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ABSTRACT

Probing large language models (LLMs) has yielded valuable insights into their
internal mechanisms by linking neural activations to interpretable semantics. How-
ever, the complex mechanisms that link neuron’s functional co-activation with the
emergent model capabilities remains largely unknown, hindering a deeper under-
standing and safer development of LLMs. In this work, we introduce graph probing,
a method for uncovering the functional connectivity of LLM neurons and relating
it to language generation performance. By probing models across diverse LLM
families and scales, we discover a universal predictability of next-token prediction
performance using only neural topology, which persists even when retaining just
1% of neuron connections. Strikingly, probing on topology outperforms probing
on activation by up to 130.4%, suggesting that neural topology contains orders
of richer information of LLM performance than neural activation, which can be
easily extracted with simple linear or MLP probes. To explain the dependence be-
tween neural topology and language performance, we identify default networks and
hub neurons in LLMs and provide causal evidence by interventional experiments
on multiple benchmarks, showing that LLMs actually exploit these topological
information. Further analyses suggest that neural topology can be effectively
leveraged to improve the efficiency, reliability, and safety of LLMs through proof-
of-concept applications in model pruning, hallucination detection, and LLM finger-
printing. Codes and data for the graph probing toolbox are available at https:
//anonymous.4open.science/r/llm-graph-probing-71BD/.

1 INTRODUCTION

Large language models (LLMs) exhibit remarkable generative capabilities (Wei et al., 2022; Touvron
et al., 2023; GLM et al., 2024; Team et al., 2024; Guo et al., 2025), yet our understanding of how
they succeed and what they have learned remains limited (Sharkey et al., 2025). Probing, which
extract interpretable features from neural activations (Alain & Bengio, 2017), has emerged as a
powerful approach for reverse-engineering LLMs (Belinkov, 2022; Gurnee & Tegmark, 2024). For
instance, Gurnee et al.(Gurnee & Tegmark, 2024) showed that LLMs encode a compact world
model of space and time using linear regression probes. Unsupervised probing, such as sparse
auto-encoders (Engels et al., 2025; Gao et al., 2025; Rajamanoharan et al., 2024; Lieberum et al.,
2024; Mudide et al., 2025) and cross-layer transcoders (Dunefsky et al., 2024; Lindsey et al., 2025),
have further revealed dictionaries of interpretable, mono-semantic concepts (Huben et al., 2024) and
even causal circuits (Marks et al., 2025), corresponding to directions in neural latent space. While
these advances shed light on the semantics of neural activations (Sharkey et al., 2025), much less is
known about how neurons are functionally connected, i.e. the neural topology, which is believed to
play an essential role in the emergence of intelligence (Rathi et al., 2025; Bassett & Sporns, 2017).

Recent studies have drawn compelling parallels between neurons in LLMs and those in the human
brain (Toneva & Wehbe, 2019; Schrimpf et al., 2021; Caucheteux et al., 2023; Kumar et al., 2024;
Rathi et al., 2025; Mischler et al., 2024; Tuckute et al., 2024; Bonnasse-Gahot & Pallier, 2024;
Sun et al., 2024; Liu et al., 2025), revealing shared properties such as spatial-functional organi-
zation (Kumar et al., 2024; Rathi et al., 2025) and left lateralization (Bonnasse-Gahot & Pallier,
2024). Neural activations at internal layers of LLMs have also been shown to reliably predict human
brain responses given the same linguistic stimuli (Schrimpf et al., 2021; Tuckute et al., 2024; Luo
et al., 2022). However, these efforts primarily focus on static neural activations of LLMs, while
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overlooking the key aspect of temporal and functional neural topology that has been studied in
neuroscience for decades (Bassett & Bullmore, 2006; Bassett & Sporns, 2017; Fotiadis et al., 2024).
Moreover, although analogies between LLMs and human brains are insightful (Toneva & Wehbe,
2019; Goldstein et al., 2022), few works explicitly connect these findings to the language generation
performance, which is one of the primary indicators of an LLM’s intelligence.

In this work, we introduce graph probing, a novel approach for investigating the functional connec-
tivity of neurons in LLMs and its relationship to language generation performance. By analyzing
neural activity time series as LLMs process text token by token, we compute temporal and functional
correlations between neurons to construct dynamic neural graphs. Using this large-scale dataset
of text-induced neural topology, we train probes to predict LLMs’ accuracy in auto-regressively
generating the corresponding text. In essence, graph probing connects the micro-level topology of
how neurons are connected given a token sequence, to the macro-level performance of how well
LLMs predict these tokens, offering a new lens to study the emergent capabilities of LLMs. Our
method is summarized in Figure 1 and described in Section 2.

We then apply our graph probing framework to comprehensively analyze the neural topology of
LLMs through extensive experiments. First, we demonstrate that auto-regressive language generation
performance can be reliably predicted using only the neural connectivity graph. This predictability
holds universally across LLM families and scales, outperforming activation-based probing approaches
by up to 130.4% even when preserving only 1% of neuron connections, with empirical results spanning
GPT (Radford et al., 2019), Pythia (Biderman et al., 2023), and Qwen (Yang et al., 2024), ranging from
millions to billions of parameters (Section 3). Next, we show causal evidence through interventional
experiments and analysis on the MMLU (Hendrycks et al., 2021; Wang et al., 2024) benchmark,
discovering stable default neural topology and hub neurons in LLMs, and more importantly, validating
that LLMs actually utilize their internal topological information when generating text (Section 4).
Finally, we offer three proof-of-concept applications of neural topology, showcasing its potential
in model pruning, hallucination detection, and LLM fingerprinting (Section 5). While not without
limitations, we expect graph probing to provide valuable insights into the inner workings of LLMs
and to guide their future development in an interpretable and safe way.

