the
high dimensional MoS target in both metrics. In addition this can be improved using SMC-style
resampling in the interpolation when the ESS drops below 70%. NETS matches the best performance
in MMD for the Funnel distribution, but it is slightly worse inW2.

3.3 SCALING ON HIGH-DIMENSIONAL GMMS

In order to demonstrate that the method generalizes to high dimension, we study sampling from
multimodal GMMs in higher and higher dimensions and observe how the performance scales. In
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Algorithm Funnel (d = 10) MoS (d = 50)

MMD ↓ W2 ↓ MMD ↓ W2 ↓
FAB (Midgley et al., 2023) 0.032 ± 0.000 153.894 ± 3.916 0.093 ± 0.014 1204.160 ± 147.7
GMMVI (Arenz et al., 2023) 0.031 ± 0.000 105.620 ± 3.472 0.135 ± 0.017 1255.216 ± 296.9
PIS (Zhang & Chen, 2022) – – – 0.218 ± 0.007 2113.172 ± 31.17
DDS (Vargas et al., 2023) 0.172 ± 0.031 142.890 ± 9.552 0.131 ± 0.001 2154.884 ± 3.861
AFT (Arbel et al., 2021) 0.159 ± 0.010 145.138 ± 6.061 0.395 ± 0.082 2648.410 ± 301.3
CRAFT (Arbel et al., 2021) 0.115 ± 0.003 134.335 ± 0.663 0.257 ± 0.024 1893.926 ± 117.3
CMCD-KL (Vargas et al., 2024) 0.095 ± 0.003 513.339 ± 192.4 – – – –
NETS-AM (ours) 0.041 ± 0.001 435.793 ± 96.17 0.0396 ± 0.001 407.827 ± 69.64
NETS-PINN (ours) 0.033 ± 0.002 388.91 ± 141.5 0.032 ± 0.001 482.393 ± 174.6
NETS-PINN-resample (ours) 0.027 ± 0.003 343.78 ± 65.25 0.030 ± 0.000 400.076 ± 59.31

Table 2: Performance of NETS on Neal’s Funnel and Mixture of Student-T distributions, measured in
MMD andW2 distances from the true distribution. Benchmarking is in accordance with the setup
of Blessing et al. (2024). Diffusion coefficient ϵt = 5, 4 was used for NETS-AM on the Funnel and
MoS, respectively. Equivalently, ϵt = 5, 5 were used by NETS-PINN. Bold numbers are within
standard deviation the best performing. Note that NETS still has perfect sample in the ϵt →∞ limit,
but would require finer time discretization than the 100 sampling steps used here (see Figure 4).

addition we are curious to understand how the factor in the sampling SDE coming from annealed
Langevin dynamics,∇U , interacts with the learned drift b̂ or∇ϕ̂ as we change the diffusivity. We
construct 8-mode target GMMs in d = 36, 64, 128, 200 dimensions and learn b̂ with the PINN loss in
each scenario. We use the same feed forward neural network of width 512 and depth 4 to parameterize
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dim=128, transport
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dim=200, transport

dim=200, no transport
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Figure 2: Demonstration of high-dimensional sampling with our method using the PINN loss in
(26) and a study of how diffusivity impacts performance, with and without transport. Left: NETS
can achieve high ESS through transport alone, and the effect of increased diffusivity has more of
a positive effect on performance with sampling than without. AIS cannot achieve ESS above ≈ 0
in high dimension. Right: Kernel density estimates of 2-d cross sections of the high-dimensional,
multimodal distribution arising from the model and ground truth.

both b̂ and F̂ for all dimensions tested and train for 4000 training iterations. Figure 2 summarizes
the results. On the left plot, we note that AIS on its own cannot produce any effective samples,
while even in 200 dimensions, NETS works with transport alone with 60% ESS. As we increase the
diffusivity εt and therefore the effect of the Langevin term coming from the gradient of the potential,
we note all the methods converge to nearly independent sampling, and the discrepancy in performance
across dimensions is diminished. Note that the caveat to achieve this is that the step size in the SDE
integrator must be taken smaller to accommodate the increased diffusivity, especially for the εt = 80
data point. The number of sampling steps used to discretize the SDEs in these experiments ranged
from K = 100 for εt = 0 up to K = 2000 for εt = 80. Nonetheless, it suggests that diffusion can
be more helpful when there is already some successful transport than without.

3.4 LATTICE φ4 THEORY

We next apply NETS to the simulation of a statistical lattice field theory at and past the phase
transition from which the lattice goes from disordered, to semi-ordered, to fully ordered (neighboring

9
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Figure 3: Comparison of the performance of NETS to AIS on two different settings for the study
of φ4 theory. Top row, left: 10 example generative lattice configurations with parameters L = 20,
m2 = −1.0, λ = 0.9, which demarcates the phase transition to the antiferromagnetic phase. Top
row, right: Performance of AIS (purple curve) vs. NETS (red curve) in terms of effective sample size
over time of integration t, and a histogram of the average magnetization of 4000 lattice configurations,
sampled with AIS, NETS, and HMC (superposed in this order). Note that NETS is closer to the
HMC target and re-weights correctly. Re-weighted AIS was not plotted because the weights were
too high variance. Bottom row: Equivalent setup for L = 16, m2 = −1.0, λ = 0.8, past the phase
transition and into the ordered phase. Note that the field configurations generated by NETS are either
all positive across lattice sites or all negative. AIS fails to sample the correct distribution, and its
weights are too high variance to be used on the histogram.

sites are highly correlated to be of the same sign and magnitude). We study the lattice φ4 theory in
D = 2 spacetime dimensions. The random variables in this circumstance are field configurations
φ ∈ RL×L, where L is the extent of space and time. The interpolating energy function under which
we seek to sample is defined as:

Ut(φ) =
∑

x

[
− 2

∑

µ

φxφx+µ

]
+ (2D +m2

t )φ
2
x + λtφ

4
x, (34)

where summation over x indicates summation over the lattices sites, and m2
t and λt are time dependent

parameters of the theory that define the phase of the lattice (ranging from disordered to ordered,
otherwise known as magnetized). A derivation of this energy function is given in Appendix 4.7.
Importantly, sampling the lattice configurations becomes challenging when approaching the phase
transition between the disordered and ordered phases. As an example, we identify the phase transition
on L = 16 (d = 256) and L = 20 (d = 400) lattices and run NETS with the action matching loss,
with ϕ̂t a simple feed forward neural network. We use the free theory λ0 = 0 as the base distribution
under which we initially draw samples. The definition of the target parameter values m2

1, λ1 both
at the phase transition and in the ordered phase are given in the Appendix 4.7. In Figure 3, the
top row shows samples from NETS for L = 20 at the phase transition, where correlations begin to
appear in the lattice configurations. NETS is almost 2 orders of magnitude more statistically efficient
than AIS (the same setup without the transport) in sampling at the critical point, as seen in the plot
showing ESS over time. Note also that NETS can produce unbiased estimates of the magnetization
as compared to a Hybrid Monte Carlo (HMC) ground truth. The bottom row shows samples past the
phase transition and into the ordered phase, where the lattices begin to take on either all positive or
all negative values. Again in this regime, NETS is nearly 2 orders of magnitude more statistically
efficient.

While NETS performs significantly better than conventional annealed samplers on the challenging
field theory problem, algorithms built out of dynamical transport still experience slowdowns near
phase transitions because of the difficulty of resolving the dynamics of the integrators near these
critical points. As such, we need to use 1500-2000 steps in the integrator to properly resolve the
dynamics of the SDE.

10
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4 APPENDIX

4.1 PROOFS OF SEC. 2

Here we provide the proofs of the statements made in Sec. 2 which, for the reader convenience, we
recall.

Proposition 1 (Jarzynski equality). Let (Xt, At) solve the coupled system of SDE/ODE

dXt = −εt∇Ut(Xt)dt+
√
2εtdWt, X0 ∼ ρ0, (10)

dAt = −∂tUt(Xt)dt, A0 = 0, (11)

where εt ≥ 0 is a time-dependent diffusion coefficient and Wt ∈ Rd is the Wiener process. Then for
all t ∈ [0, 1] and any test function h : Rd → R, we have

∫

Rd

h(x)ρt(x)dx =
E[eAth(Xt)]

E[eAt ]
, Zt/Z0 = e−Ft+F0 = E[eAt ], (12)

where the expectations are taken over the law of (Xt, At).

