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ABSTRACT

While achieving exceptional generative quality, modern diffusion, flow, and other
matching models suffer from slow inference, as they require many steps of iterative
generation. Recent distillation methods address this by training efficient one-
step generators under the guidance of a pre-trained teacher model. However,
these methods are often constrained to only one specific framework, e.g., only to
diffusion or only to flow models. Furthermore, these methods are naturally data-
free, and to benefit from the usage of real data, it is required to use an additional
complex adversarial training with an extra discriminator model. In this paper, we
present RealUID, a universal distillation framework for all matching models that
seamlessly incorporates real data into the distillation procedure without GANS.
Our RealUID approach offers a simple theoretical foundation that covers previous
distillation methods for Flow Matching and Diffusion models, and is also extended
to their modifications, such as Bridge Matching and Stochastic Interpolants.

1 INTRODUCTION

In generative modeling, the goal is to learn to sample from complex data distributions (e.g., images),
and two powerful paradigms for it are the Diffusion Models (DM) and the Flow Matching (FM)
models. While they share common principles and are even equivalent under certain conditions
(Holderrieth et al., 2024; Gao et al., 2025), they are typically studied separately. Diffusion models
(Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2021) transform data into noise through
a forward process and then learn a reverse-time stochastic differential equation (SDE) to recover
the data distribution. Training minimizes score-matching objectives, yielding unbiased estimates of
intermediate scores. Sampling requires simulating the reverse dynamics, which is computationally
heavy but delivers high-quality and diverse results. Flow Matching (Lipman et al., 2023; Liu, 2022)
instead interpolates between source and target distributions by learning the vector field of an ordinary
differential equation (ODE). The field is estimated through unbiased conditional objectives, but the
resulting ODE often has curved trajectories, making sampling costly due to expensive integration.
Beyond these, Bridge Matching (Peluchetti, 2023; Liu et al., 2022b) and Stochastic Interpolants
(Albergo et al., 2023) generalize the framework and naturally support data couplings, which are
crucial for data-to-data translation. Since all of the above optimize conditional matching objectives
to recover an ODE/SDE for generation, we refer to them collectively as matching models.

Despite their success, matching models share a major drawback: sampling is slow, as generation
requires integrating many steps of an SDE or ODE. To address this, a range of distillation techniques
have been proposed to compress multi-step dynamics into efficient one-step or few-step generators.
Although matching models follow a similar mathematical framework, many distillation works
consider only one particular framework, e.g., only Diffusion Models (Zhou et al., 2024a;b), Flow
Matching (Huang et al., 2024), or Bridge Matching (Gushchin et al., 2025). Furthermore, these
distillation methods are data-free by construction and cannot benefit from the utilization of real data
without using additional GAN-based losses. Thus, the following problems remain:

1. Similar distillation techniques developed separately for similar matching models frameworks.

2. Absence of a natural way to incorporate real data in distillation procedures (without GANS).

Contributions. In this paper, we address these issues and present the following main contributions:



1. We present the Universal Inverse Distillation with real data (RealUID) framework for matching
models, including diffusion and flow matching models (§3) as well as Bridge Matching and
Stochastic Interpolants (Appendix C.). It unifies previously introduced Flow Generator Matching
(FGM), Score Identity Distillation (SiD) and Inverse Bridge Matching Distillation IBMD) meth-
ods (§3.2) for flow, score and bridge matching models respectively, provides simple yet rigorous
theoretical explanations based on a linearization technique, and reveals the connections between
these methods and inverse optimization (§3.3).

2. Our RealUID introduces a novel and natural way to incorporate real data directly into the distilla-
tion loss, eliminating the need for extra adversarial losses which require additional discriminator
networks used in GANSs from the previous works (§3.4).

2 BACKGROUNDS ON TRAINING AND DISTILLING MATCHING MODELS

We describe the Diffusion Models and Flow Matching frameworks (§2.1) and distillation methods for
them (§2.3). Then, we discuss how real data can be added to distilling methods via GANs (§2.4)

Preliminaries. We work on the D-dimensional Euclidean space R”. This space is equipped with
the standard scalar product (z,y) = ZdD:1 ZqYd, the o-norm ||z|| = +/(x,x) and ¢5-distance

|z — y||,Yz,y € RP. We consider probability distributions from the set P(R”) of absolutely
continuous distributions with finite variance and support on the whole R”.

2.1 DIFFUSION AND FLOW MODELS

Diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2021) consider a forward
noising process that gradually transforms clean data pg into a noise pr on the time interval [0, T):

dry = fi - zedl + gi - dwy, @0 ~ Ppo,
where f; and g; are time-dependent scalars. This process defines a conditional distribution p;(x4|x¢):

pe(z¢|z0) = N(ouzo|oiT),  where

t t s 1/2
oy = exp </ Is ds> , O = (/ g% exp (2/ fu du) ds) .
0 0 0

Each conditional distribution admits a conditional score function, describing it:
s¢(z|20) == Vi, log pe(wi|mo) = — (21 — vpo) /o?.
The reverse dynamics from the noise distribution pr to the data distribution py is provided by the
following reverse-time SDE:
dry = (fe -z — g7 - se(r))dt + gedivy,

where s;(z) is the unconditional score function of p;(z¢) = [p(z¢|zo)p(zo)dzo given by s¢(z:) =
Eqq~po(-|z:)[5¢ (2¢|z0)]. This conditional expectation is learned via denoising score matching:

Losm(8's20) = Eim0,7)w0mpo e mope (-|20) |[WellSHEE) — Se(@e|z0)I3] S (1)
where w; are some positive weights. The reverse dynamics admits a probability flow ODE (PF-ODE):

doy = (fo-ze— g7 - se(@)/2)dt,  we(we) = (fr - 0 — g7 - se(20)/2),

which provides faster inference than the SDE formulation.

Flow Matching framework (Lipman et al., 2023; Liu et al., 2023) constructs the flow directly by
learning the drift u;(x;). Specifically, for each data point xg ~ pg, one defines a conditional flow
pt(x¢|xo) with the corresponding conditional vector field u:(x¢|zo) generating it via ODE:

dxy = we(wy|zo)dt.

Then to construct the flow between the noise pr and data pg, one needs to compute the unconditional
vector field u; (2¢) = By wpo (- |2,) [t (@¢|20)] which generates the flow py(x;) = [p(x¢|zo)p(z0)do.
It can be done by solving the following Conditional Flow Matching problem:

Lerm(V,00) = Eim0.7],20~po e ~pe (welzo) [Wellve(@e) — we(@i|zo) 3] -

In practice, the most popular choice is the Gaussian conditional flows p;(z¢|7¢) = N (ayxq, o21).
For this conditional flow samples can be obtained as z; = «;zo+0e, € ~ N (0, I) and the conditional
drift can be calculated as u;(x¢|zg) = apxg + o1e.



2.2  UNIVERSAL LOSS FOR MATCHING MODELS

From a mathematical point of view, it was shown in (Holderrieth et al., 2024; Gao et al., 2025) that
flow and diffusion models basically share the same loss structure. We recall this structure but use our
own notation. We call diffusion and flow models and their extensions as matching models.

Matching models work with a probability path {p;}¢cjo,7] on the time interval [0,T], trans-
forming the desired data py € P(RP”) to the noise pr € P(RP). This path is built as a
mixture of simple conditional paths {p;(:|zo)}.c[0,r) conditioned on samples 2o ~ po, ie.,
pi(ay) = fRD pe(xt|z0)po(20)dro, VI; € RP. The path {pt}iepo,r) determines the function
fPo 1 [0,7] x RP — RP which recovers it (e.g., score function or drift generating it). The
conditional paths also determine their own simple conditional functions f7°(-|xg) so that they ex-
press f1°(xt) = Bygmpo(-a) f1° (@¢|20), where po(-|x;) denotes data distribution py conditioned
on the sample z; at time ¢. Since fP° cannot be computed directly, it is approximated by function
f:]0,T] x RP — RP via minimizing the squared ¢»-distance between the functions:

1fe(xe) = f7° @ON? = 1 fe(@) = Bagapolan) 1 (@e20) 1 0 Bagrpo (o) | fe(@e) = F7° (el zo) |

Definition 1. We define Universal Matching (UM) loss Lyy(f, po) that takes fake function f and
distribution py € P(RP) as arguments and upon minimization over f returns the function fP°

Lom(f520):= B (0,11 Eagmpozemps (foo) | fe(e) — f1°(@4]0) ||, fPo:=arg min s Lom(f, po), (2)

where t ~ [0, T denotes uniform or weighted sampling of time t from the interval [0, 1].

2.3 DISTILLATION OF MATCHING-BASED MODELS

To solve the long inference problem of matching models, a line of distillation approaches sharing
similar principles was introduced: Score Identity Distillation (SiD) (Zhou et al., 2024b), Flow
Generator Matching (FGM) (Huang et al., 2024), and Inverse Bridge Matching Distillation
(IBMD) (Gushchin et al., 2025), for diffusion, flow, and bridge matching models, respectively.

The Score Identity Distillation (SiD) approach (Zhou et al., 2024b;a) trains a student generator
Gp : Z — RP (parameterized by ) that produces a distribution pg from a latent distribution p©
on Z. This approach minimizes the squared /5-distance between the known teacher score function

*

s* := argming Lpsm(s’, pg) on real data p§; and the unknown student score function s

6,6 0y1/2 6 . 0
Etfo, 1 Eaompe It (21) — s7 ()%, st s” = argmin v Lpsw(s’, pp), )
where p! is the forward noising process for the generator distribution pf. The authors propose the
tractable loss without arg min and with parameter as;ip to approximate the real gradients of (3) :

3 S 9
Lsp(0) = Ernon1Bonpz a8y (o) atmps |- 2wr0sin]| 55 (20) — 57917 (2)]|2

+ 2w (s (a?) — s;7 (@), 51 () — sl (af|2f))),  s® =argmin y Losw(s', p))(4)

where gradients w.r.t. § are not calculated for the variables under stop-gradient sg[-] operator. The
SiD pipeline is two alternating steps: first, refine the fake score s°9[°! by minimizing the DSM loss
(1) on new p§ from the previous step. Then, update the generator G using the gradient of (4) with
the frozen s°91°). The agip parameter is chosen from the range [0.5, 1.2], although theoretically only
the value agsip = 0.5 restores true gradient as we show in our paper.

The authors of FGM considered a similar approach, but for the Flow Matching models. Specifically,
they also use a generator G to produce a distribution pf, but instead of denoising score matching
loss, consider conditional FM loss. The method minimizes the squared ¢5-distance between the fields:

Eiroo. 1By, mpo 1uf (20) — uf (z)[1?, st u” := argmin, Lo (v, pg), ®)
where the interpolation path {pf}te[o,T] is constructed between the noise pr and generator pg
distributions. To avoid the same problem of differentiating through arg min operator as in SiD, the
authors derive a tractable loss whose gradients match those of (5):

ES S 9
‘CFGM(Q) = EtN[O,T]Ezpr,acngg(z),fopf [_”ut (xf) - utg[ ](xte)”Q (6)



2y (2) = uf ! @), up (1) — uf (0)26))], st u = arg min, Lopm(v, p).-

We consider distillation of matching models working with data couplings such as Inverse Bridge
Matching Distillation for Bridge Matching models and Stochastic Interpolants in Appendix C.
Notably, all these approaches (SiD, FGM, IBMD) are data-free, i.e., they do not use any real data
from pjg; to train a generator by construction of the used objective functions.

