

000
001
002
003
004
005 **UNIVERSAL INVERSE DISTILLATION FOR MATCHING**
006 **MODELS WITH REAL-DATA SUPERVISION (NO GANs)**
007
008
009

010 **Anonymous authors**
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Paper under double-blind review

ABSTRACT

While achieving exceptional generative quality, modern diffusion, flow, and other matching models suffer from slow inference, as they require many steps of iterative generation. Recent distillation methods address this by training efficient one-step generators under the guidance of a pre-trained teacher model. However, these methods are often constrained to only one specific framework, e.g., only to diffusion or only to flow models. Furthermore, these methods are naturally data-free, and to benefit from the usage of real data, it is required to use an additional complex adversarial training with an extra discriminator model. In this paper, we present **RealUID**, a universal distillation framework for all matching models that seamlessly incorporates real data into the distillation procedure without GANs. Our **RealUID** approach offers a simple theoretical foundation that covers previous distillation methods for Flow Matching and Diffusion models, and is also extended to their modifications, such as Bridge Matching and Stochastic Interpolants.

1 INTRODUCTION

In generative modeling, the goal is to learn to sample from complex data distributions (e.g., images), and two powerful paradigms for it are the **Diffusion Models** (DM) and the **Flow Matching** (FM) models. While they share common principles and are even equivalent under certain conditions (Holderrieth et al., 2024; Gao et al., 2025), they are typically studied separately. Diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2021) transform data into noise through a forward process and then learn a reverse-time stochastic differential equation (SDE) to recover the data distribution. Training minimizes score-matching objectives, yielding unbiased estimates of intermediate scores. Sampling requires simulating the reverse dynamics, which is computationally heavy but delivers high-quality and diverse results. Flow Matching (Lipman et al., 2023; Liu, 2022) instead interpolates between source and target distributions by learning the vector field of an ordinary differential equation (ODE). The field is estimated through unbiased conditional objectives, but the resulting ODE often has curved trajectories, making sampling costly due to expensive integration. Beyond these, **Bridge Matching** (Peluchetti, 2023; Liu et al., 2022b) and **Stochastic Interpolants** (Albergo et al., 2023) generalize the framework and naturally support *data couplings*, which are crucial for data-to-data translation. Since all of the above optimize *conditional matching* objectives to recover an ODE/SDE for generation, we refer to them collectively as *matching models*.

Despite their success, matching models share a major drawback: sampling is slow, as generation requires integrating many steps of an SDE or ODE. To address this, a range of distillation techniques have been proposed to compress multi-step dynamics into efficient one-step or few-step generators. Although matching models follow a similar mathematical framework, many distillation works consider only one particular framework, e.g., only Diffusion Models (Zhou et al., 2024a;b), Flow Matching (Huang et al., 2024), or Bridge Matching (Gushchin et al., 2025). Furthermore, these distillation methods are data-free by construction and cannot benefit from the utilization of real data without using additional GAN-based losses. *Thus, the following problems remain:*

1. Similar distillation techniques developed separately for similar matching models frameworks.
2. Absence of a natural way to incorporate real data in distillation procedures (without GANs).

Contributions. In this paper, we address these issues and present the following **main contributions**:

054 1. We present the *Universal Inverse Distillation with real data (RealUID)* framework for matching
 055 models, including diffusion and flow matching models (§3) as well as Bridge Matching and
 056 Stochastic Interpolants (Appendix C.). It unifies previously introduced Flow Generator Matching
 057 (FGM), Score Identity Distillation (SiD) and Inverse Bridge Matching Distillation (IBMD) meth-
 058 ods (§3.2) for flow, score and bridge matching models respectively, provides simple yet rigorous
 059 theoretical explanations based on a linearization technique, and reveals the connections between
 060 these methods and inverse optimization (§3.3).

061 2. Our RealUID introduces a novel and natural way to incorporate real data directly into the distilla-
 062 tion loss, eliminating the need for extra adversarial losses which require additional discriminator
 063 networks used in GANs from the previous works (§3.4).

064 **2 BACKGROUNDS ON TRAINING AND DISTILLING MATCHING MODELS**

065 We describe the Diffusion Models and Flow Matching frameworks (§2.1) and distillation methods for
 066 them (§2.3). Then, we discuss how real data can be added to distilling methods via GANs (§2.4)

067 **Preliminaries.** We work on the D -dimensional Euclidean space \mathbb{R}^D . This space is equipped with
 068 the standard scalar product $\langle x, y \rangle = \sum_{d=1}^D x_d y_d$, the ℓ_2 -norm $\|x\| = \sqrt{\langle x, x \rangle}$ and ℓ_2 -distance
 069 $\|x - y\|, \forall x, y \in \mathbb{R}^D$. We consider probability distributions from the set $\mathcal{P}(\mathbb{R}^D)$ of absolutely
 070 continuous distributions with finite variance and support on the whole \mathbb{R}^D .

071 **2.1 DIFFUSION AND FLOW MODELS**

072 **Diffusion models** (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2021) consider a forward
 073 noising process that gradually transforms clean data p_0 into a noise p_T on the time interval $[0, T]$:

$$074 \quad dx_t = f_t \cdot x_t dt + g_t \cdot dw_t, \quad x_0 \sim p_0,$$

075 where f_t and g_t are time-dependent scalars. This process defines a conditional distribution $p_t(x_t|x_0)$:

$$076 \quad p_t(x_t|x_0) = \mathcal{N}(\alpha_t x_0 | \sigma_t^2 \mathbf{I}), \quad \text{where}$$

$$077 \quad \alpha_t = \exp \left(\int_0^t f_s ds \right), \quad \sigma_t = \left(\int_0^t g_s^2 \exp \left(-2 \int_0^s f_u du \right) ds \right)^{1/2}.$$

078 Each conditional distribution admits a conditional score function, describing it:

$$079 \quad s_t(x_t|x_0) := \nabla_{x_t} \log p_t(x_t|x_0) = -(x_t - \alpha_t x_0) / \sigma_t^2.$$

080 The reverse dynamics from the noise distribution p_T to the data distribution p_0 is provided by the
 081 following reverse-time SDE:

$$082 \quad dx_t = (f_t \cdot x_t - g_t^2 \cdot s_t(x_t)) dt + g_t d\bar{w}_t,$$

083 where $s_t(x_t)$ is the unconditional score function of $p_t(x_t) = \int p(x_t|x_0)p(x_0)dx_0$ given by $s_t(x_t) =$
 084 $\mathbb{E}_{x_0 \sim p_0(\cdot|x_t)}[s_t(x_t|x_0)]$. This conditional expectation is learned via denoising score matching:

$$085 \quad \mathcal{L}_{\text{DSM}}(s', p_0) = \mathbb{E}_{t \sim [0, T], x_0 \sim p_0, x_t \sim p_t(\cdot|x_0)} [w_t \|s'_t(x_t) - s_t(x_t|x_0)\|_2^2], \quad (1)$$

086 where w_t are some positive weights. The reverse dynamics admits a probability flow ODE (PF-ODE):

$$087 \quad dx_t = (f_t \cdot x_t - g_t^2 \cdot s_t(x_t)/2) dt, \quad u_t(x_t) := (f_t \cdot x_t - g_t^2 \cdot s_t(x_t)/2),$$

088 which provides faster inference than the SDE formulation.

089 **Flow Matching** framework (Lipman et al., 2023; Liu et al., 2023) constructs the flow directly by
 090 learning the drift $u_t(x_t)$. Specifically, for each data point $x_0 \sim p_0$, one defines a conditional flow
 091 $p_t(x_t|x_0)$ with the corresponding conditional vector field $u_t(x_t|x_0)$ generating it via ODE:

$$092 \quad dx_t = u_t(x_t|x_0) dt.$$

093 Then to construct the flow between the noise p_T and data p_0 , one needs to compute the unconditional
 094 vector field $u_t(x_t) = \mathbb{E}_{x_0 \sim p_0(\cdot|x_t)}[u_t(x_t|x_0)]$ which generates the flow $p_t(x_t) = \int p(x_t|x_0)p(x_0)dx_0$.
 095 It can be done by solving the following Conditional Flow Matching problem:

$$096 \quad \mathcal{L}_{\text{CFM}}(v, p_0) = \mathbb{E}_{t \sim [0, T], x_0 \sim p_0, x_t \sim p_t(x_t|x_0)} [w_t \|v_t(x_t) - u_t(x_t|x_0)\|_2^2].$$

097 In practice, the most popular choice is the Gaussian conditional flows $p_t(x_t|x_0) = \mathcal{N}(\alpha_t x_0, \sigma_t^2 \mathbf{I})$.
 098 For this conditional flow samples can be obtained as $x_t = \alpha_t x_0 + \sigma_t \epsilon, \epsilon \sim \mathcal{N}(0, \mathbf{I})$ and the conditional
 099 drift can be calculated as $u_t(x_t|x_0) = \dot{\alpha}_t x_0 + \dot{\sigma}_t \epsilon$.

108 2.2 UNIVERSAL LOSS FOR MATCHING MODELS
109

110 From a mathematical point of view, it was shown in (Holderrieth et al., 2024; Gao et al., 2025) that
111 flow and diffusion models basically share the same loss structure. We recall this structure but use our
112 own notation. We call diffusion and flow models and their extensions as matching models.

113 Matching models work with a probability path $\{p_t\}_{t \in [0, T]}$ on the time interval $[0, T]$, trans-
114 forming the desired data $p_0 \in \mathcal{P}(\mathbb{R}^D)$ to the noise $p_T \in \mathcal{P}(\mathbb{R}^D)$. This path is built as a
115 mixture of simple conditional paths $\{p_t(\cdot | x_0)\}_{t \in [0, T]}$ conditioned on samples $x_0 \sim p_0$, i.e.,
116 $p_t(x_t) = \int_{\mathbb{R}^D} p_t(x_t | x_0) p_0(x_0) dx_0, \forall x_t \in \mathbb{R}^D$. The path $\{p_t\}_{t \in [0, T]}$ determines the function
117 $f^{p_0} : [0, T] \times \mathbb{R}^D \rightarrow \mathbb{R}^D$ which recovers it (e.g., score function or drift generating it). The
118 conditional paths also determine their own simple conditional functions $f_t^{p_0}(\cdot | x_0)$ so that they ex-
119 press $f_t^{p_0}(x_t) = \mathbb{E}_{x_0 \sim p_0(\cdot | x_t)} f_t^{p_0}(x_t | x_0)$, where $p_0(\cdot | x_t)$ denotes data distribution p_0 conditioned
120 on the sample x_t at time t . Since f^{p_0} cannot be computed directly, it is approximated by function
121 $f : [0, T] \times \mathbb{R}^D \rightarrow \mathbb{R}^D$ via minimizing the squared ℓ_2 -distance between the functions:

$$122 \quad \|f_t(x_t) - f_t^{p_0}(x_t)\|^2 = \|f_t(x_t) - \mathbb{E}_{x_0 \sim p_0(\cdot | x_t)} f_t^{p_0}(x_t | x_0)\|^2 \propto \mathbb{E}_{x_0 \sim p_0(\cdot | x_t)} \|f_t(x_t) - f_t^{p_0}(x_t | x_0)\|^2.$$

124 **Definition 1.** We define **Universal Matching (UM)** loss $\mathcal{L}_{\text{UM}}(f, p_0)$ that takes fake function f and
125 distribution $p_0 \in \mathcal{P}(\mathbb{R}^D)$ as arguments and upon minimization over f returns the function f^{p_0}

$$127 \quad \mathcal{L}_{\text{UM}}(f, p_0) := \mathbb{E}_{t \sim [0, T]} \mathbb{E}_{x_0 \sim p_0, x_t \sim p_t(\cdot | x_0)} \|f_t(x_t) - f_t^{p_0}(x_t | x_0)\|^2, f^{p_0} := \arg \min_f \mathcal{L}_{\text{UM}}(f, p_0), \quad (2)$$

128 where $t \sim [0, T]$ denotes uniform or weighted sampling of time t from the interval $[0, 1]$.

130 2.3 DISTILLATION OF MATCHING-BASED MODELS
131

132 To solve the long inference problem of matching models, a line of distillation approaches sharing
133 similar principles was introduced: **Score Identity Distillation (SiD)** (Zhou et al., 2024b), **Flow**
134 **Generator Matching (FGM)** (Huang et al., 2024), and **Inverse Bridge Matching Distillation**
135 (**IBMD**) (Gushchin et al., 2025), for diffusion, flow, and bridge matching models, respectively.

136 The **Score Identity Distillation (SiD)** approach (Zhou et al., 2024b;a) trains a student generator
137 $G_\theta : \mathcal{Z} \rightarrow \mathbb{R}^D$ (parameterized by θ) that produces a distribution p_0^θ from a latent distribution p^Z
138 on \mathcal{Z} . This approach minimizes the squared ℓ_2 -distance between the known teacher score function
139 $s^* := \arg \min_{s'} \mathcal{L}_{\text{DSM}}(s', p_0^*)$ on real data p_0^* and the unknown student score function s^θ :

$$140 \quad \mathbb{E}_{t \sim [0, T]} \mathbb{E}_{x_t^\theta \sim p_t^\theta} \|s_t^\theta(x_t^\theta) - s_t^*(x_t^\theta)\|^2, \quad \text{s.t. } s^\theta = \arg \min_{s'} \mathcal{L}_{\text{DSM}}(s', p_0^\theta), \quad (3)$$

142 where p_t^θ is the forward noising process for the generator distribution p_0^θ . The authors propose the
143 tractable loss without $\arg \min$ and with parameter α_{SiD} to approximate the real gradients of (3) :

$$145 \quad \mathcal{L}_{\text{SiD}}(\theta) := \mathbb{E}_{t \sim [0, T]} \mathbb{E}_{z \sim p^Z, x_0^\theta = G_\theta(z), x_t^\theta \sim p_t^\theta} [-2\omega_t \alpha_{\text{SiD}} \|s_t^*(x_t^\theta) - s_t^{sg[\theta]}(x_t^\theta)\|^2 + 2\omega_t (s_t^*(x_t^\theta) - s_t^{sg[\theta]}(x_t^\theta), s_t^*(x_t^\theta) - s_t^\theta(x_t^\theta | x_0^\theta))], \quad s^\theta = \arg \min_{s'} \mathcal{L}_{\text{DSM}}(s', p_0^\theta), \quad (4)$$

148 where gradients w.r.t. θ are not calculated for the variables under stop-gradient $sg[\cdot]$ operator. The
149 SiD pipeline is two alternating steps: first, refine the fake score $s^{sg[\theta]}$ by minimizing the DSM loss
150 (1) on new p_0^θ from the previous step. Then, update the generator G_θ using the gradient of (4) with
151 the frozen $s^{sg[\theta]}$. The α_{SiD} parameter is chosen from the range $[0.5, 1.2]$, although theoretically only
152 the value $\alpha_{\text{SiD}} = 0.5$ restores true gradient as we show in our paper.

153 The authors of **FGM** considered a similar approach, but for the Flow Matching models. Specifically,
154 they also use a generator G_θ to produce a distribution p_0^θ , but instead of denoising score matching
155 loss, consider conditional FM loss. The method minimizes the squared ℓ_2 -distance between the fields:

$$156 \quad \mathbb{E}_{t \sim [0, T]} \mathbb{E}_{x_t \sim p_t^\theta} \|u_t^\theta(x_t) - u_t^*(x_t)\|^2, \quad \text{s.t. } u^\theta := \arg \min_v \mathcal{L}_{\text{CFM}}(v, p_0^\theta), \quad (5)$$

158 where the interpolation path $\{p_t^\theta\}_{t \in [0, T]}$ is constructed between the noise p_T and generator p_0^θ
159 distributions. To avoid the same problem of differentiating through $\arg \min$ operator as in SiD, the
160 authors derive a tractable loss whose gradients match those of (5):

$$161 \quad \mathcal{L}_{\text{FGM}}(\theta) := \mathbb{E}_{t \sim [0, T]} \mathbb{E}_{z \sim p^Z, x_0^\theta = G_\theta(z), x_t^\theta \sim p_t^\theta} [-\|u_t^*(x_t^\theta) - u_t^{sg[\theta]}(x_t^\theta)\|^2] \quad (6)$$

$$+ 2\langle u_t^*(x_t^\theta) - u_t^{sg[\theta]}(x_t^\theta), u_t^*(x_t^\theta) - u_t^\theta(x_t^\theta | x_0^\theta) \rangle], \text{ s.t. } u^\theta = \arg \min_v \mathcal{L}_{\text{CFM}}(v, p_0^\theta).$$

We consider distillation of matching models working with data couplings such as Inverse Bridge Matching Distillation for Bridge Matching models and Stochastic Interpolants in Appendix C. Notably, all these approaches (SiD, FGM, IBMD) are *data-free*, i.e., they do not use any real data from p_0^* to train a generator by construction of the used objective functions.

2.4 GANs FOR REAL DATA INCORPORATION

FGM and SiD methods exhibit strong performance in one-step generation tasks. However, the generator in these methods is trained under the guidance of the teacher model alone. This means the generator cannot get more information about the real data that the teacher has learned. For example, it cannot correct the teacher's errors. To address this, recent works (Yin et al., 2024a; Zhou et al., 2024a) propose adding real data via a GAN framework (Goodfellow et al., 2014). In such approaches, the encoder of fake model f is typically augmented with an additional head to serve as a discriminator D with the following adversarial loss:

$$\mathcal{L}_{\text{adv}} = \mathbb{E}_{t \sim [0, T]} [\mathbb{E}_{x_t^* \sim p_t^*} [\ln D_t(x_t^*)] + \mathbb{E}_{x_t^\theta \sim p_t^\theta} [\ln [1 - D_t(x_t^\theta)]]]. \quad (7)$$

The overall objective in such hybrid frameworks (Zhou et al., 2024a) consists of:

Generator loss:

$$\mathcal{L}_{G_\theta} = \lambda_{\text{dist}} \mathcal{L}_{\text{FGM/SiD}}^{G_\theta} + \lambda_{\text{adv}}^{G_\theta} \mathcal{L}_{\text{adv}}^{G_\theta}, \quad (8)$$

Fake model loss:

$$\mathcal{L}_D = \lambda_{\text{dist}} \mathcal{L}_{\text{FGM/SiD}}^f + \lambda_{\text{adv}}^D \mathcal{L}_{\text{adv}}^D. \quad (9)$$

Here, λ_{dist} , $\lambda_{\text{adv}}^{G_\theta}$, and λ_{adv}^D are weighting coefficients for the distillation and adversarial components. Despite empirical gains, the GAN-augmented formulation entails nontrivial costs: it necessitates architectural modifications, such as an auxiliary discriminator head, and inherits the well-known optimization problems of adversarial training, such as non-stationary objectives, mode collapse, and sensitivity to training dynamics.

3 UNIVERSAL DISTILLATION OF MATCHING MODELS WITH REAL DATA

In this section, we present our novel RealUID approach for matching models enhanced by real data. First, we show that the previous data-free distillation methods can be unified under the single UID framework (§3.1). Then, we describe how this framework is connected to prior works (§3.2) and inverse optimization (§3.3). Using this intuition, we propose and discuss the real data modified UID framework (RealUID) with a natural way to incorporate real data without GANs (§3.4).

3.1 UNIVERSAL INVERSE DISTILLATION

To learn a complex real data distribution p_0^* , one usually trains a teacher function $f^* := \arg \min_f \mathcal{L}_{\text{UM}}(f, p_0^*)$ which is then used in a multi-step sampling procedure (Def. 1). To avoid time-consuming sampling, one can train a simple *student generator* $G_\theta : \mathcal{Z} \rightarrow \mathbb{R}^D$ with parameters θ to reproduce the real data p_0^* from the distribution p^Z on the latent space \mathcal{Z} . The teacher function serves as a guide that shows how close the student distribution p_0^θ and the real data p_0^* are. FGM and SiD methods (§2.3) train such generator via minimizing the squared ℓ_2 -distance between the known teacher function f^* and an unknown student function $f^\theta := \arg \min_f \mathcal{L}_{\text{UM}}(f, p_0^\theta)$:

$$\begin{aligned} \mathbb{E}_{t \sim [0, T]} \mathbb{E}_{x_t^\theta \sim p_t^\theta} \|f_t^*(x_t^\theta) - f_t^\theta(x_t^\theta)\|^2 &= \mathbb{E}_{t \sim [0, T]} \mathbb{E}_{x_t^\theta \sim p_t^\theta} \|f_t^*(x_t^\theta) - \mathbb{E}_{x_0^\theta \sim p_0^\theta(\cdot | x_t^\theta)} f_t^\theta(x_t^\theta | x_0^\theta)\|^2 \\ &= \mathbb{E}_{t \sim [0, T]} \mathbb{E}_{x_t^\theta \sim p_t^\theta} [\|f_t^*(x_t^\theta)\|^2] - 2\mathbb{E}_{t \sim [0, T]} \mathbb{E}_{x_t^\theta \sim p_t^\theta, x_0^\theta \sim p_0^\theta(\cdot | x_t^\theta)} [\langle f_t^*(x_t^\theta), f_t^\theta(x_t^\theta | x_0^\theta) \rangle] \\ &\quad + \underbrace{\mathbb{E}_{t \sim [0, T]} \mathbb{E}_{x_t^\theta \sim p_t^\theta} [\|\mathbb{E}_{x_0^\theta \sim p_0^\theta(\cdot | x_t^\theta)} [f_t^\theta(x_t^\theta | x_0^\theta)]\|^2]}, \end{aligned} \quad (10)$$

where $\{p_t^\theta\}_{t \in [0, T]}$ is the probability path constructed between generator distribution p_0^θ and noise p_T . The problem is that the final term (10) cannot be calculated directly. This is because it involves the

math expectation inside the squared norm, unlike the other terms which are linear in the expectations. It means that a simple estimate of $\|f_t^\theta(x_t^\theta|x_t^\theta)\|^2$ using samples x_0^θ and x_t^θ will be *biased*. Moreover, to differentiate through the math expectation inside the norm, an explicit dependence of p_0^θ on θ is required, while, in practice, usually only dependence of samples x_0^θ on θ is known.