Proof. Let ft(x, a) with (x, a) ∈ Rd+1 be the PDF of the joint process (Xt, At) defined by the
SDE (10) and (11). This PDF solves the FPE

∂tft = εt∇ · (∇Utft +∇ft) + ∂tUt∂aft, ft=0(x, a) = δ(a)ρ0(x). (35)

Define

gt(x) =

∫

R
eaft(x, a)da. (36)

We can derive an equation for gt(x) by multiplying both sides of the FPE (35) by ea and integrating
over a ∈ R. Using

∫

R
ea∂tft(x, a)da = ∂t

∫

R
eaft(x, a)da = ∂tgt,

∫

R
eaεt∇ · (∇Utft +∇ft)da = εt∇ ·

(
∇Ut

∫

R
eaft(x, a)da+∇

∫

R
eaft(x, a)da

)

= εt∇ · (∇Utgt +∇gt),∫

R
ea∂tUt∂aftda = ∂tUt

∫

R
ea∂aftda

= −∂tUt

∫

R
eaftda = −∂tUtgt,

(37)

where we arrived at the second equality in the third equation by integration by parts, we deduce that

∂tgt = εt∇ · (∇Utgt +∇gt)− ∂tUtgt, gt=0(x) = ρ0(x) = e−U0(x)+F0 . (38)
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The solution to this parabolic PDE is unique and it can be checked by direct substitution that it is
given by

gt(x) = e−Ut(x)+F0 . (39)

Note that this solution is not normalized since it contains F0 rather than Ft. In fact it is easy to see
that ∫

Rd

gt(x)dx =

∫

Rd+1

eaft(x, a)dxda = e−Ft+F0 , (40)

where the first equality follows from the definition of gt and the second from its explicit expression
and the definition of the free energy that implies

∫
Rd e

−Ut(x)dx = e−Ft . Equation (39) is the second
equation in (12). From (39) we also deduce that, given any test function h : Rd → R, we have

∫
Rd+1 e

ah(x)ft(x, a)dxda∫
Rd+1 eaft(x, a)dxda

=

∫
Rd h(x)gt(x)dx∫

Rd gt(x)dx

=

∫
Rd h(x)e

−Ut(x)+F0dx∫
Rd e−Ut(x)+F0

=

∫
Rd h(x)e

−Ut(x)dx∫
Rd e−Ut(x)dx

= eFt

∫

Rd

h(x)e−Ut(x)dx

=

∫

Rd

h(x)ρt(x)dx.

(41)

Since by definition of ft(x, a) the left hand-side of this equation can be expressed as the ratio of
expectations over (Xt, At) in the first equation in (12) we are done.

Proposition 2 (Sampling with perfect additional transport.). Let bt(x) be a solution to (14) and let
Xb

t satisfy the SDE

dXb
t = −εt∇Ut(X

b
t )dt+ bt(X

b
t )dt+

√
2εtdWt, Xb

0 ∼ ρ0, (16)

where εt ≥ 0 is a time-dependent diffusion coefficient and Wt ∈ Rd is the Wiener process. Then
ρt(x) is the PDF of Xb

T , i.e. for all t ∈ [0, 1] and, given any test function h : Rd → R, we have
∫

Rd

h(x)ρt(x)dx = E[h(Xb
t )], (17)

where the expectation at the right-hand side is taken over the law of (Xb
t ).

Proof. If bt satisfies (14), then ρt satisfies the FPE (15). Since (16) is the SDE associated with this
FPE, (17) holds.

Proposition 3 (Nonequilibrium Transport Sampler (NETS)). Let (X b̂
t , A

b̂
t) solve the coupled system

of SDE/ODE

dX b̂
t = −εt∇Ut(X

b̂
t )dt+ b̂t(X

b̂
t )dt+

√
2εtdWt, X b̂

0 ∼ ρ0, (20)

dAb̂
t = ∇ · b̂t(X b̂

t )dt−∇Ut(X
b̂
t ) · b̂t(X b̂

t )dt− ∂tUt(X
b̂
t )dt, Ab̂

0 = 0, (21)

where εt ≥ 0 is a time-dependent diffusion coefficient and Wt ∈ Rd is the Wiener process. Then for
all t ∈ [0, 1] and any test function h : Rd → R, we have

∫

Rd

h(x)ρt(x)dx =
E[eAb̂

th(X b̂
t )]

E[eAb̂
t ]

, Zt/Z0 = e−Ft+F0 = E[eA
b̂
t ], (22)

where the expectations are taken over the law of (X b̂
t , A

b̂
t).
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Proof. We can follow the same steps as in the proof of Proposition 1 by considering the PDF f b̂
t (x, a)

of (X b̂
t , A

b̂
t). This PDF solves the FPE

∂tf
b̂
t = εt∇ · (∇Utf

b̂
t +∇f b̂

t )−∇ · (b̂tf b̂
t )− (∇ · b̂t −∇Ut − ∂tUt)∂af

b̂
t ,

f b̂
t=0(x, a) = δ(a)ρ0(x).

(42)

Define
gb̂t (x) =

∫

R
eaf b̂

t (x, a)da. (43)

We can derive an equation for gb̂t (x) by multiplying both sides of the FPE (42) by ea and integrating
over a ∈ R. Using ∫

R
ea∂tf

b̂
t da = ∂t

∫

R
eaf b̂

t da = ∂tg
b̂
t ,

∫

R
eaεt∇ · (∇Utf

b̂
t +∇f b̂

t )da = εt∇ ·
(
∇Ut

∫

R
eaf b̂

t da+∇
∫

R
eaf b̂

t da
)
,

−
∫

R
ea∇ · (b̂tf b̂

t )da = −∇ ·
(
b̂t

∫

R
eaf b̂

t da
)

= −∇ · (b̂tgb̂t ),

−
∫

R
ea(∇ · b̂t −∇Ut − ∂tUt)∂af

b̂
t da = −(∇ · b̂t −∇Ut − ∂tUt)

∫

R
ea∂af

b̂
t da

= (∇ · b̂t −∇Ut − ∂tUt)

∫

R
eaf b̂

t da

= (∇ · b̂t −∇Ut − ∂tUt)g
b̂
t ,

(44)

where we arrived at the second equality in the fourth equation by integration by parts, we deduce that

∂tg
b̂
t = εt∇ · (∇Utg

b̂
t +∇gb̂t )−∇ · (b̂tgb̂t ) + (∇ · b̂t −∇Ut − ∂tUt)g

b̂
t ,

gb̂t=0(x) = ρ0(x) = e−U0(x)+F0 .
(45)

The solution to this parabolic PDE is unique and it can be checked by direct substitution that it is
given by

gb̂t (x) = e−Ut(x)+F0 . (46)
This solution is not normalized since it contains F0 rather than Ft, and it is easy to see that∫

Rd

gb̂t (x)dx =

∫

Rd+1

eaf b̂
t (x, a)dxda = e−Ft+F0 . (47)

where the first equality follows from the definition of gb̂t and the second from its explicit expression
and the definition of the free energy that implies

∫
Rd e

−Ut(x)dx = e−Ft . Equation (47) is the second
equation in (22). From (46) we also deduce that, given any test function h : Rd → R, we have

∫
Rd+1 e

ah(x)f b̂
t (x, a)dxda∫

Rd+1 eaf b̂
t (x, a)dxda

=

∫
Rd h(x)g

b̂
t (x)dx∫

Rd gb̂t (x)dx

=

∫
Rd h(x)e

−Ut(x)+F0dx∫
Rd e−Ut(x)+F0

=

∫
Rd h(x)e

−Ut(x)dx∫
Rd e−Ut(x)dx

= eFt

∫

Rd

h(x)e−Ut(x)dx

=

∫

Rd

h(x)ρt(x)dx.

(48)

Since by definition of f b̂
t (x, a) the left hand-side of this equation can be expressed as the ratio of

expectations over (X b̂
t , A

b̂
t) in the first equation in (22) we are done.
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Proposition 4 (PINN objective). Given any T ∈ (0, 1] and any PDF ρ̂t(x) > 0 consider the objective
for (b̂, F̂ ) given by:

LT
PINN[b̂, F̂ ] =

∫ T

0

∫

Rd

∣∣∇ · b̂t(x)−∇Ut(x) · b̂t(x)− ∂tUt(x) + ∂tF̂t

∣∣2ρ̂t(x)dxdt. (26)

Then minb̂,F̂ LT
PINN[b̂, F̂ ] = 0, and all minimizers (b, F ) are such that and bt(x) solves (24) and Ft

is the free energy (3) for all t ∈ [0, T ].

Proof. Clearly the minimum value of (26) is zero and the minimizing pair (b̂, F̂ ) must satisfy

∇ · b̂t −∇Ut · b̂t − ∂tUt + ∂tF̂t = 0 (49)
By multiplying both sides of this equation by ρt is can be written as

∇ · (b̂tρt)− ∂tUtρt + ∂tF̂tρt = 0 (50)
This equation requires a solvability condition obtained by integrating it over Rd. This gives

−
∫

Rd

∂tUt(x)ρt(x)dx+ ∂tF̂t = 0, (51)

which, by (4), implies that ∂tF̂t = ∂tFt. In turn, this implies that (50) is equivalent to (14), i.e. b̂t
solves (14).

