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ABSTRACT

While achieving exceptional generative quality, modern diffusion, flow, and other
matching models suffer from slow inference, as they require many steps of iterative
generation. Recent distillation methods address this by training efficient one-
step generators under the guidance of a pre-trained teacher model. However, these
methods are often constrained to only one specific framework, e.g., only to diffusion
or only to flow models. Furthermore, these methods are naturally data-free, and
to benefit from the usage of real data, it is required to use an additional complex
adversarial training with an extra discriminator model. In this paper, we present
RealUID, a unified distillation framework for all matching models that seamlessly
incorporates real data into the distillation procedure without GANs. Our RealUID
approach offers a simple theoretical foundation that covers previous distillation
methods for Flow Matching and Diffusion models, and is also extended to their
modifications, such as Bridge Matching and Stochastic Interpolants.

1 INTRODUCTION

In generative modeling, the goal is to learn to sample from complex data distributions (e.g., images),
and two powerful paradigms for it are the Diffusion Models (DM) and the Flow Matching (FM)
models. While they share common principles and are even equivalent under certain conditions
(Holderrieth et al., 2024; Gao et al., 2025), they are typically studied separately. Diffusion models
(Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2021) transform data into noise through
a forward process and then learn a reverse-time stochastic differential equation (SDE) to recover
the data distribution. Training minimizes score-matching objectives, yielding unbiased estimates of
intermediate scores. Sampling requires simulating the reverse dynamics, which is computationally
heavy but delivers high-quality and diverse results. Flow Matching (Lipman et al., 2023; Liu, 2022)
instead interpolates between source and target distributions by learning the vector field of an ordinary
differential equation (ODE). The field is estimated through unbiased conditional objectives, but the
resulting ODE often has curved trajectories, making sampling costly due to expensive integration.
Beyond these, Bridge Matching (Peluchetti, 2023; Liu et al., 2022b) and Stochastic Interpolants
(Albergo et al., 2023) generalize the framework and naturally support data couplings, which are
crucial for data-to-data translation. Since all of the above optimize conditional matching objectives
to recover an ODE/SDE for generation, we refer to them collectively as matching models.

Despite their success, matching models share a major drawback: sampling is slow, as generation
requires integrating many steps of an SDE or ODE. To address this, a range of distillation techniques
have been proposed to compress multi-step dynamics into efficient one-step or few-step generators.
Although matching models follow a similar mathematical framework, many distillation works
consider only one particular framework, e.g., only Diffusion Models (Zhou et al., 2024a;b), Flow
Matching (Huang et al., 2024), or Bridge Matching (Gushchin et al., 2025). Furthermore, these
distillation methods are data-free by construction and cannot benefit from the utilization of real data
without using additional GAN-based losses. Thus, the following problems remain:
1. Similar distillation techniques developed separately for similar matching models frameworks.
2. Absence of a natural way to incorporate real data in distillation procedures (without GANs).

Contributions. In this paper, we address these issues and present the following main contributions:

1. We present the Universal Inverse Distillation with real data (RealUID) framework for matching
models, including diffusion and flow matching models (§3) as well as Bridge Matching and
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Stochastic Interpolants (Appendix C.). It unifies previously introduced Flow Generator Matching
(FGM), Score Identity Distillation (SiD) and Inverse Bridge Matching Distillation (IBMD) meth-
ods (§3.2) for flow, score and bridge matching models respectively, provides simple yet rigorous
theoretical explanations based on a linearization technique, and reveals the connections between
these methods and inverse optimization (§3.3).

2. Our RealUID introduces a novel and natural way to incorporate real data directly into the distilla-
tion loss, eliminating the need for extra adversarial losses which require additional discriminator
networks used in GANs from the previous works (§3.4).

2 BACKGROUNDS ON TRAINING AND DISTILLING MATCHING MODELS

We describe the Diffusion Models and Flow Matching frameworks (§2.1) and distillation methods for
them (§2.3). Then, we discuss how real data can be added to distilling methods via GANs (§2.4)

Preliminaries. We work on the D-dimensional Euclidean space RD. This space is equipped with
the standard scalar product ⟨x, y⟩ =

∑D
d=1 xdyd, the ℓ2-norm ∥x∥ =

√
⟨x, x⟩ and ℓ2-distance

∥x − y∥,∀x, y ∈ RD. We consider probability distributions from the set P(RD) of absolutely
continuous distributions with finite variance and support on the whole RD.

2.1 DIFFUSION AND FLOW MODELS

Diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2021) consider a forward
noising process that gradually transforms clean data p0 into a noise pT on the time interval [0, T ]:

dxt = ft · xtdt+ gt · dwt, x0 ∼ p0,

where ft and gt are time-dependent scalars. This process defines a conditional distribution pt(xt|x0):

pt(xt|x0) = N (αtx0|σ2
t I), where

αt = exp

(∫ t

0

fs ds

)
, σt =

(∫ t

0

g2s exp

(
−2

∫ s

0

fu du

)
ds

)1/2

.

Each conditional distribution admits a conditional score function, describing it:

st(xt|x0) := ∇xt
log pt(xt|x0) = −(xt − αtx0)/σ

2
t .

The reverse dynamics from the noise distribution pT to the data distribution p0 is provided by the
following reverse-time SDE:

dxt = (ft · xt − g2t · st(xt))dt+ gtdw̄t,

where st(xt) is the unconditional score function of pt(xt)=
∫
p(xt|x0)p(x0)dx0 given by st(xt)=

Ex0∼p0(·|xt)[st(xt|x0)]. This conditional expectation is learned via denoising score matching:

LDSM(s′, p0) = Et∼[0,T ],x0∼p0,xt∼pt(·|x0)

[
wt∥s′t(xt)− st(xt|x0)∥22

]
, (1)

where wt are some positive weights. The reverse dynamics admits a probability flow ODE (PF-ODE):

dxt = (ft · xt − g2t · st(xt)/2)dt, ut(xt) := (ft · xt − g2t · st(xt)/2),

which provides faster inference than the SDE formulation.
Flow Matching framework (Lipman et al., 2023; Liu et al., 2023) constructs the flow directly by
learning the drift ut(xt). Specifically, for each data point x0 ∼ p0, one defines a conditional flow
pt(xt|x0) with the corresponding conditional vector field ut(xt|x0) generating it via ODE:

dxt = ut(xt|x0)dt.

Then to construct the flow between the noise pT and data p0, one needs to compute the unconditional
vector field ut(xt) = Ex0∼p0(·|xt)[ut(xt|x0)] which generates the flow pt(xt)=

∫
p(xt|x0)p(x0)dx0.

It can be done by solving the following Conditional Flow Matching problem:

LCFM(v, p0) = Et∼[0,T ],x0∼p0,xt∼pt(xt|x0)

[
wt∥vt(xt)− ut(xt|x0)∥22

]
.

In practice, the most popular choice is the Gaussian conditional flows pt(xt|x0) = N (αtx0, σ
2
t I).

For this conditional flow samples can be obtained as xt = αtx0+σtϵ, ϵ ∼ N (0, I) and the conditional
drift can be calculated as ut(xt|x0) = α̇tx0 + σ̇tϵ.
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2.2 UNIVERSAL LOSS FOR MATCHING MODELS

From a mathematical point of view, it was shown in (Holderrieth et al., 2024; Gao et al., 2025) that
flow and diffusion models basically share the same loss structure. We recall this structure but use our
own notation. We call diffusion and flow models and their extensions as matching models.

Matching models work with a probability path {pt}t∈[0,T ] on the time interval [0, T ], trans-
forming the desired data p0 ∈ P(RD) to the noise pT ∈ P(RD). This path is built as a
mixture of simple conditional paths {pt(·|x0)}t∈[0,T ] conditioned on samples x0 ∼ p0, i.e.,
pt(xt) =

∫
RD pt(xt|x0)p0(x0)dx0,∀xt ∈ RD. The path {pt}t∈[0,T ] determines the function

fp0 : [0, T ] × RD → RD which recovers it (e.g., score function or drift generating it). The
conditional paths also determine their own simple conditional functions fp0(·|x0) so that they ex-
press fp0t (xt) = Ex0∼p0(·|xt)f

p0
t (xt|x0), where p0(·|xt) denotes data distribution p0 conditioned

on the sample xt at time t. Since fp0 cannot be computed directly, it is approximated by function
f : [0, T ]× RD → RD via minimizing the squared ℓ2-distance between the functions:
∥ft(xt)−fp0t (xt)∥2 = ∥ft(xt)−Ex0∼p0(·|xt)f

p0
t (xt|x0)∥2 ∝ Ex0∼p0(·|xt)∥ft(xt)−f

p0
t (xt|x0)∥2.

Definition 1. We define Universal Matching (UM) loss LUM(f, p0) that takes fake function f and
distribution p0 ∈ P(RD) as arguments and upon minimization over f returns the function fp0

LUM(f, p0):= Et∼[0,T ]Ex0∼p0,xt∼pt(·|x0)∥ft(xt)− fp0t (xt|x0)∥2, fp0:=argmin fLUM(f, p0), (2)
where t ∼ [0, T ] denotes uniform or weighted sampling of time t from the interval [0, 1].

2.3 DISTILLATION OF MATCHING-BASED MODELS

To solve the long inference problem of matching models, a line of distillation approaches sharing
similar principles was introduced: Score Identity Distillation (SiD) (Zhou et al., 2024b), Flow
Generator Matching (FGM) (Huang et al., 2024), and Inverse Bridge Matching Distillation
(IBMD) (Gushchin et al., 2025), for diffusion, flow, and bridge matching models, respectively.

The Score Identity Distillation (SiD) approach (Zhou et al., 2024b;a) trains a student generator
Gθ : Z → RD (parameterized by θ) that produces a distribution pθ0 from a latent distribution pZ
on Z . This approach minimizes the squared ℓ2-distance between the known teacher score function
s∗ := argmins′ LDSM(s′, p∗0) on real data p∗0 and the unknown student score function sθ:

Et∼[0,T ]Exθ
t∼pθt ∥s

θ
t (x

θ
t )− s∗t (x

θ
t )∥2, s.t. sθ = argmin s′LDSM(s′, pθ0), (3)

where pθt is the forward noising process for the generator distribution pθ0. The authors propose the
tractable loss without argmin and with parameter αSiD to approximate the real gradients of (3) :

LSiD(θ) := Et∼[0,T ]Ez∼pZ ,xθ
0=Gθ(z),xθ

t∼pθt [−2ωtαSiD∥s∗t (xθt )− s
sg[θ]
t (xθt )∥2

+ 2ωt⟨s∗t (xθt )− s
sg[θ]
t (xθt ), s

∗
t (x

θ
t )− sθt (x

θ
t |xθ0)⟩], sθ=argmin s′LDSM(s′, pθ0),(4)

where gradients w.r.t. θ are not calculated for the variables under stop-gradient sg[·] operator. The
SiD pipeline is two alternating steps: first, refine the fake score ssg[θ] by minimizing the DSM loss
(1) on new pθ0 from the previous step. Then, update the generator Gθ using the gradient of (4) with
the frozen ssg[θ]. The αSiD parameter is chosen from the range [0.5, 1.2], although theoretically only
the value αSiD = 0.5 restores true gradient as we show in our paper.

