
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

UNIVERSAL INVERSE DISTILLATION FOR MATCHING
MODELS WITH REAL-DATA SUPERVISION (NO GANS)

Anonymous authors
Paper under double-blind review

ABSTRACT

While achieving exceptional generative quality, modern diffusion, flow, and other
matching models suffer from slow inference, as they require many steps of iterative
generation. Recent distillation methods address this by training efficient one-
step generators under the guidance of a pre-trained teacher model. However, these
methods are often constrained to only one specific framework, e.g., only to diffusion
or only to flow models. Furthermore, these methods are naturally data-free, and
to benefit from the usage of real data, it is required to use an additional complex
adversarial training with an extra discriminator model. In this paper, we present
RealUID, a unified distillation framework for all matching models that seamlessly
incorporates real data into the distillation procedure without GANs. Our RealUID
approach offers a simple theoretical foundation that covers previous distillation
methods for Flow Matching and Diffusion models, and is also extended to their
modifications, such as Bridge Matching and Stochastic Interpolants.

1 INTRODUCTION

In generative modeling, the goal is to learn to sample from complex data distributions (e.g., images),
and two powerful paradigms for it are the Diffusion Models (DM) and the Flow Matching (FM)
models. While they share common principles and are even equivalent under certain conditions
(Holderrieth et al., 2024; Gao et al., 2025), they are typically studied separately. Diffusion models
(Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2021) transform data into noise through
a forward process and then learn a reverse-time stochastic differential equation (SDE) to recover
the data distribution. Training minimizes score-matching objectives, yielding unbiased estimates of
intermediate scores. Sampling requires simulating the reverse dynamics, which is computationally
heavy but delivers high-quality and diverse results. Flow Matching (Lipman et al., 2023; Liu, 2022)
instead interpolates between source and target distributions by learning the vector field of an ordinary
differential equation (ODE). The field is estimated through unbiased conditional objectives, but the
resulting ODE often has curved trajectories, making sampling costly due to expensive integration.
Beyond these, Bridge Matching (Peluchetti, 2023; Liu et al., 2022b) and Stochastic Interpolants
(Albergo et al., 2023) generalize the framework and naturally support data couplings, which are
crucial for data-to-data translation. Since all of the above optimize conditional matching objectives
to recover an ODE/SDE for generation, we refer to them collectively as matching models.

Despite their success, matching models share a major drawback: sampling is slow, as generation
requires integrating many steps of an SDE or ODE. To address this, a range of distillation techniques
have been proposed to compress multi-step dynamics into efficient one-step or few-step generators.
Although matching models follow a similar mathematical framework, many distillation works
consider only one particular framework, e.g., only Diffusion Models (Zhou et al., 2024a;b), Flow
Matching (Huang et al., 2024), or Bridge Matching (Gushchin et al., 2025). Furthermore, these
distillation methods are data-free by construction and cannot benefit from the utilization of real data
without using additional GAN-based losses. Thus, the following problems remain:
1. Similar distillation techniques developed separately for similar matching models frameworks.
2. Absence of a natural way to incorporate real data in distillation procedures (without GANs).

Contributions. In this paper, we address these issues and present the following main contributions:

1. We present the Universal Inverse Distillation with real data (RealUID) framework for matching
models, including diffusion and flow matching models (§3) as well as Bridge Matching and

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Stochastic Interpolants (Appendix C.). It unifies previously introduced Flow Generator Matching
(FGM), Score Identity Distillation (SiD) and Inverse Bridge Matching Distillation (IBMD) meth-
ods (§3.2) for flow, score and bridge matching models respectively, provides simple yet rigorous
theoretical explanations based on a linearization technique, and reveals the connections between
these methods and inverse optimization (§3.3).

2. Our RealUID introduces a novel and natural way to incorporate real data directly into the distilla-
tion loss, eliminating the need for extra adversarial losses which require additional discriminator
networks used in GANs from the previous works (§3.4).

2 BACKGROUNDS ON TRAINING AND DISTILLING MATCHING MODELS

We describe the Diffusion Models and Flow Matching frameworks (§2.1) and distillation methods for
them (§2.3). Then, we discuss how real data can be added to distilling methods via GANs (§2.4)

Preliminaries. We work on the D-dimensional Euclidean space RD. This space is equipped with
the standard scalar product ⟨x, y⟩ =

∑D
d=1 xdyd, the ℓ2-norm ∥x∥ =

√
⟨x, x⟩ and ℓ2-distance

∥x − y∥,∀x, y ∈ RD. We consider probability distributions from the set P(RD) of absolutely
continuous distributions with finite variance and support on the whole RD.

2.1 DIFFUSION AND FLOW MODELS

Diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2021) consider a forward
noising process that gradually transforms clean data p0 into a noise pT on the time interval [0, T]:

dxt = ft · xtdt+ gt · dwt, x0 ∼ p0,

where ft and gt are time-dependent scalars. This process defines a conditional distribution pt(xt|x0):

pt(xt|x0) = N (αtx0|σ2
t I), where

αt = exp

(∫ t

0

fs ds

)
, σt =

(∫ t

0

g2s exp

(
−2

∫ s

0

fu du

)
ds

)1/2

.

Each conditional distribution admits a conditional score function, describing it:

st(xt|x0) := ∇xt
log pt(xt|x0) = −(xt − αtx0)/σ

2
t .

The reverse dynamics from the noise distribution pT to the data distribution p0 is provided by the
following reverse-time SDE:

dxt = (ft · xt − g2t · st(xt))dt+ gtdw̄t,

where st(xt) is the unconditional score function of pt(xt)=
∫
p(xt|x0)p(x0)dx0 given by st(xt)=

Ex0∼p0(·|xt)[st(xt|x0)]. This conditional expectation is learned via denoising score matching:

LDSM(s′, p0) = Et∼[0,T],x0∼p0,xt∼pt(·|x0)

[
wt∥s′t(xt)− st(xt|x0)∥22

]
, (1)

where wt are some positive weights. The reverse dynamics admits a probability flow ODE (PF-ODE):

dxt = (ft · xt − g2t · st(xt)/2)dt, ut(xt) := (ft · xt − g2t · st(xt)/2),

which provides faster inference than the SDE formulation.
Flow Matching framework (Lipman et al., 2023; Liu et al., 2023) constructs the flow directly by
learning the drift ut(xt). Specifically, for each data point x0 ∼ p0, one defines a conditional flow
pt(xt|x0) with the corresponding conditional vector field ut(xt|x0) generating it via ODE:

dxt = ut(xt|x0)dt.

Then to construct the flow between the noise pT and data p0, one needs to compute the unconditional
vector field ut(xt) = Ex0∼p0(·|xt)[ut(xt|x0)] which generates the flow pt(xt)=

∫
p(xt|x0)p(x0)dx0.

It can be done by solving the following Conditional Flow Matching problem:

LCFM(v, p0) = Et∼[0,T],x0∼p0,xt∼pt(xt|x0)

[
wt∥vt(xt)− ut(xt|x0)∥22

]
.

In practice, the most popular choice is the Gaussian conditional flows pt(xt|x0) = N (αtx0, σ
2
t I).

For this conditional flow samples can be obtained as xt = αtx0+σtϵ, ϵ ∼ N (0, I) and the conditional
drift can be calculated as ut(xt|x0) = α̇tx0 + σ̇tϵ.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2.2 UNIVERSAL LOSS FOR MATCHING MODELS

From a mathematical point of view, it was shown in (Holderrieth et al., 2024; Gao et al., 2025) that
flow and diffusion models basically share the same loss structure. We recall this structure but use our
own notation. We call diffusion and flow models and their extensions as matching models.

Matching models work with a probability path {pt}t∈[0,T] on the time interval [0, T], trans-
forming the desired data p0 ∈ P(RD) to the noise pT ∈ P(RD). This path is built as a
mixture of simple conditional paths {pt(·|x0)}t∈[0,T] conditioned on samples x0 ∼ p0, i.e.,
pt(xt) =

∫
RD pt(xt|x0)p0(x0)dx0,∀xt ∈ RD. The path {pt}t∈[0,T] determines the function

fp0 : [0, T] × RD → RD which recovers it (e.g., score function or drift generating it). The
conditional paths also determine their own simple conditional functions fp0(·|x0) so that they ex-
press fp0t (xt) = Ex0∼p0(·|xt)f

p0
t (xt|x0), where p0(·|xt) denotes data distribution p0 conditioned

on the sample xt at time t. Since fp0 cannot be computed directly, it is approximated by function
f : [0, T]× RD → RD via minimizing the squared ℓ2-distance between the functions:
∥ft(xt)−fp0t (xt)∥2 = ∥ft(xt)−Ex0∼p0(·|xt)f

p0
t (xt|x0)∥2 ∝ Ex0∼p0(·|xt)∥ft(xt)−f

p0
t (xt|x0)∥2.

Definition 1. We define Universal Matching (UM) loss LUM(f, p0) that takes fake function f and
distribution p0 ∈ P(RD) as arguments and upon minimization over f returns the function fp0

LUM(f, p0):= Et∼[0,T]Ex0∼p0,xt∼pt(·|x0)∥ft(xt)− fp0t (xt|x0)∥2, fp0:=argmin fLUM(f, p0), (2)
where t ∼ [0, T] denotes uniform or weighted sampling of time t from the interval [0, 1].

2.3 DISTILLATION OF MATCHING-BASED MODELS

To solve the long inference problem of matching models, a line of distillation approaches sharing
similar principles was introduced: Score Identity Distillation (SiD) (Zhou et al., 2024b), Flow
Generator Matching (FGM) (Huang et al., 2024), and Inverse Bridge Matching Distillation
(IBMD) (Gushchin et al., 2025), for diffusion, flow, and bridge matching models, respectively.

The Score Identity Distillation (SiD) approach (Zhou et al., 2024b;a) trains a student generator
Gθ : Z → RD (parameterized by θ) that produces a distribution pθ0 from a latent distribution pZ
on Z . This approach minimizes the squared ℓ2-distance between the known teacher score function
s∗ := argmins′ LDSM(s′, p∗0) on real data p∗0 and the unknown student score function sθ:

Et∼[0,T]Exθ
t∼pθt ∥s

θ
t (x

θ
t)− s∗t (x

θ
t)∥2, s.t. sθ = argmin s′LDSM(s′, pθ0), (3)

where pθt is the forward noising process for the generator distribution pθ0. The authors propose the
tractable loss without argmin and with parameter αSiD to approximate the real gradients of (3) :

LSiD(θ) := Et∼[0,T]Ez∼pZ ,xθ
0=Gθ(z),xθ

t∼pθt [−2ωtαSiD∥s∗t (xθt)− s
sg[θ]
t (xθt)∥2

+ 2ωt⟨s∗t (xθt)− s
sg[θ]
t (xθt), s

∗
t (x

θ
t)− sθt (x

θ
t |xθ0)⟩], sθ=argmin s′LDSM(s′, pθ0),(4)

where gradients w.r.t. θ are not calculated for the variables under stop-gradient sg[·] operator. The
SiD pipeline is two alternating steps: first, refine the fake score ssg[θ] by minimizing the DSM loss
(1) on new pθ0 from the previous step. Then, update the generator Gθ using the gradient of (4) with
the frozen ssg[θ]. The αSiD parameter is chosen from the range [0.5, 1.2], although theoretically only
the value αSiD = 0.5 restores true gradient as we show in our paper.