Proposition 5 (KL control). Let ρ̂t be the solution to the transport equation

∂tρ̂t = −∇ · (b̂tρ̂t), ρ̂t=0 = ρ0 (27)

where b̂t(x) is some predefined velocity field. Then, we have

DKL(ρ̂t=1||ρ1) ≤
√
LT=1

PINN(b̂, F ). (28)

where Ft is the free energy. In addition, given any estimate F̂t such that
∫ 1

0
|∂tF̂t − ∂Ft|2dt ≤ δ for

some δ ≥ 0, we have

DKL(ρ̂t=1||ρ1) ≤
√
2LT=1

PINN(b̂, F̂ ) + 2δ. (29)

Proof. Consider

DKL(ρ̂t||ρt) =
∫

Rd

log

(
ρ̂t(x)

ρt(x)

)
ρ̂t(x)dx (52)

where ρ̂t satisfies (27). Taking the time-derivative of this expression we deduce that (using (27),
ρt(x) = e−Ut(x)+Ft , and multiple integrations by parts)

∂tDKL(ρ̂t||ρt) =
∫

Rd

[
log

(
ρ̂t(x)

ρt(x)

)
∂tρ̂t(x)−

∂tρt(x)

ρt(x)
ρ̂t(x)

]
dx

=

∫

Rd

[
− log

(
ρ̂t(x)

ρt(x)

)
∇ · (b̂t(x)ρ̂t(x)) + (∂tUt(x)− ∂tFt)ρ̂t(x)

]
dx

=

∫

Rd

[
b̂t(x) · ∇ log

(
ρ̂t(x)

ρt(x)

)
+ ∂tUt − ∂tFt

]
ρ̂t(x)dx

=

∫

Rd

[
b̂t(x) · ∇ρ̂t(x) +

(
b̂t(x) · ∇Ut(x) + ∂tUt − ∂tFt

)
ρ̂t(x)

]
dx

=

∫

Rd

[
−∇ · b̂t(x) + b̂t(x) · ∇Ut(x) + ∂tUt − ∂tFt

]
ρ̂t(x)dx

(53)

Therefore

DKL(ρ̂t=1||ρ1) =
∫ 1

0

∫

Rd

[
−∇ · b̂t(x) + b̂t(x) · ∇Ut(x) + ∂tUt − ∂tFt

]
ρ̂t(x)dxdt

≤
[∫ 1

0

∫

Rd

∣∣∣−∇ · b̂t(x) + b̂t(x) · ∇Ut(x) + ∂tUt − ∂tFt

∣∣∣
2

ρ̂t(x)dxdt

]1/2

=

√
LT=1

PINN(b̂, F )

(54)
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which gives (28). To establish (29) observe that

L1
PINN(b̂, F )

=

∫ 1

0

∫

Rd

∣∣∣∇ · b̂t(x)− b̂t(x) · ∇Ut(x)− ∂tUt + ∂tFt

∣∣∣
2

ρ̂t(x)dxdt

≤ 2

∫ 1

0

∫

Rd

[∣∣∣∇ · b̂t(x)− b̂t(x) · ∇Ut(x)− ∂tUt + ∂tF̂t

∣∣∣
2

+
∣∣∣∂tFt − ∂tF̂t

∣∣∣
2
]
ρ̂t(x)dxdt

= 2L1
PINN(b̂, F̂ ) + 2

∫ 1

0

|∂tFt − ∂tF̂t|2dt

(55)

Therefore, if
∫ 1

0
|∂tF̂t − ∂tFt|2dt ≤ δ, we have

L1
PINN(b̂, F ) ≤ 2L1

PINN(b̂, F̂ ) + 2δ (56)

Combining this bound with (28) gives (29).

Proposition 6 (Action Matching objective). Given any T ∈ (0, 1] consider the objective for ϕ̂t(x):

LT
AM [ϕ̂] =

∫ T

0

∫

Rd

[
1
2 |∇ϕ̂t(x)|2+∂tϕ̂t(x)

]
ρt(x)dxdt+

∫

Rd

[
ϕ̂0(x)ρ0(x)−ϕ̂T (x)ρT (x)

]
dx. (31)

Then the minimizer ϕt(x) of (26) is unique (up to a constant) and bt(x) = ∇ϕt(x) satisfies (14) for
all t ∈ [0, T ].

Proof. By integrating by parts in time the term involving ∂tϕt in the AM objective (57), we can
express is as

LT
AM [ϕ̂] =

∫ T

0

∫

Rd

[
1
2 |∇ϕ̂t(x)|2ρt(x)− ϕt(x)∂tρt(x)

]
dxdt. (57)

This is a convex objective in ϕ̂ whose minimizers satisfy

∇ · (∇ϕ̂tρt) = −∂tρt. (58)

This is (14) written in terms of bt(x) = ∇ϕt(x). The solution of this equation is unique up
to a constant by the Fredholm alternative since its right hand-side satisfies the solvability condi-
tion

∫
Rd ∂tρt(x)dx = 0.

Derivation of (32). If b̂t(x) = ∇ϕ̂t(x), the SDEs (20) and (21) reduce to

dX b̂
t = −εt∇Ut(X

b̂
t )dt+ ∇̂ϕt(X

b̂
t )dt+

√
2εtdWt, X̂ b̂

0 ∼ ρ0, (59)

dAb̂
t = ∆ϕ̂t(X

b̂
t )dt−∇Ut(X

b̂
t ) · ∇ϕ̂(X b̂

t )dt− ∂tUt(X
b̂
t )dt, Ab̂

0 = 0, (60)

Since by Itô formula we have

dϕ̂t(X
b̂
t ) = ∂tϕ̂t(X

b̂
t )dt− εt∇ϕ̂t(X

b̂
t ) · ∇Ut(X

b̂
t )dt+ |∇ϕ̂t(X

b̂
t )|2dt

+
√
2εt∇ϕ̂t(X

b̂
t ) · dWt + εt∆ϕ̂t(X

b̂
t )dt,

(61)

we can express

∆ϕ̂t(X
b̂
t )dt =

1

εt
dϕ̂t(X

b̂
t )dt−

1

εt
∂tϕ̂t(X

b̂
t )dt+∇ϕ̂t(X

b̂
t ) · ∇Ut(X

b̂
t )dt

− 1

εt
|∇ϕ̂t(X

b̂
t )|2dt−

√
2

εt
∇ϕ̂t(X

b̂
t ) · dWt.

(62)

If we insert this expression in the SDE (60), we can write it as

dAb̂
t =

1

εt
dϕ̂t(X

b̂
t )dt+ dBt. (63)

where dBt is given by (33). Integrating (63) gives (32).
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4.2 TIME-DISCRETIZED VERSION OF PROPOSITION 3

Here we show how to generalize the result in Proposition 3 if we time discretize the SDE in (20)
using Euler-Marayuma scheme and use some suitable time-discretized version of the ODE (21).
Proposition 7. Let 0 = t0 < t1 < · · · < tK = 1 be a time grid on [0, 1], denote ∆tk = tk+1 − tk
for k = 0, . . . ,K − 1, set X̃ b̂

0 ∼ ρ0 and Ãb̂
0 = 0, and for k = 0, . . . ,K − 1 define X̃ b̂

tk+1
, Ãb̂

tk+1

recursively via

X̃ b̂
tk+1

= X̃ b̂
tk
− εtk∇Utk(X̃

b̂
tk
)∆tk + b̂tk(X̃

b̂
tk
)∆tk +

√
2εtk(Wtk+1

−Wtk), (64)

Ãb̂
tk+1

= Ãb̂
tk

+ Utk(X̂
b̂
tk
)− Utk+1

(X̂ b̂
tk+1

) +R+
k (X̃

b̂
tk
, X̃ b̂

tk+1
)−R−

k (X̃
b̂
tk+1

, X̃ b̂
tk
), (65)

where we defined

R±
k (x, y) =

1

4εtk∆tk

∣∣y − x+∆tk(εtk∇Utk(x)∓ btk(x))
∣∣2 (66)

Then for all k = 0, . . . ,K and any test function h : Rd → R, we have
∫

Rd

h(x)ρtk(x)dx =
E[eÃ

b̂
tkh(X̃ b̂

tk
)]

E[eÃ
b̂
tk ]

, Ztk = e−Ftk = E[eÃ
b̂
tk ], (67)

where the expectations are taken over the law of (X̃ b̂
tk
, Ãb̂

tk
)

Note that the weights in (67) correct for the bias coming for both the time evolution of Ut(x) and the
fact that the Euler-Maruyama update in (64) does not satisfy the detailed-balance condition locally. It
cab be checked by direct calculation that (65) is a consistent time-discretization of the ODE (21).