2.4 GANS FOR REAL DATA INCORPORATION

FGM and SiD methods exhibit strong performance in one-step generation tasks. However, the
generator in these methods is trained under the guidance of the teacher model alone. This means the
generator cannot get more information about the real data that the teacher has learned. For example,
it cannot correct the teacher’s errors. To address this, recent works (Yin et al., 2024a; Zhou et al.,
2024a) propose adding real data via a GAN framework (Goodfellow et al., 2014). In such approaches,
the encoder of fake model f is typically augmented with an additional head to serve as a discriminator
D with the following adversarial loss:

Laav = Bynfo,1) [Eazmpy [In Dy (27)] + E oo [In[1 — Dy (27)]]]- @)

The overall objective in such hybrid frameworks (Zhou et al., 2024a) consists of:

Generator loss:

Lg, = /\diStﬁl?C?M/SiD +AGLSS, ®)
Fake model loss:
ﬁD - )\dlsl‘cFGM/&D + Aadv‘cadv (9)

Here, Agist, )\Sjv, and )\ﬁv are weighting coefficients for the distillation and adversarial components.
Despite empirical gains, the GAN-augmented formulation entails nontrivial costs: it necessitates
architectural modifications, such as an auxiliary discriminator head, and inherits the well-known
optimization problems of adversarial training, such as non-stationary objectives, mode collapse, and

sensitivity to training dynamics.

3 UNIVERSAL DISTILLATION OF MATCHING MODELS WITH REAL DATA

In this section, we present our novel RealUID approach for matching models enhanced by real data.
First, we show that the previous data-free distillation methods can be unified under the single UID
framework (§3.1). Then, we describe how this framework is connected to prior works (§3.2) and
inverse optimization (§3.3). Using this intuition, we propose and discuss the real data modified UID
framework (RealUID) with a natural way to incorporate real data without GANs (§3.4).

3.1 UNIVERSAL INVERSE DISTILLATION

To learn a complex real data distribution pf, one usually trains a teacher function f* :=
arg min; Lym(f,pg) which is then used in a multi-step sampling procedure (Def. 1). To avoid
time-consuming sampling, one can train a simple student generator Gy : Z — R with parameters
0 to reproduce the real data p§ from the distribution pZ on the latent space Z. The teacher function
serves as a guide that shows how close the student distribution p and the real data pj; are. FGM and
SiD methods (§2.3) train such generator via minimizing the squared ¢5-distance between the known
teacher function f* and an unknown student function f? := arg min 7 Lom(f, PY):

Eivjo,mEqo po ¢ (xt) fta(m? 1> = Eivjo,mEqpo po (bzs (mt) mofvpo |xt)ft (xt \m0)||2
= Eifo,11 Bt ot 17 @) = 2o 11Bagpt atpt (1ot ({7 (20), F7 (22]20)))]
+Et~[O,T] zf ~p? [”Ezofvpo |$f)[ft (‘Tt |x0)]H ]7 (10)

not tractable

where {p?}te[O,T] is the probability path constructed between generator distribution pf and noise pr.
The problem is that the final term (10) cannot be calculated directly. This is because it involves the



math expectation inside the squared norm unlike the other terms which are linear in the expectations.
It means that a simple estimate of || f{ (x¢|29)||? using samples x§ and z¢ will be biased. Moreover
to differentiate through the math expectatlon inside the norm, an exphclt dependence of p0 on 6 is
required, while, in practice, usually only dependence of samples 2§ on 6 is known.

Making loss tractable via linearization. To resolve this, we use a linearization technique. For a
fixed point z{ and time ¢, we reformulate the squared norm as a maximization problem. We achieve
this by introducing an auxiliary function d : [0, 7] x RP — RP and using the identity

||ft*(xt) ft (9516)”2 = rtréax {_H(st xt)”Q + 2<6t(xt) It (xt) fte(xg)>}
oy {=116:(@D)II* + 200 (27), £ () — 2(8e (), f{ (af]af))} . (1)

= max E o
850(z) xo Po( )

The reparameterization § = f* — f with a fake function f : [0,T] x RP — RP allows to get:

(0= max B oty 107 () — S 2007 ) = Jio), S 0) = SRR} (12)
—max By e {17 @) = F @) — i) — £l )a8)]?) (13)

fe(z?)
=Lum(f*.p§) =Luom(f,pf)

Since now all expectations are linear and can be estimated, the final step is to compute the expectation
over all points ¥ and times ¢ and minimize it over the generator distribution py.

Summary. We build a universal distillation framework as a single min-max optimization (14),
implicitly minimizing squared ¢s-distance between teacher and student functions. When real and
generated probability paths match, these functions match as well, and the distance attains its minimum.

Theorem 1 (Real data generator minimizes UID loss). Let teacher f* := argmin; Lyu(f,pg)
be the minimizer of UM loss (Def. 1) on real data pj; € P(RP). Then real data generator G-, s.t.

pe* = po, is a solution to the min-max optimization of Umversal Inverse Distillation (UID) loss

Ly (f, 1Y) over fake function f and generator distribution pj)

min g max 5 { Lup(f,p0) = Lom(f*,05) — Lom(f, 1))} - (14)

Lemma 1 (UID loss minimizes squared />-distance). Maximization of UID loss (14) over fake
function f retrieves student function f° := argmin Ly (f,pd) and represents the squared (-
distance between it and the teacher f*:

fe = arg]{rlaxﬁvm(f,pg), mj}XLUlD(fapo) IEt~[0 T]IExf ~p9||ft (xt) ft (%)”2 (15)

Note that the distance (15) mostly captures mismatches for the points from generator main domain
which do not cover real data, i.e., points z¢ s.t. p?(z¢) > 0, p*(2?) — 0. For out-of-domain points
pY(xY) — 0, the generator cannot receive feedback, because distance (15) for x{ also vanishes.
Moreover, if teacher function is inaccurate, the generator will learn it with all inaccuracies.

3.2 RELATION TO PRIOR DISTILLATION WORKS

FGM and SiD approaches formulate distillation as a constraint minimization of generator loss subject
to the optimal fake model. For generator updates, the explicit UID loss (12) matches SiD loss (4)
with agip = 0.5 and FGM loss (6) up to weighting. For a fake model, it also minimizes the UM loss
on the generated data. The work (Gushchin et al., 2025) was the first to formulate the distillation of
Bridge Matching models in their IBMD framework as a min-max optimization of the single loss (13).

Although previous works derive the same losses, we give a new, simple explanation using a lin-
earization technique. This technique is more powerful and general for handling intractable math
expectations than complex proofs for concrete models from FGM, SiD, IBMD. Furthermore, it allows
adding real data directly into the distillation loss (see §3.4 and Appendix A.2) and extending it, e.g.,
deriving a loss for minimizing the ¢5-distance instead of the squared one (Appendix A.4).
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Figure 1: Pipeline of our RealUID distillation framework (§3) with the direct incorporation of real data p;,
adjusted by hyperparameters «, 8 € (0, 1]. In the figure, it is depicted for Flow Matching models predicting
denoised samples. It distills a costly frozen teacher model f* (blue) into a one-step generator G (red) upon
min-max optimization of ngjgm( 7 pg) loss over fake model f (green) and generator distribution p§ with
parameters 6. We use alternating optimization, updating the fake model several times per one generator update
for stability. Algorithm’s pseudocode is located in Appendix B.

3.3 CONNECTION WITH INVERSE OPTIMIZATION

We derived UID loss (14) by minimizing the squared ¢»-distance between teacher and student
functions. However, this loss admits another interpretation: its structure is typical for inverse
optimization (Chan et al., 2025). In this framework, one considers a parametric family of optimization
problems min; £(f, #) with objective loss £( f, #) depending on argument f and parameters 6. The
goal is to find the parameters 6 that yield a known, desired solution f* = argmin; £(f,0"). One
standard way to recover the required parameters is to solve the same min-max problem as (14):

min g max y {L(f*,0) — L(f,0)} ~ ming{L(f*,0) — min ;{L(f,0)}}. (16)

The inverse problem (16) always has minimum O which is attained when 6 = 6*.

Although the inverse optimization can handle arbitrary losses £, it does not describe the properties of
the optimized functions or how to find solutions. In our case, we show that all losses are tractable
and minimize the distances between teacher and student functions (Lemmas 1 and 2). Furthermore,
in Appendix A, we provide and justify a list of extensions of our framework that cannot be stated as
inverse problems. All our proofs are self-contained and do not rely on inverse optimization, which
only provides intuition and understanding.

3.4 REALUID: NATURAL APPROACH FOR REAL DATA INCORPORATION

Previous distillation methods add real data during training only via GANs with extra discriminator
and adversarial loss. We propose a simpler, more natural way that requires no extra models or losses.

Based on intuition from inverse optimization (§3.3), we see that the min-max inverse problem (16) is
compatible with other losses. This allows us to redesign the UM loss (2) to incorporate real data into
it. A key constraint is that the loss must still yield the same teacher upon minimization on the real
data. Thus, we derive a novel Unified Matching loss with real data - a weighted sum of two UM-like
losses on generated and real data parameterized by «, 8 € (0, 1] which control the weights.

Definition 2. We define Universal Matching loss with real data on generated data pf) € P(RP)
with o, € (0, 1] (when o = 1 the real data term becomes 2(1 — B){fe(x}), fi (x5 |x§))):

B

(67

28 (F. ) ! |x8>||2]

@ B0, 11Bognpg oo mpt (129) {m(xf )=

generated data pg term

1

* 75 * k| ok
+ (=) Eivjo,n1Eagmps,ar~pi (1) |:||ft(zt) 17 (zflap)1?].(17)

real data pg; term




RealUM loss (17) for all «, § and UM loss (2) yield the same teacher when input distribution is
real data pg, i.e., arg min Lrom(f,p§) = argmin ¢ Lom(f,p5) = f*. Hence, the min-max inverse
scheme (16) with RealUM loss and the old teacher f* will still have a real data generator as a solution:

min o { Ly (f*p%) — min Lyt (F.08) )} = Lroon (f*,py) — min ({Lgitn (. p5)} = 0.

20 =L (f*.p3)

But now distillation loss will incorporate real data through the real data terms of ﬁf{;{ﬁM (f,p8).

Theorem 2 (Real data generator minimizes RealUID loss). Let teacher f* =
arg min; Lum(f,ps) be the minimizer of UM loss on real data pj. Then real data generator G-, s.t.

pg* = p§, is a solution to the min-max optimization of Universal Inverse Distillation loss with real
data (RealUID) E,‘;},’?’ID( f,18) over fake function f and generator distribution p§:

min g max {555.’510(]”7?8) = Lo ([ p)) — 53.’5M(f7p3)} : (18)

We provide analysis of RealUID in Appendix A.1, below we highlight the most important findings.