The authors of FGM considered a similar approach, but for the Flow Matching models. Specifically,
they also use a generator Gθ to produce a distribution pθ0, but instead of denoising score matching
loss, consider conditional FM loss. The method minimizes the squared ℓ2-distance between the fields:

Et∼[0,T ]Ext∼pθt ∥u
θ
t (xt)− u∗t (xt)∥2, s.t. uθ := argmin vLCFM(v, pθ0), (5)

where the interpolation path {pθt }t∈[0,T ] is constructed between the noise pT and generator pθ0
distributions. To avoid the same problem of differentiating through argmin operator as in SiD, the
authors derive a tractable loss whose gradients match those of (5):

LFGM(θ) := Et∼[0,T ]Ez∼pZ ,xθ
0=Gθ(z),xθ

t∼pθt [−∥u∗t (xθt )− u
sg[θ]
t (xθt )∥2 (6)

+ 2⟨u∗t (xθt )− u
sg[θ]
t (xθt ), u

∗
t (x

θ
t )− uθt (x

θ
t |xθ0)⟩], s.t. uθ = argmin vLCFM(v, pθ0).

We consider distillation of matching models working with data couplings such as Inverse Bridge
Matching Distillation for Bridge Matching models and Stochastic Interpolants in Appendix C.
Notably, all these approaches (SiD, FGM, IBMD) are data-free, i.e., they do not use any real data
from p∗0 to train a generator by construction of the used objective functions.

3
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2.4 GANS FOR REAL DATA INCORPORATION

FGM and SiD methods exhibit strong performance in one-step generation tasks. However, the
generator in these methods is trained under the guidance of the teacher model alone. This means the
generator cannot get more information about the real data that the teacher has learned. For example,
it cannot correct the teacher’s errors. To address this, recent works (Yin et al., 2024a; Zhou et al.,
2024a) propose adding real data via a GAN framework (Goodfellow et al., 2014). In such approaches,
the encoder of fake model f is typically augmented with an additional head to serve as a discriminator
D with the following adversarial loss:

Ladv = Et∼[0,T ]

[
Ex∗

t∼p∗t
[
lnDt

(
x∗t
)]

+ Exθ
t∼pθt

[
ln[1−Dt

(
xθt
)
]
]]
. (7)

The overall objective in such hybrid frameworks (Zhou et al., 2024a) consists of:

Generator loss:
LGθ

= λdistLGθ

FGM/SiD + λGθ

advL
Gθ

adv, (8)

Fake model loss:
LD = λdistLfFGM/SiD + λDadvLDadv. (9)

Here, λdist, λGθ

adv, and λDadv are weighting coefficients for the distillation and adversarial components.
Despite empirical gains, the GAN-augmented formulation entails nontrivial costs: it necessitates
architectural modifications, such as an auxiliary discriminator head, and inherits the well-known
optimization problems of adversarial training, such as non-stationary objectives, mode collapse, and
sensitivity to training dynamics.

3 UNIVERSAL DISTILLATION OF MATCHING MODELS WITH REAL DATA

In this section, we present our novel RealUID approach for matching models enhanced by real data.
First, we show that the previous data-free distillation methods can be unified under the single UID
framework (§3.1). Then, we describe how this framework is connected to prior works (§3.2) and
inverse optimization (§3.3). Using this intuition, we propose and discuss the real data modified UID
framework (RealUID) with a natural way to incorporate real data without GANs (§3.4).

3.1 UNIVERSAL INVERSE DISTILLATION

To learn a complex real data distribution p∗0, one usually trains a teacher function f∗ :=
argminf LUM(f, p∗0) which is then used in a multi-step sampling procedure (Def. 1). To avoid
time-consuming sampling, one can train a simple student generator Gθ : Z → RD with parameters
θ to reproduce the real data p∗0 from the distribution pZ on the latent space Z . The teacher function
serves as a guide that shows how close the student distribution pθ0 and the real data p∗0 are. FGM and
SiD methods (§2.3) train such generator via minimizing the squared ℓ2-distance between the known
teacher function f∗ and an unknown student function fθ := argminf LUM(f, pθ0):

Et∼[0,T ]Exθ
t∼pθt ∥f

∗
t (x

θ
t )− fθt (x

θ
t )∥2 = Et∼[0,T ]Exθ

t∼pθt ∥f
∗
t (x

θ
t )− Exθ

0∼pθ0(·|xθ
t )
fθt (x

θ
t |xθ0)∥2

= Et∼[0,T ]Exθ
t∼pθt [∥f

∗
t (x

θ
t )∥2]− 2Et∼[0,T ]Exθ

t∼pθt ,xθ
0∼pθ0(·|xθ

t )
[⟨f∗t (xθt ), fθt (xθt |xθ0)⟩]

+Et∼[0,T ]Exθ
t∼pθt [∥Exθ

0∼pθ0(·|xθ
t )
[fθt (x

θ
t |xθ0)]∥2]︸ ︷︷ ︸

not tractable

, (10)

where {pθt }t∈[0,T ] is the probability path constructed between generator distribution pθ0 and noise pT .
The problem is that the final term (10) cannot be calculated directly. This is because it involves the
math expectation inside the squared norm, unlike the other terms which are linear in the expectations.
It means that a simple estimate of ∥fθt (xθt |xθ0)∥2 using samples xθ0 and xθt will be biased. Moreover,
to differentiate through the math expectation inside the norm, an explicit dependence of pθ0 on θ is
required, while, in practice, usually only dependence of samples xθ0 on θ is known.

Making loss tractable via linearization. To resolve this, we use a linearization technique. For a
fixed point xθt and time t, we reformulate the squared norm as a maximization problem. We achieve
this by introducing an auxiliary function δ : [0, T ]× RD → RD and using the identity

∥f∗t (xθt )− fθt (x
θ
t )∥2 = max

δt(xθ
t )

{
−∥δt(xθt )∥2 + 2⟨δt(xθt ), f∗t (xθt )− fθt (x

θ
t )⟩
}

4
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= max
δt(xθ

t )
Exθ

0∼pθ0(·|xθ
t )

{
−∥δt(xθt )∥2 + 2⟨δt(xθt ), f∗t (xθt )⟩ − 2⟨δt(xθt ), fθt (xθt |xθ0)⟩

}
. (11)

The reparameterization δ = f∗ − f with a fake function f : [0, T ]× RD → RD allows to get:

(11)=max
ft(xθ

t )
Exθ

0∼pθ0(·|xθ
t )

{
−∥f∗t (xθt )− ft(x

θ
t )∥2+ 2⟨f∗t (xθt )− ft(x

θ
t ), f

∗
t (x

θ
t )− fθt (x

θ
t |xθ0)⟩

}
(12)

=max
ft(xθ

t )
Exθ

0∼pθ0(·|xθ
t )

{
∥f∗t (xθt )− fθt (x

θ
t |xθ0)∥2︸ ︷︷ ︸

=LUM(f∗,pθ0)

− ∥ft(xθt )− fθt (x
θ
t |xθ0)∥2︸ ︷︷ ︸

=LUM(f,pθ0)

}
. (13)

Since now all expectations are linear and can be estimated, the final step is to compute the expectation
over all points xθt and times t and minimize it over the generator distribution pθ.
Summary. We build a universal distillation framework as a single min-max optimization (14),
implicitly minimizing squared ℓ2-distance between teacher and student functions. When real and
generated probability paths match, these functions match as well, and the distance attains its minimum.
Theorem 1 (Real data generator minimizes UID loss). Let teacher f∗ := argminf LUM(f, p

∗
0)

be the minimizer of UM loss (Def. 1) on real data p∗0 ∈ P(RD). Then real data generator Gθ∗ , s.t.
pθ

∗

0 = p∗0, is a solution to the min-max optimization of Universal Inverse Distillation (UID) loss
LUID(f, p

θ
0) over fake function f and generator distribution pθ0

min θmax f
{
LUID(f, p

θ
0) := LUM(f

∗, pθ0)− LUM(f, p
θ
0)
}
. (14)

Lemma 1 (UID loss minimizes squared ℓ2-distance). Maximization of UID loss (14) over fake
function f retrieves student function fθ := argmin fLUM(f, p

θ
0) and represents the squared ℓ2-

distance between it and the teacher f∗:

fθ = argmax
f

LUID(f, p
θ
0), max

f
LUID(f, p

θ
0) = Et∼[0,T ]Exθ

t∼pθt ∥f
∗
t (x

θ
t )− fθt (x

θ
t )∥2. (15)

Note that the distance (15) mostly captures mismatches for the points from generator main domain
which do not cover real data, i.e., points xθt s.t. pθ(xθt ) ≫ 0, p∗(xθt ) → 0. For out-of-domain points
pθt (x

θ
t ) → 0, the generator cannot receive feedback, because distance (15) for xθt also vanishes.

3.2 RELATION TO PRIOR DISTILLATION WORKS

FGM and SiD approaches formulate distillation as a constraint minimization of generator loss subject
to the optimal fake model. For generator updates, the explicit UID loss (12) exactly matches SiD
loss (4) with αSiD = 0.5 and FGM loss (6). For a fake model, it also simply minimizes the UM loss
on the generated data. The work (Gushchin et al., 2025) was the first to formulate the distillation of
Bridge Matching models in their IBMD framework as a min-max optimization of the single loss (13).

Although previous works derive the same losses, we give a new, simple explanation using a lin-
earization technique. This technique is more powerful and general for handling intractable math
expectations than complex proofs for concrete models from FGM, SiD, IBMD. Furthermore, it allows
adding real data directly into the distillation loss (see §3.4 and Appendix A.2) and extending it, e.g.,
deriving a loss for minimizing the ℓ2-distance instead of the squared one (Appendix A.4).

3.3 CONNECTION WITH INVERSE OPTIMIZATION

We derived UID loss (14) by minimizing the squared ℓ2-distance between teacher and student
functions. However, this loss admits another interpretation: its structure is typical for inverse
optimization (Chan et al., 2025). In this framework, one considers a parametric family of optimization
problems minf L(f, θ) with objective loss L(f, θ) depending on argument f and parameters θ. The
goal is to find the parameters θ∗ that yield a known, desired solution f∗ = argminf L(f, θ∗). One
standard way to recover the required parameters is to solve the same min-max problem as (14):

min θmax f {L(f∗, θ)− L(f, θ)} ∼ min θ
{
L(f∗, θ)−min f{L(f, θ)}

}
. (16)

The inverse problem (16) always has minimum 0 which is attained when θ = θ∗.

Although the inverse optimization can handle arbitrary losses L, it does not describe the properties of
the optimized functions or how to find solutions. In our case, we show that all losses are tractable
and minimize the distances between teacher and student functions (Lemmas 1 and 2). Furthermore,
in Appendix A, we provide and justify a list of extensions of our framework that cannot be stated as
inverse problems. All our proofs are self-contained and do not rely on inverse optimization, which
only provides intuition and understanding.

5
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Generator

Fake model

Teacher model

Interpolation

🔥🔥

❄️

❄️

🔥

🔥

Figure 1: Pipeline of our RealUID distillation framework (§3) with the direct incorporation of real data p∗0
adjusted by hyperparameters α, β ∈ (0, 1]. In the figure, it is depicted for Flow Matching models predicting
denoised samples. It distills a costly frozen teacher model f∗ (blue) into a one-step generator Gθ (red) upon
min-max optimization of Lα,β

R-UID(f, p
θ
0) loss over fake model f (green) and generator distribution pθ0 with

parameters θ. We use alternating optimization, updating the fake model several times per one generator update
for stability. Algorithm’s pseudocode is located in Appendix B.

3.4 REALUID: NATURAL APPROACH FOR REAL DATA INCORPORATION

Previous distillation methods add real data during training only via GANs with extra discriminator
and adversarial loss. We propose a simpler, more natural way that requires no extra models or losses.