Proof. For simplicity of notations we will prove (67) for k = K: the argument for all the other
k = 1, . . . ,K − 1 is similar. The update rule in (65) implies that

Ãb̂
tK =

K−1∑

k=0

(
Utk(X̂

b̂
tk
)− Utk+1

(X̂ b̂
tk+1

) +R+
k (X̃

b̂
tk
, X̃ b̂

tk+1
)−R−

k (X̃
b̂
tk+1

, X̃ b̂
tk
)
)

= U0(X̃
b̂
t0)− UK(X̃ b̂

tK ) +

K−1∑

k=0

(
R+

k (X̃
b̂
tk
, X̃ b̂

tk+1
)−R−

k (X̃
b̂
tk+1

, X̃ b̂
tk
)
)
,

(68)

Now, given the test function h : Rd → R, consider

I[h] ≡ E
[
eÃ

b̂
tK h(X̃ b̂

tK )
]

(69)

Since the transition probability density function of the Euler-Maruyama update in (64) reads

ρ+tk(xk+1|xk) = (4πεtk∆tk)
−d/2 exp

(
−R+

k (xk, xk+1)
)
, (70)

the joint probability density function of the path (X̃ b̂
t0 , X̃

b̂
t1 , . . . , X̃

b̂
tK ) is given by

ρ(x0, . . . , xK) = exp (−U0(x0) + F0)

K−1∏

k=0

ρ+tk,∆tk
(xk+1|xk)

= C exp

(
−U0(x0) + F0 −

K−1∑

k=0

R+
k (xk, xk+1)

) (71)

where C =
∏K−1

k=0 (4πεtk∆tk)
−d/2. We can use this density along with the explicit expression for

Ãb̂
TK

in (68) to express the expectation (69) as an integral over ρ(x0, x1, . . . , xK)

I[h] = C

∫

Rd(K+1

dx0 · · · dxK exp

(
−U0(x0) + F0 −

K−1∑

k=0

R+
k (xk, xk+1)

)

× exp

(
U0(x0)− UK(xK) +

K−1∑

k=0

(
R+

k (xk, xk+1)−R−
k (xk+1, xk)

))
h(xK)

(72)
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where the second exponential comes from the factor eÃ
b̂
K . (72) simplifies into

I[h] = C

∫

Rd(K+1

dx0 · · · dxK exp

(
−UK(xK) + F0 −

K−1∑

k=0

R−
k (xk+1, xk)

))
h(xK) (73)

In this expression we recognize a product of factors involving

ρ−tk(xk|xk+1) = (4πεtk)
−d/2 exp

(
−R−

k (xk+1, xk)
)
, (74)

which is the transition probability density function of the time-reversed update

Ỹ b̂
tk

= Ỹ b̂
tk+1
− εtk∇Utk(Ỹ

b̂
tk+1

)∆tk − b̂tk(Ỹ
b̂
tk+1

)∆tk +
√
2εtk(Wtk+1

−Wtk). (75)

This implies in particular that we can perform the integrals in (73) sequentially over x0, x1, .., xK−1

to be left with
I[h] =

∫

Rd

exp (−UK(xK) + F0)h(xK)dxK (76)

Therefore
I[1] =

∫

Rd

exp (−UK(xK) + F0) dxK = e−FK+F0 , (77)

which is the second equation in (67), and

I[h]

I[1]
= eFK−F0

∫

Rd

exp (−UK(xK) + F0)h(xK)dxK =

∫

Rd

h(x)ρtK (x)dx (78)

which is the first equation in (67).

4.3 SOLVING FOR THE OPTIMAL DRIFT VIA FEYNMAN-KAC FORMULA

Without loss of generality, we can always look for a solution to (24) in the form of bt(x) = ∇ϕt(x),
so that this equation becomes the Poisson equation

∆ϕt −∇Ut · ∇ϕt = ∂tUt − ∂tFt. (79)

The solution to this equation can be expressed via Feynman-Kac formula:
Proposition 8. Let Xt,x

τ satisfy the following SDE

dXt,x
τ = −∇Ut(X

t,x
τ )dτ +

√
2dWτ , Xt,x

τ=0 = x (80)

where Ut is evaluated fixed at t ∈ [0, 1] fixed. Assume geometric ergodicity of the semi-group associ-
ated with (80), i.e. the probability distribution of the solutions to this SDE converges exponentially
fast towards their unique equilibrium distribution with density ρt(x). Then for all (t, x) ∈ [0, 1]×Rd

we have

ϕt(x) =

∫ ∞

0

E
[
∂tFt − ∂tUt(X

t,x
τ )
]
dτ (81)

where the expectation is taken over the law of Xt,x
τ .

Proof. By Ito formula,

dϕt(X
t,x
τ ) =

(
∆ϕt(X

t,x
τ )−∇Ut(X

t,x
τ ) · ∇ϕt(X

t,x
τ )
)
dτ +

√
2∇ϕt(X

t,x
τ ) · dWτ

=
(
∂tUt(X

t,x
τ )− ∂tFt

)
dτ +

√
2∇ϕt(X

t,x
τ ) · dWτ

(82)

where the differential is taken with respect to τ at t fixed, and we used (79) to get the second equality.
If we integrate this relation on τ ∈ [0, T ] and take expectation, we deduce that

E
[
ϕt(X

t,x
T )
]
− ϕt(x) =

∫ T

0

E
[
∂tUt(X

t,x
τ )− ∂tFt

]
dτ (83)

where we use Ito isometry to zero the expectation of the martingale term involving
√
2∇ϕt(X

t,x
τ ) ·

dWτ . If we let T →∞, by ergodicty the first term at the left hand side converges towards a constant
independent of (t, x) which we can neglect – this fixes the gauge of the solution to (79) which
is unique only up to a constant. What remains in this limit is the expression (81). Note that the
integral in this expression converges since E

[
∂tUt(X

t,x
τ )
]
→ ∂tFt exponentially fast as τ →∞ by

assumption of geometric ergodicity.
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Example: moving Gaussian distribution. Let us consider the case where

Ut(x) =
1
2 (x− bt)

TAt(x− bt), (84)

where bt ∈ Rd is a time-dependent vector field and At = AT
t ∈ Rd × Rd is a time-dependent

positive-definite matrix: we assume that both bt and At are C1 in time, and also that ȦtAt = AtȦt.
The free energy in this example is

Ft = − logZt, Zt = (2π)d/2|detAt|−1/2, (85)

so that

∂tUt(x) = −ḃTt At(x− bt) +
1
2 (x− bt)

T Ȧt(x− bt), ∂tFt =
1
2 tr(A−1

t Ȧt). (86)

In this case, the SDE (80) reads

dXt,x
τ = −At(X

t,x
τ − bt)dτ +

√
2dWτ , Xt,x

τ=0 = x, (87)

and its solution is

Xt,x
τ = e−Atτx+

(
1− e−Atτ

)
bt +

√
2

∫ τ

0

e−At(τ−τ ′)dWτ ′ . (88)

This implies that (using Ito isometry)

E
[
∂tUt(X

t,x
τ )
]
= −ḃTt Ate

−Atτ (x− bt) +
1
2 (x− bt)

T e−Atτ Ȧte
−Atτ (x− bt)

+

∫ τ

0

tr
(
e−Atτ Ȧte

−Atτ
)
dτ

= −ḃTt Ate
−Atτ (x− bt) +

1
2 (x− bt)

T e−Atτ Ȧte
−Atτ (x− bt)

+ 1
2 tr
(
A−1

t Ȧt)− 1
2 tr(A−1

t Ȧte
−2Atτ ).

(89)

Therefore, from (81), we have (using also (85))

ϕt(x) =

∫ ∞

0

(
ḃTt Ate

−Atτ (x− bt)− 1
2 (x− bt)

T e−Atτ Ȧte
−Atτ (x− bt)

+ 1
2 tr(A−1

t Ȧte
−2Atτ )

)
dτ

= ḃt · (x− bt)− 1
4 (x− bt)

T ȦtA
−1
t (x− bt) +

1
4 tr(A−1

t ȦtA
−1
t ).

(90)

This solution checks out since it implies that

−∇Ut(x) · ∇ϕt(x) + ∆ϕt(x) = −ḃTt At(x− bt) +
1
2 (x− bt)

T Ȧt(x− bt)− 1
2 tr(A−1

t Ȧt), (91)

which is ∂tUt(x)− ∂tFt as it should.

4.4 EXTENSIONS AND GENERALIZATIONS

4.4.1 INERTIAL NETS

It is straightforward to generalize Proposition 9 so that the stochastic dynamics involves some
memory/inertia:

Proposition 9. Let (X b̂,µ
t , Rb̂,

t , A
b̂,µ
t ) solve the coupled system of SDE/ODE

dX b̂,µ
t = b̂t(X

b̂,µ
t )dt+Rb̂,µ

t dt, X b̂,µ
0 ∼ ρ0, (92)

dRb̂,µ
t = −µ∇Ut(X

b̂,µ
t )dt− µε−1

t Rb̂,µ
t dt+ µ

√
2ε−1

t dWt, Rb̂,µ
0 ∼ N(0, µId), (93)

dAb̂,µ
t = ∇ · b̂t(X b̂,µ

t )dt−∇Ut(X
b̂,µ
t ) · b̂t(X b̂,µ

t )dt− ∂tUt(X
b̂,µ
t )dt, Ab̂,µ

0 = 0, (94)

where εt > 0 is a time-dependent diffusion coefficient, µ ≥ 0 is a mobility coefficient, and Wt ∈ Rd

is the Wiener process. Then for all t ∈ [0, 1] and any test function h : Rd → R, we have
∫

Rd

h(x)ρt(x)dx =
E[eA

b̂,µ
t h(X b̂,µ

t )]

E[eAb̂,µ
t ]

, Zt/Z0 = e−Ft+F0 = E[eA
b̂,µ
t ], (95)

where the expectations are taken over the law of (X b̂,µ
t , Ab̂,µ

t ).
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The proof of this proposition can be found at the end of this subsection. Note that when b̂ = b, the
solution to (24), (94) is simply