The authors of FGM considered a similar approach, but for the Flow Matching models. Specifically,
they also use a generator Gθ to produce a distribution pθ0, but instead of denoising score matching
loss, consider conditional FM loss. The method minimizes the squared ℓ2-distance between the fields:

Et∼[0,T]Ext∼pθt ∥u
θ
t (xt)− u∗t (xt)∥2, s.t. uθ := argmin vLCFM(v, pθ0), (5)

where the interpolation path {pθt }t∈[0,T] is constructed between the noise pT and generator pθ0
distributions. To avoid the same problem of differentiating through argmin operator as in SiD, the
authors derive a tractable loss whose gradients match those of (5):

LFGM(θ) := Et∼[0,T]Ez∼pZ ,xθ
0=Gθ(z),xθ

t∼pθt [−∥u∗t (xθt)− u
sg[θ]
t (xθt)∥2 (6)

+ 2⟨u∗t (xθt)− u
sg[θ]
t (xθt), u

∗
t (x

θ
t)− uθt (x

θ
t |xθ0)⟩], s.t. uθ = argmin vLCFM(v, pθ0).

We consider distillation of matching models working with data couplings such as Inverse Bridge
Matching Distillation for Bridge Matching models and Stochastic Interpolants in Appendix C.
Notably, all these approaches (SiD, FGM, IBMD) are data-free, i.e., they do not use any real data
from p∗0 to train a generator by construction of the used objective functions.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

2.4 GANS FOR REAL DATA INCORPORATION

FGM and SiD methods exhibit strong performance in one-step generation tasks. However, the
generator in these methods is trained under the guidance of the teacher model alone. This means the
generator cannot get more information about the real data that the teacher has learned. For example,
it cannot correct the teacher’s errors. To address this, recent works (Yin et al., 2024a; Zhou et al.,
2024a) propose adding real data via a GAN framework (Goodfellow et al., 2014). In such approaches,
the encoder of fake model f is typically augmented with an additional head to serve as a discriminator
D with the following adversarial loss:

Ladv = Et∼[0,T]

[
Ex∗

t∼p∗t
[
lnDt

(
x∗t
)]

+ Exθ
t∼pθt

[
ln[1−Dt

(
xθt
)
]
]]
. (7)

The overall objective in such hybrid frameworks (Zhou et al., 2024a) consists of:

Generator loss:
LGθ

= λdistLGθ

FGM/SiD + λGθ

advL
Gθ

adv, (8)

Fake model loss:
LD = λdistLfFGM/SiD + λDadvLDadv. (9)

Here, λdist, λGθ

adv, and λDadv are weighting coefficients for the distillation and adversarial components.
Despite empirical gains, the GAN-augmented formulation entails nontrivial costs: it necessitates
architectural modifications, such as an auxiliary discriminator head, and inherits the well-known
optimization problems of adversarial training, such as non-stationary objectives, mode collapse, and
sensitivity to training dynamics.

3 UNIVERSAL DISTILLATION OF MATCHING MODELS WITH REAL DATA

In this section, we present our novel RealUID approach for matching models enhanced by real data.
First, we show that the previous data-free distillation methods can be unified under the single UID
framework (§3.1). Then, we describe how this framework is connected to prior works (§3.2) and
inverse optimization (§3.3). Using this intuition, we propose and discuss the real data modified UID
framework (RealUID) with a natural way to incorporate real data without GANs (§3.4).

3.1 UNIVERSAL INVERSE DISTILLATION

To learn a complex real data distribution p∗0, one usually trains a teacher function f∗ :=
argminf LUM(f, p∗0) which is then used in a multi-step sampling procedure (Def. 1). To avoid
time-consuming sampling, one can train a simple student generator Gθ : Z → RD with parameters
θ to reproduce the real data p∗0 from the distribution pZ on the latent space Z . The teacher function
serves as a guide that shows how close the student distribution pθ0 and the real data p∗0 are. FGM and
SiD methods (§2.3) train such generator via minimizing the squared ℓ2-distance between the known
teacher function f∗ and an unknown student function fθ := argminf LUM(f, pθ0):

Et∼[0,T]Exθ
t∼pθt ∥f

∗
t (x

θ
t)− fθt (x

θ
t)∥2 = Et∼[0,T]Exθ

t∼pθt ∥f
∗
t (x

θ
t)− Exθ

0∼pθ0(·|xθ
t)
fθt (x

θ
t |xθ0)∥2

= Et∼[0,T]Exθ
t∼pθt [∥f

∗
t (x

θ
t)∥2]− 2Et∼[0,T]Exθ

t∼pθt ,xθ
0∼pθ0(·|xθ

t)
[⟨f∗t (xθt), fθt (xθt |xθ0)⟩]

+Et∼[0,T]Exθ
t∼pθt [∥Exθ

0∼pθ0(·|xθ
t)
[fθt (x

θ
t |xθ0)]∥2]︸ ︷︷ ︸

not tractable

, (10)

where {pθt }t∈[0,T] is the probability path constructed between generator distribution pθ0 and noise pT .
The problem is that the final term (10) cannot be calculated directly. This is because it involves the
math expectation inside the squared norm, unlike the other terms which are linear in the expectations.
It means that a simple estimate of ∥fθt (xθt |xθ0)∥2 using samples xθ0 and xθt will be biased. Moreover,
to differentiate through the math expectation inside the norm, an explicit dependence of pθ0 on θ is
required, while, in practice, usually only dependence of samples xθ0 on θ is known.

Making loss tractable via linearization. To resolve this, we use a linearization technique. For a
fixed point xθt and time t, we reformulate the squared norm as a maximization problem. We achieve
this by introducing an auxiliary function δ : [0, T]× RD → RD and using the identity

∥f∗t (xθt)− fθt (x
θ
t)∥2 = max

δt(xθ
t)

{
−∥δt(xθt)∥2 + 2⟨δt(xθt), f∗t (xθt)− fθt (x

θ
t)⟩
}

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

= max
δt(xθ

t)
Exθ

0∼pθ0(·|xθ
t)

{
−∥δt(xθt)∥2 + 2⟨δt(xθt), f∗t (xθt)⟩ − 2⟨δt(xθt), fθt (xθt |xθ0)⟩

}
. (11)

The reparameterization δ = f∗ − f with a fake function f : [0, T]× RD → RD allows to get:

(11)=max
ft(xθ

t)
Exθ

0∼pθ0(·|xθ
t)

{
−∥f∗t (xθt)− ft(x

θ
t)∥2+ 2⟨f∗t (xθt)− ft(x

θ
t), f

∗
t (x

θ
t)− fθt (x

θ
t |xθ0)⟩

}
(12)

=max
ft(xθ

t)
Exθ

0∼pθ0(·|xθ
t)

{
∥f∗t (xθt)− fθt (x

θ
t |xθ0)∥2︸ ︷︷ ︸

=LUM(f∗,pθ0)

− ∥ft(xθt)− fθt (x
θ
t |xθ0)∥2︸ ︷︷ ︸

=LUM(f,pθ0)

}
. (13)

Since now all expectations are linear and can be estimated, the final step is to compute the expectation
over all points xθt and times t and minimize it over the generator distribution pθ.
Summary. We build a universal distillation framework as a single min-max optimization (14),
implicitly minimizing squared ℓ2-distance between teacher and student functions. When real and
generated probability paths match, these functions match as well, and the distance attains its minimum.
Theorem 1 (Real data generator minimizes UID loss). Let teacher f∗ := argminf LUM(f, p

∗
0)

be the minimizer of UM loss (Def. 1) on real data p∗0 ∈ P(RD). Then real data generator Gθ∗ , s.t.
pθ

∗

0 = p∗0, is a solution to the min-max optimization of Universal Inverse Distillation (UID) loss
LUID(f, p

θ
0) over fake function f and generator distribution pθ0

min θmax f
{
LUID(f, p

θ
0) := LUM(f

∗, pθ0)− LUM(f, p
θ
0)
}
. (14)

Lemma 1 (UID loss minimizes squared ℓ2-distance). Maximization of UID loss (14) over fake
function f retrieves student function fθ := argmin fLUM(f, p

θ
0) and represents the squared ℓ2-

distance between it and the teacher f∗:

fθ = argmax
f

LUID(f, p
θ
0), max

f
LUID(f, p

θ
0) = Et∼[0,T]Exθ

t∼pθt ∥f
∗
t (x

θ
t)− fθt (x

θ
t)∥2. (15)

Note that the distance (15) mostly captures mismatches for the points from generator main domain
which do not cover real data, i.e., points xθt s.t. pθ(xθt) ≫ 0, p∗(xθt) → 0. For out-of-domain points
pθt (x

θ
t) → 0, the generator cannot receive feedback, because distance (15) for xθt also vanishes.

3.2 RELATION TO PRIOR DISTILLATION WORKS

FGM and SiD approaches formulate distillation as a constraint minimization of generator loss subject
to the optimal fake model. For generator updates, the explicit UID loss (12) exactly matches SiD
loss (4) with αSiD = 0.5 and FGM loss (6). For a fake model, it also simply minimizes the UM loss
on the generated data. The work (Gushchin et al., 2025) was the first to formulate the distillation of
Bridge Matching models in their IBMD framework as a min-max optimization of the single loss (13).

Although previous works derive the same losses, we give a new, simple explanation using a lin-
earization technique. This technique is more powerful and general for handling intractable math
expectations than complex proofs for concrete models from FGM, SiD, IBMD. Furthermore, it allows
adding real data directly into the distillation loss (see §3.4 and Appendix A.2) and extending it, e.g.,
deriving a loss for minimizing the ℓ2-distance instead of the squared one (Appendix A.4).

3.3 CONNECTION WITH INVERSE OPTIMIZATION

We derived UID loss (14) by minimizing the squared ℓ2-distance between teacher and student
functions. However, this loss admits another interpretation: its structure is typical for inverse
optimization (Chan et al., 2025). In this framework, one considers a parametric family of optimization
problems minf L(f, θ) with objective loss L(f, θ) depending on argument f and parameters θ. The
goal is to find the parameters θ∗ that yield a known, desired solution f∗ = argminf L(f, θ∗). One
standard way to recover the required parameters is to solve the same min-max problem as (14):

min θmax f {L(f∗, θ)− L(f, θ)} ∼ min θ
{
L(f∗, θ)−min f{L(f, θ)}

}
. (16)

The inverse problem (16) always has minimum 0 which is attained when θ = θ∗.

Although the inverse optimization can handle arbitrary losses L, it does not describe the properties of
the optimized functions or how to find solutions. In our case, we show that all losses are tractable
and minimize the distances between teacher and student functions (Lemmas 1 and 2). Furthermore,
in Appendix A, we provide and justify a list of extensions of our framework that cannot be stated as
inverse problems. All our proofs are self-contained and do not rely on inverse optimization, which
only provides intuition and understanding.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Generator

Fake model

Teacher model

Interpolation

🔥🔥

❄️

❄️

🔥

🔥

Figure 1: Pipeline of our RealUID distillation framework (§3) with the direct incorporation of real data p∗0
adjusted by hyperparameters α, β ∈ (0, 1]. In the figure, it is depicted for Flow Matching models predicting
denoised samples. It distills a costly frozen teacher model f∗ (blue) into a one-step generator Gθ (red) upon
min-max optimization of Lα,β

R-UID(f, p
θ
0) loss over fake model f (green) and generator distribution pθ0 with

parameters θ. We use alternating optimization, updating the fake model several times per one generator update
for stability. Algorithm’s pseudocode is located in Appendix B.

3.4 REALUID: NATURAL APPROACH FOR REAL DATA INCORPORATION

Previous distillation methods add real data during training only via GANs with extra discriminator
and adversarial loss. We propose a simpler, more natural way that requires no extra models or losses.

Based on intuition from inverse optimization (§3.3), we see that the min-max inverse problem (16) is
compatible with other losses. This allows us to redesign the UM loss (2) to incorporate real data into
it. A key constraint is that the loss must still yield the same teacher upon minimization on the real
data. Thus, we derive a novel Unified Matching loss with real data - a weighted sum of two UM-like
losses on generated and real data parameterized by α, β ∈ (0, 1] which control the weights.