Based on intuition from inverse optimization (§3.3), we see that the min-max inverse problem (16) is
compatible with other losses. This allows us to redesign the UM loss (2) to incorporate real data into
it. A key constraint is that the loss must still yield the same teacher upon minimization on the real
data. Thus, we derive a novel Unified Matching loss with real data - a weighted sum of two UM-like
losses on generated and real data parameterized by α, β ∈ (0, 1] which control the weights.

Definition 2. We define Universal Matching loss with real data on generated data pθ0 ∈ P(RD)
with α, β ∈ (0, 1] (when α = 1 the real data term becomes 2(1− β)⟨ft(x∗t ), f∗t (x∗t |x∗0)⟩):

Lα,βR-UM(f, p
θ
0) = α · Et∼[0,T ]Exθ

0∼pθ0,xθ
t∼pθt (·|xθ

0)

[
∥ft(xθt )−

β

α
fθ(xθt |xθ0)∥2

]
︸ ︷︷ ︸

generated data pθ0 term

+ (1− α) · Et∼[0,T ]Ex∗
0∼p∗0 ,x∗

t∼p∗t (·|x∗
0)

[
∥ft(x∗t )−

1− β

1− α
f∗t (x

∗
t |x∗0)∥2

]
︸ ︷︷ ︸

real data p∗0 term

. (17)

RealUM loss (17) for all α, β and UM loss (2) yield the same teacher when input distribution is
real data p∗0, i.e., argminf L

α,β
R-UM(f, p∗0) = argminf LUM(f, p∗0) = f∗. Hence, the min-max inverse

scheme (16) with RealUM loss and the old teacher f∗ will still have a real data generator as a solution:

min θ{Lα,βR-UM(f∗, pθ0)−min f{Lα,βR-UM(f, pθ0)}︸ ︷︷ ︸
≥0

} = Lα,βR-UM(f∗, p∗0)−min f{Lα,βR-UM(f, p∗0)}︸ ︷︷ ︸
=Lα,β

R-UM(f∗,p∗0)

= 0.

But now distillation loss will incorporate real data through the real data terms of Lα,βR-UM(f, pθ0).

Theorem 2 (Real data generator minimizes RealUID loss). Let teacher f∗ :=
argminf LUM(f, p

∗
0) be the minimizer of UM loss on real data p∗0. Then real data generator Gθ∗ , s.t.

pθ
∗

0 = p∗0, is a solution to the min-max optimization of Universal Inverse Distillation loss with real
data (RealUID) Lα,βR-UID(f, p

θ
0) over fake function f and generator distribution pθ0:

min θmax f

{
Lα,βR-UID(f, p

θ
0) := Lα,βR-UM(f

∗, pθ0)− Lα,βR-UM(f, p
θ
0)
}
. (18)

We provide analysis of RealUID in Appendix A.1, below we highlight the most important findings.
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Generation α/β 0.94 0.96 0.98 1.0

Unconditional

0.94 2.66 2.28 2.58 2.98
0.96 2.37 2.58 2.29 2.65
0.98 2.97 2.33 2.62 2.38
1.0 5.81 4.51 3.29 2.58

Conditional

0.94 2.35 2.19 2.25 2.47
0.96 2.09 2.32 2.13 2.27
0.98 2.34 2.02 2.26 2.05
1.0 4.32 3.27 2.43 2.21

Generation λGθ

adv λDadv FID (↓)

Unconditional

0.1 0.3 2.42
0.3 1 2.29
1 3 2.39
5 15 2.54

Conditional

0.1 0.3 2.22
0.3 1 2.12
1 3 2.15
5 15 2.40

Table 1: Ablation studies on (α, β) coefficients on the left table and adversarial weighting parameters
(λ

Gθ
adv , λ

D
adv) on the right table for CIFAR-10 in both unconditional and conditional settings. The baseline

RealUID (α = 1.0, β = 1.0) does not use real data. Configurations that outperform the baseline are high-
lighted. All values report FID ↓, where lower is better. The best configuration in each case is bolded.

Role and choice of coefficients α, β. The RealUID framework uses real data samples only to
minimize RealUM loss for the fake model. As shown in Lemma 2, RealUID also implicitly minimizes
the rescaled distance between the teacher and generator functions. But now with the help of real data,
this distance captures mismatches for both incorrectly generated points from the generator’s main
domain and the real data points, which the generator fails to cover. Thus, unlike data-free UID loss
(Lemma 1), RealUID loss provides the generator with feedback also on the real data domain it needs
to cover (see Appendix A.1.2 for details).

The coefficients α and β in RealUID loss control the balance between the generator’s and the real
data domains. A zero difference (α = β) means that only the generator’s domain is considered. Even
when α = β < 1 and real data is formally added, it has no, or negative, effect on the generator.
Meanwhile, a non-zero difference considers both domains: increasing α over β (α > β) puts less
weight on the generator’s errors, while otherwise (β < α) the weight grows. The optimal choice is
a slightly different α ̸= β close to 1. Excessively low α and β diminish the effect of the generated
data, leading to vanishing gradients. The same issue occurs with α≫ β, while β ≫ α eliminates the
effect of the real data. Plus, configurations β < α = 1 are unstable due to out-of-domain samples.
Comparison with GAN-based methods. Unlike SiD and FGM with GANs, we do not use extra
adversarial losses and discriminator to incorporate real data. We only modify UM loss, preserving its
core structure and fake model architecture. While general adversarial loss is unrelated to the main
distillation loss and has uninterpretable scaling hyperparameters, our RealUID loss and weighting
coefficients α, β ∈ (0, 1] come naturally from the data-free UID loss. The original UID loss (14),
equivalent to SiD (4) with αSiD = 0.5 and FGM (6), is obtained when α = β = 1.

Extension for Bridge Matching and Stochastic Interpolants framework. In Appendix C, we
demonstrate that our framework can be easily extended to other matching models by parametrizing
the generated data coupling πθ(x0, xT ) instead of the data distribution pθ0.

4 EXPERIMENTS
All implementations were developed in PyTorch, and the code will be made publicly available.

This section provides an ablation study and evaluation of our RealUID, assessing both its performance
and computational efficiency. We begin in (§4.1) by detailing the experimental setup. In (§4.2), we
show that our incorporation of real data via coefficients α, β improves performance, speeds up conver-
gence, and enables effective fine-tuning. In (§4.3), we assess the benchmark performance and compu-
tational demands of RealUID relative to SOTA methods. Additional experimental details and results
are provided in Appendix D and Appendix F, respectively.

4.1 EXPERIMENTAL SETUP

Dataset and Evaluation Protocol. Due to computational resource constraints, all experiments
were conducted exclusively on the CIFAR-10 dataset (32× 32 resolution) Krizhevsky et al. (2009),
considering both conditional and unconditional settings. In line with prior works (Karras et al., 2019;
2022), we report test FID scores (Heusel et al., 2017), computed using 50k generated samples.
Implementation Details. In contrast to prior studies (Zhou et al., 2024b;a; Huang et al., 2024),
which employ the computationally demanding EDM architecture (Karras et al., 2022), our work
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Table 2: This table presents the results of our ablation study on the RealUID framework, evaluated using the
FID metric under both unconditional and conditional generation setups. The Teacher Flow model with 100
NFE is reported as a reference. The performance of the baseline RealUID (α = 1.0, β = 1.0) without real-data
incorporation is indicated in italic. For emphasis, we underline the two counterparts that incorporate real data:
the GAN-based and our RealUID methods. The best-performing configurations, obtained via an additional
fine-tuning stage with adjusted (αFT, βFT), are highlighted in bold. Qualitative results are presented in § F.2.

Model FID (↓)

Teacher Flow (NFE=100) 3.57
RealUID (α = 1.0, β = 1.0) 2.58
RealUID (α = 1.0, β = 1.0) + GAN (λGθ

adv = 0.3, λDadv = 1) 2.29
RealUID (α = 0.94, β = 0.96) 2.28
RealUID (α = 0.94, β = 0.96 | αFT = 0.94, βFT = 1.0) 2.03

Model FID (↓)

Teacher Flow (NFE=100) 5.56
RealUID (α = 1.0, β = 1.0) 2.21
RealUID (α = 1.0, β = 1.0) + GAN (λGθ

adv = 0.3, λDadv = 1) 2.12
RealUID (α = 0.98, β = 0.96) 2.02
RealUID (α = 0.98, β = 0.96 | αFT = 0.94, βFT = 1.0) 1.91
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Figure 2: Evolution of FID during CIFAR-10 distillation for (i) the baseline RealUID (α = 1.0, β = 1.0), (ii)
the best-performing RealUID configurations, and (iii) subsequent fine-tuning, evaluated in both unconditional
and conditional settings. The performances of Teacher Flow and UID+GAN are indicated by horizontal
reference lines in their respective colors. Methods that incorporate real data—best-performing RealUID and
UID+GAN—are highlighted in green to facilitate comparison.

adopts a more lightweight alternative (Tong et al., 2023) due to resource constraints (see (§4.3) for
efficiency analysis). We also trained our own flow-matching model, denoted by f∗, which served as
the teacher. Further implementation details are provided in Appendix D.

4.2 BENCHMARKING METHODS UNDER A UNIFIED EXPERIMENTAL CONFIGURATION

We evaluate RealUID under a unified experimental protocol (fixed architecture and implementation).
We begin by (i) conducting an ablation over α, β to assess the influence of real-data incorporation. We
then (ii) compare RealUID to a GAN-based alternative, showing that RealUID achieves comparable
or superior accuracy. Furthermore, (iii) we analyze convergence, indicating that RealUID variants
with real data train substantially faster than baselines without real-data. Finally, (iv) we explore a
fine-tuning stage initialized from strong RealUID checkpoints, showing further performance gains.
Ablation study of coefficients α, β. The search for optimal α and β parameters was restricted to
values near 1, specifically α, β ∈ [0.9, 1.0] with increments of 0.02 to cover the full grid. Setting these
parameters too low prevents the student from accurately capturing the true generator gradient, which
in turn leads the generator to produce noisy samples. The results are reported in Table 1. As a baseline,
we highlight the model without data incorporation our RealUID (α = 1.0, β = 1.0). As shown in the
table, using real data with α = β < 1.0 or with substantially different α and β consistently degraded
performance. In contrast, parameter settings close to the diagonal (with the exception of α = 1.0, β =
0.98) produced improved results, with the best performance achieved by our RealUID (α = 0.94, β =
0.96) for the unconditional case and our RealUID (α = 0.98, β = 0.96) for the conditional case.
Note that the practical results for various α, β match the theoretical description from (§3.4.)

Comparison with GAN-based method. We integrated the GAN-based approach proposed by
Zhou et al. (2024a) into our experimental framework as an alternative method for incorporating real
data, enabling a direct comparison with our RealUID formulation. Specifically, we combined the
GAN loss with the baseline RealUID (α = 1.0, β = 1.0). As shown in Table 1, the best-performing
configurations are achieved with GAN losses (λGθ

adv = 0.3, λDadv = 1). While this setup performs
comparably to RealUID (α = 0.94, β = 0.96) in the unconditional setting, it remains clearly inferior
to RealUID (α = 0.98, β = 0.96) in the conditional case.
Convergence Speed. Our RealUID (α, β), which outperform the baseline RealUID (α = 1.0, β =

1.0) and are highlighted in Table 1, demonstrate rapid convergence. For clarity, we present qualita-
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Table 3: Comparison of unconditional generation on
CIFAR-10. The best method under the FID metric in each
section is highlighted with bold.