Making loss tractable via linearization. To resolve this, we use a linearization technique. For a fixed point x_t^θ and time t , we reformulate the squared norm as a maximization problem. We achieve this by introducing an auxiliary function $\delta : [0, T] \times \mathbb{R}^D \rightarrow \mathbb{R}^D$ and using the identity

$$\begin{aligned} \|f_t^*(x_t^\theta) - f_t^\theta(x_t^\theta)\|^2 &= \max_{\delta_t(x_t^\theta)} \{-\|\delta_t(x_t^\theta)\|^2 + 2\langle \delta_t(x_t^\theta), f_t^*(x_t^\theta) - f_t^\theta(x_t^\theta) \rangle\} \\ &= \max_{\delta_t(x_t^\theta)} \mathbb{E}_{x_0^\theta \sim p_0^\theta(\cdot|x_t^\theta)} \{-\|\delta_t(x_t^\theta)\|^2 + 2\langle \delta_t(x_t^\theta), f_t^*(x_t^\theta) \rangle - 2\langle \delta_t(x_t^\theta), f_t^\theta(x_t^\theta|x_0^\theta) \rangle\}. \end{aligned} \quad (11)$$

The reparameterization $\delta = f^* - f$ with a *fake function* $f : [0, T] \times \mathbb{R}^D \rightarrow \mathbb{R}^D$ allows to get:

$$(11) = \max_{f_t(x_t^\theta)} \mathbb{E}_{x_0^\theta \sim p_0^\theta(\cdot|x_t^\theta)} \{-\|f_t^*(x_t^\theta) - f_t(x_t^\theta)\|^2 + 2\langle f_t^*(x_t^\theta) - f_t(x_t^\theta), f_t^*(x_t^\theta) - f_t^\theta(x_t^\theta|x_0^\theta) \rangle\} \quad (12)$$

$$\begin{aligned} &= \max_{f_t(x_t^\theta)} \mathbb{E}_{x_0^\theta \sim p_0^\theta(\cdot|x_t^\theta)} \underbrace{\{\|f_t^*(x_t^\theta) - f_t^\theta(x_t^\theta|x_0^\theta)\|^2\}}_{=\mathcal{L}_{\text{UM}}(f^*, p_0^\theta)} - \underbrace{\{\|f_t(x_t^\theta) - f_t^\theta(x_t^\theta|x_0^\theta)\|^2\}}_{=\mathcal{L}_{\text{UM}}(f, p_0^\theta)}. \end{aligned} \quad (13)$$

Since now all expectations are linear and can be estimated, the final step is to compute the expectation over all points x_t^θ and times t and minimize it over the generator distribution p_θ .

Summary. We build a universal distillation framework as a single min-max optimization (14), implicitly minimizing squared ℓ_2 -distance between teacher and student functions. When real and generated probability paths match, these functions match as well, and the distance attains its minimum.

Theorem 1 (Real data generator minimizes UID loss). *Let teacher $f^* := \arg \min_f \mathcal{L}_{\text{UM}}(f, p_0^*)$ be the minimizer of UM loss (Def. 1) on real data $p_0^* \in \mathcal{P}(\mathbb{R}^D)$. Then real data generator G_{θ^*} , s.t. $p_0^{\theta^*} = p_0^*$, is a solution to the min-max optimization of **Universal Inverse Distillation (UID) loss** $\mathcal{L}_{\text{UID}}(f, p_0^\theta)$ over fake function f and generator distribution p_0^θ*

$$\min_{\theta} \max_f \{\mathcal{L}_{\text{UID}}(f, p_0^\theta) := \mathcal{L}_{\text{UM}}(f^*, p_0^\theta) - \mathcal{L}_{\text{UM}}(f, p_0^\theta)\}. \quad (14)$$

Lemma 1 (UID loss minimizes squared ℓ_2 -distance). *Maximization of UID loss (14) over fake function f retrieves student function $f^\theta := \arg \min_f \mathcal{L}_{\text{UM}}(f, p_0^\theta)$ and represents the squared ℓ_2 -distance between it and the teacher f^* :*

$$f^\theta = \arg \max_f \mathcal{L}_{\text{UID}}(f, p_0^\theta), \quad \max_f \mathcal{L}_{\text{UID}}(f, p_0^\theta) = \mathbb{E}_{t \sim [0, T]} \mathbb{E}_{x_t^\theta \sim p_t^\theta} \|f_t^*(x_t^\theta) - f_t^\theta(x_t^\theta)\|^2. \quad (15)$$

Note that the distance (15) mostly captures mismatches for the points from generator main domain which do not cover real data, i.e., points x_t^θ s.t. $p_t^\theta(x_t^\theta) \gg 0, p^*(x_t^\theta) \rightarrow 0$. For out-of-domain points $p_t^\theta(x_t^\theta) \rightarrow 0$, the generator cannot receive feedback, because distance (15) for x_t^θ also vanishes. Moreover, if teacher function is inaccurate, the generator will learn it with all inaccuracies.

3.2 RELATION TO PRIOR DISTILLATION WORKS

FGM and SiD approaches formulate distillation as a constraint minimization of generator loss subject to the optimal fake model. For generator updates, the explicit UID loss (12) matches SiD loss (4) with $\alpha_{\text{SiD}} = 0.5$ and FGM loss (6) up to weighting. For a fake model, it also minimizes the UM loss on the generated data. The work (Gushchin et al., 2025) was the first to formulate the distillation of Bridge Matching models in their IBMD framework as a min-max optimization of the single loss (13).

Although previous works derive the same losses, we give a new, simple explanation using a linearization technique. *This technique is more powerful and general for handling intractable math expectations than complex proofs for concrete models from FGM, SiD, IBMD.* Furthermore, it allows adding real data directly into the distillation loss (see §3.4 and Appendix A.2) and extending it, e.g., deriving a loss for minimizing the ℓ_2 -distance instead of the squared one (Appendix A.4).

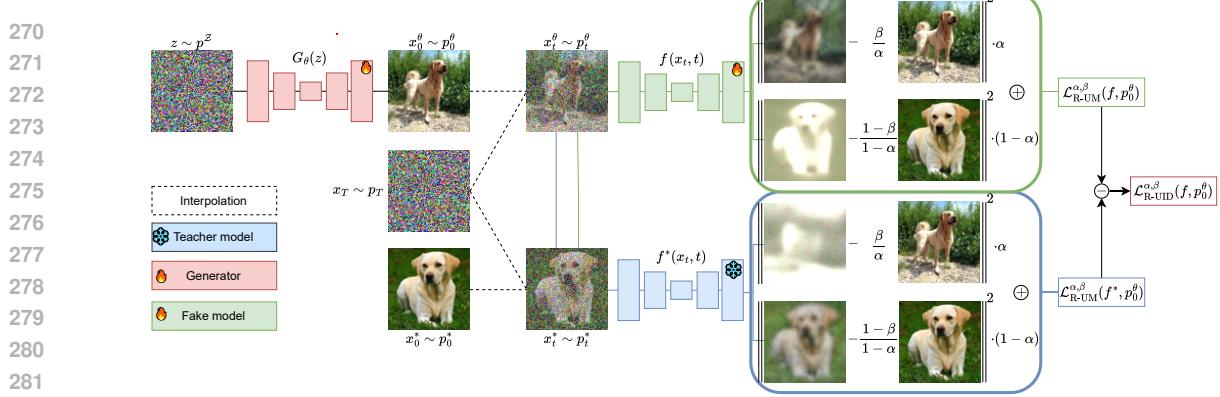


Figure 1: Pipeline of **our RealUID distillation framework** (§3) with the direct incorporation of real data p_0^* adjusted by hyperparameters $\alpha, \beta \in (0, 1]$. In the figure, it is depicted for Flow Matching models predicting denoised samples. It distills a costly frozen teacher model f^* (blue) into a one-step generator G_θ (red) upon min-max optimization of $\mathcal{L}_{R\text{-UM}}^{\alpha, \beta}(f, p_0^\theta)$ loss over fake model f (green) and generator distribution p_0^θ with parameters θ . We use alternating optimization, updating the fake model several times per one generator update for stability. Algorithm’s pseudocode is located in Appendix B.

3.3 CONNECTION WITH INVERSE OPTIMIZATION

We derived UID loss (14) by minimizing the squared ℓ_2 -distance between teacher and student functions. However, this loss admits another interpretation: its structure is typical for inverse optimization (Chan et al., 2025). In this framework, one considers a parametric family of optimization problems $\min_f \mathcal{L}(f, \theta)$ with objective loss $\mathcal{L}(f, \theta)$ depending on argument f and parameters θ . The goal is to find the parameters θ^* that yield a known, desired solution $f^* = \arg \min_f \mathcal{L}(f, \theta^*)$. One standard way to recover the required parameters is to solve the same min-max problem as (14):

$$\min_{\theta} \max_f \{ \mathcal{L}(f^*, \theta) - \mathcal{L}(f, \theta) \} \sim \min_{\theta} \{ \mathcal{L}(f^*, \theta) - \min_f \{ \mathcal{L}(f, \theta) \} \}. \quad (16)$$

The inverse problem (16) always has minimum 0 which is attained when $\theta = \theta^*$.

Although the inverse optimization can handle arbitrary losses \mathcal{L} , it does not describe the properties of the optimized functions or how to find solutions. In our case, we show that all losses are tractable and minimize the distances between teacher and student functions (Lemmas 1 and 2). Furthermore, in Appendix A, we provide and justify a list of extensions of our framework that cannot be stated as inverse problems. All our proofs are self-contained and do not rely on inverse optimization, which only provides intuition and understanding.

3.4 REALUID: NATURAL APPROACH FOR REAL DATA INCORPORATION

Previous distillation methods add real data during training only via GANs with extra discriminator and adversarial loss. We propose a simpler, more natural way that requires no extra models or losses.

Based on intuition from inverse optimization (§3.3), we see that the min-max inverse problem (16) is compatible with other losses. This allows us to redesign the UM loss (2) to incorporate real data into it. A key constraint is that the loss must still yield the same teacher upon minimization on the real data. Thus, we derive a novel Unified Matching loss with real data - a weighted sum of two UM-like losses on generated and real data parameterized by $\alpha, \beta \in (0, 1]$ which control the weights.

Definition 2. We define **Universal Matching loss with real data** on generated data $p_0^\theta \in \mathcal{P}(\mathbb{R}^D)$ with $\alpha, \beta \in (0, 1]$ (when $\alpha = 1$ the real data term becomes $2(1 - \beta) \langle f_t(x_t^*), f_t^*(x_t^* | x_0^*) \rangle$):

$$\begin{aligned} \mathcal{L}_{R\text{-UM}}^{\alpha, \beta}(f, p_0^\theta) &= \underbrace{\alpha \cdot \mathbb{E}_{t \sim [0, T]} \mathbb{E}_{x_0^\theta \sim p_0^\theta, x_t^\theta \sim p_t^\theta(\cdot | x_0^\theta)} \left[\|f_t(x_t^\theta) - \frac{\beta}{\alpha} f^\theta(x_t^\theta | x_0^\theta)\|^2 \right]}_{\text{generated data } p_0^\theta \text{ term}} \\ &+ \underbrace{(1 - \alpha) \cdot \mathbb{E}_{t \sim [0, T]} \mathbb{E}_{x_0^* \sim p_0^*, x_t^* \sim p_t^*(\cdot | x_0^*)} \left[\|f_t(x_t^*) - \frac{1 - \beta}{1 - \alpha} f_t^*(x_t^* | x_0^*)\|^2 \right]}_{\text{real data } p_0^* \text{ term}}. \end{aligned} \quad (17)$$

324 RealUM loss (17) for all α, β and UM loss (2) yield the same teacher when input distribution is
 325 real data p_0^* , i.e., $\arg \min_f \mathcal{L}_{R\text{-UM}}^{\alpha, \beta}(f, p_0^*) = \arg \min_f \mathcal{L}_{\text{UM}}(f, p_0^*) = f^*$. Hence, the min-max inverse
 326 scheme (16) with RealUM loss and the old teacher f^* will still have a real data generator as a solution:
 327

$$328 \min_{\theta} \underbrace{\{\mathcal{L}_{R\text{-UM}}^{\alpha, \beta}(f^*, p_0^*) - \min_f \{\mathcal{L}_{R\text{-UM}}^{\alpha, \beta}(f, p_0^*)\}\}}_{\geq 0} = \mathcal{L}_{R\text{-UM}}^{\alpha, \beta}(f^*, p_0^*) - \underbrace{\min_f \{\mathcal{L}_{R\text{-UM}}^{\alpha, \beta}(f, p_0^*)\}}_{= \mathcal{L}_{R\text{-UM}}^{\alpha, \beta}(f^*, p_0^*)} = 0.$$

331 But now distillation loss will incorporate real data through the real data terms of $\mathcal{L}_{R\text{-UM}}^{\alpha, \beta}(f, p_0^*)$.
 332

333 **Theorem 2 (Real data generator minimizes RealUID loss).** *Let teacher $f^* :=$
 334 $\arg \min_f \mathcal{L}_{\text{UM}}(f, p_0^*)$ be the minimizer of UM loss on real data p_0^* . Then real data generator G_{θ^*} , s.t.
 335 $p_0^{\theta^*} = p_0^*$, is a solution to the min-max optimization of **Universal Inverse Distillation loss with real**
 336 **data (RealUID)** $\mathcal{L}_{R\text{-UID}}^{\alpha, \beta}(f, p_0^{\theta})$ over fake function f and generator distribution p_0^{θ} :*

$$337 \min_{\theta} \max_f \left\{ \mathcal{L}_{R\text{-UID}}^{\alpha, \beta}(f, p_0^{\theta}) := \mathcal{L}_{R\text{-UM}}^{\alpha, \beta}(f^*, p_0^{\theta}) - \mathcal{L}_{R\text{-UM}}^{\alpha, \beta}(f, p_0^{\theta}) \right\}. \quad (18)$$

340 We provide analysis of RealUID in Appendix A.1, below we highlight the most important findings.
 341

342 **Role of coefficients α, β .** The RealUID framework uses real data samples only to minimize RealUM
 343 loss for the fake model. As shown in Lemma 2, RealUID also implicitly minimizes the rescaled
 344 distance (20) between the teacher and generator functions. This distance is still minimal when
 345 $p_0^{\theta} = p_0^*$, alternatively proving Theorem 2. The proof of Lemma 2 is located in Appendix A.1.

346 **Lemma 2 (Distance minimized by RealUID loss).** *Maximization of RealUID loss $\mathcal{L}_{R\text{-UID}}^{\alpha, \beta}$ (17)*
 347 *over fake function f returns the weighted sum between the teacher f^* and student function $f^{\theta} :=$
 348 $\arg \min_f \mathcal{L}_{\text{UM}}(f, p_0^{\theta})$ and represents the weighted squared ℓ_2 -distance between them:*

$$350 \left[\arg \max_f \mathcal{L}_{R\text{-UID}}^{\alpha, \beta}(f, p_0^{\theta}) \right] (t, x_t) = \frac{(1 - \beta)p_t^*(x_t) \cdot f_t^*(x_t) + \beta p_t^{\theta}(x_t) \cdot f_t^{\theta}(x_t)}{(1 - \alpha)p_t^*(x_t) + \alpha p_t^{\theta}(x_t)}, \quad (19)$$

$$353 \max_f \mathcal{L}_{R\text{-UID}}^{\alpha, \beta}(f, p_0^{\theta}) = \mathbb{E}_{t \sim [0, T]} \mathbb{E}_{x_t^* \sim p_t^*} \left[\frac{\left\| \frac{\beta}{\alpha} \cdot [p_t^*(x_t^*) f_t^*(x_t^*) - p_t^{\theta}(x_t^*) f_t^{\theta}(x_t^*)] + (p_t^{\theta}(x_t^*) - p_t^*(x_t^*)) \cdot f_t^*(x_t^*) \right\|^2}{p_t^*(x_t^*) ((1 - \alpha)p_t^*(x_t^*) + \alpha p_t^{\theta}(x_t^*)) / \alpha^2} \right]. \quad (20)$$

356 With the help of real data, the distance (20) captures mismatches for both incorrectly generated
 357 points from the generator's main domain and the real data points, which the generator fails to
 358 cover. Thus, unlike data-free UID loss (Lemma 1), RealUID loss provides the generator with
 359 feedback also on the real data domain it needs to cover (see Appendix A.1.2). Moreover, if teacher
 360 function is inaccurate, RealUID can now provably fix teacher's errors (see Appendix A.1.3).

361 **Choice of coefficients α, β .** Lemma 2 shows that, instead of values α and β , actually the values
 362 α and β/α determine the balance between real and generated data in the minimized distance (20).
 363 Furthermore, coefficient α only sets the general scaling of the distance, while β/α plays the most
 364 *important role*, as it determines the relation between f_t^{θ} and f_t^* inside the distance.
 365

366 Value $\beta/\alpha = 1$ yields the distance identical to the data-free distance (15) up to scaling. Even when
 367 $\alpha = \beta < 1$ and real data is formally added, it has no, or negative, effect on the generator. Excessively
 368 low α and β diminish the effect of the generated data term f_t^{θ} in the optimal fake (19), leading to
 369 vanishing gradients. The same issue occurs with $\beta/\alpha \ll 1$ in (20), while $\beta/\alpha \gg 1$ diminish the effect
 370 of the right real data term f_t^* . Plus, configurations $\beta < \alpha = 1$ may be unstable due to out-of-domain
 371 samples. See Appendix A.1.2 for more details of the distance analysis. Moreover, if teacher function
 372 is inaccurate, only the choice $\beta/\alpha \neq 1$ can fix teacher's errors (see Appendix A.1.3).

373 **Hence, good coefficients $\alpha, \beta \in (0, 1]$ can be chosen by first finding good $\beta/\alpha \neq 1$, as it has the
 374 largest impact, and then adjusting $\alpha < 1$. Both β/α and α should be close to 1.**

375 **Comparison with GAN-based methods.** Unlike SiD and FGM with GANs, we do not use extra
 376 adversarial losses and discriminator to incorporate real data. We only modify UM loss, preserving its
 377 core structure and fake model architecture. While general adversarial loss is unrelated to the main
 378 distillation loss and has uninterpretable scaling hyperparameters, our RealUID loss and weighting

Generation	$\alpha \setminus \beta$	0.94	0.96	0.98	1.0
Unconditional	0.94	2.66	2.28	2.58	2.98
	0.96	2.37	2.58	2.29	2.65
	0.98	2.97	2.33	2.62	2.38
	1.0	5.81	4.51	3.29	2.58
Conditional	0.94	2.35	2.19	2.25	2.47
	0.96	2.09	2.32	2.13	2.27
	0.98	2.34	2.02	2.26	2.05
	1.0	4.32	3.27	2.43	2.21

Generation	$\lambda_{\text{adv}}^{G_\theta}$	λ_{adv}^D	FID (\downarrow)
Unconditional	0.1	0.3	2.42
	0.3	1	2.29
	1	3	2.39
	5	15	2.54
Conditional	0.1	0.3	2.22
	0.3	1	2.12
	1	3	2.15
	5	15	2.40

Table 1: Ablation studies of (α, β) coefficients in the left table and adversarial weighting parameters $(\lambda_{\text{adv}}^{G_\theta}, \lambda_{\text{adv}}^D)$ in the right table for CIFAR-10 in both unconditional and conditional settings. The baseline **RealUID** ($\alpha = 1.0, \beta = 1.0$) does not use real data. Configurations that **outperform** the baseline are highlighted. All values report FID \downarrow , where lower is better. The best configuration in each case is **bolded**.

coefficients $\alpha, \beta \in (0, 1]$ come naturally from the data-free UID loss. The original UID loss (14), equivalent to SiD (4) with $\alpha_{\text{SiD}} = 0.5$ and FGM (6), is obtained when $\alpha = \beta = 1$.

Extension for Bridge Matching and Stochastic Interpolants framework. In Appendix C, we demonstrate that our framework can be easily extended to other matching models by parametrizing the generated data coupling $\pi^\theta(x_0, x_T)$ instead of the data distribution p_0^θ .

4 EXPERIMENTS

All implementations were developed in PyTorch, and the code will be made publicly available.

This section provides an ablation study and evaluation of our RealUID, assessing both its performance and computational efficiency. We begin in (§4.1) by detailing the experimental setup. In (§4.2), we show that our incorporation of real data via coefficients α, β improves performance, speeds up convergence, and enables effective fine-tuning. In (§4.3), we assess the benchmark performance and computational demands of RealUID relative to SOTA methods. Additional experimental details and results are provided in Appendix D and Appendix E, respectively.

4.1 EXPERIMENTAL SETUP

Datasets and Evaluation Protocol. Due to computational resources constraints, the experiments were conducted only on the conditional/unconditional CIFAR-10 dataset with 32×32 resolution (Krizhevsky et al., 2009) and on the CelebA dataset with 64×64 resolution (Liu et al., 2015), see Appendix E.2. In line with the prior works (Karras et al., 2019; 2022), we report test FID scores (Heusel et al., 2017), computed using 50k generated samples.

Implementation Details. In contrast to prior studies (Zhou et al., 2024b;a; Huang et al., 2024), which employ the computationally demanding EDM architecture (Karras et al., 2022), our work adopts a more lightweight alternative (Tong et al., 2023) due to resource constraints (see (§4.3) for efficiency analysis). We also trained our own flow-matching model, denoted by f^* , which served as the teacher. Further implementation details are provided in Appendix D.

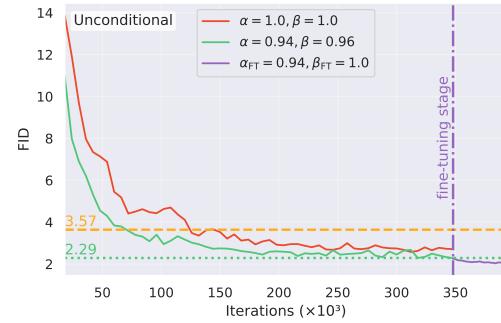
4.2 BENCHMARKING METHODS UNDER A UNIFIED EXPERIMENTAL CONFIGURATION

We evaluate RealUID under a unified experimental protocol (fixed architecture and implementation). We begin by (i) conducting an ablation over α, β to assess the influence of real-data incorporation. We then (ii) compare RealUID to a GAN-based alternative, showing that RealUID achieves comparable or superior accuracy. Furthermore, (iii) we analyze convergence, indicating that RealUID variants with real data train substantially faster than baselines without real-data. Finally, (iv) we explore a fine-tuning stage initialized from strong RealUID checkpoints, showing further performance gains.