Ab,γ
t = −Ft + F0, (96)

i.e. the weights are again deterministic with zero variance. In general, b̂ will not be the optimal one,
in which case using the SDE in (92)-(94) gives us the extra parameter µ to play with post-training to
improve the ESS. Below we show that (92)-(94) reduce to (20)-(21) in the limit as µ→∞. It is also
easy to see that, if we set µ = 0 in (92)-(94), we simply get that Rb̂,µ

t = 0 and hence (97) reduces to
the ODE dX b̂,µ

t = b̂t(X
b̂,µ
t )dt. Finally it is worth noting that (92)-(93) can be cast into Langevin

equations with some extra forces. Indeed, if we introduce the velocity V b̂,µ
t = b̂t(X

b̂,µ
t ) + Rb̂,µ

t ,
(92)-(93) can be written as

dX b̂,µ
t = V b̂,µ

t dt X b̂,µ
0 ∼ ρ0, (97)

dV b̂,µ
t = −µ∇Ut(X

b̂,µ
t )dt+ µε−1

t b̂t(X
b̂,µ
t )dt− ∂tb̂t(X

b̂,µ
t )dt

+∇bt(X b̂,µ
t )V b̂,µ

t dt− µε−1
t V b̂,µ

t dt+ µ

√
2ε−1

t dWt, V b̂,µ
0 ∼ N(b̂0(X

b̂,µ
0 ), µId) (98)

In these equations, the terms µε−1
t b̂t − ∂tb̂t can be interpreted as non-conservative forces added to

−µ∇Ut, and the term ∇btV b̂,µ
t as an extra friction term added to −µε−1

t V b̂,µ
t .

Proof of Proposition 9. Denote by f b̂,µ
t (x, r, a) the joint PDF of (X b̂,µ

t , Rb̂,µ
t , Ab̂,µ

t ). This PDF satis-
fies the FPE

∂tf
b̂,µ
t = −∇x · ([b̂t + r]f b̂,µ

t ) + µ∇Ut · ∇rf + µε−1
t ∇r · (rf b̂,µ

t + µ∇rf
b̂,µ
t )

− (∇ · b̂t −∇Ut · b̂t − ∂tUt)∂af
b̂,µ
t ,

f b̂,µ
0 (x, r, a) = ρ0(x)(2πµ)

−d/2e−|r|2/(2µ)δ(a).

(99)

Let

gb̂,µt (x, r) =

∫

R
eaf b̂,µ

t (x, r, a)da. (100)

We can derive an equation for gb̂,µt (x) by multiplying both sides of the FPE (99) by ea and integrating
over a ∈ R. Using equations similar to (44), we arrive at

∂tg
b̂,µ
t = −∇x · ([b̂t + r]gb̂,µt ) + µ∇Ut · ∇rf + µε−1

t ∇r · (rgb̂,µt + µ∇rg
b̂,µ
t )

+ (∇ · b̂t −∇Ut · b̂t − ∂tUt)g
b̂,γ,
t

gb̂,µ0 (x, r) = ρ0(x)(2πµ)
−d/2e−|r|2/(2µ).

(101)

Since ρ0(x) = e−U0(x)+F0 , it can be checked by direct substitution that the solution to this equation
is

gb̂,µt (x, r) = e−Ut(x)+F0(2πµ)−d/2e−|r|2/(2µ). (102)

Therefore ∫

R2d

gb̂,µt (x, r)dxdr =

∫

R2d+1

eaf b̂,µ
t (x, r, a)dxdrda = e−Ft+F0 , (103)

where the first equality follows from the definition of gb̂,µt and the second from its explicit expression
and the definition of the free energy that implies

∫
Rd e

−Ut(x)dx = e−Ft . Equation (103) is the second
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equation in (95). From (102) we also deduce that, given any test function h : Rd → R, we have

∫
R2d+1 e

ah(x)f b̂,µ
t (x, r, a)dxdrda

∫
R2d+1 eaf

b̂,µ
t (x, r, a)dxdrda

=

∫
R2d h(x)g

b̂,µ
t (x, r)dxdr

∫
R2d g

b̂,µ
t (x, r)dxdr

=

∫
Rd h(x)e

−Ut(x)+F0dx∫
Rd e−Ut(x)+F0

=

∫
Rd h(x)e

−Ut(x)dx∫
Rd e−Ut(x)dx

= eFt

∫

Rd

h(x)e−Ut(x)dx

=

∫

Rd

h(x)ρt(x)dx.

(104)

Since by definition of f b̂,µ
t (x, r, a) the left hand-side of this equation can be expressed as the ratio of

expectations over (X b̂,µ
t , Ab̂,µ

t ) in the first equation in (95) we are done.

To see what happens when µ→∞, let us assume that εt = ε (time-independent) and integrate (93)
using Duhamel principle as

Rb̂,µ
t = e−µε−1tRb̂,µ

0 − µ

∫ t

0

e−µε−1(t−s)∇Us(X
b̂,µ
s )ds+ µ

√
2ε−1

∫ t

0

e−µε−1(t−s)dWs, (105)

Letting µ→∞, we see that the first term at the right hand side of (105) tends to zero, whereas the
second one gives

lim
µ→∞

µ

∫ t

0

e−µε−1(t−s)∇Us(X
b̂,µ
s )ds = ε∇Ut(X

b̂,µ
t ) (106)

Finally, the third term at the right hand side of (105) is a Gaussian process with covariance

Cµ
t,t′ = 2µ2ε−1

∫ min(t,t′)

0

e−µε−1(t−s)−µε−1(t′−s)ds = 2µ
(
e−µε−1|t−t′| − e−µε−1(t+t′)

)
(107)

As a result, given any test function ϕt, we have

lim
µ→∞

∫

[0,1]2
ϕtC

µ
t,t′ϕt′dtdt

′ = 2ε

∫ 1

0

ϕ2
tdt (108)

which indicates that Cµ
t,t′ converges weakly towards the Dirac distribution εδ(t − t′). Putting

these results together shows that in the limit as µ → ∞, Rb̂,µ
t dt converges weakly towards

−ε∇Ut(X
b̂,µ
t )dt +

√
2εdWt, which, if inserted in (92), reduces this equation to (20). The case

where εt depends on time can be treated similarly.

4.4.2 MULTIMARGINAL NETS

Let U(α, x) be a potential depending on α ∈ D ⊂ RN with N ∈ N as well as x ∈ Rd, and assumed
to be continuously differentiable in both arguments. Assume that e−U(α,x) is integrable in x for all
α ∈ D, and define the family of PDF

ϱ(α, x) = e−U(α,x)+F(α), F(α) = − log

∫

Rd

e−U(α,x)dx. (109)

Finally, define the family of matrix-valued B̂(α, x) : D×Rd → RN×Rd, assumed to be continuously
differentiable in both arguments. These quantities allow us to give a generalization of Proposition 3
in which we can sample the PDF ϱ(α, x) along any differential path αt ∈ D:
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Proposition 10. Let α : [0, 1] → D be a differentiable path in D and define the vector field
b : [0, 1]× Rd → Rd as

b̂αt (x) = α̇T
t B̂(αt, x) (110)

as well as

Uα
t (x) = U(αt, x), Fα

t = F(αt), ραt = ϱ(α, x) = e−Uα
t (x)+Fα

t (111)

Let (X b̂,α
t , Ab̂,α

t ) solve the coupled system of SDE/ODE

dX b̂,α
t = b̂αt (X

b̂,α
t )dt− εt∇Uα

t (X
b̂,α
t )dt+

√
2εtdWt X b̂,α

0 ∼ ρα0 , (112)

dAb̂,α
t = ∇ · b̂αt (X b̂,α

t )dt−∇Uα
t (X

b̂,α
t ) · b̂αt (X b̂,α

t )dt− ∂tU
α
t (X

b̂,α
t )dt, Ab̂,α

0 = 0, (113)

where εt > 0 is a time-dependent diffusion coefficient and Wt ∈ Rd is the Wiener process. Then for
all t ∈ [0, 1] and any test function h : Rd → R, we have

∫

Rd

h(x)ραt (x)dx =
E[eA

b̂,α
t h(X b̂,α

t )]

E[eAb̂,α
t ]

, e−Fα
t +Fα

0 = E[eA
b̂,α
t ], (114)

where the expectations are taken over the law of (X b̂,α
t , Ab̂,α

t ).

We will omit to give the proof of this proposition since it is a simple consequence of Proposition 3.
The interest in formulating the problem in this new way is that is it easy to see that the right hand
side of (113) (with ∂tF

α
t added for convenience) can be written as

∇ · b̂αt (x)−∇Uα
t (x) · b̂αt (x)− ∂tU

α
t (x) + ∂tF

α
t

= α̇T
t

(
∇x · B̂(αt, x)− B̂(αt, x)∇xU(αt, x)−∇αU(αt, x) +∇αF(αt)

)
.