Family Model NFE FID (↓)

Diffusion & GAN

DDPM (Ho et al., 2020) 1000 3.17
VP-EDM (Karras et al., 2022) 35 1.97
StyleGAN2+ADA+Tune (Karras et al., 2020) 1 2.92
StyleGAN2+ADA+Tune+DI (Luo et al., 2023) 1 2.71
Diffusion ProjectedGAN (Wang et al., 2022) 1 2.54
iCT-deep (Song & Dhariwal, 2023) 1 2.51
Diff-Instruct (Luo et al., 2023) 1 4.53
DMD (Yin et al., 2024b) 1 3.77
CTM (Kim et al., 2023) 1 1.98
SiD, α = 1.0 (Zhou et al., 2024b) 1 2.03
SiD, α = 1.2 (Zhou et al., 2024b) 1 1.92
SiDA, α = 1.0 (Zhou et al., 2024a) 1 1.52
SiD2A, α = 1.2 (Zhou et al., 2024a) 1 1.52
SiD2A, α = 1.0 (Zhou et al., 2024a) 1 1.50

Flow-based

CFM (Yang et al., 2024) 2 5.34
1-ReFlow (+Distill) (Liu et al., 2022a) 1 6.18
2-ReFlow (+Distill) (Liu et al., 2022a) 1 4.85
3-ReFlow (+Distill) (Liu et al., 2022a) 1 5.21
FGM (Huang et al., 2024) 1 3.08
RealUID (α = 0.94, β = 0.96 | αFT = 0.94, βFT = 1.0) (Ours) 1 2.03

Table 4: Comparison of conditional generation on
CIFAR-10. The best method under the FID metric in
each section is highlighted with bold.

Family Model NFE FID (↓)

Diffusion & GAN

VP-EDM (Karras et al., 2022) 35 1.79
GET-Base (Geng et al., 2023) 1 6.25
BigGAN (Brock et al., 2018) 1 14.73
BigGAN+Tune (Brock et al., 2018) 1 8.47
StyleGAN2+ADA (Karras et al., 2020) 1 3.49
StyleGAN2+ADA+Tune (Karras et al., 2020) 1 2.42
StyleGAN2+ADA+Tune+DI (Luo et al., 2023) 1 2.27
StyleGAN-XL (Sauer et al., 2022) 1 1.85
StyleSAN-XL (Takida et al., 2023) 1 1.36
Diff-Instruct (Luo et al., 2023) 1 4.19
DMD (Yin et al., 2024b) 1 2.66
DMD (w.o. KL) (Yin et al., 2024b) 1 3.82
DMD (w.o. reg.) (Yin et al., 2024b) 1 5.58
GDD-I (Zheng et al., 2024) 1 1.44
CTM (Kim et al., 2023) 1 1.73
SiD, α = 1.0 (Zhou et al., 2024b) 1 1.93
SiD , α = 1.2 (Zhou et al., 2024b) 1 1.71
SiDA, α = 1.0 (Zhou et al., 2024b) 1 1.44
SiD2A, α = 1.0 (Zhou et al., 2024a) 1 1.40
SiD2A, α = 1.2 (Zhou et al., 2024a) 1 1.39

Flow-based FGM (Huang et al., 2024) 1 2.58
RealUID (α = 0.98β = 0.96 | αFT = 0.94, βFT = 1.0) (Ours) 1 1.91

Methods Inference Time (ms) # Total Param (M) Max GPU Mem Alloc (MB) Max GPU Mem Reserved (MB)

RealUID (Ours) 18.636 36.784 165 172
FGM (Huang et al., 2024) / SiD (Zhou et al., 2024b;a) 30.745 55.734 242 276

Table 5: Inference complexity on an Ascend 910B3 (65 GB) NPU. For each method, we report (i) the mean
inference time per image (bs=1, fp32), averaged over 10,000 iterations; (ii) the total number of parameters
(Millions); and (iii) peak NPU memory usage (maximum allocated and reserved, in MB). Best values are bolded.

tive comparisons of the best-performing configurations against their respective baselines in Figure 2.
As shown in figure, the best RealUID configurations reach the saturated performance level of the
baseline after ∼100k iterations, whereas the baseline requires ∼300k iterations to achieve comparable
metrics. These results demonstrate that incorporating real data substantially accelerates convergence.
Fine-tuning stage. We observe that the RealUID framework offers substantial flexibility for fine-
tuning. In this procedure, the generatorGθ is initialized from the best-performing RealUID checkpoint
obtained during training from scratch, while the fake model f is initialized from the teacher model
f∗. Fine-tuning then proceeds with new hyperparameter values αFT and βFT, allowing for refined
control over the degree of real-data incorporation during this stage. We find that the configurations
RealUID (α = 0.94, β = 0.96 | αFT = 0.94, βFT = 1.0) and RealUID (α = 0.98, β = 0.96 | αFT =
0.94, βFT = 1.0) produced the best results in the unconditional and conditional cases, respectively, as
shown in Tables 2. Ablation studies analyzing the effect of αFT and βFT are provided in Appendix F.1.

4.3 BENCHMARK PERFORMANCE AND COMPUTATIONAL COMPARISONS

As shown in Tables 3 and 4, RealUID consistently outperforms all prior flow-based models on
CIFAR-10, significantly surpassing the strongest flow distillation baseline, FGM. Despite its compact
architecture (§4.1), it achieves performance comparable to leading diffusion distillation methods-
matching SiD (α=1.0) and closely approaching SiD (α=1.2), while falling short of adversarially
enhanced models such as SiD2A. Based on ablation studies and comparisons with GANs (§4.2), we
hypothesis that this performance gap is attributed to architectural and teacher capacity differences
rather than the lack of adversarial loss. In terms of efficiency, RealUID leverages a lightweight
architecture based on Tong et al. (2023). Therefore, as summarized in Table 5, it achieves nearly
2× faster inference, lower memory usage, and reduced model size compared to recent distillation
approaches (Zhou et al., 2024b;a; Huang et al., 2024). The results indicate that our approach achieves
competitive performance while maintaining a lower computational footprint.

5 DISCUSSION, EXTENSION, FUTURE WORKS

Extensions. Our RealUID (§3.4) framework can distill Flow/Bridge Matching, Diffusion models,
and Stochastic Interpolants enhanced by a novel natural way to incorporate real data. In Appendix A,
we provide three extensions of our RealUID beyond the inverse scheme: General RealUID with 3
coefficients (Appendix A.2), SiD framework with real data for αSiD ̸= 1

2 (Appendix A.3) and Normal-
ized RealUID for minimizing non-squared ℓ2-distance between teacher and student (Appendix A.4).
Relation to DMD. Instead of minimizing the squared ℓ2-distance between the score functions,
Distribution Matching Distillation (Luo et al., 2023; Wang et al., 2023; Yin et al., 2024b;a) (DMD)
approach minimizes the KL divergence between the real and generated data. Its gradients are
computed using the generator and teacher score functions, leading to the similar alternating updates.
We would like to highlight that DMD does not fit UID framework. Nevertheless, we investigated an
opportunity to incorporate real data into DMD without GANs in Appendix A.5.
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6 REPRODUCIBILITY STATEMENT.

To support the reproducibility of the proposed RealUID method, we provide:

1. Source code. In supplementary materials we provide anonymized and reproducible code for
the main results, including distillation from scratch (Table 1) and fine-tuning (Table 6). The code is
written in Python using the PyTorch framework (Paszke et al., 2019) and is based on the TorchCFM
implementation (Tong et al., 2023, GitHub):

https://github.com/atong01/conditional-flow-matching

The repository includes a README with step-by-step instructions for reproducibility.

2. Pseudocode for algorithms. We provide pseudocode for RealUID in Appendix B, Algorithm 1.

3. Experimental details. We include all relevant experimental details, i.e. training hyperparame-
ters, training time, datasets, and metric computations in Appendix D.

4. Proofs and theoretical explanations. We provide the proofs of the theorems and lemmas in
Appendix A.
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A THEORETICAL PROOFS AND EXTENSIONS

In this appendix, we discuss our RealUID framework (Appendix A.1) in theoretical details and provide
three extensions of it: General RealUID framework with 3 degrees of freedom (Appendix A.2), SiD
framework with real data (Appendix A.3) and Normalized RealUID framework for minimizing ℓ2-
distance between teacher and student functions instead of the squared one (Appendix A.4). All proofs
are based on the linearization technique and splitting terms in linearized decomposition between real
and generated data.

We also propose an approach to incorporate real data into DMD framework, which is unsuitable for
our RealUID Appendix A.5.

A.1 REALUID THEORETICAL PROPERTIES

In this section, we discuss our RealUID loss in detail. We begin by presenting its explicit form and
how it connects linearization technique and real data incorporation. We then demonstrate that the
loss minimizes a squared ℓ2-distance between the rescaled teacher and student functions (Appendix
A.1.1). Finally, we provide guidance on selecting the coefficients α and β to optimize the impact
from the real data (Appendix A.1.2).

A.1.1 REALUID DISTANCE LEMMA 2

Putting explicit values for RealUM loss (17) in RealUID loss (18) and denoting δt = f∗t − ft, we get:

Lα,βR-UID(δ, p
θ
0) = Et∼[0,T ]Exθ

0∼pθ0,xθ
t∼pθt (·|xθ

0)
[−α∥δt(xθt )∥2 + 2α⟨δt(xθt ), f∗t (xθt )⟩ − 2β⟨δt(xθt ), fθt (xθt |xθ0)⟩]

+Et∼[0,T ]Ex∗
0∼p∗0 ,x∗

t∼p∗t (·|x∗
t )
[−(1− α)∥δt(x∗t )∥2 + 2(1− α)⟨δt(x∗t ), f∗t (x∗t )⟩ − 2(1− β)⟨δt(x∗t ), f∗t (x∗t |x∗0)⟩].

This form provides an alternative definition of coefficients α and β: they define the proportion in
which each summand in the data-free linearized representation (11) of the squared ℓ2-distance is
split between the real and generated data. The idea of splitting coefficients between two data types
helps extend RealUID to extra coefficients (Appendix A.2), new distances (Appendix A.4) and SiD
framework with αSiD ̸= 1

2 (Appendix A.3).

While UID loss implicitly represents a squared ℓ2-distance between the teacher and student functions
(Lemma 1), the RealUID loss minimizes a squared ℓ2-distance between the rescaled functions. The
distance is still minimal when pθ0 = p∗0, alternatively proving Theorem 2.

Lemma 2 (Distance minimized by RealUID loss). Maximization of RealUID loss Lα,βR-UID (17)
over fake function f returns the weighted sum between the teacher f∗ and student function fθ :=
argminf LUM(f, p

θ
0) and represents the weighted squared ℓ2-distance between them:[

argmax
f

Lα,βR-UID(f, p
θ
0)

]
(t, xt) =

(1− β)p∗t (xt) · f∗t (xt) + βpθt (xt) · fθt (xt)
(1− α)p∗t (xt) + αpθt (xt)

, (19)

max
f

Lα,βR-UID(f, p
θ
0)=Et∼[0,T ]Ex∗

t∼p∗t

[
∥(p∗t (x∗t )(β − α) + αpθt (x

∗
t )) · f∗t (x∗t )− βpθt (x

∗
t ) · fθt (x∗t )∥2

p∗t (x
∗
t )((1− α)p∗t (x

∗
t ) + αpθt (x

∗
t ))

]
.