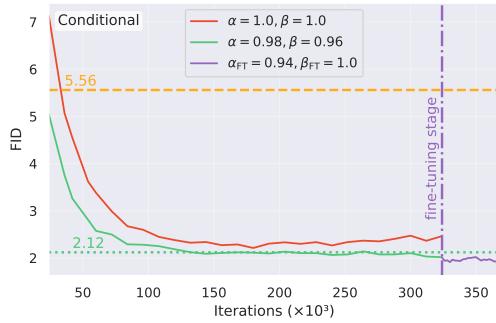
Ablation study of coefficients α, β . The search for optimal α and β parameters was restricted to values near 1, specifically $\alpha, \beta \in [0.9, 1.0]$ with increments of 0.02 to cover the full grid. Setting these parameters too low prevents the student from accurately capturing the true generator gradient, which

432
 433 Table 2: This table presents the results of our ablation study on the RealUID framework, evaluated using the
 434 FID metric under both unconditional and conditional generation setups. The Teacher Flow model with 100
 435 NFE is reported as a reference. The performance of the baseline RealUID ($\alpha = 1.0, \beta = 1.0$) without real-data
 436 incorporation is indicated in *italic*. For emphasis, we underline the two counterparts that incorporate real data:
 437 the GAN-based and our RealUID methods. The best-performing configurations, obtained via an additional
 438 fine-tuning stage with adjusted $(\alpha_{\text{FT}}, \beta_{\text{FT}})$, are highlighted in **bold**. Qualitative results are presented in § E.3.
 439

Model	FID (\downarrow)
Teacher Flow (NFE=100)	3.57
RealUID ($\alpha = 1.0, \beta = 1.0$)	2.58
RealUID ($\alpha = 1.0, \beta = 1.0$) + GAN ($\lambda_{\text{adv}}^{G_\theta} = 0.3, \lambda_{\text{adv}}^D = 1$)	<u>2.29</u>
RealUID ($\alpha = 0.94, \beta = 0.96$)	<u>2.28</u>
RealUID ($\alpha = 0.94, \beta = 0.96 \alpha_{\text{FT}} = 0.94, \beta_{\text{FT}} = 1.0$)	2.03



Model	FID (\downarrow)
Teacher Flow (NFE=100)	5.56
RealUID ($\alpha = 1.0, \beta = 1.0$)	2.21
RealUID ($\alpha = 1.0, \beta = 1.0$) + GAN ($\lambda_{\text{adv}}^{G_\theta} = 0.3, \lambda_{\text{adv}}^D = 1$)	<u>2.12</u>
RealUID ($\alpha = 0.98, \beta = 0.96$)	<u>2.02</u>
RealUID ($\alpha = 0.98, \beta = 0.96 \alpha_{\text{FT}} = 0.94, \beta_{\text{FT}} = 1.0$)	1.91



453 Figure 2: Evolution of FID during CIFAR-10 distillation for (i) the baseline RealUID ($\alpha = 1.0, \beta = 1.0$), (ii)
 454 the best-performing RealUID configurations, and (iii) subsequent fine-tuning, evaluated in both unconditional
 455 and conditional settings. The performances of Teacher Flow and UID+GAN are indicated by horizontal
 456 reference lines in their respective colors. Methods that incorporate real data—best-performing RealUID and
 457 UID+GAN—are highlighted in green to facilitate comparison.

458 in turn leads the generator to produce noisy samples. The results are reported in Table 1. As a baseline,
 459 we highlight the model without data incorporation our RealUID ($\alpha = 1.0, \beta = 1.0$). As shown in the
 460 table, using real data with $\alpha = \beta < 1.0$ or with $\alpha = 1.0, \beta < 1.0$ or with substantially different α and
 461 β consistently degraded performance. In contrast, parameter settings close to the diagonal $\alpha/\beta = 1.02$
 462 or $\alpha/\beta = 0.98$ produced improved results, with the best performance achieved by our RealUID ($\alpha =$
 463 $0.94, \beta = 0.96$) for the unconditional case and our RealUID ($\alpha = 0.98, \beta = 0.96$) for the conditional
 464 case. Note that the practical results for various α, β match the theoretical description from (§3.4).
 465

466 **Comparison with GAN-based method.** We integrated the GAN-based approach proposed by
 467 Zhou et al. (2024a) into our experimental framework as an alternative method for incorporating real
 468 data, enabling a direct comparison with our RealUID formulation. Specifically, we combined the
 469 GAN loss with the baseline RealUID ($\alpha = 1.0, \beta = 1.0$). As shown in Table 1, the best-performing
 470 configurations are achieved with GAN losses ($\lambda_{\text{adv}}^{G_\theta} = 0.3, \lambda_{\text{adv}}^D = 1$). While this setup performs
 471 comparably to RealUID ($\alpha = 0.94, \beta = 0.96$) in the unconditional setting, it remains clearly inferior
 472 to RealUID ($\alpha = 0.98, \beta = 0.96$) in the conditional case.

473 **Convergence Speed.** Our RealUID (α, β) with parameters, which are highlighted in Table 1,
 474 achieves faster convergence than the baseline RealUID ($\alpha = 1.0, \beta = 1.0$). For clarity, we present
 475 qualitative comparisons of the best-performing configurations against their baselines in Figure 2. As
 476 shown in figure, the best RealUID configurations reach the saturated performance level of the baseline
 477 after ~ 100 k iterations, whereas the baseline requires ~ 300 k iterations to achieve comparable metrics.
 478 These results demonstrate that incorporating real data substantially accelerates convergence.

479 **Fine-tuning stage.** We observe that the RealUID framework offers substantial flexibility for fine-
 480 tuning. In this procedure, the generator G_θ is initialized from the best-performing RealUID checkpoint
 481 obtained during training from scratch, while the fake model f is initialized from the teacher model
 482 f^* . Fine-tuning then proceeds with new hyperparameter values α_{FT} and β_{FT} , allowing for refined
 483 control over the degree of real-data incorporation during this stage. We find that the configurations
 484 RealUID ($\alpha = 0.94, \beta = 0.96 | \alpha_{\text{FT}} = 0.94, \beta_{\text{FT}} = 1.0$) and RealUID ($\alpha = 0.98, \beta = 0.96 | \alpha_{\text{FT}} =$
 485 $0.94, \beta_{\text{FT}} = 1.0$) produced the best results in the unconditional and conditional cases, respectively, as
 486 shown in Tables 2. Ablation studies analyzing the effect of α_{FT} and β_{FT} are provided in Appendix E.1.

486
487
488
Table 3: Comparison of *unconditional* generation on
489 CIFAR-10. The best method under the FID metric in each
490 section is highlighted with **bold**.

Family	Model	NFE	FID (↓)
Diffusion & GAN	DDPM (Ho et al., 2020)	1000	3.17
	VP-EDM (Karras et al., 2022)	35	1.97
	StyleGAN2+ADA+Tune (Karras et al., 2020)	1	2.92
	StyleGAN2+ADA+Tune+DI (Luo et al., 2023)	1	2.71
	Diffusion ProjectedGAN (Wang et al., 2022)	1	2.54
	iCT-deep (Song & Dharwal, 2023)	1	2.51
	DiffInstruct (Luo et al., 2023)	1	4.53
	DMD (Yin et al., 2024b)	1	3.77
	CTM (Kim et al., 2023)	1	1.98
	sCD (Lu & Song, 2024)	1	3.66
	sCT (Lu & Song, 2024)	1	2.85
	SiD, $\alpha_{\text{SiD}} = 1.0$ (Zhou et al., 2024b)	1	2.03
	SiD, $\alpha_{\text{SiD}} = 1.2$ (Zhou et al., 2024b)	1	1.92
	SiDA, $\alpha_{\text{SiD}} = 1.0$ (Zhou et al., 2024a)	1	1.52
	SiD ² A, $\alpha_{\text{SiD}} = 1.2$ (Zhou et al., 2024a)	1	1.52
	SiD ² A, $\alpha_{\text{SiD}} = 1.0$ (Zhou et al., 2024a)	1	1.50
Flow-based	CFM (Yang et al., 2024)	2	5.34
	IMM (Zhou et al., 2025)	1	3.20
	MeanFlow (Geng et al., 2025)	1	2.92
	FACTM (Peng et al., 2025)	1	2.69
	1-ReFlow (+Distill) (Liu et al., 2022a)	1	6.18
	2-ReFlow (+Distill) (Liu et al., 2022a)	1	4.85
	3-ReFlow (+Distill) (Liu et al., 2022a)	1	5.21
	FGM (Huang et al., 2024)	1	3.08
	RealUID ($\alpha = 0.94, \beta = 0.96 \mid \alpha_{\text{FT}} = 0.94, \beta_{\text{FT}} = 1.0$) (Ours)	1	2.03

501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
Table 4: Comparison of *conditional* generation on
CIFAR-10. The best method under the FID metric in
each section is highlighted with **bold**.

Family	Model	NFE	FID (↓)
Diffusion & GAN	VP-EDM (Karras et al., 2022)	35	1.79
	GET-Base (Geng et al., 2023)	1	6.25
	BigGAN (Brock et al., 2018)	1	14.73
	BigGAN+Tune (Brock et al., 2018)	1	8.47
	StyleGAN2+ADA (Karras et al., 2020)	1	3.49
	StyleGAN2+ADA+Tune+DI (Luo et al., 2023)	1	2.42
	StyleGAN2-ADA+Tune+DI (Luo et al., 2023)	1	2.27
	StyleGAN-ADA (Sauer et al., 2022)	1	1.85
	StyleGAN-XL (Takida et al., 2023)	1	1.36
Diffusion & GAN	Diff-Instruct (Luo et al., 2023)	1	4.19
	DMD (Yin et al., 2024b)	1	2.66
	DMD (w.o. KL) (Yin et al., 2024b)	1	3.82
	DMD (w.o. reg.) (Yin et al., 2024b)	1	5.58
	GDD-I (Zheng et al., 2024)	1	1.44
	CTM (Kim et al., 2023)	1	1.73
	SiD, $\alpha_{\text{SiD}} = 1.0$ (Zhou et al., 2024b)	1	1.93
	SiD, $\alpha_{\text{SiD}} = 1.2$ (Zhou et al., 2024b)	1	1.71
	SiDA, $\alpha_{\text{SiD}} = 1.0$ (Zhou et al., 2024b)	1	1.44
	SiD ² A, $\alpha_{\text{SiD}} = 1.0$ (Zhou et al., 2024a)	1	1.40
	SiD ² A, $\alpha_{\text{SiD}} = 1.2$ (Zhou et al., 2024a)	1	1.39
Flow-based	FGM (Huang et al., 2024)	1	2.58
	RealUID ($\alpha = 0.98, \beta = 0.96 \mid \alpha_{\text{FT}} = 0.94, \beta_{\text{FT}} = 1.0$) (Ours)	1	1.91

501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
Table 5: Inference complexity on an Ascend 910B3 (65 GB) NPU. For each method, we report (i) the mean inference time per image (bs=1, fp32), averaged over 10,000 iterations; (ii) the total number of parameters (Millions); and (iii) peak NPU memory usage (maximum allocated and reserved, in MB). Best values are **bolded**.

501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
Scaling to larger datasets. In Appendix E.2, we provide the similar results of the same ablation studies on the CelebA dataset with 64×64 resolution.

4.3 BENCHMARK PERFORMANCE AND COMPUTATIONAL COMPARISONS

501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
As shown in Tables 3 and 4, RealUID consistently outperforms all prior flow-based models on CIFAR-10, significantly surpassing the strongest flow distillation baseline, FGM. Despite its compact architecture (§4.1), it achieves performance comparable to leading diffusion distillation methods—matching SiD ($\alpha_{\text{SiD}}=1.0$) and closely approaching SiD ($\alpha_{\text{SiD}}=1.2$), while falling short of adversarially enhanced models such as SiD²A. Based on ablation studies and comparisons with GANs (§4.2), we hypothesis that this performance gap is attributed to architectural and teacher capacity differences rather than the lack of adversarial loss. In terms of efficiency, RealUID leverages a lightweight architecture based on Tong et al. (2023). Therefore, as summarized in Table 5, it achieves nearly 2 \times faster inference, lower memory usage, and reduced model size compared to recent distillation approaches (Zhou et al., 2024b;a; Huang et al., 2024). The results indicate that our approach achieves competitive performance while maintaining a lower computational footprint.

5 DISCUSSION, EXTENSION, FUTURE WORKS

501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
Extensions. Our RealUID (§3.4) framework can distill Flow/Bridge Matching, Diffusion models, and Stochastic Interpolants enhanced by a novel natural way to incorporate real data. In Appendix A, we provide three extensions of our RealUID beyond the inverse scheme: General RealUID with 3 coefficients (Appendix A.2), SiD framework with real data for $\alpha_{\text{SiD}} \neq \frac{1}{2}$ (Appendix A.3) and Normalized RealUID for minimizing non-squared ℓ_2 -distance between teacher and student (Appendix A.4).

501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
Relation to DMD. Instead of minimizing the squared ℓ_2 -distance between the score functions, *Distribution Matching Distillation* (Luo et al., 2023; Wang et al., 2023; Yin et al., 2024b;a) (DMD) approach minimizes the KL divergence between the real and generated data. Its gradients are computed using the generator and teacher score functions, leading to the similar alternating updates. *We would like to highlight that DMD does not fit UID framework.* Nevertheless, we investigated an opportunity to incorporate real data into DMD without GANs in Appendix A.5.

540 REFERENCES
541

542 Michael S Albergo, Nicholas M Boffi, and Eric Vanden-Eijnden. Stochastic interpolants: A unifying
543 framework for flows and diffusions. *arXiv preprint arXiv:2303.08797*, 2023.

544 Andrew Brock, Jeff Donahue, and Karen Simonyan. Large scale gan training for high fidelity natural
545 image synthesis. *arXiv preprint arXiv:1809.11096*, 2018.

546

547 Timothy CY Chan, Rafid Mahmood, and Ian Yihang Zhu. Inverse optimization: Theory and
548 applications. *Operations Research*, 73(2):1046–1074, 2025.

549

550 Ruiqi Gao, Emiel Hoogeboom, Jonathan Heek, Valentin De Bortoli, Kevin Patrick Murphy, and Tim
551 Salimans. Diffusion models and gaussian flow matching: Two sides of the same coin. In *The*
552 *Fourth Blogpost Track at ICLR 2025*, 2025.

553

554 Zhengyang Geng, Ashwini Pokle, and J Zico Kolter. One-step diffusion distillation via deep
555 equilibrium models. *Advances in Neural Information Processing Systems*, 36:41914–41931, 2023.

556

557 Zhengyang Geng, Mingyang Deng, Xingjian Bai, J Zico Kolter, and Kaiming He. Mean flows for
558 one-step generative modeling. *arXiv preprint arXiv:2505.13447*, 2025.

559

560 Ian J Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
561 Aaron Courville, and Yoshua Bengio. Generative adversarial nets. *Advances in neural information*
562 *processing systems*, 27, 2014.

563

564 Nikita Gushchin, Alexander Kolesov, Alexander Korotin, Dmitry P Vetrov, and Evgeny Burnaev. En-
565 tropic neural optimal transport via diffusion processes. *Advances in Neural Information Processing*
566 *Systems*, 36, 2024.

567

568 Nikita Gushchin, David Li, Daniil Selikhanovych, Evgeny Burnaev, Dmitry Baranchuk, and Alexan-
569 der Korotin. Inverse bridge matching distillation. 2025.

570

571 Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans
572 trained by a two time-scale update rule converge to a local nash equilibrium. *Advances in neural*
573 *information processing systems*, 30, 2017.

574

575 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in*
576 *neural information processing systems*, 33:6840–6851, 2020.

577

578 Peter Holderrieth, Marton Havasi, Jason Yim, Neta Shaul, Itai Gat, Tommi Jaakkola, Brian Karrer,
579 Ricky TQ Chen, and Yaron Lipman. Generator matching: Generative modeling with arbitrary
580 markov processes. *arXiv preprint arXiv:2410.20587*, 2024.

581

582 Zemin Huang, Zhengyang Geng, Weijian Luo, and Guo-jun Qi. Flow generator matching. *arXiv*
583 *preprint arXiv:2410.19310*, 2024.

584

585 Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative
586 adversarial networks. In *Proceedings of the IEEE/CVF conference on computer vision and pattern*
587 *recognition*, pp. 4401–4410, 2019.

588

589 Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, and Timo Aila. Analyzing
590 and improving the image quality of stylegan. In *Proceedings of the IEEE/CVF conference on*
591 *computer vision and pattern recognition*, pp. 8110–8119, 2020.

592

593 Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-
594 based generative models. *Advances in neural information processing systems*, 35:26565–26577,
595 2022.

596

597 Dongjun Kim, Chieh-Hsin Lai, Wei-Hsiang Liao, Naoki Murata, Yuhta Takida, Toshimitsu Ue-
598 saka, Yutong He, Yuki Mitsufuji, and Stefano Ermon. Consistency trajectory models: Learning
599 probability flow ode trajectory of diffusion. *arXiv preprint arXiv:2310.02279*, 2023.

600

601 Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. *arXiv preprint*
602 *arXiv:1412.6980*, 2014.

594 Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.
 595

596 Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maximilian Nickel, and Matthew Le. Flow
 597 matching for generative modeling. In *The Eleventh International Conference on Learning Representations*, 2023. URL <https://openreview.net/forum?id=PqvMRDCJT9t>.

598

599 Qiang Liu. Rectified flow: A marginal preserving approach to optimal transport. *arXiv preprint*
 600 *arXiv:2209.14577*, 2022.

601

602 Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate and
 603 transfer data with rectified flow. *arXiv preprint arXiv:2209.03003*, 2022a.

604

605 Xingchao Liu, Lemeng Wu, Mao Ye, and Qiang Liu. Let us build bridges: Understanding and
 606 extending diffusion generative models. *arXiv preprint arXiv:2208.14699*, 2022b.

607

608 Xingchao Liu, Chengyue Gong, and qiang liu. Flow straight and fast: Learning to generate and transfer
 609 data with rectified flow. In *The Eleventh International Conference on Learning Representations*,
 2023. URL <https://openreview.net/forum?id=XVjTT1nw5z>.

610

611 Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the wild. In
 612 *Proceedings of International Conference on Computer Vision (ICCV)*, December 2015.

613

614 Cheng Lu and Yang Song. Simplifying, stabilizing and scaling continuous-time consistency models.
 615 *arXiv preprint arXiv:2410.11081*, 2024.

616

617 Weijian Luo, Tianyang Hu, Shifeng Zhang, Jiacheng Sun, Zhenguo Li, and Zhihua Zhang. Diff-
 618 instruct: A universal approach for transferring knowledge from pre-trained diffusion models.
Advances in Neural Information Processing Systems, 36:76525–76546, 2023.

619

620 Stefano Peluchetti. Non-denoising forward-time diffusions. *arXiv preprint arXiv:2312.14589*, 2023.

621

622 Yansong Peng, Kai Zhu, Yu Liu, Pingyu Wu, Hebei Li, Xiaoyan Sun, and Feng Wu. Flow-anchored
 623 consistency models. *arXiv preprint arXiv:2507.03738*, 2025.

624

625 A Sauer, K Schwarz, and A StyleGAN-XL Geiger. scaling stylegan to large diverse datasets. In
Proceedings of the SIGGRAPH Conference. ACM, pp. 1–10, 2022.

626

627 Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
 628 learning using nonequilibrium thermodynamics. In *International conference on machine learning*,
 pp. 2256–2265. pmlr, 2015.

629

630 Yang Song and Prafulla Dhariwal. Improved techniques for training consistency models. *arXiv*
 631 *preprint arXiv:2310.14189*, 2023.

632

633 Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
 634 Poole. Score-based generative modeling through stochastic differential equations. In *International*
635 Conference on Learning Representations, 2021. URL <https://openreview.net/forum?id=PxTIG12RRHS>.

636

637 Yuhta Takida, Masaaki Imaizumi, Takashi Shibuya, Chieh-Hsin Lai, Toshimitsu Uesaka, Naoki
 638 Murata, and Yuki Mitsufuji. San: Inducing metrizability of gan with discriminative normalized
 639 linear layer. *arXiv preprint arXiv:2301.12811*, 2023.

640

641 Alexander Tong, Kilian Fatras, Nikolay Malkin, Guillaume Huguet, Yanlei Zhang, Jarrid Rector-
 642 Brooks, Guy Wolf, and Yoshua Bengio. Improving and generalizing flow-based generative models
 with minibatch optimal transport. *arXiv preprint arXiv:2302.00482*, 2023.

643

644 Zhendong Wang, Huangjie Zheng, Pengcheng He, Weizhu Chen, and Mingyuan Zhou. Diffusion-gan:
 645 Training gans with diffusion. *arXiv preprint arXiv:2206.02262*, 2022.

646

647 Zhengyi Wang, Cheng Lu, Yikai Wang, Fan Bao, Chongxuan Li, Hang Su, and Jun Zhu. Pro-
 lifidreamer: High-fidelity and diverse text-to-3d generation with variational score distillation.
Advances in neural information processing systems, 36:8406–8441, 2023.

648 Ling Yang, Zixiang Zhang, Zhilong Zhang, Xingchao Liu, Minkai Xu, Wentao Zhang, Chenlin Meng,
649 Stefano Ermon, and Bin Cui. Consistency flow matching: Defining straight flows with velocity
650 consistency. *arXiv preprint arXiv:2407.02398*, 2024.

651
652 Tianwei Yin, Michaël Gharbi, Taesung Park, Richard Zhang, Eli Shechtman, Fredo Durand, and Bill
653 Freeman. Improved distribution matching distillation for fast image synthesis. *Advances in neural*
654 *information processing systems*, 37:47455–47487, 2024a.

655 Tianwei Yin, Michaël Gharbi, Richard Zhang, Eli Shechtman, Fredo Durand, William T Freeman,
656 and Taesung Park. One-step diffusion with distribution matching distillation. In *Proceedings of*
657 *the IEEE/CVF conference on computer vision and pattern recognition*, pp. 6613–6623, 2024b.

658 Kaiwen Zheng, Guande He, Jianfei Chen, Fan Bao, and Jun Zhu. Diffusion bridge implicit models.
659 *arXiv preprint arXiv:2405.15885*, 2024.

660
661 Linqi Zhou, Stefano Ermon, and Jiaming Song. Inductive moment matching. *arXiv preprint*
662 *arXiv:2503.07565*, 2025.

663 Mingyuan Zhou, Huangjie Zheng, Yi Gu, Zhendong Wang, and Hai Huang. Adversarial score identity
664 distillation: Rapidly surpassing the teacher in one step. *arXiv preprint arXiv:2410.14919*, 2024a.

665 Mingyuan Zhou, Huangjie Zheng, Zhendong Wang, Mingzhang Yin, and Hai Huang. Score identity
666 distillation: Exponentially fast distillation of pretrained diffusion models for one-step generation.
667 In *Forty-first International Conference on Machine Learning*, 2024b.