Definition 2. We define Universal Matching loss with real data on generated data pθ0 ∈ P(RD)
with α, β ∈ (0, 1] (when α = 1 the real data term becomes 2(1− β)⟨ft(x∗t), f∗t (x∗t |x∗0)⟩):

Lα,βR-UM(f, p
θ
0) = α · Et∼[0,T]Exθ

0∼pθ0,xθ
t∼pθt (·|xθ

0)

[
∥ft(xθt)−

β

α
fθ(xθt |xθ0)∥2

]
︸ ︷︷ ︸

generated data pθ0 term

+ (1− α) · Et∼[0,T]Ex∗
0∼p∗0 ,x∗

t∼p∗t (·|x∗
0)

[
∥ft(x∗t)−

1− β

1− α
f∗t (x

∗
t |x∗0)∥2

]
︸ ︷︷ ︸

real data p∗0 term

. (17)

RealUM loss (17) for all α, β and UM loss (2) yield the same teacher when input distribution is
real data p∗0, i.e., argminf L

α,β
R-UM(f, p∗0) = argminf LUM(f, p∗0) = f∗. Hence, the min-max inverse

scheme (16) with RealUM loss and the old teacher f∗ will still have a real data generator as a solution:

min θ{Lα,βR-UM(f∗, pθ0)−min f{Lα,βR-UM(f, pθ0)}︸ ︷︷ ︸
≥0

} = Lα,βR-UM(f∗, p∗0)−min f{Lα,βR-UM(f, p∗0)}︸ ︷︷ ︸
=Lα,β

R-UM(f∗,p∗0)

= 0.

But now distillation loss will incorporate real data through the real data terms of Lα,βR-UM(f, pθ0).

Theorem 2 (Real data generator minimizes RealUID loss). Let teacher f∗ :=
argminf LUM(f, p

∗
0) be the minimizer of UM loss on real data p∗0. Then real data generator Gθ∗ , s.t.

pθ
∗

0 = p∗0, is a solution to the min-max optimization of Universal Inverse Distillation loss with real
data (RealUID) Lα,βR-UID(f, p

θ
0) over fake function f and generator distribution pθ0:

min θmax f

{
Lα,βR-UID(f, p

θ
0) := Lα,βR-UM(f

∗, pθ0)− Lα,βR-UM(f, p
θ
0)
}
. (18)

We provide analysis of RealUID in Appendix A.1, below we highlight the most important findings.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Generation α/β 0.94 0.96 0.98 1.0

Unconditional

0.94 2.66 2.28 2.58 2.98
0.96 2.37 2.58 2.29 2.65
0.98 2.97 2.33 2.62 2.38
1.0 5.81 4.51 3.29 2.58

Conditional

0.94 2.35 2.19 2.25 2.47
0.96 2.09 2.32 2.13 2.27
0.98 2.34 2.02 2.26 2.05
1.0 4.32 3.27 2.43 2.21

Generation λGθ

adv λDadv FID (↓)

Unconditional

0.1 0.3 2.42
0.3 1 2.29
1 3 2.39
5 15 2.54

Conditional

0.1 0.3 2.22
0.3 1 2.12
1 3 2.15
5 15 2.40

Table 1: Ablation studies on (α, β) coefficients on the left table and adversarial weighting parameters
(λ

Gθ
adv , λ

D
adv) on the right table for CIFAR-10 in both unconditional and conditional settings. The baseline

RealUID (α = 1.0, β = 1.0) does not use real data. Configurations that outperform the baseline are high-
lighted. All values report FID ↓, where lower is better. The best configuration in each case is bolded.

Role and choice of coefficients α, β. The RealUID framework uses real data samples only to
minimize RealUM loss for the fake model. As shown in Lemma 2, RealUID also implicitly minimizes
the rescaled distance between the teacher and generator functions. But now with the help of real data,
this distance captures mismatches for both incorrectly generated points from the generator’s main
domain and the real data points, which the generator fails to cover. Thus, unlike data-free UID loss
(Lemma 1), RealUID loss provides the generator with feedback also on the real data domain it needs
to cover (see Appendix A.1.2 for details).

The coefficients α and β in RealUID loss control the balance between the generator’s and the real
data domains. A zero difference (α = β) means that only the generator’s domain is considered. Even
when α = β < 1 and real data is formally added, it has no, or negative, effect on the generator.
Meanwhile, a non-zero difference considers both domains: increasing α over β (α > β) puts less
weight on the generator’s errors, while otherwise (β < α) the weight grows. The optimal choice is
a slightly different α ̸= β close to 1. Excessively low α and β diminish the effect of the generated
data, leading to vanishing gradients. The same issue occurs with α≫ β, while β ≫ α eliminates the
effect of the real data. Plus, configurations β < α = 1 are unstable due to out-of-domain samples.
Comparison with GAN-based methods. Unlike SiD and FGM with GANs, we do not use extra
adversarial losses and discriminator to incorporate real data. We only modify UM loss, preserving its
core structure and fake model architecture. While general adversarial loss is unrelated to the main
distillation loss and has uninterpretable scaling hyperparameters, our RealUID loss and weighting
coefficients α, β ∈ (0, 1] come naturally from the data-free UID loss. The original UID loss (14),
equivalent to SiD (4) with αSiD = 0.5 and FGM (6), is obtained when α = β = 1.

Extension for Bridge Matching and Stochastic Interpolants framework. In Appendix C, we
demonstrate that our framework can be easily extended to other matching models by parametrizing
the generated data coupling πθ(x0, xT) instead of the data distribution pθ0.

4 EXPERIMENTS
All implementations were developed in PyTorch, and the code will be made publicly available.

This section provides an ablation study and evaluation of our RealUID, assessing both its performance
and computational efficiency. We begin in (§4.1) by detailing the experimental setup. In (§4.2), we
show that our incorporation of real data via coefficients α, β improves performance, speeds up conver-
gence, and enables effective fine-tuning. In (§4.3), we assess the benchmark performance and compu-
tational demands of RealUID relative to SOTA methods. Additional experimental details and results
are provided in Appendix D and Appendix F, respectively.

4.1 EXPERIMENTAL SETUP

Dataset and Evaluation Protocol. Due to computational resource constraints, all experiments
were conducted exclusively on the CIFAR-10 dataset (32× 32 resolution) Krizhevsky et al. (2009),
considering both conditional and unconditional settings. In line with prior works (Karras et al., 2019;
2022), we report test FID scores (Heusel et al., 2017), computed using 50k generated samples.
Implementation Details. In contrast to prior studies (Zhou et al., 2024b;a; Huang et al., 2024),
which employ the computationally demanding EDM architecture (Karras et al., 2022), our work

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: This table presents the results of our ablation study on the RealUID framework, evaluated using the
FID metric under both unconditional and conditional generation setups. The Teacher Flow model with 100
NFE is reported as a reference. The performance of the baseline RealUID (α = 1.0, β = 1.0) without real-data
incorporation is indicated in italic. For emphasis, we underline the two counterparts that incorporate real data:
the GAN-based and our RealUID methods. The best-performing configurations, obtained via an additional
fine-tuning stage with adjusted (αFT, βFT), are highlighted in bold. Qualitative results are presented in § F.2.

Model FID (↓)

Teacher Flow (NFE=100) 3.57
RealUID (α = 1.0, β = 1.0) 2.58
RealUID (α = 1.0, β = 1.0) + GAN (λGθ

adv = 0.3, λDadv = 1) 2.29
RealUID (α = 0.94, β = 0.96) 2.28
RealUID (α = 0.94, β = 0.96 | αFT = 0.94, βFT = 1.0) 2.03

Model FID (↓)

Teacher Flow (NFE=100) 5.56
RealUID (α = 1.0, β = 1.0) 2.21
RealUID (α = 1.0, β = 1.0) + GAN (λGθ

adv = 0.3, λDadv = 1) 2.12
RealUID (α = 0.98, β = 0.96) 2.02
RealUID (α = 0.98, β = 0.96 | αFT = 0.94, βFT = 1.0) 1.91

50 100 150 200 250 300 350
Iterations (×10³)

2

4

6

8

10

12

14

FI
D

fin
e-

tu
ni

ng
 st

ag
e

3.57
2.29

Unconditional = 1.0, = 1.0
= 0.94, = 0.96
FT = 0.94, FT = 1.0

50 100 150 200 250 300 350
Iterations (×10³)

2

3

4

5

6

7

FI
D

fin
e-

tu
ni

ng
 st

ag
e

5.56

2.12

Conditional = 1.0, = 1.0
= 0.98, = 0.96
FT = 0.94, FT = 1.0

Figure 2: Evolution of FID during CIFAR-10 distillation for (i) the baseline RealUID (α = 1.0, β = 1.0), (ii)
the best-performing RealUID configurations, and (iii) subsequent fine-tuning, evaluated in both unconditional
and conditional settings. The performances of Teacher Flow and UID+GAN are indicated by horizontal
reference lines in their respective colors. Methods that incorporate real data—best-performing RealUID and
UID+GAN—are highlighted in green to facilitate comparison.

adopts a more lightweight alternative (Tong et al., 2023) due to resource constraints (see (§4.3) for
efficiency analysis). We also trained our own flow-matching model, denoted by f∗, which served as
the teacher. Further implementation details are provided in Appendix D.

4.2 BENCHMARKING METHODS UNDER A UNIFIED EXPERIMENTAL CONFIGURATION

We evaluate RealUID under a unified experimental protocol (fixed architecture and implementation).
We begin by (i) conducting an ablation over α, β to assess the influence of real-data incorporation. We
then (ii) compare RealUID to a GAN-based alternative, showing that RealUID achieves comparable
or superior accuracy. Furthermore, (iii) we analyze convergence, indicating that RealUID variants
with real data train substantially faster than baselines without real-data. Finally, (iv) we explore a
fine-tuning stage initialized from strong RealUID checkpoints, showing further performance gains.
Ablation study of coefficients α, β. The search for optimal α and β parameters was restricted to
values near 1, specifically α, β ∈ [0.9, 1.0] with increments of 0.02 to cover the full grid. Setting these
parameters too low prevents the student from accurately capturing the true generator gradient, which
in turn leads the generator to produce noisy samples. The results are reported in Table 1. As a baseline,
we highlight the model without data incorporation our RealUID (α = 1.0, β = 1.0). As shown in the
table, using real data with α = β < 1.0 or with substantially different α and β consistently degraded
performance. In contrast, parameter settings close to the diagonal (with the exception of α = 1.0, β =
0.98) produced improved results, with the best performance achieved by our RealUID (α = 0.94, β =
0.96) for the unconditional case and our RealUID (α = 0.98, β = 0.96) for the conditional case.
Note that the practical results for various α, β match the theoretical description from (§3.4.)

Comparison with GAN-based method. We integrated the GAN-based approach proposed by
Zhou et al. (2024a) into our experimental framework as an alternative method for incorporating real
data, enabling a direct comparison with our RealUID formulation. Specifically, we combined the
GAN loss with the baseline RealUID (α = 1.0, β = 1.0). As shown in Table 1, the best-performing
configurations are achieved with GAN losses (λGθ

adv = 0.3, λDadv = 1). While this setup performs
comparably to RealUID (α = 0.94, β = 0.96) in the unconditional setting, it remains clearly inferior
to RealUID (α = 0.98, β = 0.96) in the conditional case.
Convergence Speed. Our RealUID (α, β), which outperform the baseline RealUID (α = 1.0, β =

1.0) and are highlighted in Table 1, demonstrate rapid convergence. For clarity, we present qualita-

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 3: Comparison of unconditional generation on
CIFAR-10. The best method under the FID metric in each
section is highlighted with bold.