Role of coefficients o, . The RealUID framework uses real data samples only to minimize RealUM
loss for the fake model. As shown in Lemma 2, RealUID also implicitly minimizes the rescaled
distance (20) between the teacher and generator functions. This distance is still minimal when
pY = p}, alternatively proving Theorem 2. The proof of Lemma 2 is located in Appendix A.1.

Lemma 2 (Distance minimized by RealUID loss). Maximization of RealUID loss ﬁ?_’gm a7
over fake function f returns the weighted sum between the teacher f* and student function f° =
argmin Lom(f, pg) and represents the weighted squared (o-distance between them:

(1= B)p; () - f7 () + Bpf (1) - f7 (1)

, 19
(1— a)pi () + op(z2) (19

argjrcnax Eg_’gm(f, po)| (t,2e) =

(12 - 1o} (23) 17 (21) — w2 @) £2 (@) + @0 25) = 0 (7)) - 7 (@D)7]
p; (@) (1 — 0)pj (27) + apf (27))/a ‘

a,B oy
mjz_a,x C’R,UID(f’pO)_EZN[U,T]E;EZ(NP? (20)

With the help of real data, the distance (20) captures mismatches for both incorrectly generated
points from the generator’s main domain and the real data points, which the generator fails to
cover. Thus, unlike data-free UID loss (Lemma 1), RealUID loss provides the generator with
feedback also on the real data domain it needs to cover (see Appendix A.1.2). Moreover, if teacher
function is inaccurate, RealUID can now provably fix teacher’s errors (see Appendix A.1.3).

Choice of coefficients o, 5. Lemma 2 shows that, instead of values « and 3, actually the values
« and B/a determine the balance between real and generated data in the minimized distance (20).
Furthermore, coefficient «v only sets the general scaling of the distance, while 8/« plays the most
important role, as it determines the relation between f? and f;* inside the distance.

Value 8/a = 1 yields the distance identical to the data-free distance (15) up to scaling. Even when
a = < 1 and real data is formally added, it has no, or negative, effect on the generator. Excessively
low o and /3 diminish the effect of the generated data term f{ in the optimal fake (19), leading to
vanishing gradients. The same issue occurs with 8/ < 1 in (20), while 8/« >> 1 diminish the effect
of the right real data term f;*. Plus, configurations 5 < o = 1 may be unstable due to out-of-domain
samples. See Appendix A.1.2 for more details of the distance analysis. Moreover, if teacher function
is inaccurate, only the choice 8/« # 1 can fix teacher’s errors (see Appendix A.1.3).

Hence, good coefficients «, 5 € (0, 1] can be chosen by first finding good 5/ # 1, as it has the
largest impact, and then adjusting o < 1. Both 5/« and « should be close to 1.

Comparison with GAN-based methods. Unlike SiD and FGM with GANs, we do not use extra
adversarial losses and discriminator to incorporate real data. We only modify UM loss, preserving its
core structure and fake model architecture. While general adversarial loss is unrelated to the main
distillation loss and has uninterpretable scaling hyperparameters, our RealUID loss and weighting



Generation a\ 3 0.94 0.96 0.98 1.0 Generation )\ﬁfl )\ﬁv FID ()
094 266 [228 258 298 01 03 [P
Unconditional 0-96 2.37 2.58 2.29 2.65 Unconditional  0-3 1 2.29
0.98 297 [2.33 2.62 [2.38 1 3 2.39
1.0 581 451 329 2SSl 5 15 |25
094 235 [219] 225 247 01 03 222
Conditional 096  [2:09] 232 [2143 227 Conditional 03 212
098 234 [202 220 [205 1 3 215
1.0 432 327 243 BN 5 15 2.40

Table 1: Ablation studies of (a, 8) coefficients in the left table and adversarial weighting parameters
()\deﬁ ,AL,) in the right table for CIFAR-10 in both unconditional and conditional settings. The baseline

does not use real data. Configurations that | outperform the baseline are high-
lighted. All values report FID |, where lower is better. The best configuration in each case is bolded.

coefficients «, 8 € (0, 1] come naturally from the data-free UID loss. The original UID loss (14),
equivalent to SiD (4) with agjp = 0.5 and FGM (6), is obtained when o = 3 = 1.

Extension for Bridge Matching and Stochastic Interpolants framework. In Appendix C, we
demonstrate that our framework can be easily extended to other matching models by parametrizing
the generated data coupling % (z¢, z7) instead of the data distribution pg.

4 EXPERIMENTS

All implementations were developed in PyTorch, and the code will be made publicly available.

This section provides an ablation study and evaluation of our RealUID, assessing both its performance
and computational efficiency. We begin in (§4.1) by detailing the experimental setup. In (§4.2), we
show that our incorporation of real data via coefficients «, 8 improves performance, speeds up conver-
gence, and enables effective fine-tuning. In (§4.3), we assess the benchmark performance and compu-
tational demands of RealUID relative to SOTA methods. Additional experimental details and results
are provided in Appendix D and Appendix E, respectively.

4.1 EXPERIMENTAL SETUP

Datasets and Evaluation Protocol. Due to computational resources constraints, the experiments
were conducted only on the conditional/unconditional CIFAR-10 dataset with 32 x 32 resolution
(Krizhevsky et al., 2009) and on the CelebA dataset with 64 x 64 resolution (Liu et al., 2015), see
Appendix E.2. In line with the prior works (Karras et al., 2019; 2022), we report test FID scores
(Heusel et al., 2017), computed using 50k generated samples.

Implementation Details. In contrast to prior studies (Zhou et al., 2024b;a; Huang et al., 2024),
which employ the computationally demanding EDM architecture (Karras et al., 2022), our work
adopts a more lightweight alternative (Tong et al., 2023) due to resource constraints (see (§4.3) for
efficiency analysis). We also trained our own flow-matching model, denoted by f*, which served as
the teacher. Further implementation details are provided in Appendix D.

4.2 BENCHMARKING METHODS UNDER A UNIFIED EXPERIMENTAL CONFIGURATION

We evaluate RealUID under a unified experimental protocol (fixed architecture and implementation).
We begin by (i) conducting an ablation over «, S to assess the influence of real-data incorporation. We
then (ii) compare RealUID to a GAN-based alternative, showing that RealUID achieves comparable
or superior accuracy. Furthermore, (iii) we analyze convergence, indicating that RealUID variants
with real data train substantially faster than baselines without real-data. Finally, (iv) we explore a
fine-tuning stage initialized from strong RealUID checkpoints, showing further performance gains.

Ablation study of coefficients «, 5. The search for optimal « and 3 parameters was restricted to
values near 1, specifically «, 8 € [0.9, 1.0] with increments of 0.02 to cover the full grid. Setting these
parameters too low prevents the student from accurately capturing the true generator gradient, which



Table 2: This table presents the results of our ablation study on the RealUID framework, evaluated using the
FID metric under both unconditional and conditional generation setups. The Teacher Flow model with 100
NFE is reported as a reference. The performance of the baseline RealUID (a = 1.0, 8 = 1.0) without real-data
incorporation is indicated in italic. For emphasis, we underline the two counterparts that incorporate real data:
the GAN-based and our RealUID methods. The best-performing configurations, obtained via an additional
fine-tuning stage with adjusted (arr, Brr), are highlighted in bold. Qualitative results are presented in § E.3.

Model FID (}) Model FID (})

Teacher Flow (NFE=100) 3.57 Teacher Flow (NFE=100) 5.56

RealUID (a = 1.0, 8 = 1.0) 2.58 RealUID (a = 1.0, 8 = 1.0) 2.21

RealUID (a = 1.0, = 1.0) + GAN \? = 0.3,A5, = 1) 229 RealUID (a = 1.0, = 1.0) + GAN \? = 0.3,05, = 1)  2.12

RealUID (o = 0.94, 8 = 0.96) 2.28 RealUID (o = 0.98, 8 = 0.96) 2.02

RealUID (a = 0.94, 8 = 0.96 | agr = 0.94, Ber = 1.0) 2.03 RealUID (a = 0.98, 5 = 0.96 | apr = 0.94, Ber = 1.0) 1.91
14 Unconditional — a=1.0,=1.0 7 | Conditional — a=1.0,=1.0
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—— ar=0.94,Brr=1.0
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12 4 =0.94,Br=1.0

! !
! !
| |
o -
10 3! o
ol 5 gl
g ® £l £ ol
5 s el
V. J.
’ i 7l
s ! : i
S~ ]
2 e g i
50 100 150 200 250 300 350 50 100 150 200 250 300 350
Iterations (x103) Iterations (x103)
Figure 2: Evolution of FID during CIFAR-10 distillation for (i) the baseline RealUID (o = 1.0, 8 = 1.0), (ii)
the , and (iii) subsequent fine-tuning, evaluated in both unconditional
and conditional settings. The performances of and are indicated by horizontal
reference lines in their respective colors. Methods that incorporate real data— and

—are highlighted in green to facilitate comparison.

in turn leads the generator to produce noisy samples. The results are reported in Table 1. As a baseline,
we highlight the model without data incorporation our RealUID (o = 1.0, 8 = 1.0). As shown in the
table, using real data with « = 5 < 1.0 or with « = 1.0, 8 < 1.0 or with substantially different o and
B consistently degraded performance. In contrast, parameter settings close to the diagonal ¢/g = 1.02
or ¢/g = 0.98 produced improved results, with the best performance achieved by our RealUID (o =
0.94, 5 = 0.96) for the unconditional case and our RealUID (o = 0.98, 8 = 0.96) for the conditional
case. Note that the practical results for various «, 5 match the theoretical description from (§3.4.)

Comparison with GAN-based method. We integrated the GAN-based approach proposed by
Zhou et al. (2024a) into our experimental framework as an alternative method for incorporating real
data, enabling a direct comparison with our RealUID formulation. Specifically, we combined the
GAN loss with the baseline RealUID (o = 1.0, 8 = 1.0). As shown in Table 1, the best-performing

configurations are achieved with GAN losses ()\gjﬁ = 0.3, AL, = 1). While this setup performs
comparably to RealUID (« = 0.94, 8 = 0.96) in the unconditional setting, it remains clearly inferior

to RealUID (a = 0.98, 8 = 0.96) in the conditional case.

Convergence Speed. Our RealUID («, 8) with parameters, which are [highlighted in Table 1,

achieves faster convergence than the baseline RealUID (o = 1.0, 8 = 1.0). For clarity, we present
qualitative comparisons of the best-performing configurations against their baselines in Figure 2. As
shown in figure, the best RealUID configurations reach the saturated performance level of the baseline
after ~100k iterations, whereas the baseline requires ~300k iterations to achieve comparable metrics.
These results demonstrate that incorporating real data substantially accelerates convergence.

Fine-tuning stage. We observe that the RealUID framework offers substantial flexibility for fine-
tuning. In this procedure, the generator Gy is initialized from the best-performing RealUID checkpoint
obtained during training from scratch, while the fake model f is initialized from the teacher model
f*. Fine-tuning then proceeds with new hyperparameter values agr and [Sgr, allowing for refined
control over the degree of real-data incorporation during this stage. We find that the configurations
RealUID (« = 0.94, 8 = 0.96 | agr = 0.94, Bpr = 1.0) and RealUID (oo = 0.98, 8 = 0.96 | apr =
0.94, By = 1.0) produced the best results in the unconditional and conditional cases, respectively, as
shown in Tables 2. Ablation studies analyzing the effect of apr and Sgr are provided in Appendix E. 1.