668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

702	CONTENTS	
703		
704		
705	1 Introduction	1
706		
707	2 Backgrounds on training and distilling matching models	2
708	2.1 Diffusion and Flow Models	2
709	2.2 Universal loss for matching models	3
710	2.3 Distillation of matching-based models	3
711	2.4 GANs for real data incorporation	4
712		
713		
714		
715	3 Universal distillation of matching models with real data	4
716	3.1 Universal Inverse Distillation	4
717	3.2 Relation to prior distillation works	5
718	3.3 Connection with Inverse Optimization	6
719	3.4 RealUID: natural approach for real data incorporation	6
720		
721		
722		
723	4 Experiments	8
724	4.1 Experimental Setup	8
725	4.2 Benchmarking Methods under a Unified Experimental Configuration	8
726	4.3 Benchmark performance and Computational comparisons	10
727		
728		
729		
730	5 Discussion, extension, future works	10
731		
732		
733	A Theoretical proofs and extensions	15
734	A.1 RealUID theoretical properties	15
735	A.1.1 Proof of RealUID Distance Lemma 2	15
736	A.1.2 Explanation of the choice of coefficients α and β	16
737	A.1.3 Correction of teacher's errors	17
738	A.2 General RealUID loss	19
739	A.3 SiD with real data	21
740	A.4 Normalized UID and RealUID losses for minimizing ℓ_2 -distance	22
741	A.5 DMD approach with real data	22
742		
743		
744		
745		
746	B RealUID Algorithm for Flow Matching models	25
747		
748		
749	C Unified Inverse Disillation for Bridge Matching and Stochastic Interpolants	25
750	C.1 Bridge Matching	25
751	C.2 Stochastic Interpolants	26
752	C.3 Objective for Unified Inverse Distillation for general data coupling	26
753		
754		
755		
	D Experimental details	27

756	E Additional Results	28
757		
758	E.1 Fine-tuning ablation study on coefficients $\alpha_{\text{FT}}, \beta_{\text{FT}}$	28
759	E.2 Ablation study on CelebA dataset	28
760	E.3 Example of samples for different methods.	28
761		
762		

763 A THEORETICAL PROOFS AND EXTENSIONS

764 In this appendix, we discuss our RealUID framework (Appendix A.1) in theoretical details and provide
 765 three extensions of it: *General RealUID* framework with 3 degrees of freedom (Appendix A.2), *SiD*
 766 framework with *real data* (Appendix A.3) and *Normalized RealUID* framework for minimizing ℓ_2 -
 767 distance between teacher and student functions instead of the squared one (Appendix A.4). All proofs
 768 are based on the linearization technique and splitting terms in linearized decomposition between real
 769 and generated data.

770 We also propose an *approach to incorporate real data into DMD* framework, which is unsuitable for
 771 our RealUID Appendix A.5.

774 A.1 REALUID THEORETICAL PROPERTIES

775 In this section, we discuss our RealUID loss in detail. We begin by presenting its explicit form and
 776 how it connects linearization technique and real data incorporation. We then demonstrate that the loss
 777 minimizes a squared ℓ_2 -distance between the rescaled teacher and student functions (Appendix A.1.1).
 778 Finally, we provide the motivation of the best choice of coefficients $\alpha \neq \beta$ from the perspectives of
 779 the better distance (Appendix A.1.2) and the correction of the teacher's errors (Appendix A.1.3).

781 A.1.1 PROOF OF REALUID DISTANCE LEMMA 2

782 Putting explicit values for RealUM loss (17) in RealUID loss (18) and denoting $\delta_t = f_t^* - f_t$, we get:

$$783 \quad \mathcal{L}_{\text{R-UID}}^{\alpha, \beta}(\delta, p_0^\theta) = \mathbb{E}_{t \sim [0, T], x_0^\theta \sim p_0^\theta, x_t^\theta \sim p_t^\theta(\cdot | x_0^\theta)} [-\alpha \|\delta_t(x_t^\theta)\|^2 + 2\alpha \langle \delta_t(x_t^\theta), f_t^*(x_t^\theta) \rangle - 2\beta \langle \delta_t(x_t^\theta), f_t^\theta(x_t^\theta | x_0^\theta) \rangle] \\ 784 \\ 785 \\ 786 \\ 787 \quad + \mathbb{E}_{t \sim [0, T], x_0^* \sim p_0^*, x_t^* \sim p_t^*(\cdot | x_0^*)} [-(1 - \alpha) \|\delta_t(x_t^*)\|^2 + 2(1 - \alpha) \langle \delta_t(x_t^*), f_t^*(x_t^*) \rangle - 2(1 - \beta) \langle \delta_t(x_t^*), f_t^*(x_t^* | x_0^*) \rangle].$$

788 This form provides an alternative definition of coefficients α and β : they define the proportion in
 789 which each summand in the data-free linearized representation (11) of the squared ℓ_2 -distance is
 790 split between the real and generated data. The idea of splitting coefficients between two data types
 791 helps extend RealUID to extra coefficients (Appendix A.2), new distances (Appendix A.4) and SiD
 792 framework with $\alpha_{\text{SiD}} \neq \frac{1}{2}$ (Appendix A.3).

793 Proof of Lemma 2. First, we take math expectation over data points x_0^* . Since the expectation can be
 794 taken in a reverse order, i.e., $\mathbb{E}_{x_0^* \sim p_0^*, x_t^* \sim p_t^*(\cdot | x_0^*)} = \mathbb{E}_{x_t^* \sim p_t^*, x_0^* \sim p_0^*(\cdot | x_t^*)}$, we see that

$$795 \quad \mathbb{E}_{x_0^* \sim p_0^*, x_t^* \sim p_t^*(\cdot | x_0^*)} [\langle \delta_t(x_t^*), f_t^*(x_t^* | x_0^*) \rangle] = \mathbb{E}_{x_t^* \sim p_t^*} \langle \delta_t(x_t^*), \mathbb{E}_{x_0^* \sim p_0^*(\cdot | x_t^*)} [f_t^*(x_t^* | x_0^*)] \rangle \\ 796 \\ 797 \quad = \mathbb{E}_{x_t^* \sim p_t^*} [\langle \delta_t(x_t^*), f_t^*(x_t^*) \rangle]. \quad (21)$$

798 For the generated data term $\mathbb{E}_{x_0^\theta \sim p_0^\theta, x_t^\theta \sim p_t^\theta(\cdot | x_0^\theta)} [\langle \delta_t(x_t^\theta), f_t^\theta(x_t^\theta | x_0^\theta) \rangle] = \mathbb{E}_{x_t^\theta \sim p_t^\theta} [\langle \delta_t(x_t^\theta), f_t^\theta(x_t^\theta) \rangle]$,
 799 the reasoning is similar. Thus, we can write down RealUID loss in an explicit form with $\delta_t = f_t^* - f_t$

$$800 \quad \mathcal{L}_{\text{R-UID}}^{\alpha, \beta}(\delta, p_0^\theta) = \mathbb{E}_{t \sim [0, T]} \mathbb{E}_{x_t^\theta \sim p_t^\theta} [-\alpha \|\delta_t(x_t^\theta)\|^2 + 2\alpha \langle \delta_t(x_t^\theta), f_t^*(x_t^\theta) \rangle - 2\beta \langle \delta_t(x_t^\theta), f_t^\theta(x_t^\theta) \rangle] \\ 801 \\ 802 \\ 803 \quad + \mathbb{E}_{t \sim [0, T]} \mathbb{E}_{x_t^* \sim p_t^*} [-(1 - \alpha) \|\delta_t(x_t^*)\|^2 + 2(1 - \alpha) \langle \delta_t(x_t^*), f_t^*(x_t^*) \rangle - 2(1 - \beta) \langle \delta_t(x_t^*), f_t^*(x_t^*) \rangle]. \quad (22)$$

804 Then, we rescale the generated data terms in RealUID loss (22) using the equality $p_t^\theta(x_t) =$
 805 $\frac{p_t^\theta(x_t)}{p_t^*(x_t)} p_t^*(x_t)$ for $x_t \in \mathbb{R}^D$ (we assume $p_t^*(x_t) > 0, \forall x_t, t$) leaving only math expectation w.r.t.
 806 the real data, i.e,

$$\begin{aligned}
\mathcal{L}_{\text{R-UID}}^{\alpha, \beta}(\delta, p_0^\theta) &= \mathbb{E}_{\substack{t \sim [0, T] \\ x_t^* \sim p_t^*}} \left[-[(1 - \alpha) + \alpha \frac{p_t^\theta(x_t^*)}{p_t^*(x_t^*)}] \|\delta_t(x_t^*)\|^2 \right] \\
&\quad - \mathbb{E}_{\substack{t \sim [0, T] \\ x_t^* \sim p_t^*}} \left[2\beta \frac{p_t^\theta(x_t^*)}{p_t^*(x_t^*)} \langle \delta_t(x_t^*), f_t^\theta(x_t^*) \rangle + 2[(\beta - \alpha) + \alpha \frac{p_t^\theta(x_t^*)}{p_t^*(x_t^*)}] \langle \delta_t(x_t^*), f_t^*(x_t^*) \rangle \right].
\end{aligned}$$

Finally, we maximize the loss w.r.t. $\delta_t(x_t^*)$ for each x_t^* and t as a quadratic function. The maximum is achieved when

$$\delta_t(x_t^*) = \frac{[(\beta - \alpha) + \alpha \frac{p_t^\theta(x_t^*)}{p_t^*(x_t^*)}] f_t^*(x_t^*) - \beta \frac{p_t^\theta(x_t^*)}{p_t^*(x_t^*)} f_t^\theta(x_t^*)}{[(1 - \alpha) + \alpha \frac{p_t^\theta(x_t^*)}{p_t^*(x_t^*)}]}$$

or in terms of the fake model $f = f^* - \delta$

$$\left(\arg \max_f \mathcal{L}_{\text{R-UID}}^{\alpha, \beta}(f, p_0^\theta) \right) (t, x_t) = \frac{f_t^*(x_t) \cdot (1 - \beta) + f_t^\theta(x_t) \cdot \beta \frac{p_t^\theta(x_t)}{p_t^*(x_t)}}{(1 - \alpha) + \alpha \frac{p_t^\theta(x_t)}{p_t^*(x_t)}}. \quad (23)$$

The maximum itself equals to

$$\max_f \mathcal{L}_{\text{R-UID}}^{\alpha, \beta}(f, p_0^\theta) = \mathbb{E}_{t \sim [0, T]} \mathbb{E}_{x_t^* \sim p_t^*} \left[\frac{\|f_t^*(x_t^*) \cdot ((\beta - \alpha) + \alpha \frac{p_t^\theta(x_t^*)}{p_t^*(x_t^*)}) - f_t^\theta(x_t^*) \cdot \beta \frac{p_t^\theta(x_t^*)}{p_t^*(x_t^*)}\|^2}{(1 - \alpha) + \alpha \frac{p_t^\theta(x_t^*)}{p_t^*(x_t^*)}} \right].$$

It is easy to see that when $p_0^\theta = p_0^*$ and $f^\theta = f^*$ this distance achieves its minimal value 0. Moreover, optimal fake model in this case matches the teacher f^* , i.e.,

$$\left(\arg \max_f \mathcal{L}_{\text{R-UID}}^{\alpha, \beta}(f, p_0^*) \right) (t, x_t) = \frac{f_t^*(x_t) \cdot (1 - \beta) + f_t^*(x_t) \cdot \beta \frac{p_t^*(x_t)}{p_t^*(x_t)}}{(1 - \alpha) + \alpha \frac{p_t^*(x_t)}{p_t^*(x_t)}} = f_t^*(x_t).$$

□

A.1.2 EXPLANATION OF THE CHOICE OF COEFFICIENTS α AND β

Here we show that the best way to incorporate real data during generator training is to set $\beta/\alpha \neq 1$.

Following Lemma 2, we know exactly what distance our RealUID loss implicitly minimizes. Below we examine it for various $\alpha, \beta \in (0, 1]$:

$$\begin{aligned}
\max_f \mathcal{L}_{\text{R-UID}}^{\alpha, \beta}(f, p_0^\theta) &= \int_{x_t} l_t(x_t, \beta, \alpha) dx_t, \\
l_t(x_t, \beta, \alpha) &:= \frac{\alpha^2 \|(p_t^*(x_t)(\frac{\beta}{\alpha} - 1) + p_t^\theta(x_t)) \cdot f_t^*(x_t) - \frac{\beta}{\alpha} \cdot p_t^\theta(x_t) \cdot f_t^\theta(x_t)\|^2}{(1 - \alpha)p_t^*(x_t) + \alpha p_t^\theta(x_t)},
\end{aligned}$$

where $l_t(x_t, \beta, \alpha)$ denotes the distance for the particular point x_t .

The total distance mostly sums up from the two groups of points: incorrectly generated points from the generator's main domain, i.e., $p_t^\theta(x_t) \gg 0, p_t^*(x_t) \rightarrow 0$, and real data points which are not covered by the generator, i.e., $p_t^\theta(x_t) \rightarrow 0, p_t^*(x_t) \gg 0$. For the points out of both domains $p_t^\theta(x_t) \rightarrow 0, p_t^*(x_t) \rightarrow 0$, the distance tends to 0, as well as for matching points $p_t^\theta(x_t) \approx p_t^*(x_t)$.

Choice of coefficients α, β . Next, we consider various coefficients $\alpha, \beta \in (0, 1]$ and how they affect two main groups of points.

- All configurations affect the incorrectly generated points $x_t : p_t^*(x_t) \rightarrow 0, p_t^\theta(x_t) \gg 0$:

$$l_t(x_t, \beta, \alpha) \approx \frac{\|\alpha p_t^\theta(x_t) \cdot f_t^*(x_t) - \beta p_t^\theta(x_t) \cdot f_t^\theta(x_t)\|^2}{\alpha p_t^\theta(x_t)} \approx \frac{\beta^2 \|f_t^\theta(x_t)\|^2}{\alpha} p_t^\theta(x_t) \gg 0. \quad (24)$$

Note that increasing $\beta/\alpha > 1$ will diminish the weight of the distance in comparison with $\alpha = \beta = 1$, while decreasing otherwise will lift the weight up.

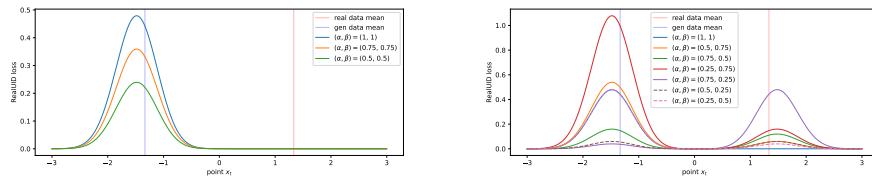


Figure 3: RealUID loss for 1D-Gaussians under various coefficients (α, β) .

- Configuration $\beta < \alpha = 1$ is unstable for uncovered real data points $x_t : p_t^\theta(x_t) \rightarrow 0, p^*(x_t) \gg 0$:

$$l_t(x_t, \beta, \alpha) \approx \frac{\|p_t^*(x_t)(\beta - 1) \cdot f_t^*(x_t) - \beta p_t^\theta(x_t) \cdot f_t^\theta(x_t)\|^2}{p_t^\theta(x_t)} \rightarrow \infty.$$

- Configuration $\beta = \alpha = 1$ (UID loss) does not affect uncovered real data points $x_t : p_t^\theta(x_t) \rightarrow 0, p^*(x_t) \gg 0$:

$$l_t(x_t, \beta, \alpha) \approx \frac{\|p_t^\theta(x_t) \cdot f_t^*(x_t) - p_t^\theta(x_t) \cdot f_t^\theta(x_t)\|^2}{p_t^\theta(x_t)} = \|f_t^*(x_t) - f_t^\theta(x_t)\|^2 p_t^\theta(x_t) \rightarrow 0.$$

- Configuration $\beta = \alpha < 1$ does not affect uncovered real data points $x_t : p_t^\theta(x_t) \rightarrow 0, p^*(x_t) \gg 0$:

$$l_t(x_t, \beta, \alpha) \approx \frac{\|\alpha p_t^\theta(x_t) f_t^*(x_t) - \beta p_t^\theta(x_t) f_t^\theta(x_t)\|^2}{(1 - \alpha) p_t^*(x_t)} = \frac{\|\alpha f_t^*(x_t) - \beta f_t^\theta(x_t)\|^2 (p_t^\theta(x_t))^2}{(1 - \alpha) p_t^*(x_t)} \rightarrow 0.$$

Notably, in this configuration, the distance drops even faster than when $\alpha = \beta = 1$, what makes it even less preferable.

- Only configuration $\beta/\alpha \neq 1$ affects the uncovered real data points $x_t : p_t^\theta(x_t) \rightarrow 0, p^*(x_t) \gg 0$:

$$l_t(x_t, \beta, \alpha) \approx \frac{\|p_t^*(x_t)(\beta - \alpha) \cdot f_t^*(x_t) - \beta p_t^\theta(x_t) \cdot f_t^\theta(x_t)\|^2}{(1 - \alpha) p_t^*(x_t)} \gg 0.$$

Visual illustration. We analytically calculate the loss surface $l_t(x_t, \alpha, \beta)$ between the FM models transforming one-dimensional real data Gaussian $\mathcal{N}(\mu^*, 1)$ and generated Gaussian $\mathcal{N}(\mu^\theta, 1)$ to noise $\mathcal{N}(0, 1)$ on the time interval $[0, 1]$. In this case, the generated and real data interpolations are $p_t^\theta(x_t) = \mathcal{N}(x_t | \mu^\theta(1-t), t^2 + (1-t)^2)$ and $p_t^*(x_t) = \mathcal{N}(x_t | \mu^*(1-t), t^2 + (1-t)^2)$. The unconditional vector field $u = f$ between $\mathcal{N}(0, 1)$ and $\mathcal{N}(\mu, 1)$ can be calculated as

$$\begin{aligned} u_t(x_t) &= \mathbb{E}_{x_0 \sim p_0(\cdot | x_t)} \left[\frac{x_t - x_0}{t} \right] = \int_{x_0} \left(\frac{x_t - x_0}{t} \right) \cdot \mathcal{N} \left(\frac{x_t - x_0(1-t)}{t} | 0, 1 \right) \cdot \mathcal{N}(x_0 | \mu, 1) dx_0 \\ &= \frac{a(2t^2 - 2t) - bt^2}{\sqrt{2\pi(1-2t+2t^2)^3}} \exp \left(-\frac{(x_t - \mu(1-t))^2}{2(1-2t+2t^2)^2} \right). \end{aligned} \quad (25)$$

In Figure 3, we depict the loss surfaces for the fixed time $t = 1/3$, real data $\mu^* = 2$, generated data $\mu^\theta = -2$ and various pairs of (α, β) . We can see that configurations $\beta/\alpha = 1$ do not detect the real data sample, even when $\alpha = \beta < 1$ and real data is formally used. while $\beta/\alpha \neq 1$ actually spots both domains, increasing the weight of generator domain when $\beta/\alpha > 1$ and decreasing it otherwise.

A.1.3 CORRECTION OF TEACHER'S ERRORS

In this chapter, we assume that instead of accurate teacher $f^* = \arg \min_f \mathcal{L}_{\text{UM}}(f, p_0^*)$ we have access only to the arbitrary corrupted teacher \tilde{f}^* . We will show that adding real data via our approach with $\alpha \neq \beta$ provably mitigates the teacher's errors in the final generator.

Minimized distance. With the corrupted teacher \tilde{f}^* and $\tilde{\delta} = \tilde{f}^* - f$, our corrupted Real-UID loss (see Appendix A.1.1) has the explicit form

$$\mathcal{L}_{\text{R-UID}}^{\alpha, \beta}(\tilde{\delta}, p_0) = \mathbb{E}_{\substack{t \sim [0, T], x_0^\theta \sim p_0^\theta, \\ x_t^\theta \sim p_t^\theta(\cdot | x_0^\theta)}} [-\alpha \|\tilde{\delta}_t(x_t^\theta)\|^2 + 2\alpha \langle \tilde{\delta}_t(x_t^\theta), \tilde{f}_t^*(x_t^\theta) \rangle - 2\beta \langle \tilde{\delta}_t(x_t^\theta), f_t^\theta(x_t^\theta | x_0^\theta) \rangle]$$

$$+ \mathbb{E}_{t \sim [0, T], x_t^* \sim p_0^*, x_t^* \sim p_t^*} [-(1-\alpha) \|\tilde{\delta}_t(x_t^*)\|^2 + 2(1-\alpha) \langle \tilde{\delta}_t(x_t^*), \tilde{f}_t^*(x_t^*) \rangle - 2(1-\beta) \langle \tilde{\delta}_t(x_t^*), f_t^*(x_t^* | x_0^*) \rangle].$$

Note that sampled terms $f_t^*(x_t^* | x_0^*)$ and $f_t^\theta(x_t^\theta | x_0^\theta)$ are not affected by the corruption and give the accurate functions $f_t^*(x_t^*) = \mathbb{E}_{x_0^* \sim p_0^*(\cdot | x_t^*)} [f_t^*(x_t^* | x_0^*)]$ and $f_t^\theta(x_t^\theta) = \mathbb{E}_{x_0^\theta \sim p_0^\theta(\cdot | x_t^\theta)} [f_t^\theta(x_t^\theta | x_0^\theta)]$:

$$\mathcal{L}_{\text{R-UID}}^{\alpha, \beta}(\tilde{\delta}, p_0^\theta) = \mathbb{E}_{t \sim [0, T]} \mathbb{E}_{x_t^\theta \sim p_t^\theta} [-\alpha \|\tilde{\delta}_t(x_t^\theta)\|^2 + 2\alpha \langle \tilde{\delta}_t(x_t^\theta), \tilde{f}_t^*(x_t^\theta) \rangle - 2\beta \langle \tilde{\delta}_t(x_t^\theta), f_t^\theta(x_t^\theta) \rangle] \\ + \mathbb{E}_{t \sim [0, T]} \mathbb{E}_{x_t^* \sim p_t^*} [-(1-\alpha) \|\tilde{\delta}_t(x_t^*)\|^2 + 2(1-\alpha) \langle \tilde{\delta}_t(x_t^*), \tilde{f}_t^*(x_t^*) \rangle - 2(1-\beta) \langle \tilde{\delta}_t(x_t^*), f_t^*(x_t^* | x_0^*) \rangle].$$

Then, we rescale the generated data terms using the equality $p_t^\theta(x_t) = \frac{p_t^\theta(x_t)}{p_t^*(x_t)} p_t^*(x_t)$ for $x_t \in \mathbb{R}^D$ (we assume $p_t^*(x_t) > 0, \forall x_t, t$) leaving only math expectation w.r.t. the real data, i.e,

$$\mathcal{L}_{\text{R-UID}}^{\alpha, \beta}(\tilde{\delta}, p_0^\theta) = \mathbb{E}_{t \sim [0, T], x_t^* \sim p_t^*} \left[-[(1-\alpha) + \alpha \frac{p_t^\theta(x_t^*)}{p_t^*(x_t^*)}] (\|\tilde{\delta}_t(x_t^*)\|^2 + 2 \langle \tilde{\delta}_t(x_t^*), \tilde{f}_t^*(x_t^*) \rangle) \right] \\ - \mathbb{E}_{t \sim [0, T], x_t^* \sim p_t^*} \left[2 \langle \tilde{\delta}_t(x_t^*), (1-\beta) f_t^*(x_t^*) + \beta \frac{p_t^\theta(x_t^*)}{p_t^*(x_t^*)} f_t^\theta(x_t^*) \rangle \right].$$

Finally, we maximize the loss w.r.t. $\tilde{\delta}_t(x_t^*)$ for each x_t^* and t as a quadratic function $\max_{\tilde{\delta}} \mathcal{L}_{\text{R-UID}}^{\alpha, \beta}(\tilde{\delta}, p_0^\theta) =$

$$\mathbb{E}_{t \sim [0, T]} \mathbb{E}_{x_t^* \sim p_t^*} \left[\frac{\|\tilde{f}_t^*(x_t^*) \cdot ((1-\alpha) + \alpha \frac{p_t^\theta(x_t^*)}{p_t^*(x_t^*)}) - (1-\beta) f_t^*(x_t^*) - \beta \frac{p_t^\theta(x_t^*)}{p_t^*(x_t^*)} f_t^\theta(x_t^*)\|^2}{(1-\alpha) + \alpha \frac{p_t^\theta(x_t^*)}{p_t^*(x_t^*)}} \right]. \quad (26)$$

Hence, max-min optimization of the corrupted RealUID loss implicitly minimizes expected distance (26). However, due to arbitrary function \tilde{f} , we now cannot guarantee that minimum is achieved when the relation inside the norm equals 0. Previously, we could use the solution $p^\theta = p^*$ which obviously achieved a minimum of 0. Now, due to the implicit and complex relationship between f^θ and p^θ , we can neither find an explicit form for the optimal p^θ nor guarantee the minimum of 0.