Family Model NFE FID (↓)

Diffusion & GAN

DDPM (Ho et al., 2020) 1000 3.17
VP-EDM (Karras et al., 2022) 35 1.97
StyleGAN2+ADA+Tune (Karras et al., 2020) 1 2.92
StyleGAN2+ADA+Tune+DI (Luo et al., 2023) 1 2.71
Diffusion ProjectedGAN (Wang et al., 2022) 1 2.54
iCT-deep (Song & Dhariwal, 2023) 1 2.51
Diff-Instruct (Luo et al., 2023) 1 4.53
DMD (Yin et al., 2024b) 1 3.77
CTM (Kim et al., 2023) 1 1.98
SiD, α = 1.0 (Zhou et al., 2024b) 1 2.03
SiD, α = 1.2 (Zhou et al., 2024b) 1 1.92
SiDA, α = 1.0 (Zhou et al., 2024a) 1 1.52
SiD2A, α = 1.2 (Zhou et al., 2024a) 1 1.52
SiD2A, α = 1.0 (Zhou et al., 2024a) 1 1.50

Flow-based

CFM (Yang et al., 2024) 2 5.34
1-ReFlow (+Distill) (Liu et al., 2022a) 1 6.18
2-ReFlow (+Distill) (Liu et al., 2022a) 1 4.85
3-ReFlow (+Distill) (Liu et al., 2022a) 1 5.21
FGM (Huang et al., 2024) 1 3.08
RealUID (α = 0.94, β = 0.96 | αFT = 0.94, βFT = 1.0) (Ours) 1 2.03

Table 4: Comparison of conditional generation on
CIFAR-10. The best method under the FID metric in
each section is highlighted with bold.

Family Model NFE FID (↓)

Diffusion & GAN

VP-EDM (Karras et al., 2022) 35 1.79
GET-Base (Geng et al., 2023) 1 6.25
BigGAN (Brock et al., 2018) 1 14.73
BigGAN+Tune (Brock et al., 2018) 1 8.47
StyleGAN2+ADA (Karras et al., 2020) 1 3.49
StyleGAN2+ADA+Tune (Karras et al., 2020) 1 2.42
StyleGAN2+ADA+Tune+DI (Luo et al., 2023) 1 2.27
StyleGAN-XL (Sauer et al., 2022) 1 1.85
StyleSAN-XL (Takida et al., 2023) 1 1.36
Diff-Instruct (Luo et al., 2023) 1 4.19
DMD (Yin et al., 2024b) 1 2.66
DMD (w.o. KL) (Yin et al., 2024b) 1 3.82
DMD (w.o. reg.) (Yin et al., 2024b) 1 5.58
GDD-I (Zheng et al., 2024) 1 1.44
CTM (Kim et al., 2023) 1 1.73
SiD, α = 1.0 (Zhou et al., 2024b) 1 1.93
SiD , α = 1.2 (Zhou et al., 2024b) 1 1.71
SiDA, α = 1.0 (Zhou et al., 2024b) 1 1.44
SiD2A, α = 1.0 (Zhou et al., 2024a) 1 1.40
SiD2A, α = 1.2 (Zhou et al., 2024a) 1 1.39

Flow-based FGM (Huang et al., 2024) 1 2.58
RealUID (α = 0.98β = 0.96 | αFT = 0.94, βFT = 1.0) (Ours) 1 1.91

Methods Inference Time (ms) # Total Param (M) Max GPU Mem Alloc (MB) Max GPU Mem Reserved (MB)

RealUID (Ours) 18.636 36.784 165 172
FGM (Huang et al., 2024) / SiD (Zhou et al., 2024b;a) 30.745 55.734 242 276

Table 5: Inference complexity on an Ascend 910B3 (65 GB) NPU. For each method, we report (i) the mean
inference time per image (bs=1, fp32), averaged over 10,000 iterations; (ii) the total number of parameters
(Millions); and (iii) peak NPU memory usage (maximum allocated and reserved, in MB). Best values are bolded.

tive comparisons of the best-performing configurations against their respective baselines in Figure 2.
As shown in figure, the best RealUID configurations reach the saturated performance level of the
baseline after ∼100k iterations, whereas the baseline requires ∼300k iterations to achieve comparable
metrics. These results demonstrate that incorporating real data substantially accelerates convergence.
Fine-tuning stage. We observe that the RealUID framework offers substantial flexibility for fine-
tuning. In this procedure, the generatorGθ is initialized from the best-performing RealUID checkpoint
obtained during training from scratch, while the fake model f is initialized from the teacher model
f∗. Fine-tuning then proceeds with new hyperparameter values αFT and βFT, allowing for refined
control over the degree of real-data incorporation during this stage. We find that the configurations
RealUID (α = 0.94, β = 0.96 | αFT = 0.94, βFT = 1.0) and RealUID (α = 0.98, β = 0.96 | αFT =
0.94, βFT = 1.0) produced the best results in the unconditional and conditional cases, respectively, as
shown in Tables 2. Ablation studies analyzing the effect of αFT and βFT are provided in Appendix F.1.

4.3 BENCHMARK PERFORMANCE AND COMPUTATIONAL COMPARISONS

As shown in Tables 3 and 4, RealUID consistently outperforms all prior flow-based models on
CIFAR-10, significantly surpassing the strongest flow distillation baseline, FGM. Despite its compact
architecture (§4.1), it achieves performance comparable to leading diffusion distillation methods-
matching SiD (α=1.0) and closely approaching SiD (α=1.2), while falling short of adversarially
enhanced models such as SiD2A. Based on ablation studies and comparisons with GANs (§4.2), we
hypothesis that this performance gap is attributed to architectural and teacher capacity differences
rather than the lack of adversarial loss. In terms of efficiency, RealUID leverages a lightweight
architecture based on Tong et al. (2023). Therefore, as summarized in Table 5, it achieves nearly
2× faster inference, lower memory usage, and reduced model size compared to recent distillation
approaches (Zhou et al., 2024b;a; Huang et al., 2024). The results indicate that our approach achieves
competitive performance while maintaining a lower computational footprint.

5 DISCUSSION, EXTENSION, FUTURE WORKS

Extensions. Our RealUID (§3.4) framework can distill Flow/Bridge Matching, Diffusion models,
and Stochastic Interpolants enhanced by a novel natural way to incorporate real data. In Appendix A,
we provide three extensions of our RealUID beyond the inverse scheme: General RealUID with 3
coefficients (Appendix A.2), SiD framework with real data for αSiD ̸= 1

2 (Appendix A.3) and Normal-
ized RealUID for minimizing non-squared ℓ2-distance between teacher and student (Appendix A.4).
Relation to DMD. Instead of minimizing the squared ℓ2-distance between the score functions,
Distribution Matching Distillation (Luo et al., 2023; Wang et al., 2023; Yin et al., 2024b;a) (DMD)
approach minimizes the KL divergence between the real and generated data. Its gradients are
computed using the generator and teacher score functions, leading to the similar alternating updates.
We would like to highlight that DMD does not fit UID framework. Nevertheless, we investigated an
opportunity to incorporate real data into DMD without GANs in Appendix A.5.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

6 REPRODUCIBILITY STATEMENT.

To support the reproducibility of the proposed RealUID method, we provide:

1. Source code. In supplementary materials we provide anonymized and reproducible code for
the main results, including distillation from scratch (Table 1) and fine-tuning (Table 6). The code is
written in Python using the PyTorch framework (Paszke et al., 2019) and is based on the TorchCFM
implementation (Tong et al., 2023, GitHub):

https://github.com/atong01/conditional-flow-matching

The repository includes a README with step-by-step instructions for reproducibility.

2. Pseudocode for algorithms. We provide pseudocode for RealUID in Appendix B, Algorithm 1.

3. Experimental details. We include all relevant experimental details, i.e. training hyperparame-
ters, training time, datasets, and metric computations in Appendix D.

4. Proofs and theoretical explanations. We provide the proofs of the theorems and lemmas in
Appendix A.

REFERENCES

Michael S Albergo, Nicholas M Boffi, and Eric Vanden-Eijnden. Stochastic interpolants: A unifying
framework for flows and diffusions. arXiv preprint arXiv:2303.08797, 2023.

Andrew Brock, Jeff Donahue, and Karen Simonyan. Large scale gan training for high fidelity natural
image synthesis. arXiv preprint arXiv:1809.11096, 2018.

Timothy CY Chan, Rafid Mahmood, and Ian Yihang Zhu. Inverse optimization: Theory and
applications. Operations Research, 73(2):1046–1074, 2025.

Ruiqi Gao, Emiel Hoogeboom, Jonathan Heek, Valentin De Bortoli, Kevin Patrick Murphy, and Tim
Salimans. Diffusion models and gaussian flow matching: Two sides of the same coin. In The
Fourth Blogpost Track at ICLR 2025, 2025.

Zhengyang Geng, Ashwini Pokle, and J Zico Kolter. One-step diffusion distillation via deep
equilibrium models. Advances in Neural Information Processing Systems, 36:41914–41931, 2023.

Ian J Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Advances in neural information
processing systems, 27, 2014.

Nikita Gushchin, Alexander Kolesov, Alexander Korotin, Dmitry P Vetrov, and Evgeny Burnaev. En-
tropic neural optimal transport via diffusion processes. Advances in Neural Information Processing
Systems, 36, 2024.

Nikita Gushchin, David Li, Daniil Selikhanovych, Evgeny Burnaev, Dmitry Baranchuk, and Alexan-
der Korotin. Inverse bridge matching distillation. 2025.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans
trained by a two time-scale update rule converge to a local nash equilibrium. Advances in neural
information processing systems, 30, 2017.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Peter Holderrieth, Marton Havasi, Jason Yim, Neta Shaul, Itai Gat, Tommi Jaakkola, Brian Karrer,
Ricky TQ Chen, and Yaron Lipman. Generator matching: Generative modeling with arbitrary
markov processes. arXiv preprint arXiv:2410.20587, 2024.

Zemin Huang, Zhengyang Geng, Weijian Luo, and Guo-jun Qi. Flow generator matching. arXiv
preprint arXiv:2410.19310, 2024.

10

https://github.com/atong01/conditional-flow-matching

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative
adversarial networks. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 4401–4410, 2019.

Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, and Timo Aila. Analyzing
and improving the image quality of stylegan. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 8110–8119, 2020.

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-
based generative models. Advances in neural information processing systems, 35:26565–26577,
2022.

Dongjun Kim, Chieh-Hsin Lai, Wei-Hsiang Liao, Naoki Murata, Yuhta Takida, Toshimitsu Ue-
saka, Yutong He, Yuki Mitsufuji, and Stefano Ermon. Consistency trajectory models: Learning
probability flow ode trajectory of diffusion. arXiv preprint arXiv:2310.02279, 2023.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maximilian Nickel, and Matthew Le. Flow
matching for generative modeling. In The Eleventh International Conference on Learning Repre-
sentations, 2023. URL https://openreview.net/forum?id=PqvMRDCJT9t.

Qiang Liu. Rectified flow: A marginal preserving approach to optimal transport. arXiv preprint
arXiv:2209.14577, 2022.

Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate and
transfer data with rectified flow. arXiv preprint arXiv:2209.03003, 2022a.

Xingchao Liu, Lemeng Wu, Mao Ye, and Qiang Liu. Let us build bridges: Understanding and
extending diffusion generative models. arXiv preprint arXiv:2208.14699, 2022b.

Xingchao Liu, Chengyue Gong, and qiang liu. Flow straight and fast: Learning to generate and transfer
data with rectified flow. In The Eleventh International Conference on Learning Representations,
2023. URL https://openreview.net/forum?id=XVjTT1nw5z.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Weijian Luo, Tianyang Hu, Shifeng Zhang, Jiacheng Sun, Zhenguo Li, and Zhihua Zhang. Diff-
instruct: A universal approach for transferring knowledge from pre-trained diffusion models.
Advances in Neural Information Processing Systems, 36:76525–76546, 2023.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance
deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and
R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 32. Curran Asso-
ciates, Inc., 2019. URL https://proceedings.neurips.cc/paper_files/paper/
2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf.