2 GRAPH PROBING

Neural Topology. To construct neural graphs from LLMs, we draw inspiration from neuroscience
where functional brain networks are derived from temporal correlations in fMRI or EEG activation
signals (Bassett & Sporns, 2017; Vértes et al., 2012; Bullmore & Bassett, 2011), as shown in Figure 1.
Given an LLM composed of stacked attention layers, the neural topology is constructed as follows:

Neural Activity: H = HIDDEN_STATE(LLM(X)) = [h0,h1, . . . ,ht] ∈ Rn×t, (1)

Neural Topology: A =
(
aij

)
∈ Rn×n, (2)

aij = ρ(Hi,:,Hj,:) =

∑t
k=0 (Hi,k −Hi,:)(Hj,k −Hj,:)√∑t

k=0 (Hi,k −Hi,:)2
√∑t

k=0 (Hj,k −Hj,:)2
, (3)

where neurons at each layer produce a time series of hidden states H as the model processes a token
sequence X = [x0, x1, . . . , xt], and the temporal co-activation patterns among neurons define their
functional connectivity. We capture this through a complete n× n weighted connectivity matrix A,
where each node corresponds to a neuron and each edge weight aij represents the Pearson correlation
coefficient between the activation time series of a pair of neurons i and j (Bassett & Sporns, 2017;
Fotiadis et al., 2024).

Probing on Neural Topology. We propose graph probing to study the dependence between LLM
performance and neural topology. Specifically, we adopt simple linear or multi-layer perceptrons
(MLP) probes (Rumelhart et al., 1986) that take neural topology as input to predict its corresponding
language generation performance, as illustrated in Figure 1. Given a connectivity matrix A induced
by feeding a tokenized sequence X to an LLM, where each element aij denotes the functional
connectivity (Pearson correlation coefficient) between neurons i and j, our probe produces the graph

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

T

Ne
ur
on

s

Attention Layers

Attention Layers

𝑥! 𝑥" 𝑥# 𝑥$ 𝑥% 𝑥&

"𝑥" "𝑥# "𝑥$ "𝑥% "𝑥&

Language Model Graph Probing
Neuron Activity Time Series

Neural Topology

N
eu
ro
ns

Flattened Neural Topology

𝑋

T

N
e
u
r
o
n
s

T

N
e
u
r
o
n
s

𝐇! 𝐇"
𝑎!" = 𝜌 𝐇! , 𝐇"

=
cov(𝐇! , 𝐇")
𝜎𝐇!𝜎𝐇"

𝐀 ∈ ℝ'×'

Neural topology describes neurons’ functional connectivity.

topology describes neurons’ functional connectivity.

𝐇$

𝐇%

…

Functional Correlation

Linear / MLP
Language Performance

Activation

Linear / MLP
Language Performance

Activation Probing

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Predicted Perplexity

Tr
ue

 P
er

pl
ex

ity

𝑋"[𝑥!, … , 𝑥)]
…

Language Model Inference

…

…

Predicted Language Performance

Tr
ue

 L
an

gu
ag

e 
Pe

rfo
rm

an
ce

𝑋#[𝑥!, … , 𝑥)]
𝑋*[𝑥!, … , 𝑥)]

T

N
e
u
ro
n
s

𝐇$

𝐀$

T

N
e
u
ro
n
s

𝐇&
T

N
e
u
ro
n
s

𝐇'

𝐀& 𝐀'

Graph Probe

Graph Probing Evaluation

Figure 1: Overview of graph probing. We extract the neuron activity time series in an LLM as it
processes text token by token. We then compute temporal and functional correlations between neural
activations to obtain topological connectivity graphs of neurons. Unlike existing probing methods
that take neural activation as input, we train linear or MLP probes on flattened neural topology to
predict the language generation performance for the input token sequence.

representation z as follows:

Linear : p̂ =W1 · Flatten(A)T , (4)

MLP : p̂ =W3 · ReLU(W2 · Flatten(A)T ), (5)

where Flatten(A) ∈ R(n×n) is the flattened topology matrix, W1 ∈ R1×(n×n),W2 ∈
Rd×(n×n),W3 ∈ R1×d are weight matrices (d as a hyper-parameter), ŷ is the prediction of language
performance. In essence, the core and only difference of our method lies at the input, where we probe
on neural topology instead of neural activation by existing approaches (Belinkov, 2022; Gurnee et al.,
2023). We will later show that neural topology contains orders of richer information than neural
activation regarding LLMs’ intelligence.

Probing Target. By its definition, graph probing can be utilized to predict almost any fact of
interest, and in this work we test it on various performance-related metrics, including perplexity,
hallucination, and functional specialization. Here we introduce the case of perplexity as it is a
fundamental metric directly reflecting LLMs’ language generation performance, while details of other
cases are provided in later sections. Specifically, given a token sequence, the LLM’s auto-regressive
generation performance is commonly measured by perplexity (Bengio et al., 2003) which corresponds
to the exponentiated average negative log-likelihood over the token sequence:

Perplexity: PPL(X) = exp

{
−1

t

t∑
i=1

log pθ(xi | x<i)

}
. (6)

The neural topology is dynamically induced by the specific token sequence, and our goal is to
investigate whether the text-responsive neural topology is linked to how well the model predicts the
text. Towards this end, we train the graph probe to minimize the mean squared error (MSE) between
predicted and true perplexities over a dataset of tokenized sequences X = {X1, . . . , XN}:

L(X) =
1

N

N∑
i=1

(p̂i − PPL(Xi))
2
, (7)

where the prediction p̂i is calculated via the graph probe by Equation (4) or (5). Details of hyper-
parameters and computational configurations are provided in Appendix A.2.