Choice of coefficients α, β . Here we give an intuition on why coefficients $\beta/\alpha \neq 1$ can fix the teacher's errors, while $\beta/\alpha = 1$ cannot. For simplicity, we assume that the minimized distance (26) actually attains minimum of 0 when

$$((1-\alpha)p_t^*(x_t) + \alpha p_t^\theta(x_t)) \cdot \tilde{f}_t^*(x_t) - (1-\beta)p_t^*(x_t) \cdot f_t^*(x_t) - \beta p_t^\theta(x_t) \cdot f_t^\theta(x_t^*) = 0. \quad (27)$$

- In case of $\alpha = \beta = 1$, we have $\tilde{f}_t^* = f_t^\theta$, i.e., the generator learns the corrupted function.
- In case of $\alpha = \beta < 1$, we have

$$\tilde{f}_t^*(x_t) = \frac{(1-\alpha)p_t^*(x_t)}{(1-\alpha)p_t^*(x_t) + \alpha p_t^\theta(x_t)} \cdot f_t^*(x_t) + \frac{\alpha p_t^\theta(x_t)}{(1-\alpha)p_t^*(x_t) + \alpha p_t^\theta(x_t)} \cdot f_t^\theta(x_t^*).$$

In this convex combination, the corrupted function \tilde{f}^* is always between the true teacher function f^* and the optimal generator function f^θ , i.e., the generator learns even worse function.

- In case of $\beta/\alpha \neq 1$, there exist intervals of α, β which can give better generator function than the corrupted teacher. For example, coefficients $\alpha \neq \beta$ close to 1 allow to neglect the terms $(1-\alpha)p_t^*(x_t) \cdot \tilde{f}_t^*(x_t)$ and $(1-\beta)p_t^*(x_t) \cdot f_t^*(x_t)$ in (27) to get $f_t^\theta(x_t) \approx \frac{\alpha}{\beta} \tilde{f}_t^*(x_t)$. Hence, we can steer f^θ towards the true teacher picking $\beta/\alpha < 1$ or $\beta/\alpha > 1$ depending on the corrupted and clean teacher's values. However, we cannot find all these intervals analytically due to complex distributions and functions.

Note that we derive the same recommendation $\beta/\alpha \neq 1$ from the perspective of correcting the teacher's errors and from the perspective of the minimized distance surface from Appendix A.1.2.

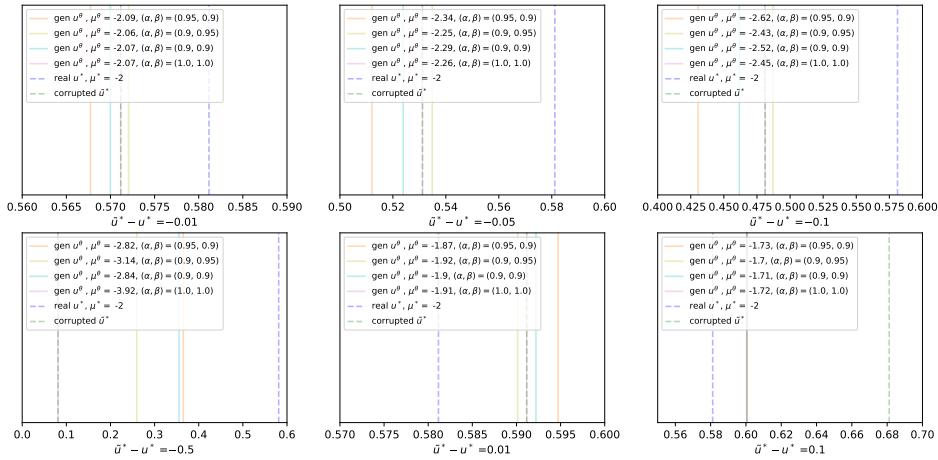
Visual illustration. For visual demonstration, we consider the FM models transforming one-dimensional real data Gaussian $\mathcal{N}(\mu^*, 1)$ and generated Gaussian $\mathcal{N}(\mu^\theta, 1)$ to noise $\mathcal{N}(0, 1)$ on the time interval $[0, 1]$. In this case, the generated and real data interpolations are $p_t^\theta(x_t) = \mathcal{N}(x_t | \mu^\theta(1 -$

972 $t), t^2 + (1-t)^2)$ and $p_t^*(x_t) = \mathcal{N}(x_t | \mu^*(1-t), t^2 + (1-t)^2)$. The unconditional vector field $u = f$
973 between $\mathcal{N}(0, 1)$ and $\mathcal{N}(\mu, 1)$ can be calculated as
974

$$975 \quad u_t(x_t) = \mathbb{E}_{x_0 \sim p_0(\cdot | x_t)} \left[\frac{x_t - x_0}{t} \right] = \int_{x_0} \left(\frac{x_t - x_0}{t} \right) \cdot \mathcal{N} \left(\frac{x_t - x_0(1-t)}{t} | 0, 1 \right) \cdot \mathcal{N}(x_0 | \mu, 1) dx_0 \\ 976 \\ 977 \quad = \frac{a(2t^2 - 2t) - bt^2}{\sqrt{2\pi}(1 - 2t + 2t^2)^{\frac{3}{2}}} \exp \left(-\frac{(x_t - \mu(1-t))^2}{2(1 - 2t + 2t^2)^2} \right). \quad (28) \\ 978 \\ 979$$

980 In Figure 4, we depict the optimal generator mean μ^θ and vector field u^θ satisfying (27) for various
981 deviations $\tilde{u}^* - u^*$ and fixed time $t = 1/3$, real data $\mu^* = -2$ and point $x_t = -1$.

982 We can see that with $\alpha = \beta = 1$, the generator learns the corrupted vector field, and with $\alpha = \beta < 1$,
983 the learned field and means are often even worse. In contrast, with $\beta/\alpha \neq 1$, the generator can learn
984 vector fields and means which are closer to the real data. Although the generator cannot satisfy
985 relation (27) under large deviations, it still produces better results with the real data.



1004 Figure 4: Learned generators for RealUID loss between 1D-Gaussians with corrupted teachers.
1005

1006 A.2 GENERAL REALUID LOSS

1007 **Expanding our real data incorporation.** We recall that UID loss (Theorem 1) can be restated via
1008 linearization technique with $\delta = f^* - f$ as:

$$1009 \quad \mathcal{L}_{\text{UID}}(\delta, p_0^\theta) = \mathbb{E}_{t \sim [0, T], x_0^\theta \sim p_0^\theta, x_t^\theta \sim p_t^\theta(\cdot | x_0^\theta)} \{ -\|\delta_t(x_t^\theta)\|^2 + 2\langle \delta_t(x_t^\theta), f_t^*(x_t^\theta) \rangle - 2\langle \delta_t(x_t^\theta), f_t^\theta(x_t^\theta | x_0^\theta) \rangle \}.$$

1010 In turn, after real data incorporation, we obtain our RealUID loss (Theorem 2). Putting the explicit
1011 values for RealUM loss (17) in RealUID loss (18), we get the explicit formula:

$$1012 \quad \mathcal{L}_{\text{R-UID}}^{\alpha, \beta}(\delta, p_0^\theta) = \mathbb{E}_{t \sim [0, T], x_0^\theta \sim p_0^\theta, x_t^\theta \sim p_t^\theta(\cdot | x_0^\theta)} [-\alpha \|\delta_t(x_t^\theta)\|^2 + 2\alpha \langle \delta_t(x_t^\theta), f_t^*(x_t^\theta) \rangle - 2\beta \langle \delta_t(x_t^\theta), f_t^\theta(x_t^\theta | x_0^\theta) \rangle] \\ 1013 \\ 1014 \quad + \mathbb{E}_{t \sim [0, T], x_0^* \sim p_0^*, x_t^* \sim p_t^*(\cdot | x_0^*)} [-(1 - \alpha) \|\delta_t(x_t^*)\|^2 + 2(1 - \alpha) \langle \delta_t(x_t^*), f_t^*(x_t^*) \rangle - 2(1 - \beta) \langle \delta_t(x_t^*), f_t^*(x_t^* | x_0^*) \rangle].$$

1015 These two formulas give us alternative explanation on how to add real data into arbitrary losses: we
1016 need to split each term in the linearized representation of the data-free loss between real and generated
1017 data. For example, in RealUID loss, its three terms are split with proportions α, α, β , respectively.
1018 We can go even further and split the first quadratic coefficient $-\|\delta_t(\cdot)\|^2$ using a new parameter
1019 $\gamma \in (0, 1]$ to create one more degree of freedom. Moreover, we can use other parametrization of δ ,
1020 since its form does not change the proofs.

1026 **Definition 3.** We introduce **General RealUID loss** $\mathcal{L}_{R\text{-}UID}^{\alpha,\beta,\gamma}(\delta, p_0^\theta)$ on generated data $p_0^\theta \in \mathcal{P}(\mathbb{R}^D)$
1027 with coefficients $\alpha, \beta, \gamma \in (0, 1]$:

$$1029 \mathcal{L}_{R\text{-}UID}^{\alpha,\beta,\gamma}(\delta, p_0^\theta) := \mathbb{E}_{t \sim [0, T], x_0^\theta \sim p_0^\theta, x_t^\theta \sim p_t^\theta} [-\gamma \|\delta_t(x_t^\theta)\|^2 + 2\alpha \langle \delta_t(x_t^\theta), f_t^*(x_t^\theta) \rangle - 2\beta \langle \delta_t(x_t^\theta), f_t^\theta(x_t^\theta | x_0^\theta) \rangle] \\ 1030 + \mathbb{E}_{t \sim [0, T], x_0^* \sim p_0^*, x_t^* \sim p_t^*} [-(1 - \gamma) \|\delta_t(x_t^*)\|^2 + 2(1 - \alpha) \langle \delta_t(x_t^*), f_t^*(x_t^*) \rangle - 2(1 - \beta) \langle \delta_t(x_t^*), f_t^*(x_t^* | x_0^*) \rangle].$$

1031 *Optionally, one can change default reparameterization $\delta = f^* - f$ (e.g., with $\delta = \beta(f^* - f)$), and
1032 substitute sampled real data term $f_t^*(x_t^* | x_0^*)$ with the unconditional teacher $f_t^*(x_t^*)$ and vice versa.*

1033 In case of $\delta = f^* - f$ and $\gamma \neq \alpha$, the General RealUID loss cannot be expressed as inverse min-max
1034 problem (16) for simple losses, since some scalar products do not eliminate each other. Nevertheless,
1035 min-max optimization of $\mathcal{L}_{R\text{-}UID}^{\alpha,\beta,\gamma}$ still minimizes the similar squared ℓ_2 -distance between the weighted
1036 teacher and generator-induced functions, attaining minimum when $p_0^\theta = p_0^*$.

1037 **Lemma 3 (Distance minimized by General RealUID loss).** *Maximization of General RealUID
1038 loss $\mathcal{L}_{R\text{-}UID}^{\alpha,\beta,\gamma}$ over δ represents the squared ℓ_2 -distance between the weighted teacher f^* and student
1039 function $f^\theta := \arg \min_f \mathcal{L}_{UM}(f, p_0^\theta)$:*

$$1044 \max_{\delta} \mathcal{L}_{R\text{-}UID}^{\alpha,\beta,\gamma}(\delta, p_0^\theta) = \mathbb{E}_{t \sim [0, T], x_t^* \sim p_t^*} \left[\frac{\|\frac{\beta}{\alpha} [p_t^*(x_t^*) f_t^*(x_t^*) - p_t^\theta(x_t^*) f_t^\theta(x_t^*)] + (p_t^\theta(x_t^*) - p_t^*(x_t^*)) f_t^*(x_t^*)\|^2}{p_t^*(x_t^*) ((1 - \gamma) p_t^*(x_t^*) + \gamma p_t^\theta(x_t^*)) / \alpha^2} \right].$$

1045 The distances being minimized for RealUID (Lemma 2) and General RealUID (Lemma 3) are almost
1046 identical except the scale factor. Thus, we keep the same recommendations for choosing coefficients
1047 α, β as we discuss in Section 3.4. The factor β/α still has the largest impact within the distance, while
1048 α and γ set the scaling. Values β/α and γ should be chosen close to 1, but not exactly 1.

1049 *Proof.* First, we take math expectation over data points x_0^* . Since the expectation can be taken in a
1050 reverse order, i.e., $\mathbb{E}_{x_0^* \sim p_0^*, x_t^* \sim p_t^*(\cdot | x_0^*)} = \mathbb{E}_{x_t^* \sim p_t^*, x_0^* \sim p_0^*(\cdot | x_t^*)}$, we see that

$$1054 \mathbb{E}_{x_0^* \sim p_0^*, x_t^* \sim p_t^*(\cdot | x_0^*)} [\langle \delta_t(x_t^*), f_t^*(x_t^* | x_0^*) \rangle] = \mathbb{E}_{x_t^* \sim p_t^*} \langle \delta_t(x_t^*), \mathbb{E}_{x_0^* \sim p_0^*(\cdot | x_t^*)} [f_t^*(x_t^* | x_0^*)] \rangle \\ 1055 = \mathbb{E}_{x_t^* \sim p_t^*} [\langle \delta_t(x_t^*), f_t^*(x_t^*) \rangle]. \quad (29)$$

1056 For the term $\mathbb{E}_{x_0^* \sim p_0^*, x_t^* \sim p_t^*(\cdot | x_0^*)} [\langle \delta_t(x_t^*), f_t^\theta(x_t^* | x_0^*) \rangle] = \mathbb{E}_{x_t^* \sim p_t^*} [\langle \delta_t(x_t^*), f_t^\theta(x_t^*) \rangle]$, the reasoning is
1057 similar. Thus, we write down General RealUID loss (Def. 3) in an explicit form with $\delta_t = f_t^* - f_t$:

$$1058 \mathcal{L}_{R\text{-}UID}^{\alpha,\beta,\gamma}(\delta, p_0^\theta) = \mathbb{E}_{t \sim [0, T]} \mathbb{E}_{x_t^\theta \sim p_t^\theta} [-\gamma \|\delta_t(x_t^\theta)\|^2 + 2\alpha \langle \delta_t(x_t^\theta), f_t^*(x_t^\theta) \rangle - 2\beta \langle \delta_t(x_t^\theta), f_t^\theta(x_t^\theta) \rangle] \\ 1059 + \mathbb{E}_{t \sim [0, T]} \mathbb{E}_{x_t^* \sim p_t^*} [-(1 - \gamma) \|\delta_t(x_t^*)\|^2 + 2(1 - \alpha) \langle \delta_t(x_t^*), f_t^*(x_t^*) \rangle - 2(1 - \beta) \langle \delta_t(x_t^*), f_t^\theta(x_t^*) \rangle].$$

1060 Then, we rescale the generated data terms in the General RealUID loss using the equality $p_t^\theta(x_t) = \frac{p_t^\theta(x_t)}{p_t^*(x_t)} p_t^*(x_t)$ for $x_t \in \mathbb{R}^D$ (we assume $p_t^*(x_t) > 0, \forall x_t, t$) leaving only math expectation w.r.t. the
1061 real data, i.e.,

$$1062 \mathcal{L}_{R\text{-}UID}^{\alpha,\beta,\gamma}(\delta, p_0^\theta) = \mathbb{E}_{t \sim [0, T], x_t^* \sim p_t^*} \left[-[(1 - \gamma) + \gamma \frac{p_t^\theta(x_t^*)}{p_t^*(x_t^*)}] \|\delta_t(x_t^*)\|^2 \right] \\ 1063 + \mathbb{E}_{t \sim [0, T], x_t^* \sim p_t^*} \left[2[(\beta - \alpha) + \alpha \frac{p_t^\theta(x_t^*)}{p_t^*(x_t^*)}] \langle \delta_t(x_t^*), f_t^*(x_t^*) \rangle - 2\beta \frac{p_t^\theta(x_t^*)}{p_t^*(x_t^*)} \langle \delta_t(x_t^*), f_t^\theta(x_t^*) \rangle \right].$$

1064 Then we maximize the loss w.r.t. $\delta_t(x_t^*)$ for each x_t^* and t as a quadratic function. The maximum is
1065 achieved when

$$1066 \delta_t(x_t^*) = \frac{[(\beta - \alpha) + \alpha \frac{p_t^\theta(x_t^*)}{p_t^*(x_t^*)}] f_t^*(x_t^*) - \beta \frac{p_t^\theta(x_t^*)}{p_t^*(x_t^*)} f_t^\theta(x_t^*)}{[(1 - \gamma) + \gamma \frac{p_t^\theta(x_t^*)}{p_t^*(x_t^*)}]. \quad (30)$$

1067 The maximum itself equals to

$$1068 \max_{\delta} \mathcal{L}_{R\text{-}UID}^{\alpha,\beta,\gamma}(\delta, p_0^\theta) = \mathbb{E}_{t \sim [0, T]} \mathbb{E}_{x_t^* \sim p_t^*} \left[\frac{\|f_t^*(x_t^*) \cdot ((\beta - \alpha) + \alpha \frac{p_t^\theta(x_t^*)}{p_t^*(x_t^*)}) - f_t^\theta(x_t^*) \cdot \beta \frac{p_t^\theta(x_t^*)}{p_t^*(x_t^*)}\|^2}{(1 - \gamma) + \gamma \frac{p_t^\theta(x_t^*)}{p_t^*(x_t^*)}} \right].$$

1080 **Alternative parameterization.** In the proximity of the solution, when generated data approaches
1081 real one, i.e., $p_t^\theta \approx p_t^*$, the optimal δ_t (30) approaches
1082

$$1083 \quad \delta_t(x_t^*) \approx \frac{[(\beta - \alpha) + \alpha \cdot 1] f_t^*(x_t^*) - \beta \cdot 1 \cdot f_t^\theta(x_t^*)}{[(1 - \gamma) + \gamma \cdot 1]} \approx \beta(f_t^*(x_t^*) - f_t^\theta(x_t^*)).$$

1084 Thus, the parametrization $\delta_t = \beta(f_t^* - f_t)$ may naturally help reach the solution without making the
1085 fake model learn extra information about the teacher near the optimum. \square
1086

1087 A.3 SiD WITH REAL DATA
1088

1089 **Our real data incorporation.** We recall that data-free UID loss (Theorem 1), which is equivalent to
1090 SiD with $\alpha_{\text{SiD}} = 1/2$, can be restated via linearization technique with $\delta = f - f^*$ as
1091

$$1092 \quad \mathcal{L}_{\text{UID}}(\delta, p_0^\theta) = \mathbb{E}_{\substack{t \sim [0, T], x_0^\theta \sim p_0^\theta, \\ x_t^\theta \sim p_t^\theta(\cdot | x_0^\theta)}} \{-\|\delta_t(x_t^\theta)\|^2 + 2\langle \delta_t(x_t^\theta), f_t^*(x_t^\theta) \rangle - 2\langle \delta_t(x_t^\theta), f_t^\theta(x_t^\theta | x_0^\theta) \rangle\}. \quad (31)$$

1093 In turn, after real data incorporation, we obtain our RealUID loss (Theorem 2). Putting the explicit
1094 values for RealUM loss (17) in RealUID loss (18), we get the explicit formula:
1095

$$1096 \quad \mathcal{L}_{\text{R-UID}}(\delta, p_0^\theta) = \mathbb{E}_{\substack{t \sim [0, T], x_0^\theta \sim p_0^\theta, \\ x_t^\theta \sim p_t^\theta(\cdot | x_0^\theta)}} [-\alpha \|\delta_t(x_t^\theta)\|^2 + 2\alpha \langle \delta_t(x_t^\theta), f_t^*(x_t^\theta) \rangle - 2\beta \langle \delta_t(x_t^\theta), f_t^\theta(x_t^\theta | x_0^\theta) \rangle] \\ 1097 \\ 1098 \quad + \mathbb{E}_{\substack{t \sim [0, T], x_0^* \sim p_0^*, \\ x_t^* \sim p_t^*(\cdot | x_0^*)}} [-(1 - \alpha) \|\delta_t(x_t^*)\|^2 + 2(1 - \alpha) \langle \delta_t(x_t^*), f_t^*(x_t^*) \rangle - 2(1 - \beta) \langle \delta_t(x_t^*), f_t^*(x_t^* | x_0^*) \rangle].$$

1099 These two formulas give us alternative explanation on how to add real data into arbitrary losses: we
1100 need to split each term in the linearized representation of the data-free loss between real and generated
1101 data. For example, in RealUID loss, its three terms are split with proportions α, α, β , respectively.
1102