Stefano Peluchetti. Non-denoising forward-time diffusions. arXiv preprint arXiv:2312.14589, 2023.

A Sauer, K Schwarz, and A StyleGAN-XL Geiger. scaling stylegan to large diverse datasets. In
Proceedings of the SIGGRAPH Conference. ACM, pp. 1–10, 2022.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International conference on machine learning,
pp. 2256–2265. pmlr, 2015.

Yang Song and Prafulla Dhariwal. Improved techniques for training consistency models. arXiv
preprint arXiv:2310.14189, 2023.

11

https://openreview.net/forum?id=PqvMRDCJT9t
https://openreview.net/forum?id=XVjTT1nw5z
https://proceedings.neurips.cc/paper_files/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. In International
Conference on Learning Representations, 2021. URL https://openreview.net/forum?
id=PxTIG12RRHS.

Yuhta Takida, Masaaki Imaizumi, Takashi Shibuya, Chieh-Hsin Lai, Toshimitsu Uesaka, Naoki
Murata, and Yuki Mitsufuji. San: Inducing metrizability of gan with discriminative normalized
linear layer. arXiv preprint arXiv:2301.12811, 2023.

Alexander Tong, Kilian Fatras, Nikolay Malkin, Guillaume Huguet, Yanlei Zhang, Jarrid Rector-
Brooks, Guy Wolf, and Yoshua Bengio. Improving and generalizing flow-based generative models
with minibatch optimal transport. arXiv preprint arXiv:2302.00482, 2023.

Zhendong Wang, Huangjie Zheng, Pengcheng He, Weizhu Chen, and Mingyuan Zhou. Diffusion-gan:
Training gans with diffusion. arXiv preprint arXiv:2206.02262, 2022.

Zhengyi Wang, Cheng Lu, Yikai Wang, Fan Bao, Chongxuan Li, Hang Su, and Jun Zhu. Pro-
lificdreamer: High-fidelity and diverse text-to-3d generation with variational score distillation.
Advances in neural information processing systems, 36:8406–8441, 2023.

Ling Yang, Zixiang Zhang, Zhilong Zhang, Xingchao Liu, Minkai Xu, Wentao Zhang, Chenlin Meng,
Stefano Ermon, and Bin Cui. Consistency flow matching: Defining straight flows with velocity
consistency. arXiv preprint arXiv:2407.02398, 2024.

Tianwei Yin, Michaël Gharbi, Taesung Park, Richard Zhang, Eli Shechtman, Fredo Durand, and Bill
Freeman. Improved distribution matching distillation for fast image synthesis. Advances in neural
information processing systems, 37:47455–47487, 2024a.

Tianwei Yin, Michaël Gharbi, Richard Zhang, Eli Shechtman, Fredo Durand, William T Freeman,
and Taesung Park. One-step diffusion with distribution matching distillation. In Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition, pp. 6613–6623, 2024b.

Kaiwen Zheng, Guande He, Jianfei Chen, Fan Bao, and Jun Zhu. Diffusion bridge implicit models.
arXiv preprint arXiv:2405.15885, 2024.

Mingyuan Zhou, Huangjie Zheng, Yi Gu, Zhendong Wang, and Hai Huang. Adversarial score identity
distillation: Rapidly surpassing the teacher in one step. arXiv preprint arXiv:2410.14919, 2024a.

Mingyuan Zhou, Huangjie Zheng, Zhendong Wang, Mingzhang Yin, and Hai Huang. Score identity
distillation: Exponentially fast distillation of pretrained diffusion models for one-step generation.
In Forty-first International Conference on Machine Learning, 2024b.

12

https://openreview.net/forum?id=PxTIG12RRHS
https://openreview.net/forum?id=PxTIG12RRHS

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

CONTENTS

1 Introduction 1

2 Backgrounds on training and distilling matching models 2

2.1 Diffusion and Flow Models . 2

2.2 Universal loss for matching models . 3

2.3 Distillation of matching-based models . 3

2.4 GANs for real data incorporation . 4

3 Universal distillation of matching models with real data 4

3.1 Universal Inverse Distillation . 4

3.2 Relation to prior distillation works . 5

3.3 Connection with Inverse Optimization . 5

3.4 RealUID: natural approach for real data incorporation 6

4 Experiments 7

4.1 Experimental Setup . 7

4.2 Benchmarking Methods under a Unified Experimental Configuration 8

4.3 Benchmark performance and Computational comparisons 9

5 Discussion, extension, future works 9

6 Reproducibility statement. 10

A Theoretical proofs and extensions 14

A.1 RealUID theoretical properties . 14

A.1.1 RealUID Distance Lemma 2 . 14

A.1.2 Explanation of the choice of coefficients α and β 15

A.2 General RealUID loss . 16

A.3 SiD with real data . 18

A.4 Normalized UID and RealUID losses for minimizing ℓ2-distance 18

A.5 DMD approach with real data . 19

B RealUID Algorithm for Flow Matching models 21

C Unified Inverse Disillation for Bridge Matching and Stochastic Interpolants 21

C.1 Bridge Matching . 21

C.2 Stochastic Interpolants . 22

C.3 Objective for Unified Inverse Distillation for general data coupling 23

D Experimental details 23

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

E The Use of Large Language Models (LLMs) 24

F Additional Results 24

F.1 Fine-tuning ablation study of coefficients αFT, βFT. 24

F.2 Example of samples for different methods. 24

A THEORETICAL PROOFS AND EXTENSIONS

In this appendix, we discuss our RealUID framework (Appendix A.1) in theoretical details and provide
three extensions of it: General RealUID framework with 3 degrees of freedom (Appendix A.2), SiD
framework with real data (Appendix A.3) and Normalized RealUID framework for minimizing ℓ2-
distance between teacher and student functions instead of the squared one (Appendix A.4). All proofs
are based on the linearization technique and splitting terms in linearized decomposition between real
and generated data.

We also propose an approach to incorporate real data into DMD framework, which is unsuitable for
our RealUID Appendix A.5.

A.1 REALUID THEORETICAL PROPERTIES

In this section, we discuss our RealUID loss in detail. We begin by presenting its explicit form and
how it connects linearization technique and real data incorporation. We then demonstrate that the
loss minimizes a squared ℓ2-distance between the rescaled teacher and student functions (Appendix
A.1.1). Finally, we provide guidance on selecting the coefficients α and β to optimize the impact
from the real data (Appendix A.1.2).

A.1.1 REALUID DISTANCE LEMMA 2

Putting explicit values for RealUM loss (17) in RealUID loss (18) and denoting δt = f∗t − ft, we get:

Lα,βR-UID(δ, p
θ
0) = Et∼[0,T]Exθ

0∼pθ0,xθ
t∼pθt (·|xθ

0)
[−α∥δt(xθt)∥2 + 2α⟨δt(xθt), f∗t (xθt)⟩ − 2β⟨δt(xθt), fθt (xθt |xθ0)⟩]

+Et∼[0,T]Ex∗
0∼p∗0 ,x∗

t∼p∗t (·|x∗
t)
[−(1− α)∥δt(x∗t)∥2 + 2(1− α)⟨δt(x∗t), f∗t (x∗t)⟩ − 2(1− β)⟨δt(x∗t), f∗t (x∗t |x∗0)⟩].

This form provides an alternative definition of coefficients α and β: they define the proportion in
which each summand in the data-free linearized representation (11) of the squared ℓ2-distance is
split between the real and generated data. The idea of splitting coefficients between two data types
helps extend RealUID to extra coefficients (Appendix A.2), new distances (Appendix A.4) and SiD
framework with αSiD ̸= 1

2 (Appendix A.3).

While UID loss implicitly represents a squared ℓ2-distance between the teacher and student functions
(Lemma 1), the RealUID loss minimizes a squared ℓ2-distance between the rescaled functions. The
distance is still minimal when pθ0 = p∗0, alternatively proving Theorem 2.

Lemma 2 (Distance minimized by RealUID loss). Maximization of RealUID loss Lα,βR-UID (17)
over fake function f returns the weighted sum between the teacher f∗ and student function fθ :=
argminf LUM(f, p

θ
0) and represents the weighted squared ℓ2-distance between them:[

argmax
f

Lα,βR-UID(f, p
θ
0)

]
(t, xt) =

(1− β)p∗t (xt) · f∗t (xt) + βpθt (xt) · fθt (xt)
(1− α)p∗t (xt) + αpθt (xt)

, (19)

max
f

Lα,βR-UID(f, p
θ
0)=Et∼[0,T]Ex∗

t∼p∗t

[
∥(p∗t (x∗t)(β − α) + αpθt (x

∗
t)) · f∗t (x∗t)− βpθt (x

∗
t) · fθt (x∗t)∥2

p∗t (x
∗
t)((1− α)p∗t (x

∗
t) + αpθt (x

∗
t))

]
.

Proof. First, we write down RealUID loss in an explicit form with δt = f∗t − ft

Lα,βR-UID(δ, p
θ
0) = Et∼[0,T]Exθ

t∼pθt [−α∥δt(x
θ
t)∥2 + 2α⟨δt(xθt), f∗t (xθt)⟩ − 2β⟨δt(xθt), fθt (xθt)⟩]

+Et∼[0,T]Ex∗
t∼p∗t [−(1− α)∥δt(x∗t)∥2 + 2(1− α)⟨δt(x∗t), f∗t (x∗t)⟩ − 2(1− β)⟨δt(x∗t), f∗t (x∗t)⟩]. (20)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Then, we rescale the generated data terms in RealUID loss (20) using the equality pθt (xt) =
pθt (xt)
p∗t (xt)

p∗t (xt) for xt ∈ RD (we assume p∗t (xt) > 0,∀xt, t) leaving only math expectation w.r.t.

the real data, i.e, Lα,βR-UID(δ, p
θ
0) =

Et∼[0,T]Ex∗
t∼p∗t

[
−[(1− α) + α

pθt (x
∗
t)

p∗t (x
∗
t)
]∥δt(x∗t)∥2 + 2[(β − α) + α

pθt (x
∗
t)

p∗t (x
∗
t)
]⟨δt(x∗t), f∗t (x∗t)⟩ − 2β

pθt (x
∗
t)

p∗t (x
∗
t)
⟨δt(x∗t), fθt (x∗t)⟩

]
.

Finally, we maximize the loss w.r.t. δt(x∗t) for each x∗t and t as a quadratic function. The maximum
is achieved when

δt(x
∗
t) =

[(β − α) + α
pθt (x

∗
t)

p∗t (x
∗
t)
]f∗t (x

∗
t)− β

pθt (x
∗
t)

p∗t (x
∗
t)
fθt (x

∗
t)

[(1− α) + α
pθt (x

∗
t)

p∗t (x
∗
t)
]

or in terms of the fake model f = f∗ − δ(
argmax

f
Lα,βR-UID(f, p

θ
0)

)
(t, xt) =

f∗t (xt) · (1− β) + fθt (xt) · β
pθt (xt)
p∗t (xt)

(1− α) + α
pθt (xt)
p∗t (xt)

.

The maximum itself equals to

max
f

Lα,βR-UID(f, p
θ
0) = Et∼[0,T]Ex∗

t∼p∗t

∥f∗t (x∗t) · ((β − α) + α
pθt (x

∗
t)

p∗t (x
∗
t)
)− fθt (x

∗
t) · β

pθt (x
∗
t)

p∗t (x
∗
t)
∥2

(1− α) + α
pθt (x

∗
t)

p∗t (x
∗
t)

 .
It is easy to see that when pθ0 = p∗0 and fθ = f∗ this distance achieves its minimal value 0. Moreover,
optimal fake model in this case matches the teacher f∗, i.e.,(

argmax
f

Lα,βR-UID(f, p
∗
0)

)
(t, xt) =

f∗t (xt) · (1− β) + f∗t (xt) · β
p∗t (xt)
p∗t (xt)

(1− α) + α
p∗t (xt)
p∗t (xt)

= f∗t (xt).