Table 3: Comparison of unconditional generation on
CIFAR-10. The best method under the FID metric in each

section is highlighted with bold. Table 4: Comparison of conditional generation on

CIFAR-10. The best method under the FID metric in

Family Model NFE_FIDM) each section is highlighted with bold.
DDPM (Ho et al., 2020) 1000 3.17
VP-EDM (Karras et al., 2022)
StyleGAN2+ADA+Tune (Karras et al., 2020)

1.97 Family Model NFE FID ()
2.92

¥ arras etal., 2 3 j
StyleGAN2+ADA+Tune+DI (Luo et al., 2023) 271 e e et '2(‘,’2232)’ Do
Diffusion ProjectedGAN (Wang et al., 2022) 2.54 BigGAN (Brock et al.,vzﬂlé@) 14.73

iCT-deep (Song & Dhariwal, 2023)

251 BigGAN+Tune (Brock et al., 2018)
Diff-Instruct (Luo et al., 2023)

4.53 StyleGAN2+ADA (Karras et al., 2020)

3.77 StyleGAN2+ADA+Tune (Karras et al., 2020)
1.98 StyleGAN2+ADA+Tune+DI (Luo et al., 2023)
3.66 StyleGAN-XL (Sauer et al., 2022)

585 StyleSAN-XL (Takida et al., 2023)
Diff-Instruct (Luo et al., 2023)

8.47
e 349
Diffusion & GAN [\ (Vi et al., 2024b)

CTM (Kim etal., 2023)
SCD (Lu & Song, 2024)
SCT (Lu & Song, 2024)

242
227
1.85
1.36

35
1
1
1
1
1
1
1
1
1
1

2 (Zhou et al., 2024b) 1 1.92
1
1
1
2
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
SID, asip = 1.0 (Zhou et al., 2024b) 203 Diffusion& GAN  pipimmet (Lo it 4
SiD, asit DMD (0. KL) ( 4 3.
! y . KL) (Yin et al., 2024b) 1 382
SiDA, asip = 1.0 (Zhou et al., 2024a) 1.52 DMD (w.0. reg.) (Yin et al., 2024b) 1 558
SiD?A, asip = 1.2 (Zhou et al., 2024a) 1.52 GDD-1 (Zheng et al., 2024) 1 144
SiD?A, agip = 1.0 (Zhou et al., 2024a) 1.50 CTM (Kim et al., 2023) 1 1.73
— SiD, asip = 1.0 (Zhou et al., 2024b) 1 193
CFM (Yang etal., 20725) 5.34 = 1.2 (Zhou et al., 2024b) 1 1.71
IMM (Zhou et al., 2025) 3.20 . 1.0 (Zhou et al., 2024b) 1 1.44
Flow-based MeanFlow (Geng et al,, 2025) 292 SID?A, asip = 1.0 (Zhou et al., 2024a) 1 1.40
FACM (Peng et al., 2025) 2.69 SiD2A, agip = 1.2 (Zhou et al., 2024a) 1 1.39
1-ReFlow (+Distill) (Liu et al., 2022a) 6.18
o FGM (Huang et al., 2024) 1 2.58
2-ReFlow (+Distill) (Liu et al., 2022a) 485 Flow-based e e e 202 06 e — 0,94, e — B
3 ReFlow (+Distill) (Liu ot al. 20222 521 RealUID (o = 0.98, 8 = 0.96 | agr = 0.94, B = 1.0) (Ours) 1 1.91
FGM (Huang et al., 2024) 3.08
RealUID (a = 0.94, 8 = 0.96 | apr = 0.94, frr = 1.0) (Ours) 2.03
Methods Inference Time (ms) # Total Param (M) Max GPU Mem Alloc (MB) Max GPU Mem Reserved (MB)
RealUID (Ours) 18.636 36.784 165 172
FGM (Huang et al., 2024) / SiD (Zhou et al., 2024b;a) 30.745 55.734 242 276

Table 5: Inference complexity on an Ascend 910B3 (65 GB) NPU. For each method, we report (i) the mean
inference time per image (bs=1, fp32), averaged over 10,000 iterations; (ii) the total number of parameters
(Millions); and (iii) peak NPU memory usage (maximum allocated and reserved, in MB). Best values are bolded.

Scaling to larger datasets. In Appendix E.2, we provide the similar results of the same ablation
studies on the CelebA dataset with 64 x 64 resolution.

4.3 BENCHMARK PERFORMANCE AND COMPUTATIONAL COMPARISONS

As shown in Tables 3 and 4, RealUID consistently outperforms all prior flow-based models on
CIFAR-10, significantly surpassing the strongest flow distillation baseline, FGM. Despite its compact
architecture (§4.1), it achieves performance comparable to leading diffusion distillation methods-
matching SiD (asip=1.0) and closely approaching SiD (asijp=1.2), while falling short of adversari-
ally enhanced models such as SiD?A. Based on ablation studies and comparisons with GANs (§4.2),
we hypothesis that this performance gap is attributed to architectural and teacher capacity differences
rather than the lack of adversarial loss. In terms of efficiency, RealUID leverages a lightweight
architecture based on Tong et al. (2023). Therefore, as summarized in Table 5, it achieves nearly
2x faster inference, lower memory usage, and reduced model size compared to recent distillation
approaches (Zhou et al., 2024b;a; Huang et al., 2024). The results indicate that our approach achieves
competitive performance while maintaining a lower computational footprint.

S5 DISCUSSION, EXTENSION, FUTURE WORKS

Extensions. Our RealUID (§3.4) framework can distill Flow/Bridge Matching, Diffusion models,
and Stochastic Interpolants enhanced by a novel natural way to incorporate real data. In Appendix A,
we provide three extensions of our RealUID beyond the inverse scheme: General RealUID with 3

coefficients (Appendix A.2), SiD framework with real data for agsip # % (Appendix A.3) and Normal-
ized RealUID for minimizing non-squared ¢ -distance between teacher and student (Appendix A.4).

Relation to DMD. Instead of minimizing the squared ¢»-distance between the score functions,
Distribution Matching Distillation (Luo et al., 2023; Wang et al., 2023; Yin et al., 2024b;a) (DMD)
approach minimizes the KL divergence between the real and generated data. Its gradients are
computed using the generator and teacher score functions, leading to the similar alternating updates.
We would like to highlight that DMD does not fit UID framework. Nevertheless, we investigated an
opportunity to incorporate real data into DMD without GANs in Appendix A.5.
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A THEORETICAL PROOFS AND EXTENSIONS

In this appendix, we discuss our RealUID framework (Appendix A.1) in theoretical details and provide
three extensions of it: General RealUID framework with 3 degrees of freedom (Appendix A.2), SiD
Sframework with real data (Appendix A.3) and Normalized RealUID framework for minimizing ¢o-
distance between teacher and student functions instead of the squared one (Appendix A.4). All proofs
are based on the linearization technique and splitting terms in linearized decomposition between real
and generated data.

We also propose an approach to incorporate real data into DMD framework, which is unsuitable for
our RealUID Appendix A.5.

A.1 REALUID THEORETICAL PROPERTIES

In this section, we discuss our RealUID loss in detail. We begin by presenting its explicit form and
how it connects linearization technique and real data incorporation. We then demonstrate that the loss
minimizes a squared ¢5-distance between the rescaled teacher and student functions (Appendix A.1.1).
Finally, we provide the motivation of the best choice of coefficients o # ( from the perspectives of
the better distance (Appendix A.1.2) and the correction of the teacher’s errors (Appendix A.1.3).

A.1.1 PROOF OF REALUID DISTANCE LEMMA 2

Putting explicit values for RealUM loss (17) in RealUID loss (18) and denoting §; = f;* — fi, we get:

/Jg_’gm(&pg) = Et~[o,T],zg~pg,[_aH(St(ﬂU?)HQ + 20‘<5t(35§)a ft*($§)> 25<5t($t) ft (z f‘l’g))]

0 0 o
@y ~py (|xg)

+Et~[*0,T];a(c(*i~*p)§,[_(1 —a)[[de ()| +2(1 — a) (8 (}), fi () — 2(1 = B)(de(a7), f7 (af |25))].
Ly ~Py T

This form provides an alternative definition of coefficients o and (3. they define the proportion in
which each summand in the data-free linearized representation (11) of the squared {s-distance is
split between the real and generated data. The idea of splitting coefficients between two data types
helps extend RealUID to extra coefficients (Appendix A.2), new distances (Appendix A.4) and SiD
framework with ag;p # % (Appendix A.3).

Proof of Lemma 2. First, we take math expectation over data points 2. Since the expectation can be

taken in a reverse order, i.e., E - (lzz) = E )» WE see that

O *
T ~DG T DY xy~p},xi~ps(-|T]

By mpg.appy (lap) [O00(27), T (@Elao))] = Bapopy (00(27), Bagopg (1op) 7 (25 |20)])
= Eopop; [(0e (7)., f7 (7). 1)
For the generated data term Ewgrvpg,mfrvpf(-\a;g)Két (xt) ft ( ?|x8>>] - waf\apt [<5t(mt) ft (mt)>]

the reasoning is similar. Thus, we can write down RealUID loss in an explicit form with §; = f;" — f;

L3:01(8.0) = Eonato 1) Bag s [~lle (&) |” + 2060 (27), £ (f)) — 26(6:(x]), f{ (2))]
B (0,71 Bz opp [= (1 = ) 10 (@) 7 + 2(1 — ){8e (), f7 (7)) — 20 = B)(0e(a7), £ (27))]- (22)

Then, we rescale the generated data terms in RealUID loss (22) using the equality p{(z;) =

az Eii;pt (z;) for z; € RP (we assume pj(z;) > 0,Vz;,t) leaving only math expectation w.r.t.

the real data, i.e,

15



« pe (X %
ﬁﬁ%®m®Emmﬂ[K1®+a @5, @12

o
Ty ~Py

Gx* 933*
~Ernjo 282 R o), 7)) + 2006 - )+ aZEERN a7). £ )

Finally, we maximize the loss w.r.t. d;(x}) for each z; and ¢ as a quadratic function. The maximum
is achieved when

[(8 — ) + aZleD) fr (o) — BELED 0 (a)

P* (=7)

Pl ()
(1= a) + afth)]

5e(xy) =

or in terms of the fake model f = f* — ¢

Fi(ee) - (L= B)+ () - pELCD

_ Pf(fvt)
(1-—a)+ e

(arg max LR (S, pg)) (t,a:) = (23)

The maximum itself equals to

| 2

17 (@) - (8 — @) + B2y — f0(ay) - pEALD
p

_ §(z7)
(1 —a) +agch
It is easy to see that when p§ = pj and f? = f* this distance achieves its minimal value 0. Moreover,
optimal fake model in this case matches the teacher f*,i.e.,

fi(x) - (L= B) + fi(ze) - 6283 = [ (xy)
(1704)4» *E$; = J¢ (Tt)-

e Lo (f18) = Einio, 1Bz mpr

(arg max LRt (S, pS)) (t, ) =

A.1.2 EXPLANATION OF THE CHOICE OF COEFFICIENTS o@ AND 3

Here we show that the best way to incorporate real data during generator training is to set 8/a # 1.