Proof. First, we write down RealUID loss in an explicit form with δt = f∗t − ft

Lα,βR-UID(δ, p
θ
0) = Et∼[0,T ]Exθ

t∼pθt [−α∥δt(x
θ
t )∥2 + 2α⟨δt(xθt ), f∗t (xθt )⟩ − 2β⟨δt(xθt ), fθt (xθt )⟩]

+Et∼[0,T ]Ex∗
t∼p∗t [−(1− α)∥δt(x∗t )∥2 + 2(1− α)⟨δt(x∗t ), f∗t (x∗t )⟩ − 2(1− β)⟨δt(x∗t ), f∗t (x∗t )⟩]. (20)
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Then, we rescale the generated data terms in RealUID loss (20) using the equality pθt (xt) =
pθt (xt)
p∗t (xt)

p∗t (xt) for xt ∈ RD (we assume p∗t (xt) > 0,∀xt, t) leaving only math expectation w.r.t.

the real data, i.e, Lα,βR-UID(δ, p
θ
0) =

Et∼[0,T ]Ex∗
t∼p∗t

[
−[(1− α) + α

pθt (x
∗
t )

p∗t (x
∗
t )
]∥δt(x∗t )∥2 + 2[(β − α) + α

pθt (x
∗
t )

p∗t (x
∗
t )
]⟨δt(x∗t ), f∗t (x∗t )⟩ − 2β

pθt (x
∗
t )

p∗t (x
∗
t )
⟨δt(x∗t ), fθt (x∗t )⟩

]
.

Finally, we maximize the loss w.r.t. δt(x∗t ) for each x∗t and t as a quadratic function. The maximum
is achieved when

δt(x
∗
t ) =

[(β − α) + α
pθt (x

∗
t )

p∗t (x
∗
t )
]f∗t (x

∗
t )− β

pθt (x
∗
t )

p∗t (x
∗
t )
fθt (x

∗
t )

[(1− α) + α
pθt (x

∗
t )

p∗t (x
∗
t )
]

or in terms of the fake model f = f∗ − δ(
argmax

f
Lα,βR-UID(f, p

θ
0)

)
(t, xt) =

f∗t (xt) · (1− β) + fθt (xt) · β
pθt (xt)
p∗t (xt)

(1− α) + α
pθt (xt)
p∗t (xt)

.

The maximum itself equals to

max
f

Lα,βR-UID(f, p
θ
0) = Et∼[0,T ]Ex∗

t∼p∗t

∥f∗t (x∗t ) · ((β − α) + α
pθt (x

∗
t )

p∗t (x
∗
t )
)− fθt (x

∗
t ) · β

pθt (x
∗
t )

p∗t (x
∗
t )
∥2

(1− α) + α
pθt (x

∗
t )

p∗t (x
∗
t )

 .
It is easy to see that when pθ0 = p∗0 and fθ = f∗ this distance achieves its minimal value 0. Moreover,
optimal fake model in this case matches the teacher f∗, i.e.,(

argmax
f

Lα,βR-UID(f, p
∗
0)

)
(t, xt) =

f∗t (xt) · (1− β) + f∗t (xt) · β
p∗t (xt)
p∗t (xt)

(1− α) + α
p∗t (xt)
p∗t (xt)

= f∗t (xt).

A.1.2 EXPLANATION OF THE CHOICE OF COEFFICIENTS α AND β

Following Lemma 2, we know exactly what distance our RealUID loss implicitly minimizes and can
examine it for various α, β ∈ (0, 1]:

max
f

Lα,βR-UID(f, p
θ
0) =

∫
xt

lt(xt, β, α)dxt,

lt(xt, β, α) :=
∥(p∗t (xt)(β − α) + αpθt (xt)) · f∗t (xt)− βpθt (xt) · fθt (xt)∥2

(1− α)p∗t (xt) + αpθt (xt)
,

where lt(xt, β, α) denotes the distance for the particular point xt.

The total distance mostly sums up from the two groups of points: incorrectly generated points
from the generator’s main domain, i.e., pθt (xt) ≫ 0, p∗(xt) → 0, and real data points which are
not covered by the generator, i.e., pθt (xt) → 0, p∗(xt) ≫ 0. For the points out of both domains
pθt (xt) → 0, p∗t (xt) → 0, the distance tends to 0, as well as for matching points pθt (xt) ≈ p∗t (xt).

Next, we consider various coefficients α, β ∈ (0, 1] and how they effect two main groups of points.

• All configurations affect the incorrectly generated points xt : p∗t (xt) → 0, pθ(xt) ≫ 0:

lt(xt, β, α) ≈
∥αpθt (xt) · f∗t (xt)− βpθt (xt) · fθt (xt)∥2

αpθt (xt)
≈ β2∥fθt (xt)∥2

α
pθt (xt) ≫ 0. (21)

Note that increasing β over α (β > α) will diminish the weight of the distance in comparison with
α = β = 1, while decreasing otherwise will lift the weight up.
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Figure 3: RealUID loss for 1D-Gaussians under various coefficients (α, β).

• Configuration β < α = 1 is unstable for uncovered real data points xt : pθt (xt) → 0, p∗(xt) ≫ 0:

lt(xt, β, α) ≈
∥p∗t (xt)(β − 1) · f∗t (xt)− βpθt (xt) · fθt (xt)∥2

pθt (xt)
→ ∞.

• Configuration β = α = 1 (UID loss) does not affect uncovered real data points xt : pθt (xt) →
0, p∗(xt) ≫ 0:

lt(xt, β, α) ≈
∥pθt (xt) · f∗t (xt)− pθt (xt) · fθt (xt)∥2

pθt (xt)
= ∥f∗t (xt)− fθt (xt)∥2pθt (xt) → 0.

• Configuration β = α < 1 does not affect uncovered real data points xt : pθt (xt) → 0, p∗(xt) ≫ 0:

lt(xt, β, α) ≈
∥αpθt (xt) · f∗t (xt)− βpθt (xt) · fθt (xt)∥2

(1− α)p∗t (xt)
=

∥α · f∗t (xt)− βfθt (xt)∥2

(1− α)

(pθt (xt))
2

p∗t (xt)
→ 0.

Notably, in this configuration, the distance drops even faster than when α = β = 1, what makes it
even less preferable.

• Configuration β ̸= α affects the uncovered real data points xt : pθt (xt) → 0, p∗(xt) ≫ 0:

lt(xt, β, α) ≈
∥p∗t (xt)(β − α) · f∗t (xt)− βpθt (xt) · fθt (xt)∥2

(1− α)p∗t (xt)
≫ 0.

For visual illustration, we analytically calculated the loss surface lt(xt, α, β) between the FM models
transforming one-dimensional real data Gaussian N (µ∗, 1) and generated Gaussian N (µθ, 1) to
noise N (0, 1) on the time interval [0, 1]. In this case, the generated and real data interpolations
are pθt (xt) = N (xt|µθ(1 − t), t2 + (1 − t)2) and p∗t (xt) = N (xt|µ∗(1 − t), t2 + (1 − t)2). The
unconditional vector field u between N (0, 1) and N (µ, 1) can be calculated as

ut(xt) = Ex0∼p0(·|xt)

[
xt − x0

t

]
=

∫
x0

(
xt − x0

t

)
· N

(
xt − x0(1− t)

t
|0, 1

)
· N (x0|µ, 1)dx0

=
a(2t2 − 2t)− bt2√
2π(1− 2t+ 2t2)

3
2

exp

(
− (xt − µ(1− t))2

2(1− 2t+ 2t2)2

)
. (22)

In Figure 3, we can see that configurations α = β do not notice the real data sample, while α ̸= β
actually spots both domains, increasing the weight of generator domain when β > α and decreasing
it otherwise.

A.2 GENERAL REALUID LOSS

We recall that UID loss (Theorem 1) can be restated via linearization technique with δ = f∗ − f as:

LUID(δ, p
θ
0) = Et∼[0,T ]Exθ

0∼pθ0,xθ
t∼pθt (·|xθ

0)

{
−∥δt(xθt )∥2 + 2⟨δt(xθt ), f∗t (xθt )⟩ − 2⟨δt(xθt ), fθt (xθt |xθ0)⟩

}
.

In turn, after real data incorporation, we obtain our RealUID loss (Theorem 2). Putting the explicit
values for RealUM loss (17) in RealUID loss (18), we get the explicit formula:

Lα,βR-UID(δ, p
θ
0) = Et∼[0,T ]Exθ

0∼pθ0,xθ
t∼pθt (·|xθ

0)
[−α∥δt(xθt )∥2 + 2α⟨δt(xθt ), f∗t (xθt )⟩ − 2β⟨δt(xθt ), fθt (xθt |xθ0)⟩]

+Et∼[0,T ]Ex∗
0∼p∗0 ,x∗

t∼p∗t (·|x∗
0)
[−(1− α)∥δt(x∗t )∥2 + 2(1− α)⟨δt(x∗t ), f∗t (x∗t )⟩ − 2(1− β)⟨δt(x∗t ), f∗t (x∗t |x∗0)⟩].
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These two formulas give us alternative explanation on how to add real data into arbitrary losses: we
need to split each term in the linearized representation of the data-free loss between real and generated
data. For example, in RealUID loss, its three terms are split with proportions α, α, β, respectively.
We can go even further and split the first quadratic coefficient −∥δt(·)∥2 using a new parameter
γ ∈ (0, 1] to create one more degree of freedom. Moreover, we can use other parametrization of δ,
since its form does not change the proofs.

Definition 3. We introduce General RealUID loss Lα,β,γR-UID(δ, p
θ
0) on generated data pθ0 ∈ P(RD)

with coefficients α, β, γ ∈ (0, 1]:

Lα,β,γR-UID(δ, p
θ
0) := Et∼[0,T ]Exθ

0∼pθ0,xθ
t∼pθt (·|xθ

0)
[−γ∥δt(xθt )∥2 + 2α⟨δt(xθt ), f∗t (xθt )⟩ − 2β⟨δt(xθt ), fθt (xθt |xθ0)⟩]

+Et∼[0,T ]Ex∗
0∼p∗0 ,x∗

t∼p∗t (·|x∗
0)
[−(1− γ)∥δt(x∗t )∥2 + 2(1− α)⟨δt(x∗t ), f∗t (x∗t )⟩ − 2(1− β)⟨δt(x∗t ), f∗t (x∗t |x∗0)⟩].

Optionally, one can change default reparameterization δ = f∗ − f or substitute sampled real data
term f∗t (x

∗
t |x∗0) with the unconditional teacher f∗t (x

∗
t ).

In case of δ = f∗ − f and γ ̸= α, the General RealUID loss cannot be expressed as inverse min-max
problem (16) for simple losses, since some scalar products do not eliminate each other. Nevertheless,
min-max optimization of Lα,β,γR-UID still minimizes the similar squared ℓ2-distance between the weighted
teacher and generator-induced functions, attaining minimum when pθ0 = p∗0.

Lemma 3 (Distance minimized by General RealUID loss). Maximization of General RealUID
loss Lα,β,γR-UID over δ represents the squared ℓ2-distance between the weighted teacher f∗ and student
function fθ := argminf LUM(f, p

θ
0):

max
δ

Lα,β,γR-UID(δ, p
θ
0) = Et∼[0,T ]Ex∗

t∼p∗t

[
∥(p∗t (x∗t )(β − α) + αpθt (x

∗
t )) · f∗t (x∗t )− βpθt (x

∗
t ) · fθt (x∗t )∥2

p∗t (x
∗
t )((1− γ)p∗t (x

∗
t ) + γpθt (x

∗
t ))

]
.