A.1.2 EXPLANATION OF THE CHOICE OF COEFFICIENTS α AND β

Following Lemma 2, we know exactly what distance our RealUID loss implicitly minimizes and can
examine it for various α, β ∈ (0, 1]:

max
f

Lα,βR-UID(f, p
θ
0) =

∫
xt

lt(xt, β, α)dxt,

lt(xt, β, α) :=
∥(p∗t (xt)(β − α) + αpθt (xt)) · f∗t (xt)− βpθt (xt) · fθt (xt)∥2

(1− α)p∗t (xt) + αpθt (xt)
,

where lt(xt, β, α) denotes the distance for the particular point xt.

The total distance mostly sums up from the two groups of points: incorrectly generated points
from the generator’s main domain, i.e., pθt (xt) ≫ 0, p∗(xt) → 0, and real data points which are
not covered by the generator, i.e., pθt (xt) → 0, p∗(xt) ≫ 0. For the points out of both domains
pθt (xt) → 0, p∗t (xt) → 0, the distance tends to 0, as well as for matching points pθt (xt) ≈ p∗t (xt).

Next, we consider various coefficients α, β ∈ (0, 1] and how they effect two main groups of points.

• All configurations affect the incorrectly generated points xt : p∗t (xt) → 0, pθ(xt) ≫ 0:

lt(xt, β, α) ≈
∥αpθt (xt) · f∗t (xt)− βpθt (xt) · fθt (xt)∥2

αpθt (xt)
≈ β2∥fθt (xt)∥2

α
pθt (xt) ≫ 0. (21)

Note that increasing β over α (β > α) will diminish the weight of the distance in comparison with
α = β = 1, while decreasing otherwise will lift the weight up.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

3 2 1 0 1 2 3
point xt

0.0

0.1

0.2

0.3

0.4

0.5

Re
al

UI
D

lo
ss

real data mean
gen data mean
(,) = (1, 1)
(,) = (0.75, 0.75)
(,) = (0.5, 0.5)

3 2 1 0 1 2 3
point xt

0.0

0.2

0.4

0.6

0.8

1.0

Re
al

UI
D

lo
ss

real data mean
gen data mean
(,) = (1, 1)
(,) = (0.5, 0.75)
(,) = (0.75, 0.5)
(,) = (0.25, 0.75)
(,) = (0.75, 0.25)
(,) = (0.5, 0.25)
(,) = (0.25, 0.5)

Figure 3: RealUID loss for 1D-Gaussians under various coefficients (α, β).

• Configuration β < α = 1 is unstable for uncovered real data points xt : pθt (xt) → 0, p∗(xt) ≫ 0:

lt(xt, β, α) ≈
∥p∗t (xt)(β − 1) · f∗t (xt)− βpθt (xt) · fθt (xt)∥2

pθt (xt)
→ ∞.

• Configuration β = α = 1 (UID loss) does not affect uncovered real data points xt : pθt (xt) →
0, p∗(xt) ≫ 0:

lt(xt, β, α) ≈
∥pθt (xt) · f∗t (xt)− pθt (xt) · fθt (xt)∥2

pθt (xt)
= ∥f∗t (xt)− fθt (xt)∥2pθt (xt) → 0.

• Configuration β = α < 1 does not affect uncovered real data points xt : pθt (xt) → 0, p∗(xt) ≫ 0:

lt(xt, β, α) ≈
∥αpθt (xt) · f∗t (xt)− βpθt (xt) · fθt (xt)∥2

(1− α)p∗t (xt)
=

∥α · f∗t (xt)− βfθt (xt)∥2

(1− α)

(pθt (xt))
2

p∗t (xt)
→ 0.

Notably, in this configuration, the distance drops even faster than when α = β = 1, what makes it
even less preferable.

• Configuration β ̸= α affects the uncovered real data points xt : pθt (xt) → 0, p∗(xt) ≫ 0:

lt(xt, β, α) ≈
∥p∗t (xt)(β − α) · f∗t (xt)− βpθt (xt) · fθt (xt)∥2

(1− α)p∗t (xt)
≫ 0.

For visual illustration, we analytically calculated the loss surface lt(xt, α, β) between the FM models
transforming one-dimensional real data Gaussian N (µ∗, 1) and generated Gaussian N (µθ, 1) to
noise N (0, 1) on the time interval [0, 1]. In this case, the generated and real data interpolations
are pθt (xt) = N (xt|µθ(1 − t), t2 + (1 − t)2) and p∗t (xt) = N (xt|µ∗(1 − t), t2 + (1 − t)2). The
unconditional vector field u between N (0, 1) and N (µ, 1) can be calculated as

ut(xt) = Ex0∼p0(·|xt)

[
xt − x0

t

]
=

∫
x0

(
xt − x0

t

)
· N

(
xt − x0(1− t)

t
|0, 1

)
· N (x0|µ, 1)dx0

=
a(2t2 − 2t)− bt2√
2π(1− 2t+ 2t2)

3
2

exp

(
− (xt − µ(1− t))2

2(1− 2t+ 2t2)2

)
. (22)

In Figure 3, we can see that configurations α = β do not notice the real data sample, while α ̸= β
actually spots both domains, increasing the weight of generator domain when β > α and decreasing
it otherwise.

A.2 GENERAL REALUID LOSS

We recall that UID loss (Theorem 1) can be restated via linearization technique with δ = f∗ − f as:

LUID(δ, p
θ
0) = Et∼[0,T]Exθ

0∼pθ0,xθ
t∼pθt (·|xθ

0)

{
−∥δt(xθt)∥2 + 2⟨δt(xθt), f∗t (xθt)⟩ − 2⟨δt(xθt), fθt (xθt |xθ0)⟩

}
.

In turn, after real data incorporation, we obtain our RealUID loss (Theorem 2). Putting the explicit
values for RealUM loss (17) in RealUID loss (18), we get the explicit formula:

Lα,βR-UID(δ, p
θ
0) = Et∼[0,T]Exθ

0∼pθ0,xθ
t∼pθt (·|xθ

0)
[−α∥δt(xθt)∥2 + 2α⟨δt(xθt), f∗t (xθt)⟩ − 2β⟨δt(xθt), fθt (xθt |xθ0)⟩]

+Et∼[0,T]Ex∗
0∼p∗0 ,x∗

t∼p∗t (·|x∗
0)
[−(1− α)∥δt(x∗t)∥2 + 2(1− α)⟨δt(x∗t), f∗t (x∗t)⟩ − 2(1− β)⟨δt(x∗t), f∗t (x∗t |x∗0)⟩].

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

These two formulas give us alternative explanation on how to add real data into arbitrary losses: we
need to split each term in the linearized representation of the data-free loss between real and generated
data. For example, in RealUID loss, its three terms are split with proportions α, α, β, respectively.
We can go even further and split the first quadratic coefficient −∥δt(·)∥2 using a new parameter
γ ∈ (0, 1] to create one more degree of freedom. Moreover, we can use other parametrization of δ,
since its form does not change the proofs.

Definition 3. We introduce General RealUID loss Lα,β,γR-UID(δ, p
θ
0) on generated data pθ0 ∈ P(RD)

with coefficients α, β, γ ∈ (0, 1]:

Lα,β,γR-UID(δ, p
θ
0) := Et∼[0,T]Exθ

0∼pθ0,xθ
t∼pθt (·|xθ

0)
[−γ∥δt(xθt)∥2 + 2α⟨δt(xθt), f∗t (xθt)⟩ − 2β⟨δt(xθt), fθt (xθt |xθ0)⟩]

+Et∼[0,T]Ex∗
0∼p∗0 ,x∗

t∼p∗t (·|x∗
0)
[−(1− γ)∥δt(x∗t)∥2 + 2(1− α)⟨δt(x∗t), f∗t (x∗t)⟩ − 2(1− β)⟨δt(x∗t), f∗t (x∗t |x∗0)⟩].

Optionally, one can change default reparameterization δ = f∗ − f or substitute sampled real data
term f∗t (x

∗
t |x∗0) with the unconditional teacher f∗t (x

∗
t).

In case of δ = f∗ − f and γ ̸= α, the General RealUID loss cannot be expressed as inverse min-max
problem (16) for simple losses, since some scalar products do not eliminate each other. Nevertheless,
min-max optimization of Lα,β,γR-UID still minimizes the similar squared ℓ2-distance between the weighted
teacher and generator-induced functions, attaining minimum when pθ0 = p∗0.

Lemma 3 (Distance minimized by General RealUID loss). Maximization of General RealUID
loss Lα,β,γR-UID over δ represents the squared ℓ2-distance between the weighted teacher f∗ and student
function fθ := argminf LUM(f, p

θ
0):

max
δ

Lα,β,γR-UID(δ, p
θ
0) = Et∼[0,T]Ex∗

t∼p∗t

[
∥(p∗t (x∗t)(β − α) + αpθt (x

∗
t)) · f∗t (x∗t)− βpθt (x

∗
t) · fθt (x∗t)∥2

p∗t (x
∗
t)((1− γ)p∗t (x

∗
t) + γpθt (x

∗
t))

]
.

The distances being minimized for RealUID (Lemma 2) and General RealUID (Lemma 3) are almost
identical except the scale factor in the denominator. Thus, we keep the same recommendations for
choosing coefficients α, β as we discuss in §A.1.2. The optimal choice is slightly different α ̸= β
which are close to 1. Coefficient γ should also be close to 1, but not exactly 1.

Proof. First, we write down General RealUID loss (Def. 3) in an explicit form with δt = f∗t − ft

Lα,βR-UID(δ, p
θ
0) = Et∼[0,T]Exθ

t∼pθt [−γ∥δt(x
θ
t)∥2 + 2α⟨δt(xθt), f∗t (xθt)⟩ − 2β⟨δt(xθt), fθt (xθt)⟩]

+Et∼[0,T]Ex∗
t∼p∗t [−(1− γ)∥δt(x∗t)∥2 + 2(1− α)⟨δt(x∗t), f∗t (x∗t)⟩ − 2(1− β)⟨δt(x∗t), f∗t (x∗t)⟩].

Then, we rescale the generated data terms in the General RealUID loss using the equality pθt (xt) =
pθt (xt)
p∗t (xt)

p∗t (xt) for xt ∈ RD (we assume p∗t (xt) > 0,∀xt, t) leaving only math expectation w.r.t. the

real data, i.e, Lα,β,γR-UID(δ, p
θ
0) =

Et∼[0,T]Ex∗
t∼p∗t

[
−[(1− γ) + γ

pθt (x
∗
t)

p∗t (x
∗
t)
]∥δt(x∗t)∥2 + 2[(β − α) + α

pθt (x
∗
t)

p∗t (x
∗
t)
]⟨δt(x∗t), f∗t (x∗t)⟩ − 2β

pθt (x
∗
t)

p∗t (x
∗
t)
⟨δt(x∗t), fθt (x∗t)⟩

]
.

Then we maximize the loss w.r.t. δt(x∗t) for each x∗t and t as a quadratic function. The maximum is
achieved when

δt(x
∗
t) =

[(β − α) + α
pθt (x

∗
t)

p∗t (x
∗
t)
]f∗t (x

∗
t)− β

pθt (x
∗
t)

p∗t (x
∗
t)
fθt (x

∗
t)

[(1− γ) + γ
pθt (x

∗
t)

p∗t (x
∗
t)
]

.

The maximum itself equals to

max
δ

Lα,β,γR-UID(δ, p
θ
0) = Et∼[0,T]Ex∗

t∼p∗t

∥f∗t (x∗t) · ((β − α) + α
pθt (x

∗
t)

p∗t (x
∗
t)
)− fθt (x

∗
t) · β

pθt (x
∗
t)

p∗t (x
∗
t)
∥2

(1− γ) + γ
pθt (x

∗
t)

p∗t (x
∗
t)

 .