3 RESULTS

LLMs. In our experiments, we train graph probes on neural topology derived from three families of
LLMs, each spanning across different sizes. Specifically, we evaluate GPT2 (Radford et al., 2019)
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Figure 2: Out-of-sample performance of linear and MLP probing on the test set for (a) GPT-2
(b) Pythia-160M (c) Qwen2.5-0.5B. We compare activation-based probing and our topology-based
probing. The correlation between the perplexity predicted by probing and the ground-truth perplexity
reflects how well LLM performance can be inferred from neural activation or topology.

Table 1: Performance of different probing methods (∗ indicates p-value < 0.05).
LLM Probe MSE ↓ MAE ↓ R2 ↑ ρp ↑ ρs ↑

GPT-2

Activation (Linear) 0.0199 0.1067 0.3987 0.6352 0.6497
Activation (MLP) 0.0201 0.1056 0.3930 0.6370 0.6426
Graph (Linear) 0.0049∗ 0.0526∗ 0.8517∗ 0.9229∗ 0.9320∗

Graph (MLP) 0.0031∗ 0.0399∗ 0.9057∗ 0.9534∗ 0.9577∗

Pythia-160M

Activation (Linear) 0.0199 0.1061 0.4151 0.6517 0.6504
Activation (MLP) 0.0194 0.1030 0.4304 0.6618 0.6519
Graph (Linear) 0.0047∗ 0.0518∗ 0.8607∗ 0.9278∗ 0.9364∗

Graph (MLP) 0.0036∗ 0.0432∗ 0.8930∗ 0.9458∗ 0.9499∗

Qwen2.5-0.5B
Activation (Linear) 0.0190 0.1028 0.4225 0.6536 0.6632
Activation (MLP) 0.0196 0.1045 0.4044 0.6496 0.6457
Graph (Linear) 0.0045∗ 0.0496∗ 0.8640∗ 0.9296∗ 0.9422∗

Graph (MLP) 0.0030∗ 0.0396∗ 0.9095∗ 0.9538∗ 0.9583∗

(GPT2, GPT2-large), Pythia (Biderman et al., 2023) (160M, 1.4B, 2.8B), and Qwen2.5 (Yang et al.,
2024) (0.5B, 3B, 7B, 14B). Details of the experimented LLMs are provided in Appendix A.3.

Datasets. To enable our study, we construct neural topology using the OpenWebText
dataset (Gokaslan et al., 2019). To ensure consistent temporal resolution, we control the length
of neural activity time series to fall between 256 and 1024 tokens by merging consecutive sentences
as needed. For each token sequence, we perform LLM inference to compute its perplexity and
simultaneously extract hidden state time series to generate the corresponding neural topology. For
each model, we construct a probing dataset comprising about 10,000 graph–perplexity pairs. Further
details on dataset construction are provided in Appendix A.4.

Evaluation. We split the dataset into training and test sets using an 8:2 ratio. Having learned graph
probes on the training set, we evaluate their out-of-sample prediction performance on the test set,
which reveals the extent to which micro-level neural topology is predictive of macro-level language
generation ability. To quantify the effectiveness of graph probing, we report standard regression
metrics on our test data, including mean squared error (MSE), mean absolute error (MAE), coefficient
of determination (R2), Pearson correlation (ρp), and Spearman rank correlation (ρs). We compare
with existing activation based baselines using both linear and MLP probes (Alain & Bengio, 2017;
Belinkov, 2022; Gurnee & Tegmark, 2024; Tuckute et al., 2024).

We visualize the predicted and groundtruth perplexity in Figure 2 and summarize the results in
Table 1, where graph probing consistently outperforms activation probing across all three LLM
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Figure 3: (a) Out-of-sample graph probing performance on neural topology of different sparsity levels.
(b) Out-of-sample probing performance on LLMs of different sizes. (c) Out-of-sample performance
of graph probing on different layers of LLMs.

families for both linear and MLP probes. The improvements are strikingly substantial, with the
maximum progress in R2 exceeding 130.4%. For example, perplexity is barely predictable from
neural activation, with R2 less than 0.45 for all models, while that of graph probing all close to
or even larger than 0.90. The enormous gain of graph probing validates the hypothesis that neural
topology contains much richer information of LLMs’ language generation performance than neural
activation, which can be easily extracted using simple linear or MLP probes.

Sparsity and scalability. Probing on complete graphs, i.e., dense n × n connectivity matrices
that capture pairwise functional correlations between all neurons, can become computationally
prohibitive as the LLM size increases, due to the quadratic number of edges that directly impacts
the computational cost in both time and memory. For instance, while complete graph probing
is feasible for Pythia-160M with 768 neurons and 0.6M edges per layer, the number of edges in
Qwen2.5-14B–comprising 5,120 neurons per layer–explodes to over 26M per graph. To address this,
on the one hand, we investigate whether perplexity can still be predicted from sparse graphs with
weakly correlated edges pruned out by thresholding, which is commonly employed in human brain
network construction (Bassett & Sporns, 2017); on the other hand, we develop graph neural network
probe (Kipf & Welling, 2017) that reduces the number of probe parameters from O(n2) to O(n · d)
by weight sharing (details in Appendix A.5). We train graph probes on neural topology with varying
levels of sparsification (Figure 3(a)). Surprisingly, the predictive performance remains remarkably
stable even after removing up to 90% of the edges, with minimal degradation. Notably, even under
extreme sparsity where only 1% of the original edges are retained, the neural topology still enables
effective prediction of perplexity, achieving above 0.6 R2 that is still higher than activation probing.