(115)

Therefore if we zero this term for all (α, x) ∈ D × Rd by picking the right B̂(α, x) we will obtain
that (113) reduces to dAb̂,α

t = −Fα
t dt, i.e. Ab̂,α

t = Fα
t − Fα

0 . Finding this optimal B(α, x) can be
obtained using the following result:

Proposition 11 (Multimarginal PINN objective). Consider the objective for (B̂, F̂) given by:

Lα
PINN[B̂, F̂ ]

=

∫

D

∫

Rd

∣∣∣∇x · B̂(α, x)− B̂(α, x)∇xU(α, x)−∇αU(α, x) +∇αF̂(α)
∣∣∣
2

ϱ̂(α, x)f(α)dxdα

(116)
where ϱ̂(α, x) > 0 is a PDF in x for all α ∈ D, and f(α) is a PDF in α. Then minB,F Lα

PINN[B̂, F̂ ] =
0, and all minimizers (B,F) are such that and B(α, x) solves

∀(α, x) ∈ D × Rd : 0 = ∇x · B̂(α, x)− B̂(α, x)∇xU(α, x)−∇αU(α, x) +∇αF(α), (117)

and F(α) is the free energy (109) for all α ∈ D.

We will omit to give the proof of this proposition since it is a simple generalization of the proof of
Proposition 4.

4.5 IMPLEMENTATION

The computation of the divergence∇ · bt(x) in the PINN objective given in (26) can be avoided by
using Hutchinson’s trace estimator, see Appendix 4.5.1. If we minimize (26) off-policy, i.e. with
samples from some ρ̂t ̸= ρt, this is perfectly valid, but may be inefficient for learning b̂t over the
support necessary for the problem. If we decide instead to set ρ̂t(x) = ρt(x), since the SDEs in (20)
and (21) can be used with any b̂t(x) to estimate expectation over ρt(x) via (22), we can write the
PINN objective on-policy as

LT
PINN[b̂, F̂ ] =

∫ T

0

1

E[eAb̂
t ]
E
[
eA

b̂
t

∣∣∇· b̂t(X b̂
t )−∇Ut(X

b̂
t ) · b̂t(X b̂

t )− ∂tUt(X
b̂
t )+ ∂tF̂t

∣∣2
]
dt (118)
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These expectations can be estimated empirically over a population of solutions to (20) and (21).
Crucially, since we can switch from off-policy to on-policy after taking the gradient of the PINN
objective, when computing the gradient of (118) over b̂t(x), (X b̂

t , A
b̂
t) can be considered independent

of b̂t(x) and do not need to be differentiated over. In other words, the method does not require
backpropagation through the simulation even if used on-policy, i.e. even though it uses the current
value of b̂t to estimate the loss and its gradient. Finally note that we can use the ODE (21) for Ab̂

t to
write (118) as

LT
PINN[b̂, F̂ ] =

∫ T

0

1

E[eAb̂
t ]
E
[
eA

b̂
t

∣∣∂tAb̂
t + ∂tF̂t

∣∣2
]
dt (119)

Since E[eAb̂
t∂tA

b̂
t ]/E[eA

b̂
t ] = ∂t logE[eA

b̂
t ] = −∂tFt, (119) clearly shows that this loss controls the

variance of ∂tAb̂
t , which directly connects the Jarzynski weights to the PINN objective.

Learning bt(x) and Ft for t ∈ [0, 1] from the start can be challenging if the initial b̂t(x) is far from
exact and the weights gets large variance as t increases. This problem can be alleviated by estimating
bt(x) sequentially. In practice, this amounts to annealing T from a small initial value to T = 1, in
such a way that bt(x) is learned sufficiently accurately so that variance of the weights remains small.
This variance can be estimated on the fly, which also give us an estimate of the effective sample size
(ESS) of the population at all times t ∈ [0, 1].

Note that we can also employ resampling strategies of the type used in SMC to keep the variance of
the weights low Doucet et al. (2001); Bolić et al. (2004).

We can proceed similarly with the AM loss (31) by rewriting it as

LT
AM[ϕ̂] =

∫ T

0

E
[
eA

b̂
t

[
1
2 |∇ϕ̂t(X

b̂
t )|2 + ∂tϕt(X

b̂
t )
]]

E[eAb̂
t ]

dt+
E
[
eA

b̂
0ϕ0(X

b̂
0)
]

E[eAb̂
0 ]

− E
[
eA

b̂
T ϕT (X

b̂
T )
]

E[eAb̂
T ]

.

(120)
These expectations can be estimated empirically over solutions to (20) and (21) with b̂t(x) = ∇ϕ̂t(x).
The above implementation is detailed in Algorithm 1.

4.5.1 HUTCHINSON’S TRACE ESTIMATOR FOR THE EVALUATION OF ∇tb̂t(x)

It is well-known that, if∇∇bt(x) is bounded,

∇ · b̂t(x) =
1

2δ
E
[
η ·
(
b̂t(x+ δη)− b̂t(x− δη)

)]
+O(δ2), (121)

where 0 < δ ≪ 1 is an adjustable parameter and η ∼ N(0, Id). Indeed we have

1

2δ
η ·
(
b̂t(x+ δη)− b̂t(x− δη)

)
= ηT∇bt(x)η +O(δ2), (122)

which implies (121) after taking the expectation over η.

We can use this formula to estimate the PINN loss via

LT,δ
PINN[b̂, F̂ ] =

∫ T

0

E
[
Rδ

t (xt, η)R
δ
t (xt, η

′)
]
dt (123)

where the expectation is now taken independent over xt ∼ ρ̂t, η ∼ N(0, Id), and η′ ∼ N(0, Id), and
we defined

Rδ
t (x, η) =

1

2δ
η ·
(
b̂t(x+ δη)− b̂t(x− δη)

)
−∇Ut(x) · b̂t(x)− ∂tUt(x) + ∂tF̂t (124)

The expectation in (123) is unbiased since η ⊥ η′, and its accuracy can be controlled by lowering δ.

4.6 DETAILS ON NUMERICAL EXPERIMENTS

In the following we include details for reproducing the experiments presented in Section 3. An
overview of the training procedure is given in Algorithm 1. Note that the SDE for the weights can
replaced with (32) when learning with ϕ̂t, as one would do with the action matching loss (31).
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Algorithm 1 Training: Note that for both objectives the resultant set of walkers across time slices
{xi

k} are detached from the computational graph when taking a gradient step (off-policy learning).

1: Initialize: n walkers, x0 ∼ ρ0, A0 = 0, K time steps, model parameters for {b̂t, F̂t} or ϕ̂t

respectively, diffusion coefficient εt, learning rate η
2: repeat
3: Randomize time grid: t0, t1, . . . , tK ∼ Uniform(0, T ), sort such that t0 < t1 < · · · < tK
4: for k = 0, . . . ,K do
5: ∆tk = tk+1 − tk,
6: for each walker i = 1, . . . , n do
7: xi

tk+1
= xi

tk
− εtk∇Utk(x

i
tk
)∆tk + b̂tk(x

i
tk
)∆tk +

√
2εtk(W

i
tk+1
−W i

tk
)

8: Ai
tk+1

= Ai
tk
− ∂tUtk(x

i
tk
)∆tk − b̂tk(x

i
tk
) · ∇Utk(x

i
tk
)∆tk +∇ · b̂tk(xi

tk
)∆tk

9: end for
10: end for
11: Estimate (118) or (120), respectively, by replacing the expectation by an empirical average

over the n walkers and the time integral by an empirical average over t0, . . . , tK .
12: Take gradient descent step to update the model parameters.
13: until converged

4.6.1 PERFORMANCE METRICS

Effective sample size. We can compute the self-normalized ESS as

ESSt =

(
N−1

∑N
i=1 exp

(
Ai

t

))2

N−1
∑N

i=1 exp
(
2Ai

t

) (125)

at time t along the SDE trajectory. We can use the ESS both as a quality metric and as a trigger for
when to perform resampling of the walkers based on the weights, using, e.g. systematic resampling
(Doucet et al., 2001; Bolić et al., 2004). Systematic resampling is one of many resampling techniques
from particle filtering wherein some walkers are killed and some are duplicated based on their
importance weights.

2-Wasserstein distance. The 2-Wasserstein distance reported in Table 1 were computed with 2000
samples from the model and the target density using the Python Optimal Transport library.

Maximum Mean Discrepancy (MMD). We use the MMD code from Blessing et al. (2024) to
benchmark the performance of NETS on Neal’s funnel. We use the definition of the MMD as

MMD2 (ρ̂, ρ) ≈ 1

n(n− 1)

n∑

i,j

k (x̂i, x̂j) +
1

m(m− 1)

m∑

i,j

k (xi, xj)−
2

nm

n∑

i

m∑

j

k (x̂i, xj)

(126)
where x̂ ∼ ρ̂ is from the model distribution and x ∼ ρ is from the target and k : Rd × Rd → R is
chosen to be the radial basis kernel with unit bandwidth.