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

A.3 SID WITH REAL DATA

We recall that data-free UID loss (Theorem 1), which is equivalent to SiD loss with αSiD = 1/2, can
be restated via linearization technique with δ = f − f∗ as

LUID(δ, p
θ
0) = Et∼[0,T]Exθ

0∼pθ0,xθ
t∼pθt (·|xθ

0)

{
−∥δt(xθt)∥2 + 2⟨δt(xθt), f∗t (xθt)⟩ − 2⟨δt(xθt), fθt (xθt |xθ0)⟩

}
.

(23)
In turn, after real data incorporation, we obtain our RealUID loss (Theorem 2). Putting the explicit
values for RealUM loss (17) in RealUID loss (18), we get the explicit formula:

Lα,βR-UID(δ, p
θ
0) = Et∼[0,T]Exθ

0∼pθ0,xθ
t∼pθt (·|xθ

0)
[−α∥δt(xθt)∥2 + 2α⟨δt(xθt), f∗t (xθt)⟩ − 2β⟨δt(xθt), fθt (xθt |xθ0)⟩]

+Et∼[0,T]Ex∗
0∼p∗0 ,x∗

t∼p∗t (·|x∗
0)
[−(1− α)∥δt(x∗t)∥2 + 2(1− α)⟨δt(x∗t), f∗t (x∗t)⟩ − 2(1− β)⟨δt(x∗t), f∗t (x∗t |x∗0)⟩].

These two formulas give us alternative explanation on how to add real data into arbitrary losses: we
need to split each term in the linearized representation of the data-free loss between real and generated
data. For example, in RealUID loss, its three terms are split with proportions α, α, β, respectively.

In SiD framework (Zhou et al., 2024a;b), the authors notice that UID loss (23), in which the
first coefficient −∥δt(xθt)∥2 is scaled by 2αSiD during generator updates, empirically yields better
performance. Namely, the SiD loss for generator with parameter αSiD is

LαSiD(p
θ
0) = Et∼[0,T]Exθ

0∼pθ0,xθ
t∼pθt (·|xθ

0)

{
−2αSiD∥δt(xθt)∥2 + 2⟨δt(xθt), f∗t (xθt)⟩ − 2⟨δt(xθt), fθt (xθt |xθ0)⟩

}
.

Following the structure of generator SiD loss, we propose to scale the first coefficient in our RealUID
loss during generator updates. The whole SiD pipeline with real data determined by coefficients
α, β ∈ (0, 1], αSiD and teacher f∗ is two alternating steps:

1. Minimize the real data modified UM loss Lα,βR-UM(f, pθ0) (Def. 2) for the fake model f via several
update steps:

Lα,βR-UM(f, pθ0) = α · Et∼[0,T]Exθ
0∼pθ0,xθ

t∼pθt (·|xθ
0)

[
∥ft(xθt)−

β

α
fθ(xθt |xθ0)∥2

]
︸ ︷︷ ︸

generated data pθ0 term

+ (1− α) · Et∼[0,T]Ex∗
0∼p∗0 ,x∗

t∼p∗t (·|x∗
0)

[
∥ft(x∗t)−

1− β

1− α
f∗t (x

∗
t |x∗0)∥2

]
︸ ︷︷ ︸

real data p∗0 term

.

2. Make generator update step minimizing the loss Lα,βR-UID,αSiD
(pθ0) with δ = f − f∗ :

Lα,βR-UID,αSiD
(pθ0) = Et∼[0,T]Exθ

0∼pθ0,xθ
t∼pθt (·|xθ

0)

{
−2αSiD · α · ∥δt(xθt)∥2 + 2α⟨δt(xθt), f∗t (xθt)⟩ − 2β⟨δt(xθt), fθt (xθt |xθ0)⟩

}
.

We keep the same recommendations for choosing coefficients α, β as we discuss in Appendix A.1.2.
The optimal choice is slightly different α ̸= β which are close to 1. Following (Zhou et al., 2024a),
the best choice for αSiD is αSiD ∈ [1, 1.2].

A.4 NORMALIZED UID AND REALUID LOSSES FOR MINIMIZING ℓ2-DISTANCE

Using the linearization technique from Section 3.1, we can estimate the non-squared ℓ2-distance
between the teacher f∗ := argminf LUM(f, p∗0) and student fθ := argminf LUM(f, pθ0) functions.
In this case, the connection with the inverse optimization disappears.

For a fixed point xθt and time t, we derive:

∥f∗t (xθt)− fθt (x
θ
t)∥ = max

δt(xθ
t)

{
⟨ δt(x

θ
t)

∥δt(xθt)∥
, f∗t (x

θ
t)− fθt (x

θ
t)⟩
}

= max
δt(xθ

t)
Exθ

0∼pθ0(·|xθ
t)

{
⟨ δt(x

θ
t)

∥δt(xθt)∥
, f∗t (x

θ
t)⟩ − ⟨ δt(x

θ
t)

∥δt(xθt)∥
, fθt (x

θ
t |xθ0)⟩

}
.(24)

With the reparameterization δt = f∗t − ft, the Normalized UID loss L̂UID(f, p
θ
0) for min-max

optimization to solve minθ Et∼[0,T]Exθ
t∼pθt ∥f

∗
t (x

θ
t)− fθt (x

θ
t)∥ is:

min
θ

max
f

{
L̂UID(f, p

θ
0) := Et∼[0,T]Exθ

0∼pθ0,xθ
t∼pθt (·|xθ

0)

[
⟨ f∗t (x

θ
t)− ft(x

θ
t)

∥f∗t (xθt)− ft(xθt)∥
, f∗t (x

θ
t)− fθt (x

θ
t |xθ0)⟩

]}
. (25)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Adding real data. Following the intuition from the proof for RealUID in Appendix A.1.1, we
can incorporate real data in Normalized UID loss (25) as well. We need to split two summands in
the linearized representation (24) into generated and real data parts with weights α, (1 − α) and
β, (1− β).

Definition 4. We introduce Normalized RealUID loss L̂α,βR-UID(f, p
θ
0) on generated data pθ0 ∈ P(RD)

with coefficients α, β ∈ (0, 1]:

L̂α,βR-UID(f, p
θ
0) := Et∼[0,T]Exθ

t∼pθt ,xθ
0∼pθ0(·|xθ

t)

{
⟨ f∗t (x

θ
t)− ft(x

θ
t)

∥f∗t (xθt)− ft(xθt)∥
, α · f∗t (xθt)− β · fθt (xθt |xθ0)⟩

}
+Et∼[0,T]Ex∗

t∼p∗t ,x∗
0∼p∗0(·|x∗

t)

{
⟨ f∗t (x

∗
t)− ft(x

∗
t)

∥f∗t (x∗t)− ft(x∗t)∥
, (1− α) · f∗t (x∗t)− (1− β) · f∗t (x∗t |x∗0)⟩

}
.

Similar to the proof of RealUID distance Lemma 2, we can show that min-max optimization of
Normalized RealUID loss minimizes the non-squared ℓ2-norm between the similar weighted student
fθ and teacher f∗ functions:

max
f

L̂α,βR-UID(f, p
θ
0) = Et∼[0,T]Ex∗

t∼p∗t

[
∥((β − α) + α

pθt (x
∗
t)

p∗t (x
∗
t)
) · f∗t (x∗t)− β

pθt (x
∗
t)

p∗t (x
∗
t)

· fθt (x∗t)∥
]
.

This distance attains minimum when pθ0 = p∗0, justifying the procedure.

A.5 DMD APPROACH WITH REAL DATA

Distribution Matching Distillation (Luo et al., 2023; Wang et al., 2023; Yin et al., 2024b;a) (DMD)
approach distills Gaussian diffusion models with forward process xt = x0 + σtϵ, ϵ ∼ N (0, I).

This approach minimizes KL divergence Et∼[0,T]DKL(p
θ
t ||p∗t) = Et∼[0,T]Exθ

t∼pθt

[
log
(
pθt (x

θ
t)

p∗t (x
θ
t)

)]
between the generated data pθt and the real data p∗t . The authors show the true gradient of
Et∼[0,T]DKL(p

θ
t ||p∗t) w.r.t. θ can be computed via the score functions:

Et∼[0,T]

[
dDKL(p

θ
t ||p∗t)

dθ

]
= Ez∼pZ ,xθ

0=G(z),xθ
t∼pθt

[
(∇xθ

t
ln pθt (x

θ
t)−∇xθ

t
ln p∗t (x

θ
t))

dGθ(z)

dθ

]
.

Then, this true gradient is estimated with the teacher score function s∗ := argmins LDSM(s, p∗0) and
student score sθ = argmins LDSM(s, pθ0) at each time moment:

Et∼[0,T]

[
dDKL(p

θ
t ||p∗t)

dθ

]
= Et∼[0,T]Ez∼pZ ,xθ

0=Gθ(z),xθ
t∼pθt

[
(sθt (x

θ
t)− s∗t (x

θ
t))

dGθ
dθ

]
.

The final algorithm alternates updates for the fake model and the generator similar to SiD approach.

We would like to highlight that DMD does not fit our UID framework. The UID loss is uniquely
determined by its input UM loss. In the case of Diffusion models and DMD, the UM loss is the
LDSM (s, pθ0) loss. With this loss, the resulting UID loss becomes exactly the SiD loss, not DMD.

Nevertheless, we investigated an opportunity to incorporate real data into the DMD framework. We
found that we can use the Modified DSM loss (17) to train the modified student score function
sθ,αt = argmins L

α,α
M−DSM (s, pθ0) with coefficients α = β:

Lα,αM−DSM (s, pθ0) := α · Et∼[0,T]Exθ
0∼pθ0,xθ

t∼pθt (·|x0)

[
∥st(xθt)− sθ(xθt |xθ0)∥2

]︸ ︷︷ ︸
generated data pθ0 term

+ (1− α) · Et∼[0,T]Ex∗
0∼p∗0 ,x∗

t∼p∗t (·|x∗
0)

[
∥st(x∗t)− s∗t (x

∗
t |x∗0)∥2

]︸ ︷︷ ︸
real data p∗0 term

.

Then apply the generator parameters update based on the KL divergence between mixed distributions.
Lemma 4 (DMD with real data). Consider real data distribution p∗0 ∈ P(RD) and generated
by generator Gθ distribution pθ0 ∈ P(RD). Then, KL divergence between mixed and real data for
α ∈ (0, 1] has the following gradients with modified student score sθ,αt := argmins L

α,α
M-DSM(s, p

θ
0)

and teacher score s∗t := argmins LDSM(s, p
∗
0):

Et∼[0,T]

[
dDKL(α · pθt + (1− α) · p∗t ||p∗t)

dθ

]
= Et∼[0,T]Ez∼pZ ,xθ

0=Gθ(z),xθ
t∼pθt

[
α(sθ,αt (xθt)− s∗t (x

θ
t))

dGθ
dθ

]
.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

In the proof below, we show that use of coefficients α ̸= β in the fake model loss leads to the total
collapse of a generator. The proof itself follows the work (Wang et al., 2023).

Proof. We aim to minimize KL divergence between generated distribution pθ0 and the real data p∗0

min
pθ0

E(pθ0) := Et∼[0,T]

[
DKL(α · pθt + (1− α) · p∗t ||p∗t)

]
.

First, we use (Wang et al., 2023, Lemma 1) which says that, for any two distributions p, q ∈ P(RD)
and point x ∈ RD, we have(

δDKL(q||p)
δq

)
[x] = log q(x)− log p(x) + 1.