Following Lemma 2, we know exactly what distance our RealUID loss implicitly minimizes. Below
we examine it for various «, 5 € (0, 1]:

m]?‘X‘ngng(f7pg) = /xt lt(.’ﬂt,B’OZ)dl't,
Q2N Wr )5 = 1) ) (x0) - i (@) = 5 pf () - ff ()]
lt(xtaﬂaa) L )

(1 — )pj (w) + apf ()
where I, (x¢, 8, ) denotes the distance for the particular point z;.

The total distance mostly sums up from the two groups of points: incorrectly generated points

from the generator’s main domain, i.e., p(z;) > 0,p*(x;) — 0, and real data points which are

not covered by the generator, i.e., p{(z;) — 0,p*(z;) > 0. For the points out of both domains
0 ‘ : : : 0 ~ ¥

Py (x¢) — 0,p; (z:) — 0, the distance tends to 0, as well as for matching points p{ (z;) = p; (z+).

Choice of coefficients o, 3. Next, we consider various coefficients «, 8 € (0, 1] and how they
affect two main groups of points.

» All configurations affect the incorrectly generated points z; : p} (x;) — 0, p?(z) > 0:
lopf (we) - fi"(xe) — Bpf (xe) - f7(@)|* _ B2FE @)l
apf () @

Note that increasing 8/a > 1 will diminish the weight of the distance in comparison with o« = § =
1, while decreasing otherwise will lift the weight up.

lt(zta/@a Oé) ~

pl(x) >0, (24
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Figure 3: RealUID loss for 1 D-Gaussians under various coefficients («, ).

» Configuration 8 < a = 1 is unstable for uncovered real data points z; : p? () — 0, p*(x;) > 0:

~ 19} () (B — 1) - f7 () = Bpf (1) - 7 (0)]?
pY(x)

— 00.

lt(xta 57 Oé)
* Configuration § = a = 1 (UID loss) does not affect uncovered real data points x; : pf (xy) —
0,p*(z¢) > 0:

li(ze, B, @) ~ 1p{ (¢) - ft*(xtgglezg;(xt) ()|

= |Iff (w¢) — ff(mt)||2pg($t) — 0.

+ Configuration 3 = a < 1 does not affect uncovered real data points x; : p?(x;) — 0, p* (x;) > 0:

(s 5y e NOPRGOSE () = B @I _ llafi () = BF @I @Rz

(1 = a)pi (1) (1-a) P (@)

Notably, in this configuration, the distance drops even faster than when oo = 8 = 1, what makes it
even less preferable.

* Only configuration B/o # 1 affects the uncovered real data points ; : p?(x;) — 0, p*(x;) > 0:

~ P} (2) (B = @) - ff(20) — Bpf () - fE () |I?
(1 = a)pj (x4)

li(z, B, @) > 0.

Visual illustration. We analytically calculate the loss surface (¢, «, 3) between the FM models
transforming one-dimensional real data Gaussian A'(y*, 1) and generated Gaussian N'(uf, 1) to
noise A/ (0, 1) on the time interval [0, 1]. In this case, the generated and real data interpolations
are p? (z) = N(z¢|pf (1 —1),t? + (1 — t)?) and p} (x;) = N (z¢|p* (1 —t),t2 + (1 — t)?). The
unconditional vector field u = f between A(0,1) and N'(u, 1) can be calculated as

e (0) = By o |:fEt ; xo} :/ <5L't ;I0> N (Wm’ 1> - N (2o, 1)dao

_ a(2t? — 2t) — bt? . (_ (¢ — p(1 — t))2)
V2m(1 — 2t + 22)3 2(1 -2t +2t%)% )

In Figure 3, we depict the loss surfaces for the fixed time t = 1/3, real data u* = 2, generated data
1% = —2 and various pairs of («, 3). We can see that configurations 5/a = 1 do not detect the real
data sample, even when o = 3 < 1 and real data is formally used. while 8/« # 1 actually spots both
domains, increasing the weight of generator domain when 8/« > 1 and decreasing it otherwise.

(25)

A.1.3 CORRECTION OF TEACHER’S ERRORS

In this chapter, we assume that instead of accurate teacher f* = arg min; Lym (f, p§) we have access

only to the arbitrary corrupted teacher f *. We will show that adding real data via our approach with
« # [ provably mitigates the teacher’s errors in the final generator.

Minimized distance. With the corrupted teacher f *and § = f * — f, our corrupted Real-UID loss
(see Appendix A.1.1) has the explicit form

L6108, 90) = Eyroto 1 at ey [ 0ll0n (@) + 200 (2), fi (7)) = 28(80(a?). £ (2 |20))]

0 0 o
@y ~py (|zg)
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FEqfo,1) 25 ~p, [~ (1L = @) 10e (@) 12 +2(1 = @) (b (2}), i (7)) — 2(1 = B) (b (), f7 (i [5))].

xi~py (2y)
Note that sampled terms f; (x}|z3) and f? (2f|2f) are not affected by the corruptlon and glve the
accurate functions f; (z}) = Eqs wpr(.on) [ff (xt |z5)] and ff (2f) = B0 ps(|2f )[ft (2f]x)]:

L2600, 90) = Eonto i Bas e [—allde(@))|1* + 20(8(a?), f7 (2)) — 26(6:(2), f7 (7))
FE 0,71 Ea; op [ (1= )10 ()1 + 2(1 = @) (e ), f (27)) = 2(1 = B)(Se(27), f1 (x))]-

Then, we rescale the generated data terms using the equality p! (z;) = s Ew:; p}(z;) for x; € RP

(we assume p; (z¢) > 0, Vxy, t) leaving only math expectation w.r.t. the real data, i.e,

00 (5.08) = Euvtomyaiogi| [0 )+ a2 0 205 ). )

~ 0 .’13*
- EtN[O,T],[m(mzm (- B)fi () 482 t)fﬂx:»} |

@l ~op) pi(xy)

Finally, we maximize the loss w.r.t. St(xf) for each x; and ¢ as a quadratic function
max; L3058, p8) =
5 ~r-up\% Po

1 F5 () - (1= a) + aBED) — (1= B) £ (af) — BEEEH £ (7)1
_ p ( )

Hence, max-min optimization of the corrupted RealUID loss 1mphcit1y minimizes expected distance

(26). However, due to arbitrary function f, we now cannot guarantee that minimum is achived when

the relation inside the norm equals 0. Previously, we could use the solution p? = p* which obviously

achieved a minimum of 0. Now, due to the implicit and complex relationship between f? and p?, we

can neither find an explicit form for the optimal p’ nor guarantee the minimum of 0.

]Etw[O,T] Em; ~p} (26)

Choice of coefficients «, 5. Here we give an intuition on why coefficients 8/ # 1 can fix the
teacher’s errors, while #/a = 1 cannot. For simplicity, we assume that the minimized distance (26)
actually attains minimum of 0 when

(1= @) (x2) + apf (20)) - fi (we) = (L= B)pj (we) - f (we) = B (x0) - fL(2}) = 0. 27)
e Incase of « = 8 = 1, we have ft* = ff , 1.e., the generator learns the corrupted function.
* Incase of « = 8 < 1, we have

f ) (1= a)pf(x1)
fi () (1 — a)pi(z¢) + apl (z4)

L T Oép?(l‘t) i ZL‘*
fi (@) + (= a)p (1) + ap? (1) i (@)

In this convex combination, the corrupted function f * is always between the true teacher function
f* and the optimal generator function f? i.e., the generator learns even worse function.

* In case of B/a # 1, there exist intervals of «, 8 which can give better generator function than
the corrupted teacher. For example, coefficients o # [ close to 1 allow to neglect the terms

(1= a)pj (xe) - fi (x0) and (1 = B)p; () - f7 () in 27) to get [ (we) = § [ (). Hence, we
can steer f? towards the true teacher picking #/a < 1 or #/a > 1 depending on the corrupted and

clean teacher’s values. However, we cannot find all these intervals analytically due to complex
distributions and functions.

Note that we derive the same recommendation #/a # 1 from the perspective of correcting the
teacher’s errors and from the perspective of the minimized distance surface from Appendix A.1.2.

Visual illustration. For visual demonstration, we consider the FM models transforming one-
dimensional real data Gaussian A/(u*, 1) and generated Gaussian NV'(12?, 1) to noise NV'(0, 1) on the
time interval [0, 1]. In this case, the generated and real data interpolations are p? (x;) = N (x4 |u? (1 —
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t),t2+ (1 —1)?) and p; (z;) = N(z¢|pu* (1 —t),t? + (1 —t)?). The unconditional vector field u = f
between A(0, 1) and (1, 1) can be calculated as

Ty — T Ty — T xy —xo(l —t
o) = Eayepien | 2520 = [ (B ) e (2100 ) Aol 1
a2t —2t) — bt? o <_(:ct—,u(1—t))2)
Var(l—2t4+ 2% TP\ 2l —2t 222 )

In Figure 4, we depict the optimal generator mean . and vector field u? satisfying (27) for various
deviations 4* — u* and fixed time ¢ = 1/3, real data u* = —2 and point z; = —1.

(28)

We can see that with & = § = 1, the generator learns the corrupted vector field, and with = 8 < 1,
the learned field and means are often even worse. In contrast, with /o # 1, the generator can learn
vector fields and means which are closer to the real data. Although the generator cannot satisfy
relation (27) under large deviations, it still produces better results with the real data.

genu?, u® = -2.09, (a, B) = (0.95, 0.9)
gen u?, 4® = -2.06, (@,B) = (0.9, 0.95)
07, (o, ) =(0.9,0.9)
-2.07, (a,f) = (1.0, 1.0)

genu?,
genu®,
realu”,

corrupted i*

genu?, p® = -2.34, (a, B) = (0.95, 0.9)
gen u®, ® = -2.25, (a, ) = (0.9, 0.95)
genu?, p® = -2.29, (@, B)=(0.9, 0.9)
gen u® , 4® = -2.26, (a,f) = (1.0, 1.0)
realu’, p’ = -2

corrupted G

genu?, u® = -2.62, (a, ) = (0.95, 0.9)

corrupted §*

0.560 0.565 0.570 0.575 0.580

" —u"=-0.01

0.52 0.54 0.56 0.58
G"—u" =-0.05

0.60

0" -u"=-01

14, (@,B) = (0.9, 0.95)
84, (a, ) =(0.9,0.9)

corrupted 4"

gen v, 4 =-1.87, (o, B) = (0.95, 0.9)
1.92, (a, B) = (0.9, 0.95)
gen u® 1.9, (a, )= (0.9, 0.9)
gen u' 1.91, (a,B) = (1.0, 1.0)
u =2

genu?,

corrupted "

gen u?, 4° = -1.73, (a, f) = (0.95, 0.9)

corrupted 4"

0.0

01 02 03 04
i*-u"=-05

0.5

0.6

0.570

0.575 0.580 0.585 0.590 0.595 0.600

a"-u’ =0.01

0.56 0.58 0.60 0.62 0.64 0.66 0.68 0.70

@' -u" =01

0.4000.4250.4500.475 0.500 0.525 0.550 0.575 0.600

Figure 4: Learned generators for RealUID loss between 1D-Gaussians with corrupted teachers.