1103 **Combining with SiD.** In SiD framework (Zhou et al., 2024a;b), the authors notice that UID loss
1104 (31) for generator updates, with additional normalization and the first coefficient $-\|\delta_t(x_t^\theta)\|^2$ scaled
1105 by $2\alpha_{\text{SiD}}$, empirically yields better performance. Namely, the SiD loss for generator with parameter
1106 $\alpha_{\text{SiD}} \in [0.5, 1.2]$ is
1107

$$1108 \quad \mathcal{L}_{\alpha_{\text{SiD}}}(\delta, p_0^\theta) = \mathbb{E}_{\substack{t \sim [0, T], x_0^\theta \sim p_0^\theta, \\ x_t^\theta \sim p_t^\theta(\cdot | x_0^\theta)}} \left\{ \frac{-2\alpha_{\text{SiD}} \|\delta_t(x_t^\theta)\|^2 + 2\langle \delta_t(x_t^\theta), f_t^*(x_t^\theta) \rangle - 2\langle \delta_t(x_t^\theta), f_t^\theta(x_t^\theta | x_0^\theta) \rangle}{\omega_t} \right\},$$

1110 where $\omega_t \propto \text{NO-GRAD}\{\|f_t^\theta(x_t^\theta | x_0^\theta) - f_t^*(x_t^\theta)\|_1\}$ are normalization weights. For more details about
1111 time sampling and practical implementation, please refer to the original papers (Zhou et al., 2024a;b).
1112

1113 Following the structure of generator SiD loss, we propose to scale the first coefficient in our weighted
1114 RealUID loss during generator updates. The whole **SiD pipeline with real data**, determined by
1115 coefficients $\alpha, \beta \in (0, 1]$, $\alpha_{\text{SiD}} \in [0.5, 1.2]$ and teacher f^* , is two alternating steps:
1116

1. Make one or several fake model f update steps, minimizing the real data modified UM loss
 $\mathcal{L}_{\text{R-UM}}^{\alpha, \beta}(f, p_0^\theta)$ (Def. 2):

$$1117 \quad \mathcal{L}_{\text{R-UM}}^{\alpha, \beta}(f, p_0^\theta) = \underbrace{\alpha \cdot \mathbb{E}_{t \sim [0, T]} \mathbb{E}_{\substack{x_0^\theta \sim p_0^\theta, x_t^\theta \sim p_t^\theta(\cdot | x_0^\theta) \\ \text{generated data } p_0^\theta \text{ term}}} \left[\|f_t(x_t^\theta) - \frac{\beta}{\alpha} f_t^\theta(x_t^\theta | x_0^\theta)\|^2 \right]}_{\text{generated data } p_0^\theta \text{ term}} \\ 1118 \\ 1119 \quad + \underbrace{(1 - \alpha) \cdot \mathbb{E}_{t \sim [0, T]} \mathbb{E}_{\substack{x_0^* \sim p_0^*, x_t^* \sim p_t^*(\cdot | x_0^*) \\ \text{real data } p_0^* \text{ term}}} \left[\|f_t(x_t^*) - \frac{1 - \beta}{1 - \alpha} f_t^*(x_t^* | x_0^*)\|^2 \right]}_{\text{real data } p_0^* \text{ term}}.$$

2. Make a generator update step, minimizing the loss $\mathcal{L}_{\text{R-UID}, \alpha_{\text{SiD}}}^{\alpha, \beta}(p_0^\theta) =$

$$1120 \quad \mathbb{E}_{\substack{t \sim [0, T], x_0^\theta \sim p_0^\theta, \\ x_t^\theta \sim p_t^\theta(\cdot | x_0^\theta)}} \left\{ \frac{-2\alpha_{\text{SiD}} \cdot \alpha \cdot \|\delta_t(x_t^\theta)\|^2 + 2\alpha \langle \delta_t(x_t^\theta), f_t^*(x_t^\theta) \rangle - 2\beta \langle \delta_t(x_t^\theta), f_t^\theta(x_t^\theta | x_0^\theta) \rangle}{\omega_t} \right\},$$

1130 where $\delta_t = f_t - f_t^*$ and $\omega_t \propto \text{NO-GRAD}\{\|f_t^\theta(x_t^\theta | x_0^\theta) - f_t^*(x_t^\theta)\|_1\}$.
1131

1132 We keep the same recommendations for choosing coefficients α, β as we discuss in Section 3.4. The
1133 optimal choice is slightly different $\alpha \neq \beta$ which are close to 1. Following (Zhou et al., 2024a), the
1134 best choice for α_{SiD} is $\alpha_{\text{SiD}} \in [1, 1.2]$.

1134
1135A.4 NORMALIZED UID AND REALUID LOSSES FOR MINIMIZING ℓ_2 -DISTANCE

1136 Using the linearization technique from Section 3.1, we can estimate the non-squared ℓ_2 -distance
 1137 between the teacher $f^* := \arg \min_f \mathcal{L}_{\text{UM}}(f, p_0^*)$ and student $f^\theta := \arg \min_f \mathcal{L}_{\text{UM}}(f, p_0^\theta)$ functions.
 1138 In this case, the connection with the inverse optimization disappears.

1139 For a fixed point x_t^θ and time t , we derive:

$$\begin{aligned} 1141 \|f^*(x_t^\theta) - f_t^\theta(x_t^\theta)\| &= \max_{\delta_t(x_t^\theta)} \left\{ \left\langle \frac{\delta_t(x_t^\theta)}{\|\delta_t(x_t^\theta)\|}, f_t^*(x_t^\theta) - f_t^\theta(x_t^\theta) \right\rangle \right\} \\ 1142 &= \max_{\delta_t(x_t^\theta)} \mathbb{E}_{x_0^\theta \sim p_0^\theta(\cdot|x_t^\theta)} \left\{ \left\langle \frac{\delta_t(x_t^\theta)}{\|\delta_t(x_t^\theta)\|}, f_t^*(x_t^\theta) \right\rangle - \left\langle \frac{\delta_t(x_t^\theta)}{\|\delta_t(x_t^\theta)\|}, f_t^\theta(x_t^\theta|x_0^\theta) \right\rangle \right\}. \quad (32) \\ 1143 \\ 1144 \\ 1145 \end{aligned}$$

1146 With the reparameterization $\delta_t = f_t^* - f_t$, the **Normalized UID loss** $\hat{\mathcal{L}}_{\text{UID}}(f, p_0^\theta)$ for min-max
 1147 optimization to solve $\min_\theta \mathbb{E}_{t \sim [0, T]} \mathbb{E}_{x_t^\theta \sim p_t^\theta} \|f_t^*(x_t^\theta) - f_t^\theta(x_t^\theta)\|$ is:
 1148

$$1149 \min_\theta \max_f \left\{ \hat{\mathcal{L}}_{\text{UID}}(f, p_0^\theta) := \mathbb{E}_{t \sim [0, T], x_t^\theta \sim p_0^\theta, x_t^\theta \sim p_t^\theta(\cdot|x_0^\theta)} \left[\left\langle \frac{f_t^*(x_t^\theta) - f_t(x_t^\theta)}{\|f_t^*(x_t^\theta) - f_t(x_t^\theta)\|}, f_t^*(x_t^\theta) - f_t^\theta(x_t^\theta|x_0^\theta) \right\rangle \right] \right\}. \quad (33) \\ 1150 \\ 1151 \\ 1152$$

1153 **Adding real data.** Following the intuition from the proof in Appendix A.1.1, we can incorporate
 1154 real data in Normalized UID loss (33) as well. We need to split two summands in the linearized
 1155 representation (32) into generated and real data parts with weights $\alpha, (1 - \alpha)$ and $\beta, (1 - \beta)$.

1156 **Definition 4.** We introduce **Normalized RealUID loss** $\hat{\mathcal{L}}_{\text{R-UID}}^{\alpha, \beta}(f, p_0^\theta)$ on generated data $p_0^\theta \in \mathcal{P}(\mathbb{R}^D)$
 1157 with coefficients $\alpha, \beta \in (0, 1]$:

$$\begin{aligned} 1158 \hat{\mathcal{L}}_{\text{R-UID}}^{\alpha, \beta}(f, p_0^\theta) &:= \mathbb{E}_{t \sim [0, T]} \mathbb{E}_{\substack{x_t^\theta \sim p_t^\theta, \\ x_0^\theta \sim p_0^\theta(\cdot|x_t^\theta)}} \left\{ \left\langle \frac{f_t^*(x_t^\theta) - f_t(x_t^\theta)}{\|f_t^*(x_t^\theta) - f_t(x_t^\theta)\|}, \alpha \cdot f_t^*(x_t^\theta) - \beta \cdot f_t^\theta(x_t^\theta|x_0^\theta) \right\rangle \right\} \\ 1159 &+ \mathbb{E}_{t \sim [0, T]} \mathbb{E}_{\substack{x_t^* \sim p_t^*, \\ x_0^* \sim p_0^*(\cdot|x_t^*)}} \left\{ \left\langle \frac{f_t^*(x_t^*) - f_t(x_t^*)}{\|f_t^*(x_t^*) - f_t(x_t^*)\|}, (1 - \alpha) \cdot f_t^*(x_t^*) - (1 - \beta) \cdot f_t^*(x_t^*|x_0^*) \right\rangle \right\}. \\ 1160 \\ 1161 \\ 1162 \\ 1163 \\ 1164 \end{aligned}$$

1165 Similar to the proof of RealUID distance Lemma 2, we can show that min-max optimization of
 1166 Normalized RealUID loss minimizes the non-squared ℓ_2 -norm between the similar weighted student
 1167 f^θ and teacher f^* functions:

$$1168 \max_f \hat{\mathcal{L}}_{\text{R-UID}}^{\alpha, \beta}(f, p_0^\theta) = \mathbb{E}_{t \sim [0, T]} \mathbb{E}_{x_t^* \sim p_t^*} \left[\|((\beta - \alpha) + \alpha \frac{p_t^\theta(x_t^*)}{p_t^*(x_t^*)}) \cdot f_t^*(x_t^*) - \beta \frac{p_t^\theta(x_t^*)}{p_t^*(x_t^*)} \cdot f_t^\theta(x_t^*)\| \right]. \\ 1169 \\ 1170$$

1171 This distance attains minimum when $p_0^\theta = p_0^*$, justifying the procedure.

1173 A.5 DMD APPROACH WITH REAL DATA
1174

1175 **Distribution Matching Distillation** (Luo et al., 2023; Wang et al., 2023; Yin et al., 2024b;a) (DMD)
 1176 approach distills Gaussian diffusion models with forward process $x_t = x_0 + \sigma_t \epsilon, \epsilon \sim \mathcal{N}(0, I)$.

1177 This approach minimizes KL divergence $\mathbb{E}_{t \sim [0, T]} D_{KL}(p_t^\theta || p_t^*) = \mathbb{E}_{t \sim [0, T]} \mathbb{E}_{x_t^\theta \sim p_t^\theta} \left[\log \left(\frac{p_t^\theta(x_t^\theta)}{p_t^*(x_t^\theta)} \right) \right]$
 1178 between the generated data p_t^θ and the real data p_t^* . The authors show the true gradient of
 1179 $\mathbb{E}_{t \sim [0, T]} D_{KL}(p_t^\theta || p_t^*)$ w.r.t. θ can be computed via the score functions:

$$1180 \mathbb{E}_{t \sim [0, T]} \left[\frac{dD_{KL}(p_t^\theta || p_t^*)}{d\theta} \right] = \mathbb{E}_{z \sim p^z, x_0^\theta = G(z), x_t^\theta \sim p_t^\theta} \left[(\nabla_{x_t^\theta} \ln p_t^\theta(x_t^\theta) - \nabla_{x_t^\theta} \ln p_t^*(x_t^\theta)) \frac{dG_\theta(z)}{d\theta} \right]. \\ 1181 \\ 1182 \\ 1183$$

1184 Then, this true gradient is estimated with the teacher score function $s^* := \arg \min_s \mathcal{L}_{\text{DSM}}(s, p_0^*)$ and
 1185 student score $s^\theta = \arg \min_s \mathcal{L}_{\text{DSM}}(s, p_0^\theta)$ at each time moment:

$$1186 \mathbb{E}_{t \sim [0, T]} \left[\frac{dD_{KL}(p_t^\theta || p_t^*)}{d\theta} \right] = \mathbb{E}_{t \sim [0, T]} \mathbb{E}_{z \sim p^z, x_0^\theta = G_\theta(z), x_t^\theta \sim p_t^\theta} \left[(s_t^\theta(x_t^\theta) - s_t^*(x_t^\theta)) \frac{dG_\theta}{d\theta} \right]. \\ 1187$$

1188 The final algorithm alternates updates for the fake model and the generator similar to SiD approach.
1189

1190 *We would like to highlight that DMD does not fit our UID framework.* The UID loss is uniquely
1191 determined by its input UM loss. In the case of Diffusion models and DMD, the UM loss is the
1192 $\mathcal{L}_{DSM}(s, p_0^\theta)$ loss. With this loss, the resulting UID loss becomes exactly the SiD loss, not DMD.

1193 **Adding real data.** We investigated a theoretical possibility to incorporate real data into the DMD
1194 framework. We found that we can use the Modified DSM loss (17) to train the modified student score
1195 function $s_t^{\theta, \alpha} = \arg \min_s \mathcal{L}_{M-DSM}^{\alpha, \alpha}(s, p_0^\theta)$ with coefficients $\alpha = \beta$:

$$\begin{aligned} \mathcal{L}_{M-DSM}^{\alpha, \alpha}(s, p_0^\theta) &:= \underbrace{\alpha \cdot \mathbb{E}_{t \sim [0, T]} \mathbb{E}_{x_0^\theta \sim p_0^\theta, x_t^\theta \sim p_t^\theta(\cdot | x_0)} [\|s_t(x_t^\theta) - s^\theta(x_t^\theta | x_0^\theta)\|^2]}_{\text{generated data } p_0^\theta \text{ term}} \\ &+ \underbrace{(1 - \alpha) \cdot \mathbb{E}_{t \sim [0, T]} \mathbb{E}_{x_0^* \sim p_0^*, x_t^* \sim p_t^*(\cdot | x_0^*)} [\|s_t(x_t^*) - s_t^*(x_t^* | x_0^*)\|^2]}_{\text{real data } p_0^* \text{ term}}. \end{aligned}$$

1202 Then apply the generator parameters update based on the KL divergence between mixed distributions.
1203

1204 **Lemma 4 (DMD with real data).** *Consider real data distribution $p_0^* \in \mathcal{P}(\mathbb{R}^D)$ and generated
1205 by generator G_θ distribution $p_0^\theta \in \mathcal{P}(\mathbb{R}^D)$. Then, KL divergence between mixed and real data for
1206 $\alpha \in (0, 1]$ has the following gradients with modified student score $s_t^{\theta, \alpha} := \arg \min_s \mathcal{L}_{M-DSM}^{\alpha, \alpha}(s, p_0^\theta)$
1207 and teacher score $s_t^* := \arg \min_s \mathcal{L}_{DSM}(s, p_0^*)$:*

$$\mathbb{E}_{t \sim [0, T]} \left[\frac{dD_{KL}(\alpha \cdot p_t^\theta + (1 - \alpha) \cdot p_t^* || p_t^*)}{d\theta} \right] = \mathbb{E}_{\substack{t \sim [0, T], z \sim p^{\mathcal{Z}} \\ x_0^\theta = G_\theta(z), x_t^\theta \sim p_t^\theta}} \left[\alpha (s_t^{\theta, \alpha}(x_t^\theta) - s_t^*(x_t^\theta)) \frac{dG_\theta}{d\theta} \right].$$

1211 Although this approach is theoretically justified, it requires coefficients $\alpha = \beta$ which work poorly for
1212 our RealUID, see Section 3.4. In the proof below, we also show that use of coefficients $\alpha \neq \beta$ in the
1213 fake model loss leads to the total collapse of a generator. The proof itself follows (Wang et al., 2023).
1214

1215 *Proof.* We aim to minimize KL divergence between generated distribution p_0^θ and the real data p_0^*
1216

$$\min_{p_0^\theta} E(p_0^\theta) := \mathbb{E}_{t \sim [0, T]} [D_{KL}(\alpha \cdot p_t^\theta + (1 - \alpha) \cdot p_t^* || p_t^*)].$$

1217 First, we use (Wang et al., 2023, Lemma 1) which says that, for any two distributions $p, q \in \mathcal{P}(\mathbb{R}^D)$
1218 and point $x \in \mathbb{R}^D$, we have

$$\left(\frac{\delta D_{KL}(q || p)}{\delta q} \right) [x] = \log q(x) - \log p(x) + 1.$$

1219 Second, for the parametrization $x_0^\theta = G_\theta(z), z \sim p^{\mathcal{Z}}$ and a fixed point x_t , we have (Wang et al.,
1220 2023, Lemma 2)

$$\frac{\delta p_t^\theta(x_t)}{\delta p_0^\theta} [\theta] = \int_z p_t^\theta(x_t | x_0^\theta) p^{\mathcal{Z}}(z) dz.$$

1221 It allows us to obtain

$$\begin{aligned} \frac{\delta E(p_0^\theta)}{\delta p_0^\theta} [\theta] &= \mathbb{E}_t \underbrace{\frac{\delta D_{KL}(\alpha \cdot p_t^\theta(\cdot) + (1 - \alpha) \cdot p_t^*(\cdot) || p_t^*(\cdot))}{\delta p_0^\theta}}_{=: q_t} [\theta] \\ &= \mathbb{E}_t \int \frac{\delta D_{KL}(q_t || p_t^*)}{\delta q_t} [x_t] \cdot \frac{\delta q_t}{\delta p_t^\theta} [x_t] \cdot \frac{\delta p_t^\theta(x_t)}{\delta p_0^\theta} [\theta] \cdot dx_t \\ &= \mathbb{E}_t \int [\log(\alpha \cdot p_t^\theta(x_t) + (1 - \alpha) \cdot p_t^*(x_t)) - \log(p_t^*(x_t)) + 1] \cdot \alpha \cdot \int_z p_t^\theta(x_t | x_0^\theta) p^{\mathcal{Z}}(z) dz \cdot dx_t \\ &= \mathbb{E}_{t, \epsilon, z} [\alpha \log(\alpha \cdot p_t^\theta(x_t^\theta) + (1 - \alpha) \cdot p_t^*(x_t^\theta)) - \alpha \log(p_t^*(x_t^\theta)) + \alpha] \\ &= \mathbb{E}_{t, \epsilon, z} [\alpha \log \left(\alpha \cdot \frac{p_t^\theta(x_t^\theta)}{p_t^*(x_t^\theta)} + (1 - \alpha) \right) + \alpha], \end{aligned} \tag{34}$$

1242 where $x_0^\theta = G_\theta(z)$, $x_t^\theta = x_0^\theta + \sigma_t \epsilon$, $\epsilon \sim \mathcal{N}(0, I)$. Finally, we take derivative w.r.t. θ from (34):
1243

$$\begin{aligned}
1244 \quad \nabla_\theta \frac{\delta E(p_0^\theta)}{\delta p_0^\theta}[\theta] &= \mathbb{E}_{t,\epsilon,z} \left[\alpha \cdot \nabla_{x_t^\theta} \log \left(\alpha \cdot \frac{p_t^\theta(x_t^\theta)}{p_t^*(x_t^\theta)} + (1 - \alpha) \right) \cdot \frac{\partial x_t^\theta}{\partial \theta} \right] \\
1245 &= \mathbb{E}_{t,\epsilon,z} \left[\alpha \cdot \nabla_{x_t^\theta} \log \left(\alpha \cdot \frac{p_t^\theta(x_t^\theta)}{p_t^*(x_t^\theta)} + (1 - \alpha) \right) \cdot \frac{\partial G_\theta(z)}{\partial \theta} \right] \\
1246 &= \mathbb{E}_{t,\epsilon,z} \left[\alpha^2 \frac{\nabla_{x_t^\theta} p_t^\theta(x_t^\theta) / p_t^*(x_t^\theta)}{\alpha \cdot \frac{p_t^\theta(x_t^\theta)}{p_t^*(x_t^\theta)} + (1 - \alpha)} \cdot \frac{\partial G_\theta(z)}{\partial \theta} \right]. \tag{35}
\end{aligned}$$

1252 Now, we show how to obtain unbiased estimate of this gradient. We minimize the following loss
1253 function over the fake model s :

$$\begin{aligned}
1254 \quad \mathcal{L}_{M-DSM}^{\alpha,\alpha}(s, p_0^\theta) &:= \alpha \cdot \mathbb{E}_{t \sim [0,T]} \mathbb{E}_{x_t^\theta \sim p_t^\theta, x_0^\theta \sim p_0^\theta(\cdot|x_t)} [\|s_t(x_t^\theta) - s_t^\theta(x_t^\theta|x_0^\theta)\|^2] \\
1255 &\quad + (1 - \alpha) \cdot \mathbb{E}_{t \sim [0,T]} \mathbb{E}_{x_t^* \sim p_t^*, x_0^* \sim p_0^*(\cdot|x_t)} [\|s_t(x_t^*) - s_t^*(x_t^*|x_0^*)\|^2].
\end{aligned}$$

1257 This loss is equivalent to the following sequence
1258

$$\begin{aligned}
1259 \quad \min_s & \left\{ \alpha \mathbb{E}_{\substack{t \sim [0,T], \\ x_t^\theta \sim p_t^\theta}} \|s_t(x_t^\theta) - s_t^\theta(x_t^\theta)\|^2 + (1 - \alpha) \mathbb{E}_{\substack{t \sim [0,T], \\ x_t^* \sim p_t^*}} \|s_t(x_t^*) - s_t^*(x_t^*)\|^2 \right\}, \\
1260 \\
1261 \quad \min_s & \left\{ \alpha \mathbb{E}_{\substack{t \sim [0,T], \\ x_t^\theta \sim p_t^\theta}} \|s_t(x_t^\theta) - \nabla_{x_t^\theta} \log p_t^\theta(x_t^\theta)\|^2 + (1 - \alpha) \mathbb{E}_{\substack{t \sim [0,T], \\ x_t^* \sim p_t^*}} \|s_t(x_t^*) - \nabla_{x_t^*} \log p_t^*(x_t^*)\|^2 \right\}, \\
1262 \\
1263 \quad \min_s & \left[\alpha \|s_t(x_t^*) - \nabla \log p_t^\theta(x_t^*)\|^2 \frac{p_t^\theta(x_t^*)}{p_t^*(x_t^*)} + (1 - \alpha) \|s_t(x_t^*) - \nabla \log p_t^*(x_t^*)\|^2 \right].
\end{aligned}$$

1269 The optimal solution $s^{\theta,\alpha}$ of this quadratic minimization for each point x_t and time moment t is
1270

$$s_t^{\theta,\alpha}(x_t) = \frac{\alpha \frac{p_t^\theta(x_t)}{p_t^*(x_t)} \nabla_{x_t} \log p_t^\theta(x_t) + (1 - \alpha) \nabla_{x_t} \log p_t^*(x_t)}{\alpha \frac{p_t^\theta(x_t)}{p_t^*(x_t)} + (1 - \alpha)}.$$