The above experiments suggest that most of the predictive signal resides in a small subset of strong
connections, making it possible to significantly reduce the number of edges while preserving nearly
all critical topological information. Leveraging this insight, we scale up graph probing to much
larger models by operating on sparsified neural topology. While our earlier results focused on models
with fewer than 0.5B parameters, we now train probes on sparse graphs derived from LLMs with up
to 14B parameters. As shown in Figure 3(b), graph probing continues to exhibit strong regression
performance across all six large models, achieving a maximum R2 of over 0.91, providing compelling
evidence that the relationship between neural topology and language modeling performance is
universal across model sizes. Particularly, the gap between baselines and graph probing remains as
substantial as 92.6%, confirming the informativeness of neural topology.

Probing different layers. We further train probes on neural topology derived from different layers of
GPT-2, Pythia-160M, and Qwen2.5-0.5B models. Figure 3(c) reveals that while topologies from all
layers are predictive of LLM performance, the middle layers are consistently the most informative
across all three models, with R2 values exceeding 0.8. This finding aligns with prior work identifying
the middle layers of LLMs as the hub of semantic processing, whereas the initial and final layers are
more specialized for {de, re}-tokenization (Gurnee & Tegmark, 2024; Tuckute et al., 2024).

4 TOPOLOGICAL ANALYSIS AND CAUSAL INTERVENTION

While our probing experiments discover the correlation between neural topology and language gener-
ation performance, the specific underlying topological structures remain unclear. In neuroscience,
human brains exhibit a stable intrinsic network–a core connectivity pattern that persists to great
extent across different tasks and stimuli (Fotiadis et al., 2024; Cole et al., 2014). Inspired by this,
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Figure 4: (a-b) Occurrence frequency of hub nodes in (a) Qwen2.5-0.5B and (b) Qwen2.5-1.5B on
MMLU benchmark. (c) Accuracy on MMLU benchmark of Qwen2.5-0.5B and Qwen2.5-1.5B under
different interventions of top 1% neurons.

we investigated whether a similar default network of highly connected neurons exists within LLMs.
To test this hypothesis, we first calculated an average neural topology for the Qwen2.5-0.5B and
Qwen2.5-1.5B models over the entire OpenWebText dataset. From this average, we identified the
top 50 “hub” neurons (those with the highest degree) and then measured their occurrence frequency,
i.e., how often these same neurons ranked as hubs in the topology of each individual data sample.
The results, shown in Figure 4(a-b), are striking. A core set of nearly 40 neurons remain hubs in
100% of the topologies across the entire dataset. This remarkable stability confirms the existence of
a default network in LLMs, where a fixed set of hub neurons play dominant roles regardless of the
input, suggesting a fundamental organizing principle of their internal structure.

To determine if LLMs rely on their neural topology, we conducted a series of interventional experi-
ments. We disabled a selected 1% of neurons in the middle layer of Qwen2.5-0.5B and Qwen2.5-1.5B
by pinning their activations to zero at all tokens and measured the impact on the MMLU bench-
mark (Hendrycks et al., 2021). We compared three distinct neuron selection strategies: random
selection, selecting neurons with the highest activation, and selecting neurons with the highest topo-
logical degree. As shown in the Figure 4(c), the results demonstrate a clear hierarchy of neuronal
importance. While disabling random neurons caused a negligible accuracy drop (<1.0%), targeting
neurons by either activation or topology incurred a substantial performance collapse of at least 20%.
Critically, the topology-based intervention was the most detrimental. Disabling the top 1% of hub
neurons resulted in a catastrophic accuracy drop of 45.4% and 57.5% for the two tested models,
which is over 20% worse than even the activation-based strategy. These experiments provide causal
evidence that LLMs actively utilize their underlying topological structure, particularly their hub
neurons, for computation.

Our analysis also revealed a notable phenomenon of functional specialization (Cole et al., 2014),
where neural topology displays distinct patterns for different subjects. We found a striking example
by identifying certain neuron that consistently specializes in STEM subjects, while remaining almost
entirely dormant when processing texts from the social science subjects. This suggests a subject-based
organization within LLMs, and the details are provided in Appendix A.6.

5 APPLICATIONS

In this section, we explore the practical implications of neural topology through three proof-of-
concept applications: model pruning for efficiency, hallucination detection for reliability, and model
fingerprinting for security. Though preliminary in their current forms, these case studies showcase the
versatile utility of neural topology and lay the groundwork for future work to translate these concepts
into robust, system-level solutions.

5.1 MODEL PRUNING

The finding that high-degree neurons are functionally dominant (Section 4) naturally suggests a
pruning strategy: disabling low-degree neurons to reduce computational cost. To test this, we
prune these neurons by zeroing out their activations during inference. We apply this technique to
a middle layer of Qwen2.5-0.5B and Qwen2.5-1.5B and evaluate the performance on the MMLU
benchmark (Hendrycks et al., 2021). The results, presented in Figure 5(a), confirm the models’
robustness. Performance degradation is minimal even with substantial pruning; for the 1.5B model,
accuracy drops by just 2.86% when 10% of neurons are pruned, and by 11.73% when 25% are
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Figure 5: (a) Accuracy on MMLU benchmark under different levels of model pruning. (b) Accuracy
of hallucination detection probed from neuron activation and topology on TruthfulQA dataset. (c)
Coupling index of neural topology for hallucination on TruthfulQA datset.

removed. Strikingly, the models maintain above-random-guess accuracy until half of the low-degree
neurons are pruned. These results highlight the potential for developing more sophisticated pruning
methods based on neural topology.