The distances being minimized for RealUID (Lemma 2) and General RealUID (Lemma 3) are almost
identical except the scale factor in the denominator. Thus, we keep the same recommendations for
choosing coefficients α, β as we discuss in §A.1.2. The optimal choice is slightly different α ̸= β
which are close to 1. Coefficient γ should also be close to 1, but not exactly 1.

Proof. First, we write down General RealUID loss (Def. 3) in an explicit form with δt = f∗t − ft

Lα,βR-UID(δ, p
θ
0) = Et∼[0,T ]Exθ

t∼pθt [−γ∥δt(x
θ
t )∥2 + 2α⟨δt(xθt ), f∗t (xθt )⟩ − 2β⟨δt(xθt ), fθt (xθt )⟩]

+Et∼[0,T ]Ex∗
t∼p∗t [−(1− γ)∥δt(x∗t )∥2 + 2(1− α)⟨δt(x∗t ), f∗t (x∗t )⟩ − 2(1− β)⟨δt(x∗t ), f∗t (x∗t )⟩].

Then, we rescale the generated data terms in the General RealUID loss using the equality pθt (xt) =
pθt (xt)
p∗t (xt)

p∗t (xt) for xt ∈ RD (we assume p∗t (xt) > 0,∀xt, t) leaving only math expectation w.r.t. the

real data, i.e, Lα,β,γR-UID(δ, p
θ
0) =

Et∼[0,T ]Ex∗
t∼p∗t

[
−[(1− γ) + γ

pθt (x
∗
t )

p∗t (x
∗
t )
]∥δt(x∗t )∥2 + 2[(β − α) + α

pθt (x
∗
t )

p∗t (x
∗
t )
]⟨δt(x∗t ), f∗t (x∗t )⟩ − 2β

pθt (x
∗
t )

p∗t (x
∗
t )
⟨δt(x∗t ), fθt (x∗t )⟩

]
.

Then we maximize the loss w.r.t. δt(x∗t ) for each x∗t and t as a quadratic function. The maximum is
achieved when

δt(x
∗
t ) =

[(β − α) + α
pθt (x

∗
t )

p∗t (x
∗
t )
]f∗t (x

∗
t )− β

pθt (x
∗
t )

p∗t (x
∗
t )
fθt (x

∗
t )

[(1− γ) + γ
pθt (x

∗
t )

p∗t (x
∗
t )
]

.

The maximum itself equals to

max
δ

Lα,β,γR-UID(δ, p
θ
0) = Et∼[0,T ]Ex∗

t∼p∗t

∥f∗t (x∗t ) · ((β − α) + α
pθt (x

∗
t )

p∗t (x
∗
t )
)− fθt (x

∗
t ) · β

pθt (x
∗
t )

p∗t (x
∗
t )
∥2

(1− γ) + γ
pθt (x

∗
t )

p∗t (x
∗
t )

 .
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A.3 SID WITH REAL DATA

We recall that data-free UID loss (Theorem 1), which is equivalent to SiD loss with αSiD = 1/2, can
be restated via linearization technique with δ = f − f∗ as

LUID(δ, p
θ
0) = Et∼[0,T ]Exθ

0∼pθ0,xθ
t∼pθt (·|xθ

0)

{
−∥δt(xθt )∥2 + 2⟨δt(xθt ), f∗t (xθt )⟩ − 2⟨δt(xθt ), fθt (xθt |xθ0)⟩

}
.

(23)
In turn, after real data incorporation, we obtain our RealUID loss (Theorem 2). Putting the explicit
values for RealUM loss (17) in RealUID loss (18), we get the explicit formula:

Lα,βR-UID(δ, p
θ
0) = Et∼[0,T ]Exθ

0∼pθ0,xθ
t∼pθt (·|xθ

0)
[−α∥δt(xθt )∥2 + 2α⟨δt(xθt ), f∗t (xθt )⟩ − 2β⟨δt(xθt ), fθt (xθt |xθ0)⟩]

+Et∼[0,T ]Ex∗
0∼p∗0 ,x∗

t∼p∗t (·|x∗
0)
[−(1− α)∥δt(x∗t )∥2 + 2(1− α)⟨δt(x∗t ), f∗t (x∗t )⟩ − 2(1− β)⟨δt(x∗t ), f∗t (x∗t |x∗0)⟩].

These two formulas give us alternative explanation on how to add real data into arbitrary losses: we
need to split each term in the linearized representation of the data-free loss between real and generated
data. For example, in RealUID loss, its three terms are split with proportions α, α, β, respectively.

In SiD framework (Zhou et al., 2024a;b), the authors notice that UID loss (23), in which the
first coefficient −∥δt(xθt )∥2 is scaled by 2αSiD during generator updates, empirically yields better
performance. Namely, the SiD loss for generator with parameter αSiD is

LαSiD(p
θ
0) = Et∼[0,T ]Exθ

0∼pθ0,xθ
t∼pθt (·|xθ

0)

{
−2αSiD∥δt(xθt )∥2 + 2⟨δt(xθt ), f∗t (xθt )⟩ − 2⟨δt(xθt ), fθt (xθt |xθ0)⟩

}
.

Following the structure of generator SiD loss, we propose to scale the first coefficient in our RealUID
loss during generator updates. The whole SiD pipeline with real data determined by coefficients
α, β ∈ (0, 1], αSiD and teacher f∗ is two alternating steps:

1. Minimize the real data modified UM loss Lα,βR-UM(f, pθ0) (Def. 2) for the fake model f via several
update steps:

Lα,βR-UM(f, pθ0) = α · Et∼[0,T ]Exθ
0∼pθ0,xθ

t∼pθt (·|xθ
0)

[
∥ft(xθt )−

β

α
fθ(xθt |xθ0)∥2

]
︸ ︷︷ ︸

generated data pθ0 term

+ (1− α) · Et∼[0,T ]Ex∗
0∼p∗0 ,x∗

t∼p∗t (·|x∗
0)

[
∥ft(x∗t )−

1− β

1− α
f∗t (x

∗
t |x∗0)∥2

]
︸ ︷︷ ︸

real data p∗0 term

.

2. Make generator update step minimizing the loss Lα,βR-UID,αSiD
(pθ0) with δ = f − f∗ :

Lα,βR-UID,αSiD
(pθ0) = Et∼[0,T ]Exθ

0∼pθ0,xθ
t∼pθt (·|xθ

0)

{
−2αSiD · α · ∥δt(xθt )∥2 + 2α⟨δt(xθt ), f∗t (xθt )⟩ − 2β⟨δt(xθt ), fθt (xθt |xθ0)⟩

}
.

We keep the same recommendations for choosing coefficients α, β as we discuss in Appendix A.1.2.
The optimal choice is slightly different α ̸= β which are close to 1. Following (Zhou et al., 2024a),
the best choice for αSiD is αSiD ∈ [1, 1.2].

A.4 NORMALIZED UID AND REALUID LOSSES FOR MINIMIZING ℓ2-DISTANCE

Using the linearization technique from Section 3.1, we can estimate the non-squared ℓ2-distance
between the teacher f∗ := argminf LUM(f, p∗0) and student fθ := argminf LUM(f, pθ0) functions.
In this case, the connection with the inverse optimization disappears.

For a fixed point xθt and time t, we derive:

∥f∗t (xθt )− fθt (x
θ
t )∥ = max

δt(xθ
t )

{
⟨ δt(x

θ
t )

∥δt(xθt )∥
, f∗t (x

θ
t )− fθt (x

θ
t )⟩
}

= max
δt(xθ

t )
Exθ

0∼pθ0(·|xθ
t )

{
⟨ δt(x

θ
t )

∥δt(xθt )∥
, f∗t (x

θ
t )⟩ − ⟨ δt(x

θ
t )

∥δt(xθt )∥
, fθt (x

θ
t |xθ0)⟩

}
.(24)

With the reparameterization δt = f∗t − ft, the Normalized UID loss L̂UID(f, p
θ
0) for min-max

optimization to solve minθ Et∼[0,T ]Exθ
t∼pθt ∥f

∗
t (x

θ
t )− fθt (x

θ
t )∥ is:

min
θ

max
f

{
L̂UID(f, p

θ
0) := Et∼[0,T ]Exθ

0∼pθ0,xθ
t∼pθt (·|xθ

0)

[
⟨ f∗t (x

θ
t )− ft(x

θ
t )

∥f∗t (xθt )− ft(xθt )∥
, f∗t (x

θ
t )− fθt (x

θ
t |xθ0)⟩

]}
. (25)
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Adding real data. Following the intuition from the proof for RealUID in Appendix A.1.1, we
can incorporate real data in Normalized UID loss (25) as well. We need to split two summands in
the linearized representation (24) into generated and real data parts with weights α, (1 − α) and
β, (1− β).

Definition 4. We introduce Normalized RealUID loss L̂α,βR-UID(f, p
θ
0) on generated data pθ0 ∈ P(RD)

with coefficients α, β ∈ (0, 1]:

L̂α,βR-UID(f, p
θ
0) := Et∼[0,T ]Exθ

t∼pθt ,xθ
0∼pθ0(·|xθ

t )

{
⟨ f∗t (x

θ
t )− ft(x

θ
t )

∥f∗t (xθt )− ft(xθt )∥
, α · f∗t (xθt )− β · fθt (xθt |xθ0)⟩

}
+Et∼[0,T ]Ex∗

t∼p∗t ,x∗
0∼p∗0(·|x∗

t )

{
⟨ f∗t (x

∗
t )− ft(x

∗
t )

∥f∗t (x∗t )− ft(x∗t )∥
, (1− α) · f∗t (x∗t )− (1− β) · f∗t (x∗t |x∗0)⟩

}
.

Similar to the proof of RealUID distance Lemma 2, we can show that min-max optimization of
Normalized RealUID loss minimizes the non-squared ℓ2-norm between the similar weighted student
fθ and teacher f∗ functions:

max
f

L̂α,βR-UID(f, p
θ
0) = Et∼[0,T ]Ex∗

t∼p∗t

[
∥((β − α) + α

pθt (x
∗
t )

p∗t (x
∗
t )
) · f∗t (x∗t )− β

pθt (x
∗
t )

p∗t (x
∗
t )

· fθt (x∗t )∥
]
.

This distance attains minimum when pθ0 = p∗0, justifying the procedure.

A.5 DMD APPROACH WITH REAL DATA

Distribution Matching Distillation (Luo et al., 2023; Wang et al., 2023; Yin et al., 2024b;a) (DMD)
approach distills Gaussian diffusion models with forward process xt = x0 + σtϵ, ϵ ∼ N (0, I).

This approach minimizes KL divergence Et∼[0,T ]DKL(p
θ
t ||p∗t ) = Et∼[0,T ]Exθ

t∼pθt

[
log
(
pθt (x

θ
t )

p∗t (x
θ
t )

)]
between the generated data pθt and the real data p∗t . The authors show the true gradient of
Et∼[0,T ]DKL(p

θ
t ||p∗t ) w.r.t. θ can be computed via the score functions:

Et∼[0,T ]

[
dDKL(p

θ
t ||p∗t )

dθ

]
= Ez∼pZ ,xθ

0=G(z),xθ
t∼pθt

[
(∇xθ

t
ln pθt (x

θ
t )−∇xθ

t
ln p∗t (x

θ
t ))

dGθ(z)

dθ

]
.