1271 Thus, we have the following estimate with modified student score $s^{\theta,\alpha}$ and teacher score $s_t^*(x_t) :=$
1272 $\nabla_{x_t} \log p_t^*(x_t)$
1273

$$\begin{aligned}
1274 \quad s_t^{\theta,\alpha}(x_t) - s_t^*(x_t) &= \frac{\alpha \frac{p_t^\theta(x_t)}{p_t^*(x_t)} \nabla_{x_t} \log p_t^\theta(x_t) + (1 - \alpha) \nabla_{x_t} \log p_t^*(x_t)}{\alpha \frac{p_t^\theta(x_t)}{p_t^*(x_t)} + (1 - \alpha)} - \nabla_{x_t} \log p_t^*(x_t) \\
1275 &= \frac{\alpha \frac{p_t^\theta(x_t)}{p_t^*(x_t)} (\nabla_{x_t} \log p_t^\theta(x_t) - \nabla_{x_t} \log p_t^*(x_t))}{\alpha \frac{p_t^\theta(x_t)}{p_t^*(x_t)} + (1 - \alpha)} \\
1276 &= \frac{\alpha \frac{p_t^\theta(x_t)}{p_t^*(x_t)} \nabla_{x_t} \log \frac{p_t^\theta(x_t)}{p_t^*(x_t)}}{\alpha \frac{p_t^\theta(x_t)}{p_t^*(x_t)} + (1 - \alpha)} = \frac{\alpha \nabla_{x_t} p_t^\theta(x_t) / p_t^*(x_t)}{\alpha \frac{p_t^\theta(x_t)}{p_t^*(x_t)} + (1 - \alpha)}.
\end{aligned}$$

1277 Hence, this estimate completely matches with required gradient (35):
1278

$$(35) = \mathbb{E}_{t,\epsilon,z} \left[\alpha \cdot (s_t^{\theta,\alpha}(x_t^\theta) - s_t^*(x_t^\theta)) \cdot \frac{\partial G_\theta(z)}{\partial \theta} \right].$$

1279 The use of other coefficients during student score optimization does not work. For the other student
1280 scores $s_t^{\theta,\alpha,\beta} := \arg \min_s \mathcal{L}_{M-DSM}^{\alpha,\beta}(s, p_0^\theta)$, the estimate $s_t^{\theta,\alpha,\beta}(x_t) - \nabla_{x_t} \log p_t^*(x_t)$ does not lead to
1281 the necessary difference $\nabla_{x_t} \log p_t^\theta(x_t) - \nabla_{x_t} \log p_t^*(x_t) = 0$. And the optimal generator collapses
1282 due to large bias.
1283

□

1296 **B REALUID ALGORITHM FOR FLOW MATCHING MODELS**
1297

1298 We provide a practical implementation of our RealUID approach for FM in Algorithm 1. In the
1299 loss functions, we retain only the terms dependent on the target parameters. For the fake model, we
1300 reformulate the maximization objective as a minimization. We use alternating optimization, updating
1301 the fake model K times per one student update for stability.
1302

1303 **Algorithm 1 Real data modified Unified Inversion Distillation (RealUID) for Flow Matching**
1304

1305 **Input:** teacher u^* , student generator G_θ , fake model u_ψ , real data p_0^* , coefficients $\alpha, \beta \in (0, 1]$,
1306 generator update steps K , number of iterations N , batch size B , fake model minimizer Opt_{st} ,
1307 generator minimizer Opt_{gen} , latent distribution p^Z , noise distribution p_1 .
1308 1: **for** $n = 0, \dots, N - 1$ **do**
1309 2: Sample noise batch $\{x_{1,i}\}_{i=1}^B \sim p_1$ and generated batch $\{x_{0,i}^\theta = G_\theta(z_i)\}_{i=1}^B, z_i \sim p^Z$;
1310 3: Sample time batch $\{t_i\}_{i=1}^B \sim U[0, 1]$ and calculate $x_{t_i,i}^\theta = (1 - t_i)x_{0,i}^\theta + t_i x_{1,i}$;
1311 4: **if** student step ($n \% K \neq 0$) **then**
1312 5: Sample real data batch $\{x_{0,i}^*\}_{i=1}^B \sim p_0^*$ and calculate $x_{t_i,i}^* = (1 - t_i)x_{0,i}^* + t_i x_{1,i}$;
1313 6: Update fake model parameters ψ via minimizer Opt_{st} step with gradients of
1314
$$\frac{1}{B} \sum_{i=1}^B \left[\alpha \|u_\psi(t_i, x_{t_i,i}^{\theta}) - \frac{\beta}{\alpha} (x_{1,i} - x_{0,i}^{\theta})\|^2 + (1 - \alpha) \|u_\psi(t_i, x_{t_i,i}^*) - \frac{1 - \beta}{1 - \alpha} (x_{1,i} - x_{0,i}^*)\|^2 \right];$$

1315 7: **else**
1316 8: Update generator parameters θ via minimizer Opt_{gen} step with gradients of
1317
$$\frac{1}{B} \sum_{i=1}^B \left[\alpha \|u^*(t_i, x_{t_i,i}^\theta) - \frac{\beta}{\alpha} (x_{1,i} - x_{0,i}^\theta)\|^2 - \alpha \|u_{sg[\psi]}(t_i, x_{t_i,i}^\theta) - \frac{\beta}{\alpha} (x_{1,i} - x_{0,i}^\theta)\|^2 \right];$$

1318 9: **end if**
1319 10: **end for**

1325
1326 **C UNIFIED INVERSE DISILLATION FOR BRIDGE MATCHING AND**
1327 **STOCHASTIC INTERPOLANTS**

1330 **C.1 BRIDGE MATCHING**

1331 Bridge Matching (Liu et al., 2022b; Peluchetti, 2023) is an extension of diffusion models specifically
1332 design to solve data-to-data, e.g. image-to-image problems. Typically, the distribution p_T is the
1333 distribution of "corrupted data" and p_0 is the distribution of clean data, furthermore, there is some
1334 coupling of clean and corrupted data $\pi(x_0, x_T)$ with marginals $p_0(x_0)$ and $p_T(x_T)$. To construct
1335 the diffusion which recovers clean data given a corrupted data, one first needs to build prior process
1336 (which often is the same forward process used in diffusions):
1337

$$dx_t = f_t(x_t) + g_t dw_t,$$

1338 where $f_t(\cdot)$ is a drift function and g_t is a time-dependent scalar noise scheduler. This prior process
1339 defines conditional density $p_t(x_t|x_0)$ and the posterior density $p_t(x_t|x_0, x_T)$ called "diffusion bridge".
1340 To recover p_0 from p_T , one can use reverse-time SDE
1341

$$dx_t = (f_t(x_t) - g_t^2 \cdot v^\pi(x_t)) dt + g_t d\bar{w}_t,$$

1342 where the drift $v_t^\pi(x_t)$ is learned via solving of the bridge matching problem:
1343

$$\mathcal{L}_{\text{BM}}(v, \pi) = \mathbb{E}_{t \sim [0, T], (x_0, x_T) \sim \pi(x_0, x_T), x_t \sim p_t(x_t|x_0, x_T)} [w_t \|v_t(x_t) - \nabla_{x_t} \log p_t(x_t|x_0)\|^2]. \quad (36)$$

1344 However, this reverse-time diffusion in general does not guarantee that the produced samples come
1345 from the same coupling $\pi(x_0, x_T)$ used for training. This happens only if $\pi(x_0, x_T)$ solves entropic
1346 optimal transport between p_0 and p_T . To guarantee the preservance of the coupling $\pi(x_0, x_T)$, there

exists another version of Bridge Matching called either Augmented Bridge Matching or Conditional Bridge Matching, which differs only by addition of a condition on x_T to the drift function $v_t(x_t, x_T)$:

$$\mathcal{L}_{\text{ABM}}(v, \pi) = \mathbb{E}_{t \sim [0, T], (x_0, x_T) \sim \pi(x_0, x_T), x_t \sim p(x_t | x_0, x_T)} [w_t \|v_t(x_t, x_T) - \nabla_{x_t} \log p_t(x_t | x_0)\|_2^2].$$

The learned conditional drift is then used for sampling via the reverse-time SDE starting from a given $x_T \sim p_T$:

$$dx_t = (f_t(x_t) - g_t^2 \cdot v_t^\pi(x_t, x_T)) dt + g_t d\bar{w}_t.$$

C.2 STOCHASTIC INTERPOLANTS

The Stochastic Interpolants framework generalizes Flow Matching and diffusion models, constructing a diffusion or flow between two given distributions p_0 and p_T . To do so, one needs to consider the interpolation between any pair of points (x_0, x_T) which are sampled from the coupling $\pi(x_0, x_T)$ with marginals p_0 and p_T . The interpolation itself is given by formula

$$x_t = I(t, x_0, x_T) + \gamma_t \epsilon, \quad \epsilon \sim \mathcal{N}(0, \mathbf{I}), \quad t \in [0, T],$$

where $I(0, x_0, x_T) = x_0$, $I(T, x_0, x_T) = x_T$, $\gamma_0 = \gamma_T = 0$ and $\gamma_t > 0$ for all $t \in (0, T)$. This interpolant defines a conditional Gaussian path $p_t(x_t | x_0, x_T)$. Note that in the original paper (Albergo et al., 2023), the authors consider the time interval $[0, 1]$, but those two intervals are interchangeable by using a change of variable $t' = \frac{T}{t}$. Thus, the ODE interpolation between p_0 and p_T is given by:

$$dx_t = u_t(x_t) dt, \quad x_0 \sim p_0,$$

where $u_t(x, x_T) := \mathbb{E}[\dot{x}_t | x_t = x] = \mathbb{E}[\partial_t I(t, x_0, x_T) + \dot{\gamma} \epsilon | x_t = x]$ is the unique minimizer of the quadratic objective:

$$\mathcal{L}_{\text{SI}}(v, \pi) = \mathbb{E}_{t \sim [0, T], (x_0, x_T) \sim \pi(x_0, x_T), (x_t, \epsilon) \sim p(x_t | x_0, x_T)} [w_t \|v_t(x_t, x_T) - (\partial_t I(t, x_0, x_T) + \dot{\gamma}_t \epsilon)\|_2^2]. \quad (37)$$

The authors also provide a way of matching the score and the SDE drift of the reverse process by solving similar MSE matching problems.

C.3 OBJECTIVE FOR UNIFIED INVERSE DISTILLATION FOR GENERAL DATA COUPLING

The essential difference of Bridge Matching and Stochastic Interpolants from diffusion models and Flow Matching with a Gaussian path is that they additionally introduce coupling $\pi(x_0, x_T)$ used to sample x_t and can work with conditional drifts.

This difference can be easily incorporated to our RealUID distillation framework just by parametrizing the generator G_θ to output not the samples from the initial distribution p_0^θ , but from the coupling π^θ . One can do it by setting $\pi^\theta(x_0, x_T) = p_T(x_T) \pi_0^\theta(x_0 | x_T)$, where conditional data distribution $\pi_0^\theta(x_0 | x_T)$ is parametrized by the student generator $G_\theta : \mathcal{Z} \times \mathbb{R}^D \rightarrow \mathbb{R}^D$ conditioned on a sample $x_T \sim p_T$. This approach is specifically used in Inverse Bridge Matching Distillation (IBMD) (Gushchin et al., 2024). Hence, our Universal Inverse Distillation objective can be written just by substituting student distribution p_0^θ by student coupling π^θ , substituting real data p_0^* by real data coupling π^* and adding extra conditions.

Definition 5. We define **Universal Matching loss with real data for general coupling** on generated data coupling $\pi^\theta \in \mathcal{P}(\mathbb{R}^D \times \mathbb{R}^D)$ with $\alpha, \beta \in (0, 1]$:

$$\begin{aligned} \mathcal{L}_{R\text{-UM-coup}}^{\alpha, \beta}(f, \pi^\theta) = & \underbrace{\alpha \cdot \mathbb{E}_{t \sim [0, T]} \mathbb{E}_{\substack{x_T \sim p_T, x_0^\theta \sim \pi_0^\theta(\cdot | x_T), \\ x_t^\theta \sim p_t^\theta(\cdot | x_0^\theta, x_T)}} \left[\|f_t(x_t^\theta, x_T) - \frac{\beta}{\alpha} f^\theta(x_t^\theta | x_0^\theta, x_T)\|_2^2 \right]}_{\text{generated data } \pi^\theta \text{ term}} \\ & + \underbrace{(1 - \alpha) \cdot \mathbb{E}_{t \sim [0, T]} \mathbb{E}_{\substack{x_T \sim p_T, x_0^* \sim \pi^*(\cdot | x_T), \\ x_t^* \sim p_t^*(\cdot | x_0^*, x_T)}} \left[\|f_t(x_t^*, x_T) - \frac{1 - \beta}{1 - \alpha} f_t^*(x_t^* | x_0^*, x_T)\|_2^2 \right]}_{\text{real data } \pi^* \text{ term}}. \end{aligned}$$

And the corresponding **Universal Inverse Distillation loss with real data for general coupling** is:

$$\min_{\theta} \max_f \{ \mathcal{L}_{R\text{-UID-coup}}^{\alpha, \beta}(f, \pi^\theta) := \mathcal{L}_{R\text{-UM-coup}}^{\alpha, \beta}(f^*, \pi^\theta) - \mathcal{L}_{R\text{-UM-coup}}^{\alpha, \beta}(f, \pi^\theta) \}.$$

1404 Table 6: Ablation of the fine-tuning for α_{FT} and β_{FT} for unconditional (left) and conditional (right) generation.
1405 Each cell reports the resulting FID score for the corresponding $(\alpha_{\text{FT}}, \beta_{\text{FT}})$; “-” indicates the method did not
1406 converge. Best results are **bolded**.

$\alpha_{\text{FT}}/\beta_{\text{FT}}$	0.94	0.96	0.98	1.0	$\alpha_{\text{FT}}/\beta_{\text{FT}}$	0.94	0.96	0.98	1.0
0.94	-	-	2.07	2.03	0.94	-	-	1.96	1.91
0.96	-	-	-	2.11	0.96	-	-	-	1.96
0.98	2.07	-	-	-	0.98	1.95	-	-	-
1.0	-	-	-	-	1.0	-	-	-	-

1414 In case of coupling match $\pi^\theta = \pi^*$, the RealUID loss for couplings attains its minimum, i.e.,

$$\begin{aligned}
\min_{\theta} \max_f \mathcal{L}_{\text{R-UID-coup}}^{\alpha, \beta}(f, \pi^\theta) &= \min_{\theta} \underbrace{\{\mathcal{L}_{\text{R-UM-coup}}^{\alpha, \beta}(f^*, \pi^\theta) - \min_f \{\mathcal{L}_{\text{R-UM-coup}}^{\alpha, \beta}(f, \pi^\theta)\}\}}_{\geq 0} \\
&= \mathcal{L}_{\text{R-UM-coup}}^{\alpha, \beta}(f^*, \pi^*) - \underbrace{\min_f \{\mathcal{L}_{\text{R-UM-coup}}^{\alpha, \beta}(f, \pi^*)\}}_{=\mathcal{L}_{\text{R-UM-coup}}^{\alpha, \beta}(f^*, \pi^*)} = 0.
\end{aligned}$$

D EXPERIMENTAL DETAILS

1425 **Training hyperparameters.** We train with Adam (Kingma & Ba, 2014), using $(\beta_1, \beta_2) = (0, 0.999)$. The learning rate is 3×10^{-5} for training from scratch and 1×10^{-5} for fine-tuning. A
1426 500-step linear warm-up is applied only when training from scratch. We use a batch size of 256 and
1427 maintain an EMA of the generator parameters with decay 0.999. To regulate adaptation between the
1428 generator and the fake model, the generator is updated once for every $K = 5$ updates of the fake
1429 model, following DMD2 (Yin et al., 2024a). Additionally, at each optimization step we apply ℓ_2
1430 gradient-norm clipping with threshold 1.0 to both the generator and the fake model.

1431 **Training time.** All distillation experiments were trained for 400,000 gradient updates, corresponding
1432 to approximately 4.5 days. All finetuning experiments were conducted for 100,000 gradient
1433 updates, which took a little more than 1 day, starting from the best distillation checkpoints. All
1434 experiments were executed on a single Ascend910B NPU with 65 GB of VRAM memory. The
1435 reported results are based on the checkpoints that achieved the best Fréchet Inception Distance (FID)
1436 during training.

1437 **Codebase and Dataset.** Building on the reference codebase of Tong et al. (2023), which serves as
1438 our primary experimental infrastructure, we integrate the training algorithm described in Algorithm 1.
1439 We evaluate the resulting approach on CIFAR-10 (32×32) under both conditional and unconditional
1440 settings, benchmarking against established baselines.

1441 **Models Initialization and Generator Parametrization.** The generator G_θ is initialized by replicating
1442 both the architecture and parameters of the teacher model f^* , while the fake model f is initialized
1443 with random weights. We parameterize the generator using a residual formulation:

$$G_\theta(z) = z + g_\theta(0, z),$$

1444 where the input $t = 0$ corresponds to the fixed control input used in the teacher model f^* . Empirically,
1445 we observe that this initialization strategy and parameterization lead to improved performance.

1446 **GAN details.** We integrate a GAN loss into our framework in line with SiD²A and DMD2 (Zhou
1447 et al., 2024a; Yin et al., 2024a). In the original setup of Zhou et al. (2024a), the adversarial loss
1448 employs a coefficient ratio of $\lambda_{\text{adv}}^D/\lambda_{\text{adv}}^{G_\theta} = 10^2$ (see Table 6 in Zhou et al. (2024a)), a choice that
1449 poses practical difficulties due to the extreme imbalance between generator and discriminator losses.
1450 To mitigate this issue, we adopt the formulation of Yin et al. (2024a), where the ratio is ≈ 3 , and
1451 evaluate different coefficient scales (see result in the Table 1).

$\alpha \setminus \beta$	0.94	0.96	0.98	1.0
0.94	2.60	1.93	2.13	2.53
0.96	1.70	2.77	2.00	2.47
0.98	2.16	2.04	2.62	2.42
1.0	2.96	2.48	2.23	2.62

Table 7: Ablation studies of (α, β) coefficients for CelebA (400k training steps). The baseline **RealUID** ($\alpha = 1.0, \beta = 1.0$) does not use real data. Configurations that outperform and significantly outperform the baseline are highlighted. All values report FID \downarrow , where lower is better. The best configuration is **bolded**.

Evaluation protocol. We evaluate image quality using the Fréchet Inception Distance (FID; Heusel et al., 2017), computed from 50,000 generated samples following Karras et al. (2022; 2020; 2019). In line with SiD (Zhou et al., 2024b), we periodically compute FID during distillation and select the checkpoint achieving the minimum value. To ensure statistical reliability, we repeat the evaluation over 3 independent runs, rather than 10 as in SiD, because the empirical variance of FID in our experiments was below 0.01.

E ADDITIONAL RESULTS

E.1 FINE-TUNING ABLATION STUDY ON COEFFICIENTS $\alpha_{\text{FT}}, \beta_{\text{FT}}$.

This section presents an ablation of the fine-tuning stage over the loss-balancing coefficients α_{FT} and β_{FT} . Results are summarized in Table 6, where “–” denotes non-convergence. We observe that training is highly sensitive to the choice of $(\alpha_{\text{FT}}, \beta_{\text{FT}})$: many configurations do not converge, underscoring the need for careful selection. Notably, the same set of $(\alpha_{\text{FT}}, \beta_{\text{FT}})$ exhibit stable optimization and yield improved FID for both conditional and unconditional CIFAR-10 generation.

E.2 ABLATION STUDY ON CELEBA DATASET

In this section, we present the results of the same ablation studies from §4.2 on the CelebA dataset with higher 64×64 resolution (Liu et al., 2015). The results are summarized in Table 7.

Many pairs (α, β) demonstrate improvements relative to the baseline $(\alpha = 1.0, \beta = 1.0)$. Similar to the results from Table 1 for CIFAR10, the same pairs of coefficients with $\beta/\alpha = 1.02$ or $\beta/\alpha = 0.98$ yield a significant improvement in quality. For example, pair $(\alpha = 0.96, \beta = 0.94)$ yields FID **1.70** against FID **2.62** for the data-free baseline.

Training hyperparameters. For training from zero, we take the same architecture (Tong et al., 2023) as for the CIFAR-10 dataset with 32×32 resolution, but adapted it to a larger dimension. We train it with Adam (Kingma & Ba, 2014), using $(\beta_1, \beta_2) = (0, 0.999)$, learning rate 5×10^{-6} and a 500-step linear warm-up. We use a batch size of 64 and maintain an EMA of the generator parameters with decay 0.999. To regulate adaptation between the generator and the fake model, the generator is updated once for every $K = 5$ updates of the fake model, following DMD2 (Yin et al., 2024a). Additionally, at each optimization step we apply ℓ_2 gradient-norm clipping with threshold 1.0 to both the generator and the fake model.

E.3 EXAMPLE OF SAMPLES FOR DIFFERENT METHODS.

This section presents representative sample outputs from various studies conducted within the RealUID framework.

Figure 5: Uncurated samples for *unconditional* generation by the one-step RealUID ($\alpha = 1.0, \beta = 1.0$) trained on CIFAR-10. Quantitative results are reported in Table 2.