5.2 HALLUCINATION DETECTION

Building on our finding that subtle topological patterns in LLMs can predict text generation perfor-
mance, we now investigate if these patterns can also detect a critical failure mode: hallucination,
analogous to identifying deception from human brain signals. To create distinct genuine and halluci-
nating states, we construct inputs from the TruthfulQA dataset (Lin et al., 2022) by concatenating
each of its 817 question with its corresponding true and false answers, respectively, resulting in a
dataset of 5918 samples (true/false classification). We then extract the neural topology from the LLM
as it processes these inputs (Equations 1-3). For this task, we adapt probing from regression to binary
classification by modifying the linear/MLP probe layer to have two output channels (W1 ∈ R2×(n×n)

and W3 ∈ R2×d in Equations (4-5)) and replacing the MSE loss with a cross-entropy loss:

Loss : L(X) =
1

N

N∑
i=1

CROSS_ENTROPY(ŷi, yi), (8)

where ŷ and y are the prediction and ground-truth for hallucination (0/1). We compare against linear
and MLP probes trained on the neural activation at the last-token position.

We split the dataset into training and test sets using an 8:2 ratio to evaluate our hallucination detection
framework. As shown in Figure 5(b), probing neural topology substantially outperforms probing
neural activation for all three tested models (GPT-2, Pythia-160M, and Qwen2.5-0.5B), with accuracy
gains of up to 9.73%. This superior performance suggests that distinct topological patterns emerge
when an LLM is generating a factual response versus hallucinating. To validate this hypothesis
directly, we introduce a neural topology coupling index,

CTT = AVG({ρ(Ai, Aj)|Ai, Aj ∈ AT }), CHH = AVG({ρ(Ai, Aj)|Ai, Aj ∈ AH}), (9)
CTH = AVG({ρ(Ai, Aj)|Ai ∈ AT , Aj ∈ AH}), (10)
C = CTT + CHH − 2CTH , (11)

where the index C measures the difference between intra-group similarity (CTT , CHH ) and inter-
group similarity (CTH ). Here AT and AH represent the sets of neural topologies for truthful and
hallucinated responses, respectively, and similarity is measured by the Pearson correlation (ρ) between
each pair of the flattened adjacency matrices. We calculated this index for each question in the dataset,
and the distribution in Figure 5(c) shows that over 80% of samples have a positive coupling index.
This confirms that topologies are indeed more similar within the same state (truthful-to-truthful,
hallucinated-to-hallucinated) than across different states (truthful-to-hallucinated), implying that
neural topology serves as a promising and reliable signature for detecting LLM hallucinations and
paving the way for future work on improving model reliability.

5.3 MODEL MATCHING AND FINGERPRINTING

In this section, we further investigate potential topological similarity across different LLMs to answer
the following question: can we detect the genetic relationships of LLMs (e.g. same model family, or
finetuning) from their internal neural topology? To this end, we extend graph probing with contrastive
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Figure 6: An overview of graph matching. We learn representations of neural topologies derived
from two different LLMs processing the same text dataset. We then perform contrastive learning on
the graph representations such that matching pairs are more similar by inner product.

learning to perform graph matching, as illustrated in Figure 6. Specifically, suppose we feed a batch
of B token sequences into two LLMs, Ω and Γ. We compute the corresponding neural connectivity
graphs and use two GNN probes to encode them into representations ZΩ = [zΩ1 , . . . , z

Ω
B ] and

ZΓ = [zΓ1 , . . . , z
Γ
B ]. Matching is implemented using a contrastive cross-entropy loss that encourages

alignment between graph representations from the same input texts:

S = MAT_MUL(ZT
Ω,ZΓ), T = IDENTITY(B), (12)

L =

B∑
i=1

CROSS_ENTROPY(Si,:, Ti,:) +
B∑

j=1

CROSS_ENTROPY(S:,j , T:,j), (13)

where S is the similarity matrix by taking inner product of graph representations and IDENTITY
indicates identity matrix which is the target T for graph matching. After training the graph probes
contrastively on a shared set of training texts, the out-of-sample graph matching performance serves
as an indicator of neural topology similarity between two LLMs. To evaluate this, we adopt the
commonly used GAUC metric (Li et al., 2019) (see Appendix A.7 for details).

Table 2: Graph matching performance
(GAUC ×100) between different LLMs.

Matching LLM Ω LLM Γ GAUC

Self
GPT-2 GPT-2 98.64
Pythia Pythia 96.92
Qwen2.5 Qwen2.5 99.24

Generation
Qwen2.5 Qwen2 93.27
Qwen2.5 Qwen1.5 96.10
Qwen2 Qwen1.5 94.21

Family
GPT-2 Pythia 92.00
GPT-2 Qwen2.5 91.11
Pythia Qwen2.5 87.39

Table 2 presents the graph matching results. As a san-
ity check, we first perform self-matching using the
same LLM, and the results indeed show that GAUC is
close to 1.0, validating the rationality of our method-
ology. We then incorporate two configurations: (1)
LLMs within the same family but from different gen-
erations, (2) LLMs across different families. Given
the reduced architectural and training data differ-
ences within the same model family, cross-generation
LLMs are genetically closer than cross-family LLMs.
As expected, cross-generation matching significantly
outperforms cross-family matching with the average
and maximum GAUC gap up to 4.84% and 9.97%,
confirming the effectiveness of graph matching in
detecting genetic closeness of LLMs.
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Figure 7: Relative differences of parameters
(blue) and graph matching accuracy (orange)
of Pythia-160M model at different check-
points.