Then, this true gradient is estimated with the teacher score function s∗ := argmins LDSM(s, p∗0) and
student score sθ = argmins LDSM(s, pθ0) at each time moment:

Et∼[0,T ]

[
dDKL(p

θ
t ||p∗t )

dθ

]
= Et∼[0,T ]Ez∼pZ ,xθ

0=Gθ(z),xθ
t∼pθt

[
(sθt (x

θ
t )− s∗t (x

θ
t ))

dGθ
dθ

]
.

The final algorithm alternates updates for the fake model and the generator similar to SiD approach.

We would like to highlight that DMD does not fit our UID framework. The UID loss is uniquely
determined by its input UM loss. In the case of Diffusion models and DMD, the UM loss is the
LDSM (s, pθ0) loss. With this loss, the resulting UID loss becomes exactly the SiD loss, not DMD.

Nevertheless, we investigated an opportunity to incorporate real data into the DMD framework. We
found that we can use the Modified DSM loss (17) to train the modified student score function
sθ,αt = argmins L

α,α
M−DSM (s, pθ0) with coefficients α = β:

Lα,αM−DSM (s, pθ0) := α · Et∼[0,T ]Exθ
0∼pθ0,xθ

t∼pθt (·|x0)

[
∥st(xθt )− sθ(xθt |xθ0)∥2

]︸ ︷︷ ︸
generated data pθ0 term

+ (1− α) · Et∼[0,T ]Ex∗
0∼p∗0 ,x∗

t∼p∗t (·|x∗
0)

[
∥st(x∗t )− s∗t (x

∗
t |x∗0)∥2

]︸ ︷︷ ︸
real data p∗0 term

.

Then apply the generator parameters update based on the KL divergence between mixed distributions.
Lemma 4 (DMD with real data). Consider real data distribution p∗0 ∈ P(RD) and generated
by generator Gθ distribution pθ0 ∈ P(RD). Then, KL divergence between mixed and real data for
α ∈ (0, 1] has the following gradients with modified student score sθ,αt := argmins L

α,α
M-DSM(s, p

θ
0)

and teacher score s∗t := argmins LDSM(s, p
∗
0):

Et∼[0,T ]

[
dDKL(α · pθt + (1− α) · p∗t ||p∗t )

dθ

]
= Et∼[0,T ]Ez∼pZ ,xθ

0=Gθ(z),xθ
t∼pθt

[
α(sθ,αt (xθt )− s∗t (x

θ
t ))

dGθ
dθ

]
.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

In the proof below, we show that use of coefficients α ̸= β in the fake model loss leads to the total
collapse of a generator. The proof itself follows the work (Wang et al., 2023).

Proof. We aim to minimize KL divergence between generated distribution pθ0 and the real data p∗0

min
pθ0

E(pθ0) := Et∼[0,T ]

[
DKL(α · pθt + (1− α) · p∗t ||p∗t )

]
.

First, we use (Wang et al., 2023, Lemma 1) which says that, for any two distributions p, q ∈ P(RD)
and point x ∈ RD, we have(

δDKL(q||p)
δq

)
[x] = log q(x)− log p(x) + 1.

Second, for the parametrization xθ0 = Gθ(z), z ∼ pZ and a fixed point xt, we have (Wang et al.,
2023, Lemma 2)

δpθt (xt)

δpθ0
[θ] =

∫
z

pθt (xt|xθ0)pZ(z)dz.

It allows us to obtain

δE(pθ0)

δpθ0
[θ] = Et

δDKL(

=:qt︷ ︸︸ ︷
α · pθt (·) + (1− α) · p∗t (·)||p∗t (·))

δpθ0
[θ]

= Et
∫
δDKL(qt||p∗t )

δqt
[xt] ·

δqt
δpθt

[xt] ·
δpθt (xt)

δpθ0
[θ] · dxt

= Et
∫ [

log(α · pθt (xt) + (1− α) · p∗t (xt))− log(p∗t (xt)) + 1
]
· α ·

∫
z

pθt (xt|xθ0)pZ(z)dz · dxt

= Et,ϵ,z[α log(α · pθt (xθt ) + (1− α) · p∗t (xθt ))− α log(p∗t (x
θ
t )) + α]

= Et,ϵ,z[α log

(
α · p

θ
t (x

θ
t )

p∗t (x
θ
t )

+ (1− α)

)
+ α], (26)

where xθ0 = Gθ(z), x
θ
t = xθ0 + σtϵ, ϵ ∼ N (0, I). Finally, we take derivative w.r.t. θ from (26):

∇θ
δE(pθ0)

δpθ0
[θ] = Et,ϵ,z

[
α · ∇xθ

t
log

(
α · p

θ
t (x

θ
t )

p∗t (x
θ
t )

+ (1− α)

)
· ∂x

θ
t

∂θ

]
= Et,ϵ,z

[
α · ∇xθ

t
log

(
α · p

θ
t (x

θ
t )

p∗t (x
θ
t )

+ (1− α)

)
· ∂Gθ(z)

∂θ

]

= Et,ϵ,z

α2
∇xθ

t

pθt (x
θ
t )/p∗t (x

θ
t )

α · p
θ
t (x

θ
t )

p∗(xθ
t )

+ (1− α)
· ∂Gθ(z)

∂θ

 . (27)

Now, we show how to obtain unbiased estimate of this gradient. We minimize the following loss
function over the fake model s:

Lα,αM−DSM (s, pθ0) := α · Et∼[0,T ]Exθ
t∼pθt ,xθ

0∼pθ0(·|xt)

[
∥st(xθt )− sθ(xθt |xθ0)∥2

]
+ (1− α) · Et∼[0,T ]Ex∗

t∼p∗t ,x∗
0∼p∗0(·|x∗

t )

[
∥st(x∗t )− s∗t (x

∗
t |x∗0)∥2

]
.

This loss is equivalent to the following sequence

min
s

{
αEt∼[0,T ]Exθ

t∼pθt ∥st(x
θ
t )− sθt (x

θ
t )∥2 + (1− α)Et∼[0,T ]Ex∗

t∼p∗t ∥st(x
∗
t )− s∗t (x

∗
t )∥2

}
,

min
s

{
αEt∼[0,T ]Exθ

t∼pθt ∥st(x
θ
t )−∇xθ

t
log pθt (x

θ
t )∥2 + (1− α)Et∼[0,T ]Ex∗

t∼p∗t ∥st(x
∗
t )−∇x∗

t
log p∗t (x

∗
t )∥2

}
,

min
s

Et∼[0,T ]Ex∗
t∼p∗t

[
α∥st(x∗t )−∇ log pθt (x

∗
t )∥2

pθt (x
∗
t )

p∗t (x
∗
t )

+ (1− α)∥st(x∗t )−∇ log p∗t (x
∗
t )∥2

]
.
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The optimal solution sθ,α of this quadratic minimization for each point xt and time moment t is

sθ,αt (xt) =
α
pθt (xt)
p∗t (xt)

∇xt
log pθt (xt) + (1− α)∇xt

log p∗t (xt)

α
pθt (xt)
p∗t (xt)

+ (1− α)
.

Thus, we have the following estimate with modified student score sθ,α and teacher score s∗t (xt) :=
∇xt

log p∗t (xt)

sθ,αt (xt)− s∗t (xt) =
α
pθt (xt)
p∗t (xt)

∇xt log p
θ
t (xt) + (1− α)∇xt log p

∗
t (xt)

α
pθt (xt)
p∗t (xt)

+ (1− α)
−∇xt

log p∗t (xt)

=
α
pθt (xt)
p∗t (xt)

(∇xt log p
θ
t (xt)−∇xt log p

∗
t (xt))

α
pθt (xt)
p∗t (xt)

+ (1− α)

=
α
pθt (xt)
p∗t (xt)

∇xt log
pθt (xt)
p∗t (xt)

α
pθt (xt)
p∗t (xt)

+ (1− α)
=

α∇xt
pθt (xt)/p∗t (xt)

α
pθt (xt)
p∗t (xt)

+ (1− α)
.

Hence, this estimate completely matches with required gradient (27):

(27) = Et,ϵ,z
[
α · (sθ,α(xθt )− s∗t (x

θ
t )) ·

∂Gθ(z)

∂θ

]
.

Use of other coefficients during student score optimization does not work. For the other student
scores sθ,α,βt := argmins L

α,β
M-DSM(s, pθ0), the estimate sθ,α,βt (xt)−∇xt

log p∗t (xt) does not lead to
the necessary difference ∇xt

log pθt (xt)−∇xt
log p∗t (xt|c) = 0. And the optimal generator collapses

due to large bias.

B REALUID ALGORITHM FOR FLOW MATCHING MODELS

We provide a practical implementation of our RealUID approach for FM. In the loss functions, we
retain only the terms dependent on the target parameters. For the fake model, we reformulate the
maximization objective as a minimization. We use alternating optimization, updating the fake model
K times per one student update for stability.

C UNIFIED INVERSE DISILLATION FOR BRIDGE MATCHING AND
STOCHASTIC INTERPOLANTS

C.1 BRIDGE MATCHING

Bridge Matching (Liu et al., 2022b; Peluchetti, 2023) is an extension of diffusion models specifically
design to solve data-to-data, e.g. image-to-image problems. Typically, the distribution pT is the
distribution of ”corrupted data” and p0 is the distribution of clean data, furthermore, there is some
coupling of clean and corrupted data π(x0, xT ) with marginals p0(x0) and pT (xT ). To construct
the diffusion which recovers clean data given a corrupted data, one first needs to build prior process
(which often is the same forward process used in diffusions):

dxt = ft(xt) + gtdwt,

where ft(·) is a drift function and gt is a time-dependent scalar noise scheduler. This prior process
defines conditional density pt(xt|x0) and the posterior density pt(xt|x0, xT ) called ”diffusion bridge”.
To recover p0 from pT , one can use reverse-time SDE

dxt =
(
ft(xt)− g2t · vπ(xt)

)
dt+ gtdw̄t,

where the drift vπt (xt) is learned via solving of the bridge matching problem:

LBM(v, π) = Et∼[0,T ],(x0,xT )∼π(x0,xT ),xt∼pt(xt|x0,xT )

[
wt∥vt(xt)−∇xt

log pt(xt|x0)∥2
]
. (28)
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Algorithm 1 Real data modified Unified Inversion Distillation (RealUID) for Flow Matching

Input: teacher u∗, student generator Gθ, fake model uψ, real data p∗0, coefficients α, β ∈ (0, 1],
generator update steps K, number of iterations N , batch size B, fake model minimizer Optst,
generator minimizer Optgen, latent distribution pZ , noise distribution p1.