1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

1566

1567

1568

1569

1570

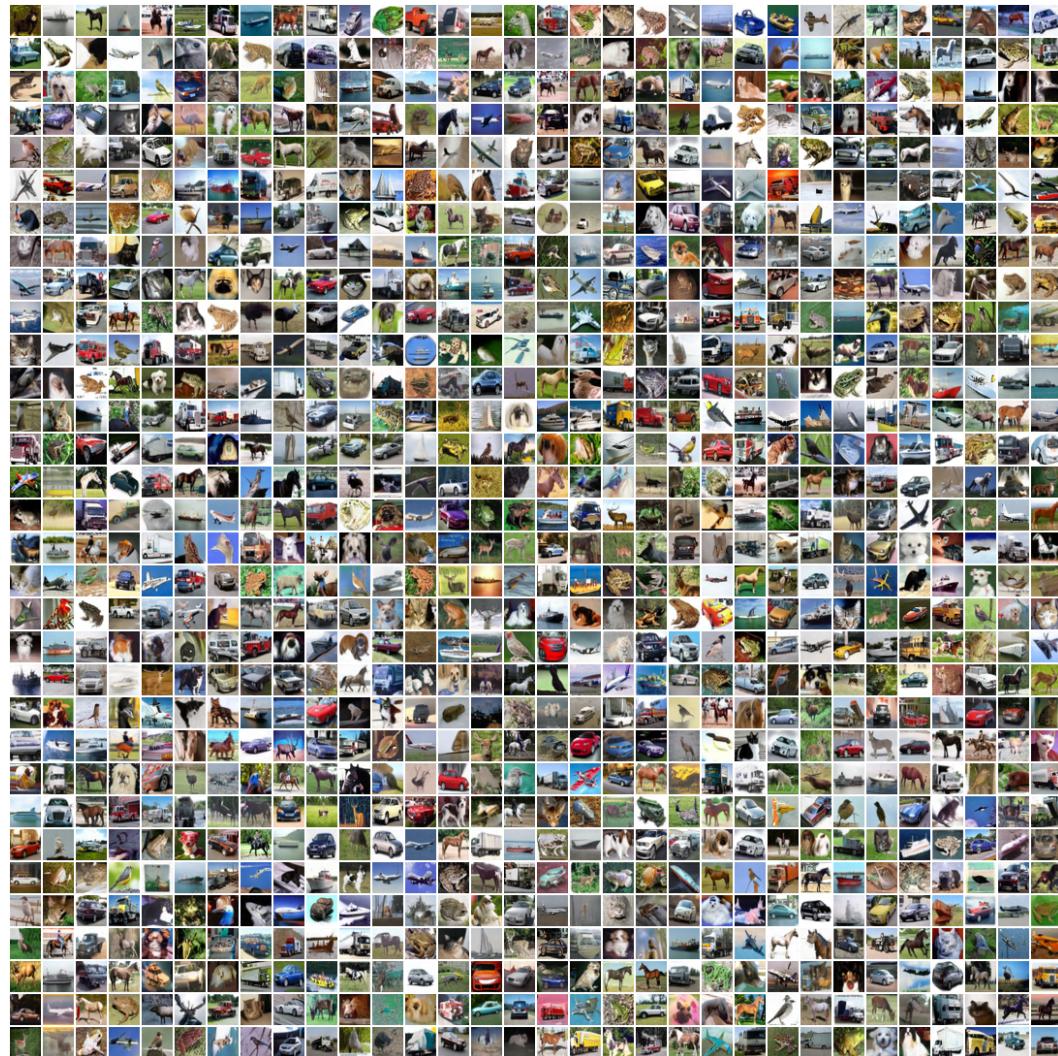
1571

1572

1573

1574

1575



1609

Figure 6: Uncurated samples for *unconditional* generation by the one-step RealUID ($\alpha = 1.0, \beta = 1.0$) + GAN ($\lambda_{\text{adv}}^{G_\theta} = 0.3, \lambda_{\text{adv}}^D = 1$) trained on CIFAR-10. Quantitative results are reported in Table 2.

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

Figure 7: Uncurated samples for *unconditional* generation by the one-step RealUID ($\alpha = 0.94$, $\beta = 0.96$) trained on CIFAR-10. Quantitative results are reported in Table 2.

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

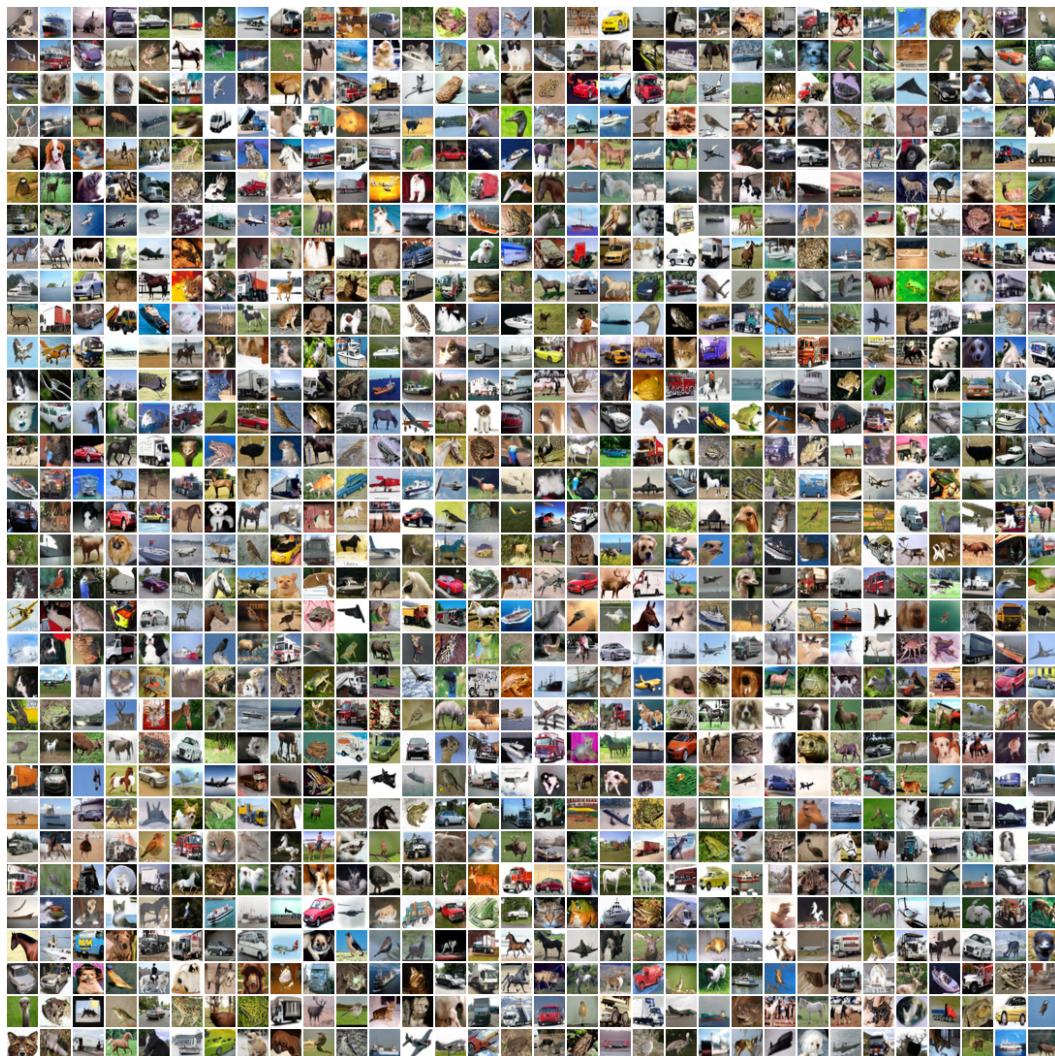


Figure 8: Uncurated samples for *unconditional* generation by the one-step RealUID ($\alpha = 0.94, \beta = 0.96 \mid \alpha_{\text{FT}} = 0.94, \beta_{\text{FT}} = 1.0$) trained on CIFAR-10. Quantitative results are reported in Table 2.

1728

1729

1730

1731

1732

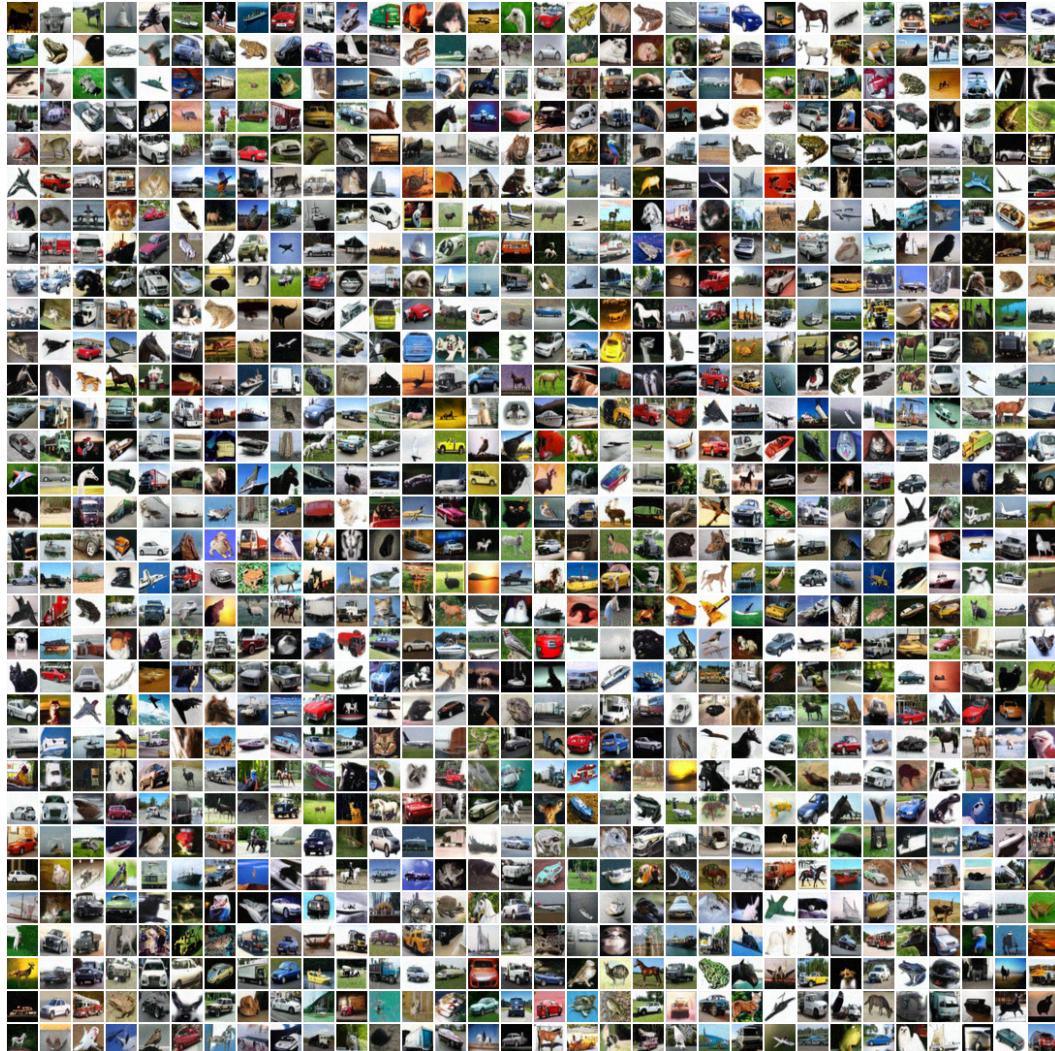
1733

1734

1735

1736

1737



1771

Figure 9: Uncurated samples for *conditional* generation by the one-step RealUID ($\alpha = 1.0, \beta = 1.0$) trained on CIFAR-10. Quantitative results are reported in Table 2.

1773

1774

1775

1776

1777

1778

1779

1780

1781

Figure 10: Uncurated samples for *conditional* generation by the one-step RealUID ($\alpha = 1.0, \beta = 1.0$) + GAN ($\lambda_{\text{adv}}^{G_\theta} = 0.3, \lambda_{\text{adv}}^D = 1$) trained on CIFAR-10. Quantitative results are reported in Table 2.

Figure 11: Uncurated samples for *conditional* generation by the one-step RealUID ($\alpha = 0.98, \beta = 0.96$) trained on CIFAR-10. Quantitative results are reported in Table 2.

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

1912

1913

1914

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

1933

Figure 12: Uncurated samples for *conditional* generation by the one-step RealUID ($\alpha = 0.98, \beta = 0.96 \mid \alpha_{\text{FT}} = 0.94, \beta_{\text{FT}} = 1.0$) trained on CIFAR-10. Quantitative results are reported in Table 2.

1935

1936

1937

1938

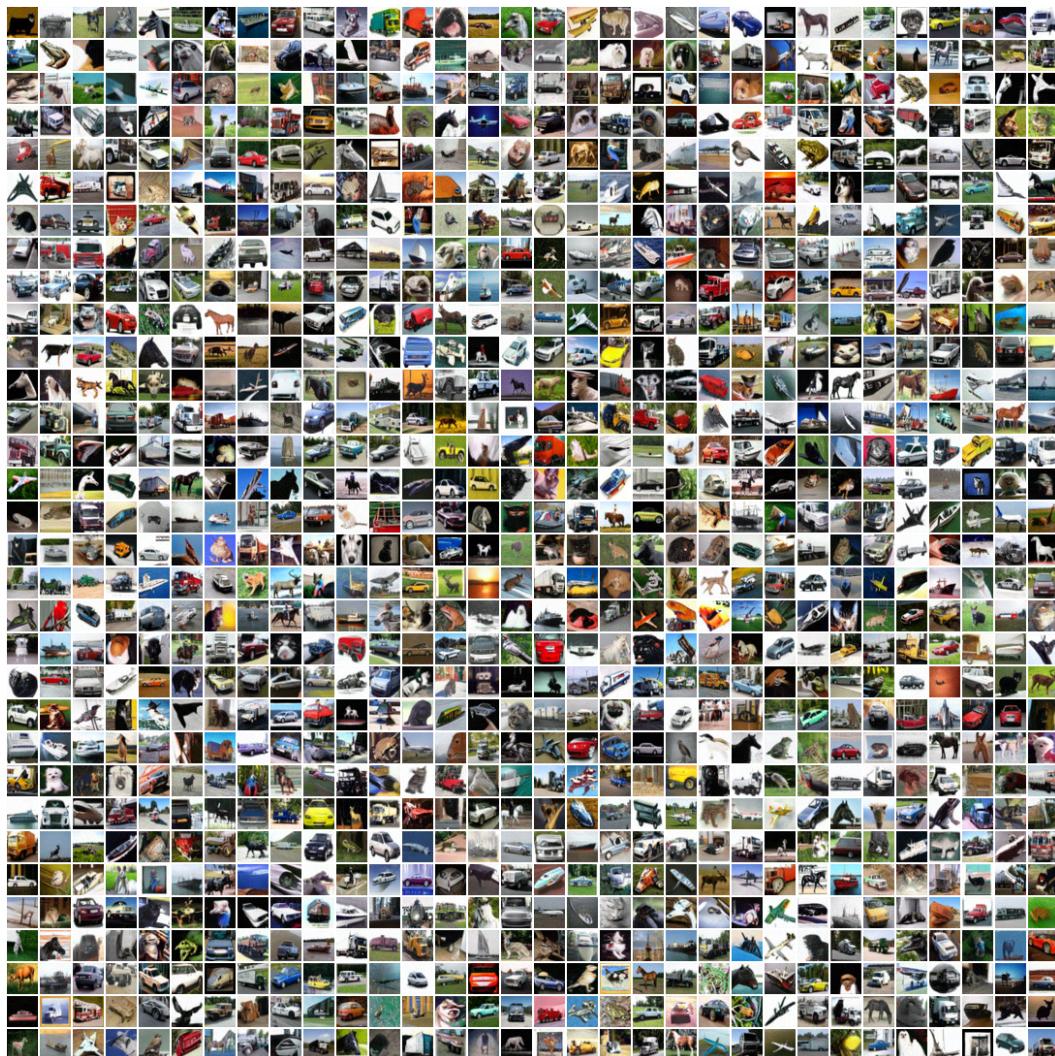
1939

1940

1941

1942

1943



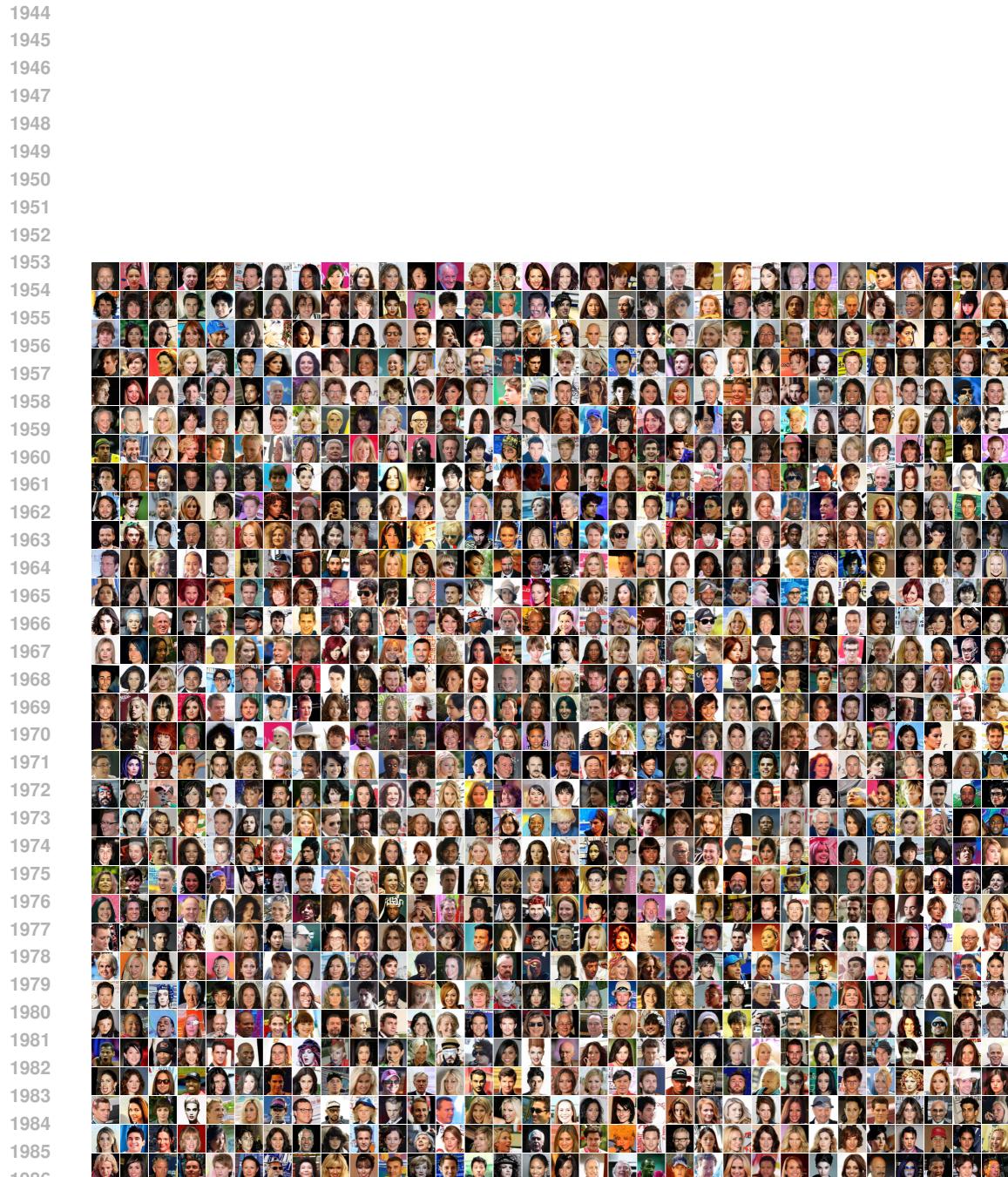


Figure 13: Uncurated samples by the one-step RealUID ($\alpha = 1.0, \beta = 1.0$) trained on CelebA.
Quantitative results are reported in Table 7.

1989
1990
1991
1992
1993
1994
1995
1996
1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

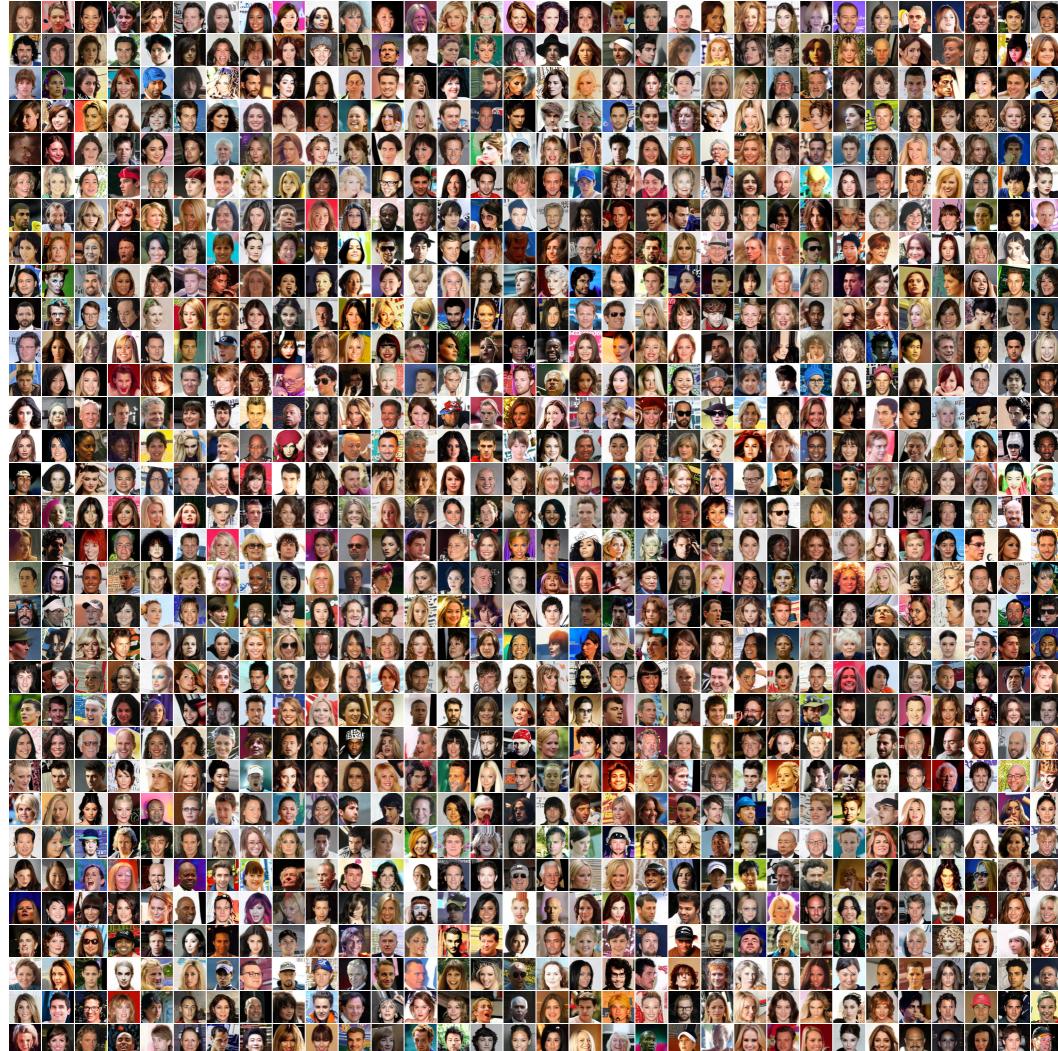


Figure 14: Uncurated samples by the one-step RealUID ($\alpha = 0.96, \beta = 0.94$) trained on CelebA. Quantitative results are reported in Table 7.

2043

2044

2045

2046

2047

2048

2049

2050

2051