The graph matching extension enables a direct appli-
cation in LLM fingerprinting (Xu et al., 2024; Russi-
novich & Salem, 2024), which is crucial for protect-
ing intellectual property. To test this, we perform
graph matching on the Pythia-160M model, using
checkpoints at 1k, 2k, 4k, 8k, and 16k steps of contin-
ued training from a base checkpoint (127k). Figure 7
illustrates the graph matching accuracy measured by
GAUC, as well as the relative differences of weight
values. Despite significant parameter drift, where
the weight difference after 16k steps is 5.57 times
greater than after 1k steps, the topological signature
remains nearly unchanged, with our method achiev-
ing a graph matching GAUC above 0.96 in all cases.
This suggests that neural topology can serve as a ro-
bust fingerprint, resilient to weight modifications from finetuning, which we propose as a significant
avenue for future work.
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6 RELATED WORK

Probing LLMs. Growing concerns over the transparency and steerability of LLMs have driven recent
advances in reverse-engineering LLMs by extracting interpretable features from their neural activa-
tions through probes (Sharkey et al., 2025). Supervised probing typically maps neuron activations to
interpretable semantics through regression or classification (Gurnee et al., 2023; Gurnee & Tegmark,
2024; Jin & Rinard, 2024; Ju et al., 2024; Dong et al., 2023; Kissane et al., 2024; Templeton et al.,
2024; Belinkov, 2022). For example, Gurnee et al. (Gurnee & Tegmark, 2024) predicted the time
and location of input entities from LLM activations. Unsupervised probing, by contrast, aims to
learn a dictionary of disentangled features related to more abstract concepts (Engels et al., 2025;
Gao et al., 2025; Rajamanoharan et al., 2024; Lieberum et al., 2024; Mudide et al., 2025; Engels
et al., 2025). A famous example is the Golden Gate Bridge feature identified in the Claude 3 Sonnet
model (Templeton et al., 2024). While prior work focused on connecting LLM activations to external
semantics, our work studies the functional topology of neurons in LLMs, and relates this internal
structure directly to language generation performance via graph probing.

Network Neuroscience. The study of functional networks in the human brain has been a central
topic in neuroscience for decades (Bassett & Bullmore, 2006; Bassett & Sporns, 2017; Fotiadis et al.,
2024; Medaglia et al., 2015) which motivates this research. Brain networks are typically constructed
by correlating fMRI or EEG signals across different neural regions, and then analyzed using tools
from network science (Barabási, 2013), which has revealed a range of structural and functional
properties, such as small-worldness (Bassett & Bullmore, 2006), economical wiring (Bullmore &
Sporns, 2012), and functional specialization (Fotiadis et al., 2024). More recently, several studies
have drawn parallels between LLM activations and human brain activity (Toneva & Wehbe, 2019;
Caucheteux et al., 2023; Kumar et al., 2024; Rathi et al., 2025; Mischler et al., 2024; Tuckute et al.,
2024; Bonnasse-Gahot & Pallier, 2024; Sun et al., 2024; Liu et al., 2025). For instance, Tuckute et
al. (Tuckute et al., 2024) used GPT-2 activations to identify sentence stimuli that drive or suppress
human brain responses. However, while these efforts focus on representational similarities, the
functional topology of neurons within LLMs and its relationship to the model’s language generation
capabilities remain largely unexplored.

7 DISCUSSION

Neurons in LLMs are connected both structurally through the model’s architecture and functionally
through their dynamic responses to input linguistic stimuli. In this work, we focus on the latter
and demonstrate that the language generation performance of LLMs can be reliably predicted from
their functional neural topologies using our proposed graph probing approach, implying that LLMs
develop intricate and consistent topological structures among their neurons that are fundamental to
their emergent ability to generate coherent language. Besides causal intervention on benchmarks
validating LLMs actually leverage their internal neural topology, we also offer practical applications
of neural topology in model pruning, hallucination detection, and LLM fingerprinting. While we have
empirically shown a stable default neural topology and hub neurons in LLMs regardless of input,
we have not yet identified more nuanced structures such as motifs, or physical metrics like small-
worldness and modularity within these graphs. It remains an open question whether such properties
exist in LLMs’ neural topology and play a causal role in shaping their intelligence. Additionally, this
paper evaluates LLMs with up to 14B parameters, while leaving graph probing on even larger models
for future work.

Our graph probing results raise many interesting directions for future research. While we have linked
neural topology to general next-token prediction ability, and discovered functional specialization
and subject-specific neurons (Appendix A.6), it remains unclear how these specialized structures
emerge during LLMs’ learning process. Additionally, recent advances in enhancing LLMs’ reasoning
abilities (Guo et al., 2025) raise a natural question: does reasoning alter, or is it constrained by, neural
topology? Finally, graph probing is model-agnostic and can be extended to models other than LLMs,
for example to vision-language models (VLMs). We provide preliminary results probing neural
topology of VLMs in Appendix A.8-A.9 with causal intervention as well, while further efforts are
required to achieve deeper insights into their multi-modal understanding and generation capabilities.
In all, we believe graph probing offers a promising lens for understanding AI models and ultimately
guiding their improvement in an reliable and safe way.
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ETHICS STATEMENT

The research presented in this paper aims to advance the scientific understanding and interpretability
of large language models. Our work relies exclusively on publicly available, pre-trained models
(e.g., GPT-2, Pythia, Qwen2.5) and standard academic benchmarks (e.g., MMLU, TruthfulQA,
OpenWebText) to ensure reproducibility and avoid the use of sensitive or private data.

We believe our findings have several positive societal implications. The methods for hallucination
detection directly contribute to the development of more reliable, truthful, and safe AI systems.
Similarly, our work on model pruning promotes computational efficiency, which can reduce the
environmental impact of AI and make powerful models more accessible.

REPRODUCIBILITY STATEMENT

To ensure full reproducibility of our findings, we commit to making our research process
transparent and accessible. The complete source code, written in Python using the PyTorch
and Hugging Face libraries, are released at https://anonymous.4open.science/r/
llm-graph-probing-71BD/. Our study is built exclusively on publicly available models
(GPT-2, Pythia, Qwen2.5) and standard academic benchmarks (MMLU, TruthfulQA, OpenWebText),
all of which are accessible through the Hugging Face Hub. All hyper-parameters and experimental
settings are detailed in the Appendix.
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A APPENDIX

A.1 USE OF LLMS

LLMs are used for polishing and proofreading the text. All core ideas were independently conceived
by the authors.