A.2 GENERAL REALUID LOSS

Expanding our real data incorporation. We recall that UID loss (Theorem 1) can be restated via
linearization technique with 6 = f* — f as:

Lun(5,00) = Ey o 17,28 mpt, {10 @I + 2060 (af), f7 (2)) — 2(00(27), f7 (f]25)) } -
@l ~pf (-|f)
In turn, after real data incorporation, we obtain our RealUID loss (Theorem 2). Putting the explicit
values for RealUM loss (17) in RealUID loss (18), we get the explicit formula:

Labin(0,08) = By jo.ry0.0ps [—alln(@)]2 + 2006,(af). £7 (2?)) — 28(5,(af), L (af]ad))]
@] ~py (-|zg)

+ Eonfo, )0 ~pp, [ - (1= )10t ()2 +2(1 — @) (8 (), f7 (27)) — 2(1 = B)(de (1), f7 (a7 |25))].

wi~op (lzg)
These two formulas give us alternative explanation on how to add real data into arbitrary losses: we
need to split each term in the linearized representation of the data-free loss between real and generated
data. For example, in RealUID loss, its three terms are split with proportions «;, «, 3, respectively.
We can go even further and split the first quadratic coefficient —||0;(-)||? using a new parameter
v € (0, 1] to create one more degree of freedom. Moreover, we can use other parametrization of d,
since its form does not change the proofs.
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Definition 3. We introduce General RealUID loss Ly:0;7) (6, p8) on generated data pf) € P(RP)
with coefficients o, 3, € (0, 1]:

LR:0in(6,90) = = Einporyatm, 0 [=8e (21 + 20(6e(a?), f (7)) — 28(0e(a?), f7 (a7 ]a7))]
wt ~P¢ ( |$0)
+ Eonfo, 1,0, |- (1= MG (@)1 + 201 — a) (e (27), £ (7)) = 2(1 = B)(0e (), fi (w5 ]20))]-
xy~py (-lzg)
Optionally, one can change default reparameterization 6 = f* — f (e.g., with 6 = B(f* — [)), and
substitute sampled real data term [ (x}|x) with the unconditional teacher [} (x}) and vice versa.

In case of 6 = f* — f and 7y # «, the General RealUID loss cannot be expressed as inverse min-max
problem (16) for simple losses, since some scalar products do not eliminate each other. Nevertheless,
min-max optimization of c,‘;;{ﬁfg still minimizes the similar squared /5-distance between the weighted
teacher and generator-induced functions, attaining minimum when pf = p;.

Lemma 3 (Distance minimized by General RealUID loss). Maximization of General RealUID
loss Eg_’g,’g over J represents the squared {>-distance between the weighted teacher f* and student

function f9 := arg miny Lyy(f, Po):
Lo By

max (6.50) = Evoiom 21y () £ (2p) — pY(25) f2 ()] + (0 (27) — i () £ (a7)]|?
A i@ (L= )pr ) + 1p0(an) a2

The distances being minimized for RealUID (Lemma 2) and General RealUID (Lemma 3) are almost
identical except the scale factor. Thus, we keep the same recommendations for choosing coefficients
a, 3 as we discuss in Section 3.4. The factor 8/« still has the largest impact within the distance, while
a and  set the scaling. Values 8/ and 7 should be chosen close to 1, but not exactly 1.

Proof. First, we take math expectation over data points x. Since the expectation can be taken in a

reverse order, i.e., EmSNPG’f?NPZ('IIS) = Ez?NPIJGNPS('Irf)’ we see that
Bagmpgaropr Clap) [0 (@), S (@i lzo))] = Eapap; (06(25), Bagapy oy L7 (2]25)])
= Bapep; [(0e(27), f7 (27))]- (29)
For the term Eg e 1050 ( (120 [(0e (27), £ (27]25))] = Lo o[(0¢(29), ££(22))], the reasoning is

similar. Thus, we write down General RealUID loss (Def. 3) in an explicit form with §; = f;" — f;
Labin(6.78) = Evnio 1 Eps oyt [-1180 )| + 2050 (), f7 (2)) — 28(60(a), £ ()]

FBifo.11 Bz op; [ (1 = D)2 + 201 — @) (Gulw?), 17 (@) — 20 = B)Eaf), £7 ().

Then, we rescale the generated data terms in the General RealUID loss using the equality p? (z;) =

B E“;pt (z;) for z; € RP (we assume pj (z;) > 0,Vx,,t) leaving only math expectation w.r.t. the

real data, i.e,

P (a7)
i (x7)

0 ¥ T
+ B, 2000 - 0) + o 0h 5 00), 1 a0) - 2 ). 1)

Then we maximize the loss w.r.t. d;(x}) for each -} and ¢ as a quadratic function. The maximum is
achieved when

ﬁﬁ%®m®=Emmm[%ﬂ—ﬂ+ﬁ 16 () 12

w ok
Ty ~Py

[(B—a)+ ﬁ* ]ft (x7) — pt (z*)ft (xt)

- (30)
[(1 = )+ 2]

0y (x7) =

The maximum itself equals to

157 (a7) - (8 — @)+ aZield) — fo(ay) - EEGD 2

_ pt('l’t)
(1 =7+ 755

max Ly 015 (0,9%) = Eijo 1Bz mpr
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Alternative parameterization. In the proximity of the solution, when generated data approaches
real one, i.e., pf ~ pj, the optimal 4 (30) approaches

(8= )+ a-1f(e7) = B-1-JP@) _ gy o
[(1—7)+~-1] ~ B(ff (x) — fi (#7))-

Thus, the parametrization 6; = B(f; — f;) may naturally help reach the solution without making the
fake model learn extra information about the teacher near the optimum. O

6(zy) ~

A.3 SID WITH REAL DATA

Our real data incorporation. We recall that data-free UID loss (Theorem 1), which is equivalent to
SiD with agip = 1/2, can be restated via linearization technique with § = f — f* as

Lun(5,00) = Ey oo 1700 pe, {—16:@)I? + 2060 (), £ (27)) = 2(8e(]), f{ («f]25))} - BD)
@] ~pf (-]ag)
In turn, after real data incorporation, we obtain our RealUID loss (Theorem 2). Putting the explicit
values for RealUM loss (17) in RealUID loss (18), we get the explicit formula:

Labin(6,08) = By o zy.00.p0 [—allBu@)|1? + 206 (20), £7 (20)) — 2B8(8u(?), £ (22)23))]
i ~py (-|zg)
- Banfo,rt s [~ (1= )82 + 21— 0) Bl £ (@) — 21— B)(Bula}), f7 (a7l
zi~p (lzg)
These two formulas give us alternative explanation on how to add real data into arbitrary losses: we
need to split each term in the linearized representation of the data-free loss between real and generated
data. For example, in RealUID loss, its three terms are split with proportions «, «, 3, respectively.

Combining with SiD. In SiD framework (Zhou et al., 2024a;b), the authors notice that UID loss
(31) for generator updates, with additional normalization and the first coefficient —||&; (2)||? scaled
by 2asip, empirically yields better performance. Namely, the SiD loss for generator with parameter
asip € [0.5,1.2] is

Lagp (pg) = EtN[O7T] zo~ph,
f~p] (-|z§)

where w; o« NO-GRAD{|| £ (2?|28) — £ (zf)||1} are normalization weights. For more details about

time sampling and practical implementation, please refer to the original papers (Zhou et al., 2024a;b).

{ —2asip |0 (x)) 1> + 2(0¢(27), £ (27)) — 200:(x7), £7 (27 125)) }

Wi

Following the structure of generator SiD loss, we propose to scale the first coefficient in our weighted
RealUID loss during generator updates. The whole SiD pipeline with real data, determined by
coefficients «, 5 € (0, 1], asip € [0.5,1.2] and teacher f*, is two alternating steps:

1. Make one or several fake model f update steps, minimizing the real data modified UM loss
Ly tu(f,pf) (Def. 2):

a, B
LR-gM(fapg) = o EtN[OyT]EZSNPS’:r%p?(-IxS) {”ft(xf) - afe(x?\wg)ﬂz
generated data p§ term
* 1- 5 s k| %\ (|2
+ (1-«q) 'EtN[O,T]ExSNpg,x:Np:(~|x:;) | fe(2y) — mft (i ]zo) (17 ]-

real data p(j term
2. Make a generator update step, minimizing the loss ﬁf{_’gm asio (pg) =

{—2asm ca |0y (@)1 + 208 (2f), fi (27)) — 268(8e(?), f7 (x7]20)) }

Wt

E

tN[O,T],zgwpg,
af ~pf (1)
where 6; = f; — f; and w; oc NO-GRAD{|| £ (z?|z8) — f7 (29)|1}.
We keep the same recommendations for choosing coefficients «, 3 as we discuss in Section 3.4. The

optimal choice is slightly different & # S which are close to 1. Following (Zhou et al., 2024a), the
best choice for agip is asip € [1,1.2].
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A.4 NORMALIZED UID AND REALUID LOSSES FOR MINIMIZING #5-DISTANCE

Using the linearization technique from Section 3.1, we can estimate the non-squared ¢»-distance
between the teacher f* := arg min; Lum(f, pj) and student f? := argmin; Lym(f,pf) functions.
In this case, the connection with the inverse optimization disappears.

For a fixed point xf and time ¢, we derive:

5t(37t)
16¢ ()

R S g 0ad)
<>&WMt%Mx>wﬂ“” \TE

With the reparameterization 6; = f; — f;, the Normalized UID loss EUID( 1 po) for min-max
optimization to solve ming E¢ (o, 71Eq0.p0 || f¢ (x9) — £2(20)| is:

ﬁu%<mﬁm=mw{< ,ﬁm%—ﬁmm}

Jmf%%.em

It (xf) It (95?)
7 7

() — £ (xf]f .
IfF(z?) — fe(x )||7ft( ) — fi (@] 0))} (33)

memm?x Luw(f.p)) = Et;[oj,] a(c0~p07 [<

Adding real data. Following the intuition from the proof in Appendix A.1.1, we can incorporate
real data in Normalized UID loss (33) as well. We need to split two summands in the linearized
representation (32) into generated and real data parts with weights «, (1 — «) and 8, (1 — ).

Definition 4. We introduce Normalized RealUID loss L U,D( f.p8) on generated data p € P(RP)
with coefficients o, 8 € (0, 1]:

)
)l

arﬁw><1ﬂ»ﬁwwm}

o fi (@) = fulx
ER-’gm(f» pg) = EtN[07T]IE 0 ~op?, {< 7
$8~Pg(~|ért ”ft (xt) f ($

fr@t) - filed)
{ﬂﬁ@m—Mﬁm“

FD|+FD

7wﬁm%—ﬂﬁ@%®ﬁ

FEivfo, B ormpy,

zg~pg (-l2y)

Similar to the proof of RealUID distance Lemma 2, we can show that min-max optimization of
Normalized RealUID loss minimizes the non-squared ¢2-norm between the similar weighted student
f? and teacher f* functions:

0 (% 0 (%
Ao, b (aj ) * (K p (.T,' )
mj}XKR-ng(.ﬁpg) = Et’V[OaT]EI:NPI |:||((ﬁ - Oé) + ap;(d?%)) . ft (xt) - Bp%(x;)

This distance attains minimum when p = pj, justifying the procedure.