4.6.2 40-MODE GMM

The 40-mode GMM is defined with the mean vectors given as:
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µ1 = (−0.2995, 21.4577) , µ2 = (−32.9218, −29.4376) ,
µ3 = (−15.4062, 10.7263) , µ4 = (−0.7925, 31.7156) ,
µ5 = (−3.5498, 10.5845) , µ6 = (−12.0885, −7.8626) ,
µ7 = (−38.2139, −26.4913) , µ8 = (−16.4889, 1.4817) ,
µ9 = (15.8134, 24.0009) , µ10 = (−27.1176, −17.4185) ,
µ11 = (14.5287, 33.2155) , µ12 = (−8.2320, 29.9325) ,
µ13 = (−6.4473, 4.2326) , µ14 = (36.2190, −37.1068) ,
µ15 = (−25.1815, −10.1266) , µ16 = (−15.5920, 34.5600) ,
µ17 = (−25.9272, −18.4133) , µ18 = (−27.9456, −37.4624) ,
µ19 = (−23.3496, 34.3839) , µ20 = (17.8487, 19.3869) ,

µ21 = (2.1037, −20.5073) , µ22 = (6.7674, −37.3478) ,
µ23 = (−28.9026, −20.6212) , µ24 = (25.2375, 23.4529) ,

µ25 = (−17.7398, −1.4433) , µ26 = (25.5824, 39.7653) ,

µ27 = (15.8753, 5.4037) , µ28 = (26.8195, −23.5521) ,
µ29 = (7.4538, −31.0122) , µ30 = (−27.7234, −20.6633) ,
µ31 = (18.0989, 16.0864) , µ32 = (−23.6941, 12.0843) ,
µ33 = (21.9589, −5.0487) , µ34 = (1.5273, 9.2682) ,

µ35 = (24.8151, 38.4078) , µ36 = (−30.8249, −14.6588) ,
µ37 = (15.7204, 33.1420) , µ38 = (34.8083, 35.2943) ,

µ39 = (7.9606, −34.7833) , µ40 = (3.6797, −25.0242)
These means follow the definition given in the FAB (Midgley et al., 2023) code base that has been
subsequently used in recent papers. The time-dependent potential Ut(x) is given by the interpolation
of means.

4.6.3 NEAL’S 10-d FUNNEL

The Neal’s Funnel distribution is a 10-d probability distribution defined as
x0 ∼ N(0, σ2), x1:9 ∼ N(0, ex0) (127)

where σ = 3 and we use subscripts here as a dimensional index and not as a time index like in the
rest of the paper. Following this, we use as a definition of the interpolating potential:

Ut(x) =
1

2
x2
0(1− t+

t

σ2
) +

1

2

d−1∑

i=1

e−tx0x2
i + (d− 1)tx0 (128)

so that at t = 0, we have U0(x) =
1
2x

2
0 +

1
2

∑d−1
i=1 x2

i and at time t = 1 we have the funnel potential
given as U1(x) =

1
2σ2x0 +

1
2

∑d−1
i=1 e−x0x2

i + (d− 1)x0.

4.6.4 50-d MIXTURE OF STUDENT-T DISTRIBUTIONS

Following Blessing et al. (2024), we use their mixture of 10 student-T distributions in 50 dimensions.
We construct Ut via interpolation of means from a single standard student-T distribution (mean 0).
We use the same neural network as used in the GMM experiments.

To further drive home the fact that our annealed Langevin dynamics with transport can be taken
post-training to the ϵ → ∞ limit to approach perfect sampling, we provide the following ablation
from our model learned with the action matching loss given in Figure 4.

4.7 DETAILS OF THE φ4 MODEL

We consider the Euclidean scalar ϕ4 theory given by the action

SEuc[φ] =

∫ [
∂µφ(x)∂

µφ(x) +m2φ2(x) + λφ4(x)
]
dDx (129)
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Figure 4: Reduction inW2 distance from taking the ϵ→∞ limit in sampling with NETS. Note that
the resolution of the SDE integration must increase to accommodate the higher stochasticity. Average
taken over 3 sampling runs of 2000 walkers each.

where we use Einstein summation to denote the dot product with respect to the Euclidean metric and
D is the spacetime dimension. We are interested in acquiring a variant of this expression that provides
a fast computational realization when put onto the lattice. Using Green’s identity (integrating by
parts) we note that
∫
(∂µφ(x)∂

µφ(x)ddx =

∫
∂µφ · ∂µφddx = −

∫
φ(x)∂µ∂

µφ(x)ddx + vanishing surface term

(130)

so that

SEuc[φ] =

∫
−φ(x)∂µ∂µφ(x) +m2φ2(x) + λφ4(x) ddx. (131)

Discretizing SEuc onto the lattice

Λ = {a(n0, . . . , nd−1) | ni ∈ {0, 1, 2, . . . , L}, i = 0, 1, . . . , d, a ∈ R+},
where a is the lattice spacing used to define the physical point x = an, we use the forward difference
operator to define

∂µφ(x)→ 1
a [φ(x+ µ)− φ(x)] ∂µ∂

µφ(x)→ 1
a2 [φ(x+ µ)− 2φ(x) + φ(x− µ)]. (132)

Using these expressions, we write the discretized lattice action as

SLat =
∑

x∈Λ

aD

[
D∑

µ=1

− 1
a2

[
φx+µφx − 2φ2

x + φx−µφx] +m2φ2
x + λφ4

x

]
(133)

=
∑

x

aD

[
2Da−2φ2

x − a−2
∑

µ

[
φx+µφx + φx−µφx] +m2φ2

x + λφ4
x

]
(134)

=
∑

x

ad

[
2Da−2φ2

x − 2a−2
∑

µ

[φxφx+µ] +m2φ2
x + λφ4

x

]
(135)

=
∑

x

aD

[
−2a−2

∑

µ

φxφx+µ + (2a−2D +m2)φ2
x + λφ4

x

]
(136)

where we have used the fact that on the lattice
∑

x φxφx+µ̂ =
∑

x φx−µ̂φx to get the third equality.
It is useful to put the action in a form that is independent of the lattice spacing a. To do so, we
introduce the re-scaled lattice field as

φx → aD/2−1φx, m2 → a2m2, and λ→ a4−Dλ. (137)
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Plugging these rescalings into (136) gives us the final expression

SLat =
∑

x

[
−2
∑

µ

φxφx+µ

]
+ (2D +m2)φ2

x + λφ4
x, (138)

which we are to use in simulation.

4.7.1 FREE THEORY λ = 0

Turning off the interaction makes it possible to analytically solve the theory. To do this, introduce the
discrete Fourier transform relations

φk =
1√
LD

∑

x

φxe
−ik·x (139)

φx =
1√
LD

∑

k

φke
ik·x (140)

for discrete wavenumbers k = 2lπ
L with l = 0, · · · , L − 1. Plugging in (140) into the first part of

(136), we get the expanded sum

∑

x

[
−2
∑

µ

φ̂xφ̂x+µ

]
→ − 2

Ld

∑

x

∑

µ

∑

k

∑

k′

φkφk′ei(k+k′)·xeik
′·µ (141)

= −2
∑

µ

∑

k

∑

k′

δk,−k′φkφk′eik
′·µ (142)

= −2
∑

µ

∑

k

φkφ−ke
−ikµ (143)

= −2
∑

µ

∑

k

φkφk∗e−ikµ (144)

= −2
∑

µ

∑

k

|φk|2[cos kµ +����i sin kµ] = −
∑

µ

∑

k

|φk|2 cos kµ (145)

where ϕ∗ indicates conjugation, and we got the first equality by the orthogonality of the Fourier
modes, the second by the Kronecker delta, and the third by the reality of the scalar field. Proceeding
similarly for the terms proportional to φ2 gives us the expression

Sk =
∑

k

[
m2 + 2D − 2

∑

µ

cos kµ

]
|φ|2 (146)

The above equation can be written in quadratic form to highlight that the field may be sampled
analytically

Sk =
1

Ld

∑

k

φkMk,−kφ−k (147)

where Mk,−k =

[
m2 + 2D − 2

∑

µ

cos kµ

]
δk,−k (148)

Note that this free theory can be sampled for any m2 > 0.

4.7.2 φ4 NUMERICAL DETAILS

We numerically realize the above lattice theory in D=2 spacetime dimensions. We use an interpolating
potential with time dependent m2

t = (1− t)m2
0 + tm2

1, λt = (1− t)λ0 + tλ1 where λ0 is always
chosen to be 0 (though we note that you could run this sampler for any U0 that you could sample
from easily, not just analytically but also with existing MCMC methods). For the L = 20 (d =
L×L = 400 dimensional) experiments, we identify the critical point of the theory (where the lattices
go from ordered to disordered) using HMC by studying the distribution of the magnetization of the
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field configurations as M [φi(x)] =
∑

x φ
i(x), where summation is taken over all lattice sites on

the ith lattice configuration. We identify this at m2
1 = −1.0, λ1 = 0.9 and use these as the target

theory parameters on which to perform the sampling. For the L = 16 test (d = 256), we go past
this phase transition into the ordered phase of the theory, which we identify via HMC simulations at
m2

1 = −1.0, λ1 = 0.8.