A.2 GRAPH PROBING CONFIGURATION

Hyperparameters. We train graph probes using the Adam optimizer (Kingma & Ba, 2015) with
mean squared error (MSE) loss, as defined in Equation (7). The initial learning rate is set to 0.00001,
with a batch size of 16. We set the hidden dimension for MLP probes d as 32. We apply a learning
rate decay strategy, reducing the rate by a factor of 0.1 if the loss does not improve for 5 consecutive
epochs. Each model is trained for up to 100 epochs, with early stopping triggered if no improvement
is observed for 20 epochs. Dropout is not used, as preliminary experiments showed no significant
impact on regression performance.

Computational Resources. LLM inference for computing neural topologies and perplexity scores
requires GPUs with large memory. All experiments were conducted on a Linux server equipped
with 8 NVIDIA A100 GPUs (80GB memory each). In contrast, training graph probes is relatively
lightweight and can be performed on a single GPU with 16GB memory in less than 1 hour.

A.3 EXPERIMENTED LLMS

We run graph probing experiments on a diverse range of LLMs across three different families, with
the numper of parameters ranging from 124M to 14B. Basic information of these experimented LLMs
is summarized in Table 3.

Table 3: Basic information of the experimented LLMs.
LLM family #params #layers #neurons per layer experimented layer id

GPT-2 124M 12 768 1-12
774M 36 1280 18

Pythia
160M 12 768 1-12
1.4B 24 2048 12
2.8B 32 2560 16

Qwen2.5

0.5B 24 896 1-12
3B 36 2048 18
7B 28 3584 14

14B 48 5120 24

A.4 DATASETS

We conduct graph probing experiments using the OpenWebText dataset (Gokaslan et al., 2019). For
each dataset, we randomly sample 10,000 text sequences to construct neural connectivity graphs.
Each sample is generated by merging and tokenizing raw text until it reaches a length between 256
and 1024 tokens, which defines the length of the corresponding neural activity time series used
for computing pairwise correlations. We then construct a text-responsive neural connectivity graph
for each sample and compute its associated perplexity score. To remove outliers that distort the
distribution, we filter out the top 1% and bottom 1% of samples based on perplexity. Finally, we
normalize all perplexity values to the range [0, 1] by subtracting the minimum perplexity and dividing
by the observed range. Summary statistics for the constructed datasets are provided in Table 4.

A.5 GRAPH NEURAL NETWORK PROBE

To reduce the number of probe parameters, we adopt a graph neural network (GNN)-based probe
that encodes each node by aggregating neighborhood information through convolutional message
passing on the graph (Kipf & Welling, 2017; Fey & Lenssen, 2019). We employ the ReLU activation
function (Fukushima, 1975) between graph convolution layers and use average and maximum pooling
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Table 4: Basic information of constructed graph probing datasets.

LLM family #tokens #graphs #training graphs #test graphs
GPT-2 7,020,215 10,384 8,308 2,076
Pythia 6,798,668 10,441 8,353 2,088
Qwen2.5 7,935,555 11,452 9,162 2,290

to summarize node-level embeddings into a graph-level representation. Given a connectivity matrix
A induced by feeding a tokenized sequence X to an LLM, where each element aij denotes the
functional connectivity (Pearson correlation coefficient) between neurons i and j, our probe produces
the graph representation z as follows:

Φ0 ∈ Rn×d, (14)

Φl = ReLU(AΦl−1Θl), l = 1, . . . , L, (15)

z = AVG_POOLING{ΦL
1,:, . . . ,Φ

L
n,:} ∥ MAX_POOLING{ΦL

1,:, . . . ,Φ
L
n,:}, (16)

where Φ0 ∈ Rn×d denotes the initial learnable node embeddings, Θl ∈ Rd×d is the weight matrix
of the l-th layer in the GNN with L total layers, and d is a hidden dimensionality hyperparameter. We
then feed the graph representation z ∈ R2d into a multi-layer perceptron (MLP) (Rumelhart et al.,
1986) to predict the perplexity associated with the input tokenized sequence X:

p̂ = W2 · ReLU(W1 · zT ), (17)

where p̂ is the predicted perplexity, and W1 ∈ Rd×2d,W2 ∈ R1×d are learnable weights of the
MLP.

A.6 NEURAL TOPOLOGY ON TEXTS OF DIFFERENT SUBJECTS.

0.885

0.864

0.957

0.790

0.979

0.878

0.853

0.910

0.793

0.938

0.885

0.791

0.774

0.788

0.713

0.954

0.814

0.816

0.710

0.785

0.945

0.809

0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
Psychology

Health
Economics

Other
Law

Business
Engineering
Chemistry
Physics

Math
Average

Topology Activation

Accuracy

62.8%
65.8%

74.5%
80.7%

63.5%

19.8% 20.3%
24.9%

18.2%
13.9%

Math Phys Chem Eng Bus Law Other Econ Health Psych
0

20

40

60

80

STEM & Business Law & Social Sciences

Subject

P
er

ce
nt

ag
e 

C
ha

ng
ed

 (%
)

(a) (b) (c)

Figure 8: (a) Subject classification accuracy probed from neural topology and activation of Qwen2.5-
0.5B model on MMLU benchmark. (b) Correlation of neural topology of Qwen2.5-0.5B on different
subjects. (c) Percentage of changed questions in each subject by intervening neuron #894 in layer 12
of Qwen2.5-0.5B.