).

A.5 DMD APPROACH WITH REAL DATA

Distribution Matching Distillation (Luo et al., 2023; Wang et al., 2023; Yin et al., 2024b;a) (DMD)
approach distills Gaussian diffusion models with forward process z; = xg + o046, € ~ N (0, I).

@] ~pf p; (z)
between the generated data p? and the real data p;. The authors show the true gradient of
Eijo,71 Dk (pl||p;) w.r.t. 6 can be computed via the score functions:

dD o1|p* dG
Et~po,1) {KLQ?W%)] =B, p2 08=G(2),20~pf [(V elnpt (af) =V v 0P (2 ) je( )} '

0 0
This approach minimizes KL divergence E;(o. 71Dk (p{|[p;) = Etmjo,r)Epe {log (”1(“”3) )}

Then, this true gradient is estimated with the teacher score function s* := arg min, Lpsm (s, pjj) and
student score s = arg min, Lpsm(s, pj) at each time moment:

dD g1, (P ||pt . dG
]EtN[O,T] |:I(Ld(0t||t) = EtN[O,T]EZNp ,wo Go(z),2¢~pf (S? (.’L’?) — 5 <x?>)T; '
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The final algorithm alternates updates for the fake model and the generator similar to SiD approach.

We would like to highlight that DMD does not fit our UID framework. The UID loss is uniquely
determined by its input UM loss. In the case of Diffusion models and DMD, the UM loss is the
Lpsn(s, pg) loss. With this loss, the resulting UID loss becomes exactly the SiD loss, not DMD.

Adding real data. We investigated a theoretical possibility to incorporate real data into the DMD
framework. We found that we can use the Modified DSM loss (17) to train the modified student score
function s = arg min, Lg% e (s, p%) with coefficients v = 3:

s (% o 7 6/,..01,..0
Lyipsm(5:00) = @ Bocio. 1Bt ot 20p? (zg) LISt (a]) = s° (2f[20)|I]

generated data p§ term

+ (1= Q) Einfo1Bagpy apmps Clag) [lse(r) — si (x5 |25)]1%]-

real data pjj term

Then apply the generator parameters update based on the KL divergence between mixed distributions.
Lemma 4 (DMD with real data). Consider real data distribution p}; € P(RP) and generated
by generator Gy distribution pg € P(RP). Then, KL divergence between mixed and real data for

a € (0,1] has the following gradients with modified student score 50 := arg ming Lo %e,(5,p§)
and teacher score s} := arg min, Lpsy(s,pg):

dDgcp(a-pf + (1 —a) - pillpd)| _
20 =B o,1],2mp2,
2y =Go(2),2{~p]

o . dG
P (@) — sp(al)) =

Ey 0,77 a(s (z] s xt))ﬁ .

Although this approach is theoretically justified, it requires coefficients & = § which work poorly for
our RealUID, see Section 3.4. In the proof below, we also show that use of coefficients o # /3 in the
fake model loss leads to the total collapse of a generator. The proof itself follows (Wang et al., 2023).

Proof. We aim to minimize KL divergence between generated distribution pg and the real data pg

H;ignE(pg) = Eopor) [Drcrlapf + (1 —a)-pflp})] -
0

First, we use (Wang et al., 2023, Lemma 1) which says that, for any two distributions p, g € P(RD )
and point € R, we have

<5DKL(q|p)

L)Y ()~ tog ) ~ o pte) + 1

Second, for the parametrization :cg = Go(2),z ~ pz and a fixed point z;, we have (Wang et al.,
2023, Lemma 2)

0 x4 =
L0~ [ sttelatyp e

It allows us to obtain
=:qt
SE(pf) 0] = E, dDgr(e-pl () + (1= a)-p()lpi ()
op

[24] -

(0]
527?(%)
op

)

= Et/ [log(ev - pf (z¢) + (1 — @) - pj () — log(p} (x4¢)) + 1] -w/p?(aft\w‘g)pz(z)dz -day

z

0D i 0
:]Et/ KL((]tht)[xt]. qt

— 0] - dz
5qt op? 6] - da

= Etc.zalog(a - pf(af) + (1 —a) - p} (7)) — alog(p; (z7)) + o]
6(..0
pi (z¢)
= Et,e,z[a log (a B
o (xf)

+(1- a)) + af, (34)
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where x§ = Gy (2),2¢ = 28 + o1e, e ~ N(0, I). Finally, we take derivative w.r.t. § from (34):

5E(p8) [ p?(xte) 8xf
\Y 0] = Eierl|la-Vyl . +(1— .
o 5ph 9] ez @ G pi(xf) (1-a) 00
r 0.0 e
i (xf) 9Go(z)
= Fie.|a-Vyel . +(1— .
he _a 1708 (a pi(z) ( a)) 06

_ g, o2 V0Pt @) fpi (20) 0Gy(2)

1€s Gw(z
o

Now, we show how to obtain unbiased estimate of this gradient. We minimize the following loss
function over the fake model s:

(35)

‘CMa DSM(S pO) = ]EtN[(),T]EI?pr ,zowpo( |z+) [”St(x?) -5 ( | )H }

+ (1= ) Eonjo.11Eapmpp atmps (lap) Lse(@}) — sf(af]z) 7] -

This loss is equivalent to the following sequence

min {O‘Efw 0.7, Ise(xf) — 57 (@)I* + (1 = ) Eenpom,

0 w0k
zf ~p? Ty ~Py

(z) — s (aft)HQ}

0 ¥ ~p*
T Npt t Pt

min {aEt~[o 7, 1¢(2f) = Vo log pf () |* + (1 = @)Eyngo, 1y, I5¢(27) = Vay logpt*(w?)IQ} ;

0 *
min o1y, |alsu(a?)  Viogp @) PELE 4 (1= () — Thogi DI
x} ~p} t t

The optimal solution s%>® of this quadratic minimization for each point 2; and time moment ¢ is
0
LY, log pf (1) + (1 — @) Vs, log p (1)

f(mt)
gt (z+) + (1 )

Sfa(l’t) =

Thus, we have the following estimate with modified student score s%*

V., log pi(x)

and teacher score s; () :=

o
LSV, log pf (2) + (1 — @) Vs, log pi (1)
+

pt(It)
Aty T (1= @)

M Tt *
QLS (Y, log pf (21) — Vo, log pi (2:1))

i (
4 Tt
aig%gmtg + (1 — a)

HED) HED)
Ay Ve 108 TEay  aV, pl@) /(e
= Ovad ,
aBE L (1-a) o2 (1-a)

Hence, this estimate completely matches with required gradient (35):

8G9 (Z)
00

The use of other coefficients during student score optimization does not work. For the other student
scores 2P := arg min s Lo DSM( s,pd), the estimate 9P (1) — V., log pf(x+) does not lead to

the necessary dlfference Vo, logp!(z4) — Vy, log pf (z¢) = 0. And the optimal generator collapses
due to large bias.

Ha * _ Oép
sp () — sp () =

— Vg, log p; (x4)

(35) =By |- (s7(2)) — s (a))) -

O
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B REALUID ALGORITHM FOR FLOW MATCHING MODELS

We provide a practical implementation of our RealUID approach for FM in Algorithm 1. In the
loss functions, we retain only the terms dependent on the target parameters. For the fake model, we
reformulate the maximization objective as a minimization. We use alternating optimization, updating
the fake model K times per one student update for stability.

Algorithm 1 Real data modified Unified Inversion Distillation (RealUID) for Flow Matching

Input: teacher u*, student generator Gy, fake model u,,, real data pfj, coefficients o, 8 € (0,1],
generator update steps K, number of iterations NV, batch size B, fake model minimizer Opt 4,
generator minimizer Opt ¢y, latent distribution pZ, noise distribution p;.

1: forn=0,...,N—1do
2 Sample noise batch {xl,i}ZBﬂ ~ p; and generated batch {xg’i = Go(2)}2., 2i ~ pZ;
3:  Sample time batch {t;}2; ~ U[0,1] and calculate = ; = (1 —t;)zf ; + t;z1,:
4:  if student step (n%K # 0) then
5 Sample real data batch {xj ;} 2., ~ pj and calculate x, ; = (1 — t;)x; + tiz1 s
6

Update fake model parameters ¢ via minimizer Opt, step with gradients of

B
1 sgl0 5 sglO * 175 *
5 [anuwm,xtiE D= @iy DI+ = @)yt 27, )~ T (@i,
i=1

7:  else
8: Update generator parameters 6 via minimizer Opt ., Step with gradients of
B
1 9 B 0 o B 9
o Z OéHU*(ti,xti,i) - *(1'1,1' - zo,i)”Q - a”“sg[zp] (tiaxti,i) - *(931,1' - Io,i)”z ;
B P « e’
9: endif
10: end for

C UNIFIED INVERSE DISILLATION FOR BRIDGE MATCHING AND
STOCHASTIC INTERPOLANTS

C.1 BRIDGE MATCHING

Bridge Matching (Liu et al., 2022b; Peluchetti, 2023) is an extension of diffusion models specifically
design to solve data-to-data, e.g. image-to-image problems. Typically, the distribution pr is the
distribution of “’corrupted data” and py is the distribution of clean data, furthermore, there is some
coupling of clean and corrupted data 7(xg, z7) with marginals po(zo) and pr(27). To construct
the diffusion which recovers clean data given a corrupted data, one first needs to build prior process
(which often is the same forward process used in diffusions):

dr; = fi(x) + gedwy,

where f;(-) is a drift function and g, is a time-dependent scalar noise scheduler. This prior process
defines conditional density p; (z+|z¢) and the posterior density p; (z¢|zo, z7) called "diffusion bridge”.
To recover pg from pp, one can use reverse-time SDE

doy = (fi(ze) — g7 - v (1)) dt + gedity,
where the drift v] (x;) is learned via solving of the bridge matching problem:

£BM(077T) = Etw[O,T],(zo,zT)NTr(xo,zT),thpf,(zt\mo,xT) [wt”vt(xt) - th Ingt(xt|x0)H2} . (36)

However, this reverse-time diffusion in general does not guarantee that the produced samples come
from the same coupling 7 (x, z7) used for training. This happens only if 7(zo, 2T) solves entropic
optimal transport between pg and pr. To guarantee the preservance of the coupling 7(xg, xT), there
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exists another version of Bridge Matching called either Augmented Bridge Matching or Conditional
Bridge Matching, which differs only by addition of a condition on 2 to the drift function v¢ (x¢, z7):

EABM(U7 71-) = Etw[O,T]7(w0@T)NTr(wo,mT),Ith(wt|m0,xT) [wt”rUt(xh xT) - th logpt($t|$0)||§] .

The learned conditional drift is then used for sampling via the reverse-time SDE starting from a given
Tr ~ pr:
dSUt = (ft(xt) Ut (l’t, SUT)) dt =+ gtd’lj)t.