4.8 LINK WITH VARGAS ET AL. (2024)

Consider the process Y b̂
t solution to the SDE

dY b̂
t = εt∇Ut(Y

b̂
t )dt+ 2εt∇ log ρb̂t(Y

b̂
t )dt+ b̂t(Y

b̂
t )dt+

√
2εtdWt, Y b̂

0 ∼ ρ0. (149)

where ρb̂t denotes the PDF of the process X b̂
t defined by the SDE (20), i.e. the solution to the FPE

∂tρ
b̂
t = εt∇ · (∇Utρ

b̂
t +∇ρb̂t)−∇ · (b̂tρb̂t), ρb̂0 = ρ0 (150)

The process Y b̂
t has a simple interpretation: it is the time-reversed of the process run using the

time-reversed potential U1−t and −b̂1−t: that is, if the additional drift b̂t was the perfect one solution
to (24), the law of X b̂ = (X b̂

t )t∈[0,1] and Y b = (Y b̂
t )t∈[0,1] should coincide. This suggests to learn b

using as objective a divergence of the path measure of X b̂ from that of Y b̂. This is essentially what is
suggested in Vargas et al. (2024), and for the reader convenience let us re-derive some of their results
in our notations.

The Kullback-Leibler divergence (or relative entropy) of the path measure of X b̂ from that of Y b̂

reads

KL(X b̂∥Y b̂) =
1

4
εt

∫ 1

0

E
[
|∇Ut(X

b̂
t ) +∇ log ρb̂t(X

b̂
t )|2

]
dt (151)

This objective is akin to the one used in score-based diffusion modeling (SBDM) and simply says
that one way to adjust b̂ is by matching the score of ρb̂t to that of ρt. As written (151) is not explicit
since we do not know∇ log ρb̂t . We can however make it explicit after a few manipulations similar to
those used in SBDM. To this end, notice first that, by Ito formula, we have

d log ρb̂t(X
b̂
t ) = ∇ log ρb̂t(X

b̂
t ) · (−εt∇Ut(X

b̂
t ) + b̂t(X

b̂
t ))dt+ εt∆ log ρb̂t(X

b̂
t )dt

+
√
2εt∇ log ρb̂t(X

b̂
t ) · dWt

(152)

which implies that

εt∇ log ρb̂t(X
b̂
t ) · ∇Ut((X

b̂
t )dt = −d log ρb̂t(X b̂

t ) +∇ log ρb̂t(X
b̂
t ) · b̂t(X b̂

t )dt

+ εt∆ log ρb̂t(X
b̂
t )dt+

√
2εt∇ log ρb̂t(X

b̂
t ) · dWt

(153)

Inserting this expression in (151) after expanding the square, and noticing that the martingale term
involving dWt disappears by Ito isometry and that the term d log ρb̂t(X

b̂
t ) can be integrated in time

we arrive at

KL(X b̂∥Y b̂) =
1

4
εt

∫ 1

0

E
[
|∇Ut(X

b̂
t )|2 + |∇ log ρb̂t(X

b̂
t )|2 + 2∇Ut(X

b̂
t ) · ∇ log ρb̂t(X

b̂
t )
]
dt

=
1

4

∫ 1

0

E
[
εt|∇Ut(X

b̂
t )|2 + εt|∇ log ρb̂t(X

b̂
t )|2 + εt∇Ut(X

b̂
t ) · ∇ log ρb̂t(X

b̂
t )
]
dt

+
1

4

∫ 1

0

E
[
∇ log ρb̂t(X

b̂
t ) · b̂t(X b̂

t ) + εt∆ log ρb̂t(X
b̂
t )
]
dt

+
1

4
E[log ρ0(X0)]−

1

4
E[log ρb̂1(X1)]

(154)
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where we used ρb̂0 = ρ0. We can now use the following identities, each obtained using ρb̂t∇ log ρb̂t =

∇ρb̂t and one integration by parts:

E
[
|∇ log ρb̂t(X

b̂
t )|2

]
=

∫

Rd

|∇ log ρb̂t(x)|2ρb̂t(x)dx

=

∫

Rd

∇ log ρb̂t(x) · ∇ρb̂t(x)dx

= −
∫

Rd

∆ log ρb̂t(x)ρ
b̂
t(x)dx

= −E
[
∆ log ρb̂t(X

b̂
t )
]
,

(155)

E
[
∇Ut(X

b̂
t ) · ∇ log ρb̂t(X

b̂
t )
]
=

∫

Rd

∇Ut(x) · ∇ log ρb̂t(x)ρ
b̂
t(x)dx

=

∫

Rd

∇Ut(x) · ∇ρb̂t(x)dx

= −
∫

Rd

∆Ut(x)ρ
b̂
t(x)dx

= −E
[
∆Ut(X

b̂
t )
]

(156)

and
E
[
∇ log ρb̂t(X

b̂
t ) · b̂t(X b̂

t )
]
=

∫

Rd

∇ log ρb̂t(x) · b̂t(x)ρb̂t(x)dx

= −
∫

Rd

∇ · b̂t(x)ρb̂t(x)dx

= −E
[
∇ · b̂t(X b̂

t )
]

(157)

Inserting these expressions in (154), it reduces to

KL(X b̂∥Y b̂) =
1

4

∫ 1

0

E
[
εt|∇Ut(X

b̂
t )|2 − εt∆Ut(X

b̂
t )−∇ · bt(X b̂

t )
]
dt

+
1

4
E[log ρ0(X0)]−

1

4
E[log ρb̂1(X1)]

(158)

This objective is still not practical because it involves log ρb̂1, which is unknown. There is however a
simple way to fix this, by adding a term in the Kullback-Leibler divergence (151)

KL′(X b̂∥Y b̂) = KL(X b̂∥Y b̂) +
1

4
E[log(ρb̂1(X b̂

1)/ρ1(X
b̂
1)]) (159)

This additional term is proportional to the Kullback-Leibler divergence of ρb̂1 from the target PDF ρ1.
Using (158) as well as ρ1(x) = e−U1(x)+F1 , we can now express (159) as

KL′(X b̂∥Y b̂) =
1

4

∫ 1

0

E
[
εt|∇Ut(X

b̂
t )|2 − εt∆Ut(X

b̂
t )−∇ · bt(X b̂

t )
]
dt

+
1

4
E[log ρ0(X0)] +

1

4
E[U1(X1)]−

1

4
F1.

(160)

This is Equation (24) in Vargas et al. (2024) in which we set ∇ϕ̂t(x) = b̂t(x) and we used that, for
any ct : Rd → Rd, we have

E
∫ 1

0

ct(X
b̂
t ) ·
←−
d Wt =

√
2εt

∫ 1

0

E
[
∇ · ct(X b̂

t )
]
dt. (161)

Note that we can neglect the term 1
4E[log ρ0(X0)] in (158) since it does not depend on b̂, so that the

minimization of (158) can be cast into the minimization of (after multiplication by 4)
∫ 1

0

E
[
εt|∇Ut(X

b̂
t )|2 − εt∆Ut(X

b̂
t )−∇ · bt(X b̂

t )
]
+ E[U1(X1)− F1]

=

∫ 1

0

∫

Rd

[
εt|∇Ut(x)|2 − εt∆Ut(x)−∇ · bt(x))

]
ρb̂t(x)dx+

∫

Rd

(U1(x)− F1)ρ
b̂
1(x)dx

(162)
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where ρb̂t solves (150).

Let us check that the minimizer of (162) is b̂t = bt, the solution to (24), so that we also have
ρb̂t = ρbt = ρt. To this end, notice that the minimization of (162) can be performed with the method
Lagrange multiplier, using the extended objective
∫ 1

0

∫

Rd

[
εt|∇Ut(x)|2 − εt∆Ut(x)−∇ · b̂t(x)

]
ρb̂t(x)dxdt+

∫

Rd

(U1(x)− F1)ρ
b̂
1(x)dx

+

∫ 1

0

∫

Rd

λt(x)
(
∂tρ

b̂
t − εt∇ · (∇Utρ

b̂
t +∇ρb̂t) +∇ · (b̂tρb̂t)

)
dxdt

(163)

where λt(x) is the Lagrange multiplier to be determined. Taking the first variation of this objective
over λ, ρb̂, and b̂, we arrive at the Euler-Lagrange equations

0 = ∂tρ
b̂
t − εt∇ · (∇Utρ

b̂
t +∇ρb̂t) +∇ · (b̂tρb̂t), ρb̂0 = ρ0,

0 = εt|∇Ut|2 − εt∆Ut −∇ · b̂t
− ∂tλt + εt∇Ut · ∇λt − εt∆λt − b̂t · ∇λt λ1 = −U1 + F1

0 = ∇ρb̂t − ρb̂t∇λt

(164)

We can check that b̂t(x) = bt(x), ρb̂t(x) = ρt(x) = e−Ut(x)+Ft , and λt(x) = −Ut(x) + Ft is a
solution: indeed this solves the first and the last equations in (164) and reduces the second to

0 =
[
εt|∇Ut|2 − εt∆Ut −∇ · bt

]

+ ∂tUt − ∂tFt − εt|∇Ut|2 +∆Ut +∇bt · ∇Ut

= −∇ · bt + ∂tUt − ∂tFt +∇bt · ∇Ut

(165)

which is satisfied since bt solves (24).
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