Beyond the intrinsic default network, we investigated whether LLMs form specialized networks
for different knowledge domains, a plausible consequence of their multi-disciplinary pretraining.
Such task-invoked networks have been observed in human brains (Cole et al., 2014). To test this, we
leveraged the MMLU-Pro benchmark (Wang et al., 2024) to see if a query’s subject can be predicted
from its corresponding neural topology. We framed this as a 10-way classification problem using the
10 subjects with the most samples. For computational efficiency, we applied a simple linear probe to
the flattened adjacency matrix, optimized with a cross-entropy loss, similar to Section 5.2. The results
of Qwen2.5-0.5B model, shown in Figure 8(a), reveal that neural topology is highly indicative of the
subject matter. The topology-based linear probe outperformed a baseline probe on neural activations
by 9.39% on average. This advantage held true for nearly every individual subject, with the maximum
performance gap exceeding 28.16%. These findings strongly suggest that LLMs develop distinct and
linearly separable topological patterns for different knowledge domains, allowing for easy extraction
of the context or subject being processed.

To provide intuitive evidence for subject-invoked topologies, we calculated the average neural
topology for each of the 10 subjects and visualized their pairwise correlations in Figure 8(b). The
results are striking: the correlation matrix largely mirrors the conceptual similarities between these
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academic fields. While all pairwise correlations exceed 0.9 (reaffirming the existence of a strong
default network), the variations reveal an intriguing structure. For example, the topologies for Math,
Physics, and Engineering are highly inter-correlated (>0.98), and all share a much lower correlation
(<0.95) with Law. More broadly, we observe a clear clustering that separates STEM and social science
subjects, consistent with commonsense knowledge. To seek causal evidence for this phenomenon,
we performed a sweeping intervention on individual neurons. We systematically pinned a neuron’s
activation to a fixed value in {-2, -1, 0, 1, 2} and measured the resulting change in the model’s
output on queries from different subjects. This allowed us to identify neuron #894 in the 12th
layer of Qwen2.5-0.5B, a "STEM neuron" whose activation state has a disproportionate impact on
STEM-related subjects. As illustrated in Figure A.6(c), intervening on this single neuron induced
3.57 times more change in model outputs for STEM queries than for social science queries. While
preliminary, these correlational and causal findings strongly suggest that functional specialization
is an emergent property of LLMs, hinting at shared organizational principles between artificial and
biological intelligence.

A.7 GRAPH MATCHING METRICS

Given the predicted similarity matrix S ∈ RN×N and the target similarity matrix T = IDENTITY(N),
we calculate the following metrics for graph matching (Li et al., 2019):

GAUC =
1

2N

N∑
i=1

(AREA_UNDER_ROC(Si,:, Ti,:) + AREA_UNDER_ROC(S:,i, T:,i)). (18)

A.8 GRAPH PROBING ON VISION LANGUAGE MODELS

Unlike LLMs, which contain only textual hidden states, Vision-Language Models (VLMs) jointly
encode image and text features within a shared transformer backbone, producing multimodal hidden
states that remain underexplored. To study their internal topology, we extract the hidden representa-
tions at each layer and compute correlations as in Equations (1-3), yielding a connectivity matrix
whose co-activation time series span both modalities.

We evaluated neural topology in VLMs by probing different sizes of LLaVA-v1.5 (Liu et al., 2024).
For this setup, we adapted the CLEVR dataset (Johnson et al., 2016) into an object-counting clas-
sification task of 10,000 randomly sampled images with labels corresponding to the number of
objects (integers 3-10). GNN-based probes (Equations (14-16)) were trained with cross-entropy loss
on neural topology graphs constructed at a fixed density of 0.01. As shown in Figure 9(a), graph
probing consistently outperformed linear activation probing across both the 7B and 13B models,
validating that neural topology is more informative than neural activation in VLMs regarding visual
understanding capabilities.

To further evaluate the role of neural topology, we conducted intervention experiments on VLMs on
the same dataset. Instead of restricting the probe to classification, we asked the model to generate
numeric outputs and then ablated the top 1% of nodes, selected by degree, activation, or at random,
by setting their values to zero. Figure 9(b) demonstrates that ablating top nodes by either activation
or topology reduced accuracy far below random ablation and the original baseline, with topology
producing the largest drop.

A.9 GRAPH MATCHING ON VISION LANGUAGE MODELS

We employ graph matching on VLMs to evaluate topological similarity across modalities and to
test whether multimodal training reorganizes neural topology relative to unimodal language models.
We use the MS-COCO dataset (Lin et al., 2014), where paired images and captions describe the
same content, providing a natural basis for structural alignment. Text graphs are constructed by
masking visual tokens, and image graphs by isolating patch embeddings, and multimodal graphs
by combining both. We fix graph density at 0.01 and use the same contrastive loss as in the LLM
matching experiments.

Table 5 reports graph matching scores. As a baseline, multimodal LLaVA graphs compared against
themselves yield near-perfect alignment (95.98). Matching LLaVA text-only against image-only
produces a notable drop (81.88), suggesting that while text and image graphs share broad structural
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Figure 9: (a) Out-of-sample probing performance on LLaVA-v1.5 of different sizes. (b) Accuracy on
CLEVR benchmark of LLaVA-v1.5-7b under different interventions of top 1% neurons.

Table 5: Graph matching performance (GAUC ×100) for different VLMs

VLM Ω Modality VLM Γ Modality GAUC
LLaVA Image+Text LLaVA Image+Text 95.98
LLaVA Text LLaVA Image 81.88
LLaMA LLaVA Text 68.03

similarities, each retains specialized organization patterns that multimodal training does not fully
unify. In contrast, matching LLaMA text against LLaVA text yields a lower score (68.03), indicating
that multimodal training reshapes internal topology beyond unimodal pretraining.
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