1: for n = 0, . . . , N − 1 do
2: Sample noise batch {x1,i}Bi=1 ∼ p1 and generated batch {xθ0,i = Gθ(zi)}Bi=1, zi ∼ pZ ;
3: Sample time batch {ti}Bi=1 ∼ U [0, 1] and calculate xθti,i = (1− ti)x

θ
0,i + tix1,i;

4: if student step (n%K ̸= 0) then
5: Sample real data batch {x∗0,i}Bi=1 ∼ p∗0 and calculate x∗ti,i = (1− ti)x

∗
0,i + tix1,i;

6: Update fake model parameters ψ via minimizer Optst step with gradients of

1

B

B∑
i=1

[
α∥uψ(ti, xsg[θ]ti,i

)− β

α
(x1,i − x

sg[θ]
0,i )∥2 + (1− α)∥uψ(ti, x∗ti,i)−

1− β

1− α
(x1,i − x∗0,i)∥2

]
;

7: else
8: Update generator parameters θ via minimizer Optgen step with gradients of

1

B

B∑
i=1

[
α∥u∗(ti, xθti,i)−

β

α
(x1,i − xθ0,i)∥2 − α∥usg[ψ](ti, xθti,i)−

β

α
(x1,i − xθ0,i)∥2

]
;

9: end if
10: end for

However, this reverse-time diffusion in general does not guarantee that the produced samples come
from the same coupling π(x0, xT ) used for training. This happens only if π(x0, xT ) solves entropic
optimal transport between p0 and pT . To guarantee the preservance of the coupling π(x0, xT ), there
exists another version of Bridge Matching called either Augmented Bridge Matching or Conditional
Bridge Matching, which differs only by addition of a condition on xT to the drift function vt(xt, xT ):

LABM(v, π) = Et∼[0,T ],(x0,xT )∼π(x0,xT ),xt∼p(xt|x0,xT )

[
wt∥vt(xt, xT )−∇xt

log pt(xt|x0)∥22
]
.

The learned conditional drift is then used for sampling via the reverse-time SDE starting from a given
xT ∼ pT :

dxt =
(
ft(xt)− g2t · vπt (xt, xT )

)
dt+ gtdw̄t.

C.2 STOCHASTIC INTERPOLANTS

The Stochastic Interpolants framework generalizes Flow Matching and diffusion models, constructing
a diffusion or flow between two given distributions p0 and pT . To do so, one needs to consider the
interpolation between any pair of points (x0, xT ) which are sampled from the coupling π(x0, xT )
with marginals p0 and pT . The interpolation itself is given by formula

xt = I(t, x0, xT ) + γtϵ, ϵ ∼ N (0, I), t ∈ [0, T ],

where I(0, x0, xT ) = x0, I(T, x0, xT ) = xT , γ0 = γT = 0 and γt > 0 for all t ∈ (0, T ). This
interpolant defines a conditional Gaussian path pt(xt|x0, xT ). Note that in the original paper (Albergo
et al., 2023), the authors consider the time interval [0, 1], but those two intervals are interchangeable
by using a change of variable t′ = T

t . Thus, the ODE interpolation between p0 and pT is given by:

dxt = ut(xt)dt, x0 ∼ p0,

where ut(x, xT ) := E[ẋt|xt = x] = E[∂tI(t, x0, xT ) + γ̇ϵ|xt = x] is the unique minimizer of the
quadratic objective:

LSI(v, π) = Et∼[0,T ],(x0,xT )∼π(x0,xT ),(xt,ϵ)∼p(xt|x0,xT )

[
wt∥vt(xt, xT )− (∂tI(t, x0, xT ) + γ̇tϵ))∥2

]
.

(29)
The authors also provide a way of matching the score and the SDE drift of the reverse process by
solving similar MSE matching problems.
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Table 6: Ablation of the fine-tuning for αFT and βFT for unconditional (left) and conditional (right) generation.
Each cell reports the resulting FID score for the corresponding (αFT, βFT); “–” indicates the method did not
converge. Best results are bolded.

αFT/βFT 0.94 0.96 0.98 1.0

0.94 - - 2.07 2.03
0.96 - - - 2.11
0.98 2.07 - - -
1.0 - - - -

αFT/βFT 0.94 0.96 0.98 1.0

0.94 - - 1.96 1.91
0.96 - - - 1.96
0.98 1.95 - - -
1.0 - - - -

C.3 OBJECTIVE FOR UNIFIED INVERSE DISTILLATION FOR GENERAL DATA COUPLING

The essential difference of Bridge Matching and Stochastic Interpolants from diffusion models and
Flow Matching with a Gaussian path is that they additionally introduce coupling π(x0, xT ) used to
sample xt and can work with conditional drifts.

This difference can be easily incorporated to our RealUID distillation framework just by parametrizing
the generator Gθ to output not the samples from the initial distribution pθ0, but from the coupling
πθ. One can do it by setting πθ(x0, xT ) = pT (xT )π

θ
0(x0|xT ), where conditional data distribution

πθ0(x0|xT ) is parametrized by the student generator Gθ : Z × RD → RD conditioned on a sample
xT ∼ pT . This approach is specifically used in Inverse Bridge Matching Distillation (IBMD)
(Gushchin et al., 2024). Hence, our Universal Inverse Distillation objective can be written just by
substituting student distribution pθ0 by student coupling πθ, substituting real data p∗0 by real data
coupling π∗ and adding extra conditions.
Definition 5. We define Universal Matching loss with real data for general coupling on generated
data coupling πθ ∈ P(RD × RD) with α, β ∈ (0, 1]:

Lα,βR-UM-coup(f, π
θ) = α · Et∼[0,T ]ExT∼pT ,xθ

0∼πθ
0(·|xT ),xθ

t∼pθt (·|xθ
0,xT )

[
∥ft(xθt , xT )−

β

α
fθ(xθt |xθ0, xT )∥2

]
︸ ︷︷ ︸

generated data πθ term

+ (1− α) · Et∼[0,T ]ExT∼pT ,x∗
0∼π∗

0 (·|xT ),x∗
t∼p∗t (·|x0,xT )

[
∥ft(x∗t , xT )−

1− β

1− α
f∗t (x

∗
t |x∗0, xT )∥2

]
︸ ︷︷ ︸

real data π∗ term

.

And the corresponding Universal Inverse Distillation loss with real data for general coupling is:

min
θ

max
f

{Lα,βR-UID-coup(f, π
θ) := Lα,βR-UM-coup(f

∗, πθ)− Lα,βR-UM-coup(f, π
θ)}.

In case of coupling matchπθ = π∗, the RealUID loss for couplings attains its minimum, .i.e.,

min θ{Lα,βR-UM-coup(f
∗, πθ)−min f{Lα,βR-UM-coup(f, π

θ)}︸ ︷︷ ︸
≥0

} = Lα,βR-UM-coup(f
∗, π∗)−min f{Lα,βR-UM-coup(f, π

∗)}︸ ︷︷ ︸
=Lα,β

R-UM-coup(f
∗,π∗)

= 0.

D EXPERIMENTAL DETAILS

Training hyperparameters. We train with AdamW (Loshchilov & Hutter, 2017), using (β1, β2) =
(0, 0.999). The learning rate is 3× 10−5 for training from scratch and 1× 10−5 for fine-tuning. A
500-step linear warm-up is applied only when training from scratch. We use a batch size of 256 and
maintain an EMA of the generator parameters with decay 0.999. To regulate adaptation between the
generator and the fake model, the generator is updated once for every K = 5 updates of the fake
model, following DMD2 (Yin et al., 2024a). Additionally, at each optimization step we apply ℓ2
gradient-norm clipping with threshold 1.0 to both the generator and the fake model.

Training time. All distillation experiments were trained for 400,000 gradient updates, correspond-
ing to approximately 4.5 days. All finetuning experiments were conducted for 100,000 gradient
updates, which took a little more than 1 day, starting from the best distillation checkpoints. All
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experiments were executed on a single Ascend910B NPU with 65 GB of VRAM memory. The
reported results are based on the checkpoints that achieved the best Fréchet Inception Distance (FID)
during training.

Codebase and Dataset. Building on the reference codebase of Tong et al. (2023), which serves as
our primary experimental infrastructure, we integrate the training algorithm described in Algorithm 1.
We evaluate the resulting approach on CIFAR-10 (32×32) under both conditional and unconditional
settings, benchmarking against established baselines.

Models Initialization and Generator Parametrization. The generatorGθ is initialized by replicat-
ing both the architecture and parameters of the teacher model f∗, while the fake model f is initialized
with random weights. We parameterize the generator using a residual formulation:

Gθ(z) = z + gθ(0, z),

where the input t = 0 corresponds to the fixed control input used in the teacher model f∗. Empirically,
we observe that this initialization strategy and parameterization lead to improved performance.

GAN details We integrate a GAN loss into our framework in line with SiD2A and DMD2 (Zhou
et al., 2024a; Yin et al., 2024a). In the original setup of Zhou et al. (2024a), the adversarial loss
employs a coefficient ratio of λDadv/λ

Gθ

adv = 102 (see Table 6 in Zhou et al. (2024a)), a choice that
poses practical difficulties due to the extreme imbalance between generator and discriminator losses.
To mitigate this issue, we adopt the formulation of Yin et al. (2024a), where the ratio is ≈ 3, and
evaluate different coefficient scales (see result in the Table 1).

Evaluation protocol. We evaluate image quality using the Fréchet Inception Distance (FID; Heusel
et al., 2017), computed from 50,000 generated samples following Karras et al. (2022; 2020; 2019). In
line with SiD (Zhou et al., 2024b), we periodically compute FID during distillation and select the
checkpoint achieving the minimum value. To ensure statistical reliability, we repeat the evaluation
over 3 independent runs—rather than 10, as in SiD—because the empirical variance of FID in our
experiments was below 0.01.

E THE USE OF LARGE LANGUAGE MODELS (LLMS)

Large Language Models were used only to check and correct grammar, as well as to rephrase short
parts of the text for improved clarity.

F ADDITIONAL RESULTS

F.1 FINE-TUNING ABLATION STUDY OF COEFFICIENTS αFT, βFT .

This section presents an ablation of the fine-tuning stage over the loss-balancing coefficients αFT and
βFT. Results are summarized in Table 6, where “–” denotes non-convergence. We observe that training
is highly sensitive to the choice of (αFT, βFT): many configurations do not converge, underscoring
the need for careful selection. Notably, the same set of (αFT, βFT) exhibit stable optimization and
yield improved FID for both conditional and unconditional CIFAR-10 generation.

F.2 EXAMPLE OF SAMPLES FOR DIFFERENT METHODS.

This section presents representative sample outputs from various studies conducted within the
RealUID framework.
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Figure 4: Uncurated samples for unconditional generation by the one-step RealUID (α = 1.0, β =
1.0) trained on CIFAR-10. Quantitative results are reported in Table 2.
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Figure 5: Uncurated samples for unconditional generation by the one-step RealUID (α = 1.0, β =
1.0) + GAN (λGθ

adv = 0.3, λDadv = 1) trained on CIFAR-10. Quantitative results are reported in Table 2.
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Figure 6: Uncurated samples for unconditional generation by the one-step RealUID (α = 0.94, β =
0.96) trained on CIFAR-10. Quantitative results are reported in Table 2.
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Figure 7: Uncurated samples for unconditional generation by the one-step RealUID (α = 0.94, β =
0.96 | αFT = 0.94, βFT = 1.0) trained on CIFAR-10. Quantitative results are reported in Table 2.
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Figure 8: Uncurated samples for conditional generation by the one-step RealUID (α = 1.0, β = 1.0)
trained on CIFAR-10. Quantitative results are reported in Table 2.
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Figure 9: Uncurated samples for conditional generation by the one-step RealUID (α = 1.0, β = 1.0)
+ GAN (λGθ

adv = 0.3, λDadv = 1) trained on CIFAR-10. Quantitative results are reported in Table 2.
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Figure 10: Uncurated samples for conditional generation by the one-step RealUID (α = 0.98, β =
0.96) trained on CIFAR-10. Quantitative results are reported in Table 2.
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Figure 11: Uncurated samples for conditional generation by the one-step RealUID (α = 0.98, β =
0.96 | αFT = 0.94, βFT = 1.0) trained on CIFAR-10. Quantitative results are reported in Table 2.
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