C.2 STOCHASTIC INTERPOLANTS

The Stochastic Interpolants framework generalizes Flow Matching and diffusion models, constructing
a diffusion or flow between two given distributions pg and pr. To do so, one needs to consider the
interpolation between any pair of points (zq, z7) which are sampled from the coupling 7 (xo, x1)
with marginals pg and pr. The interpolation itself is given by formula

xy = I(t, 0, x7) + 16, €~ N(0,I), te€][0,T],

where I(0, zo, z7) = xo, I(T,x0,27) = 7, 70 = yr = 0and v > 0 forall ¢ € (0,7). This
interpolant defines a conditional Gaussian path p;(z¢|zo, 21 ). Note that in the original paper (Albergo
et al., 2023), the authors consider the time interval [0, 1], but those two intervals are interchangeable
by using a change of variable ¢’ = % Thus, the ODE interpolation between pg and pr is given by:

dxt - ut('rt)dt? o ~ Po,

where w,(z, z7) = E[&4|xy = 2] = E[0I(t, xo, x1) + F€|xy = 2] is the unique minimizer of the
quadratic objective:

Lsi(v,7) = Eyfo, 1, (wo,ar)~r(zo,er), [Wellve(ze, 27) — (0L (t, 20, 27) + )] . (37)
(zt,e)~p(ze|To,zT)
The authors also provide a way of matching the score and the SDE drift of the reverse process by
solving similar MSE matching problems.

C.3 OBIJECTIVE FOR UNIFIED INVERSE DISTILLATION FOR GENERAL DATA COUPLING

The essential difference of Bridge Matching and Stochastic Interpolants from diffusion models and
Flow Matching with a Gaussian path is that they additionally introduce coupling 7 (z¢, 1) used to
sample z; and can work with conditional drifts.

This difference can be easily incorporated to our RealUID distillation framework just by parametrizing
the generator GGy to output not the samples from the initial distribution p, but from the coupling
7%. One can do it by setting 77 (z, v7) = pr(z7)7§(20|77), Where conditional data distribution
x4 (:c0|xT) is parametrized by the student generator Gy : Z x RP — RP conditioned on a sample
xr ~ pr. This approach is specifically used in Inverse Bridge Matching Distillation (IBMD)
(Gushchin et al., 2024). Hence, our Universal Inverse Distillation objective can be written just by
substituting student distribution p by student coupling %, substituting real data pj; by real data
coupling 7* and adding extra conditions.

Definition 5. We define Universal Matching loss with real data for general coupling on generated
data coupling 7% € P(RP x RP) with o, B € (0,1]:

B
oo (7°) = @ Birlo By gyt gy, |V ilatsm) = 2l o) P

Tprt( |701TT)

generated data 70 term
* 1- B * *| % 2
+(1-a) ']Et~[o,T]ExT~pT,wg~7rg;(~\xT), I fe(xf, 27) — mft (z7]2g, z7) ||| -

@ ~py (‘|zo,xT)

real data 7* term

And the corresponding Universal Inverse Distillation loss with real data for general coupling is:

; ) 0y . )
Hgn m}?“x{‘cg-ng-coup(f’ ™ ) T ‘Cz-l/jM-coup(f*’ T ) R UM u)up(f? )}
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Table 6: Ablation of the fine-tuning for arr and Srr for unconditional (left) and conditional (right) generation.
Each cell reports the resulting FID score for the corresponding (ar, Ber); “— indicates the method did not
converge. Best results are bolded.

arr/Ber 094 096 098 1.0 orr/Ber 094 096 098 1.0
0.94 - - 207 2.03 0.94 - - 196 191
0.96 - - - 211 0.96 - - - 196
0.98 2.07 - - - 0.98 1.95 - - -
1.0 - - - - 1.0 - - - -

In case of coupling match 7% = 7%, the RealUID loss for couplings attains its minimum, i.e.,

. s /] . s * 60 : s 7]
Hleln mfax Eg—@lD—cwp(f? m ) = mn 9{£]?-§M—coup(f T ) — Imin f{ﬁg-gM—coup(fa T )}}

>0
‘Cg»’gM—coup(f*’ 71'*) — min f{‘cgng-coup(f7 7T*)} =0.

—_proB g
_[’R-UM-coup(f T )

D EXPERIMENTAL DETAILS

Training hyperparameters. We train with Adam (Kingma & Ba, 2014), using (81, f2) =
(0,0.999). The learning rate is 3 x 10~° for training from scratch and 1 x 10~ for fine-tuning. A
500-step linear warm-up is applied only when training from scratch. We use a batch size of 256 and
maintain an EMA of the generator parameters with decay 0.999. To regulate adaptation between the
generator and the fake model, the generator is updated once for every K = 5 updates of the fake
model, following DMD2 (Yin et al., 2024a). Additionally, at each optimization step we apply ¢
gradient-norm clipping with threshold 1.0 to both the generator and the fake model.

Training time. All distillation experiments were trained for 400,000 gradient updates, correspond-
ing to approximately 4.5 days. All finetuning experiments were conducted for 100,000 gradient
updates, which took a little more than 1 day, starting from the best distillation checkpoints. All
experiments were executed on a single Ascend910B NPU with 65 GB of VRAM memory. The
reported results are based on the checkpoints that achieved the best Fréchet Inception Distance (FID)
during training.

Codebase and Dataset. Building on the reference codebase of Tong et al. (2023), which serves as
our primary experimental infrastructure, we integrate the training algorithm described in Algorithm 1.
We evaluate the resulting approach on CIFAR-10 (32x32) under both conditional and unconditional
settings, benchmarking against established baselines.

Models Initialization and Generator Parametrization. The generator Gy is initialized by replicat-
ing both the architecture and parameters of the teacher model f*, while the fake model f is initialized
with random weights. We parameterize the generator using a residual formulation:

Gy(z) = 2+ (0, 2),

where the input ¢ = 0 corresponds to the fixed control input used in the teacher model f*. Empirically,
we observe that this initialization strategy and parameterization lead to improved performance.

GAN details. We integrate a GAN loss into our framework in line with SiD?A and DMD?2 (Zhou

et al., 2024a; Yin et al., 2024a). In the original setup of Zhou et al. (2024a), the adversarial loss
employs a coefficient ratio of AD, /A\5? = 102 (see Table 6 in Zhou et al. (2024a)), a choice that
poses practical difficulties due to the extreme imbalance between generator and discriminator losses.
To mitigate this issue, we adopt the formulation of Yin et al. (2024a), where the ratio is ~ 3, and

evaluate different coefficient scales (see result in the Table 1).
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a\B 094 096 098 1.0
094 260 93 213 253

096 170 277 [2000 247

098 216 [204 262 242
10 29 248 223 262

Table 7: Ablation studies of (a, ) coefficients for CelebA (400k training steps).  The base-

line _ does not use real data.  Configurations that outperform and

the baseline are highlighted. All values report FID |, where lower is better. The best

configuration is bolded.

Evaluation protocol. We evaluate image quality using the Fréchet Inception Distance (FID; Heusel
et al., 2017), computed from 50,000 generated samples following Karras et al. (2022; 2020; 2019). In
line with SiD (Zhou et al., 2024b), we periodically compute FID during distillation and select the
checkpoint achieving the minimum value. To ensure statistical reliability, we repeat the evaluation
over 3 independent runs, rather than 10 as in SiD, because the empirical variance of FID in our
experiments was below 0.01.

E ADDITIONAL RESULTS

E.1 FINE-TUNING ABLATION STUDY ON COEFFICIENTS at, BFT.

This section presents an ablation of the fine-tuning stage over the loss-balancing coefficients apr and
Brr- Results are summarized in Table 6, where “~” denotes non-convergence. We observe that training
is highly sensitive to the choice of (apr, OFr): many configurations do not converge, underscoring
the need for careful selection. Notably, the same set of («pr, SFr) exhibit stable optimization and
yield improved FID for both conditional and unconditional CIFAR-10 generation.

E.2 ABLATION STUDY ON CELEBA DATASET

In this section, we present the results of the same ablation studies from §4.2 on the CelebA dataset
with higher 64 x 64 resolution (Liu et al., 2015). The results are summarized in Table 7.

Many pairs («, 5) demonstrate improvements relative to the baseline (o = 1.0, 8 = 1.0). Similar to
the results from Table 1 for CIFAR10, the same pairs of coefficients with 5/ = 1.02 or 5/ = 0.98
yield a significant improvement in quality. For example, pair (o« = 0.96, 5 = 0.94) yields FID 1.70
against FID 2.62 for the data-free baseline.

Training hyperparameters. For training from zero, we take the same architecture (Tong et al.,
2023) as for the CIFAR-10 dataset with 32 x 32 resolution, but adapted it to a larger dimension.
We train it with Adam (Kingma & Ba, 2014), using (81, 82) = (0,0.999), learning rate 5 x 10~°
and a 500-step linear warm-up. We use a batch size of 64 and maintain an EMA of the generator
parameters with decay 0.999. To regulate adaptation between the generator and the fake model, the
generator is updated once for every K = 5 updates of the fake model, following DMD2 (Yin et al.,
2024a). Additionally, at each optimization step we apply ¢5 gradient-norm clipping with threshold
1.0 to both the generator and the fake model.

E.3 EXAMPLE OF SAMPLES FOR DIFFERENT METHODS.

This section presents representative sample outputs from various studies conducted within the
RealUID framework.
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Figure 5: Uncurated samples for unconditional generation by the one-step RealUID (o = 1.0, 5 =
1.0) trained on CIFAR-10. Quantitative results are reported in Table 2.
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1.0) + GAN (/\Sf = 0.3, \2 = 1) trained on CIFAR-10. Quantitative results are reported in Table 2.
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Figure 7: Uncurated samples for unconditional generation by the one-step RealUID (o = 0.94, 8 =
0.96) trained on CIFAR-10. Quantitative results are reported in Table 2.
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Figure 8: Uncurated samples for unconditional generation by the one-step RealUID (o = 0.94, 8 =
0.96 | apr = 0.94, Bpr = 1.0) trained on CIFAR-10. Quantitative results are reported in Table 2.
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Figure 9: Uncurated samples for conditional generation by the one-step RealUID (o« = 1.0, 8 = 1.0)
trained on CIFAR-10. Quantitative results are reported in Table 2.
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Figure 10: Uncurated samples for conditional generation by the one-step RealUID (o = 1.0, 5 = 1.0)
+ GAN ()\G" = 0.3, A2 = 1) trained on CIFAR-10. Quantitative results are reported in Table 2.
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Figure 11: Uncurated samples for conditional generation by the one-step RealUID (o = 0.98, 5 =
0.96) trained on CIFAR-10. Quantitative results are reported in Table 2.
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Figure 12: Uncurated samples for conditional generation by the one-step RealUID (o = 0.98, 5 =
0.96 | apr = 0.94, Bpr = 1.0) trained on CIFAR-10. Quantitative results are reported in Table 2.
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Figure 13: Uncurated samples by the one-step RealUID (o« = 1.0, 8 = 1.0) trained on CelebA.

Quantitative results are reported in Table 7.
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Figure 14: Uncurated samples by the one-step RealUID (o = 0.96, 5 = 0.94) trained on CelebA.

Quantitative results are reported in Table 7.
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