Second, for the parametrization xθ0 = Gθ(z), z ∼ pZ and a fixed point xt, we have (Wang et al.,
2023, Lemma 2)

δpθt (xt)

δpθ0
[θ] =

∫
z

pθt (xt|xθ0)pZ(z)dz.

It allows us to obtain

δE(pθ0)

δpθ0
[θ] = Et

δDKL(

=:qt︷ ︸︸ ︷
α · pθt (·) + (1− α) · p∗t (·)||p∗t (·))

δpθ0
[θ]

= Et
∫
δDKL(qt||p∗t)

δqt
[xt] ·

δqt
δpθt

[xt] ·
δpθt (xt)

δpθ0
[θ] · dxt

= Et
∫ [

log(α · pθt (xt) + (1− α) · p∗t (xt))− log(p∗t (xt)) + 1
]
· α ·

∫
z

pθt (xt|xθ0)pZ(z)dz · dxt

= Et,ϵ,z[α log(α · pθt (xθt) + (1− α) · p∗t (xθt))− α log(p∗t (x
θ
t)) + α]

= Et,ϵ,z[α log

(
α · p

θ
t (x

θ
t)

p∗t (x
θ
t)

+ (1− α)

)
+ α], (26)

where xθ0 = Gθ(z), x
θ
t = xθ0 + σtϵ, ϵ ∼ N (0, I). Finally, we take derivative w.r.t. θ from (26):

∇θ
δE(pθ0)

δpθ0
[θ] = Et,ϵ,z

[
α · ∇xθ

t
log

(
α · p

θ
t (x

θ
t)

p∗t (x
θ
t)

+ (1− α)

)
· ∂x

θ
t

∂θ

]
= Et,ϵ,z

[
α · ∇xθ

t
log

(
α · p

θ
t (x

θ
t)

p∗t (x
θ
t)

+ (1− α)

)
· ∂Gθ(z)

∂θ

]

= Et,ϵ,z

α2
∇xθ

t

pθt (x
θ
t)/p∗t (x

θ
t)

α · p
θ
t (x

θ
t)

p∗(xθ
t)

+ (1− α)
· ∂Gθ(z)

∂θ

 . (27)

Now, we show how to obtain unbiased estimate of this gradient. We minimize the following loss
function over the fake model s:

Lα,αM−DSM (s, pθ0) := α · Et∼[0,T]Exθ
t∼pθt ,xθ

0∼pθ0(·|xt)

[
∥st(xθt)− sθ(xθt |xθ0)∥2

]
+ (1− α) · Et∼[0,T]Ex∗

t∼p∗t ,x∗
0∼p∗0(·|x∗

t)

[
∥st(x∗t)− s∗t (x

∗
t |x∗0)∥2

]
.

This loss is equivalent to the following sequence

min
s

{
αEt∼[0,T]Exθ

t∼pθt ∥st(x
θ
t)− sθt (x

θ
t)∥2 + (1− α)Et∼[0,T]Ex∗

t∼p∗t ∥st(x
∗
t)− s∗t (x

∗
t)∥2

}
,

min
s

{
αEt∼[0,T]Exθ

t∼pθt ∥st(x
θ
t)−∇xθ

t
log pθt (x

θ
t)∥2 + (1− α)Et∼[0,T]Ex∗

t∼p∗t ∥st(x
∗
t)−∇x∗

t
log p∗t (x

∗
t)∥2

}
,

min
s

Et∼[0,T]Ex∗
t∼p∗t

[
α∥st(x∗t)−∇ log pθt (x

∗
t)∥2

pθt (x
∗
t)

p∗t (x
∗
t)

+ (1− α)∥st(x∗t)−∇ log p∗t (x
∗
t)∥2

]
.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

The optimal solution sθ,α of this quadratic minimization for each point xt and time moment t is

sθ,αt (xt) =
α
pθt (xt)
p∗t (xt)

∇xt
log pθt (xt) + (1− α)∇xt

log p∗t (xt)

α
pθt (xt)
p∗t (xt)

+ (1− α)
.

Thus, we have the following estimate with modified student score sθ,α and teacher score s∗t (xt) :=
∇xt

log p∗t (xt)

sθ,αt (xt)− s∗t (xt) =
α
pθt (xt)
p∗t (xt)

∇xt log p
θ
t (xt) + (1− α)∇xt log p

∗
t (xt)

α
pθt (xt)
p∗t (xt)

+ (1− α)
−∇xt

log p∗t (xt)

=
α
pθt (xt)
p∗t (xt)

(∇xt log p
θ
t (xt)−∇xt log p

∗
t (xt))

α
pθt (xt)
p∗t (xt)

+ (1− α)

=
α
pθt (xt)
p∗t (xt)

∇xt log
pθt (xt)
p∗t (xt)

α
pθt (xt)
p∗t (xt)

+ (1− α)
=

α∇xt
pθt (xt)/p∗t (xt)

α
pθt (xt)
p∗t (xt)

+ (1− α)
.

Hence, this estimate completely matches with required gradient (27):

(27) = Et,ϵ,z
[
α · (sθ,α(xθt)− s∗t (x

θ
t)) ·

∂Gθ(z)

∂θ

]
.

Use of other coefficients during student score optimization does not work. For the other student
scores sθ,α,βt := argmins L

α,β
M-DSM(s, pθ0), the estimate sθ,α,βt (xt)−∇xt

log p∗t (xt) does not lead to
the necessary difference ∇xt

log pθt (xt)−∇xt
log p∗t (xt|c) = 0. And the optimal generator collapses

due to large bias.

B REALUID ALGORITHM FOR FLOW MATCHING MODELS

We provide a practical implementation of our RealUID approach for FM. In the loss functions, we
retain only the terms dependent on the target parameters. For the fake model, we reformulate the
maximization objective as a minimization. We use alternating optimization, updating the fake model
K times per one student update for stability.

C UNIFIED INVERSE DISILLATION FOR BRIDGE MATCHING AND
STOCHASTIC INTERPOLANTS

C.1 BRIDGE MATCHING

Bridge Matching (Liu et al., 2022b; Peluchetti, 2023) is an extension of diffusion models specifically
design to solve data-to-data, e.g. image-to-image problems. Typically, the distribution pT is the
distribution of ”corrupted data” and p0 is the distribution of clean data, furthermore, there is some
coupling of clean and corrupted data π(x0, xT) with marginals p0(x0) and pT (xT). To construct
the diffusion which recovers clean data given a corrupted data, one first needs to build prior process
(which often is the same forward process used in diffusions):

dxt = ft(xt) + gtdwt,

where ft(·) is a drift function and gt is a time-dependent scalar noise scheduler. This prior process
defines conditional density pt(xt|x0) and the posterior density pt(xt|x0, xT) called ”diffusion bridge”.
To recover p0 from pT , one can use reverse-time SDE

dxt =
(
ft(xt)− g2t · vπ(xt)

)
dt+ gtdw̄t,

where the drift vπt (xt) is learned via solving of the bridge matching problem:

LBM(v, π) = Et∼[0,T],(x0,xT)∼π(x0,xT),xt∼pt(xt|x0,xT)

[
wt∥vt(xt)−∇xt

log pt(xt|x0)∥2
]
. (28)

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Algorithm 1 Real data modified Unified Inversion Distillation (RealUID) for Flow Matching

Input: teacher u∗, student generator Gθ, fake model uψ, real data p∗0, coefficients α, β ∈ (0, 1],
generator update steps K, number of iterations N , batch size B, fake model minimizer Optst,
generator minimizer Optgen, latent distribution pZ , noise distribution p1.

1: for n = 0, . . . , N − 1 do
2: Sample noise batch {x1,i}Bi=1 ∼ p1 and generated batch {xθ0,i = Gθ(zi)}Bi=1, zi ∼ pZ ;
3: Sample time batch {ti}Bi=1 ∼ U [0, 1] and calculate xθti,i = (1− ti)x

θ
0,i + tix1,i;

4: if student step (n%K ̸= 0) then
5: Sample real data batch {x∗0,i}Bi=1 ∼ p∗0 and calculate x∗ti,i = (1− ti)x

∗
0,i + tix1,i;

6: Update fake model parameters ψ via minimizer Optst step with gradients of

1

B

B∑
i=1

[
α∥uψ(ti, xsg[θ]ti,i

)− β

α
(x1,i − x

sg[θ]
0,i)∥2 + (1− α)∥uψ(ti, x∗ti,i)−

1− β

1− α
(x1,i − x∗0,i)∥2

]
;

7: else
8: Update generator parameters θ via minimizer Optgen step with gradients of

1

B

B∑
i=1

[
α∥u∗(ti, xθti,i)−

β

α
(x1,i − xθ0,i)∥2 − α∥usg[ψ](ti, xθti,i)−

β

α
(x1,i − xθ0,i)∥2

]
;

9: end if
10: end for

However, this reverse-time diffusion in general does not guarantee that the produced samples come
from the same coupling π(x0, xT) used for training. This happens only if π(x0, xT) solves entropic
optimal transport between p0 and pT . To guarantee the preservance of the coupling π(x0, xT), there
exists another version of Bridge Matching called either Augmented Bridge Matching or Conditional
Bridge Matching, which differs only by addition of a condition on xT to the drift function vt(xt, xT):

LABM(v, π) = Et∼[0,T],(x0,xT)∼π(x0,xT),xt∼p(xt|x0,xT)

[
wt∥vt(xt, xT)−∇xt

log pt(xt|x0)∥22
]
.

The learned conditional drift is then used for sampling via the reverse-time SDE starting from a given
xT ∼ pT :

dxt =
(
ft(xt)− g2t · vπt (xt, xT)

)
dt+ gtdw̄t.

C.2 STOCHASTIC INTERPOLANTS

The Stochastic Interpolants framework generalizes Flow Matching and diffusion models, constructing
a diffusion or flow between two given distributions p0 and pT . To do so, one needs to consider the
interpolation between any pair of points (x0, xT) which are sampled from the coupling π(x0, xT)
with marginals p0 and pT . The interpolation itself is given by formula

xt = I(t, x0, xT) + γtϵ, ϵ ∼ N (0, I), t ∈ [0, T],

where I(0, x0, xT) = x0, I(T, x0, xT) = xT , γ0 = γT = 0 and γt > 0 for all t ∈ (0, T). This
interpolant defines a conditional Gaussian path pt(xt|x0, xT). Note that in the original paper (Albergo
et al., 2023), the authors consider the time interval [0, 1], but those two intervals are interchangeable
by using a change of variable t′ = T

t . Thus, the ODE interpolation between p0 and pT is given by:

dxt = ut(xt)dt, x0 ∼ p0,

where ut(x, xT) := E[ẋt|xt = x] = E[∂tI(t, x0, xT) + γ̇ϵ|xt = x] is the unique minimizer of the
quadratic objective:

LSI(v, π) = Et∼[0,T],(x0,xT)∼π(x0,xT),(xt,ϵ)∼p(xt|x0,xT)

[
wt∥vt(xt, xT)− (∂tI(t, x0, xT) + γ̇tϵ))∥2

]
.

(29)
The authors also provide a way of matching the score and the SDE drift of the reverse process by
solving similar MSE matching problems.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Table 6: Ablation of the fine-tuning for αFT and βFT for unconditional (left) and conditional (right) generation.
Each cell reports the resulting FID score for the corresponding (αFT, βFT); “–” indicates the method did not
converge. Best results are bolded.

αFT/βFT 0.94 0.96 0.98 1.0

0.94 - - 2.07 2.03
0.96 - - - 2.11
0.98 2.07 - - -
1.0 - - - -

αFT/βFT 0.94 0.96 0.98 1.0

0.94 - - 1.96 1.91
0.96 - - - 1.96
0.98 1.95 - - -
1.0 - - - -

C.3 OBJECTIVE FOR UNIFIED INVERSE DISTILLATION FOR GENERAL DATA COUPLING

The essential difference of Bridge Matching and Stochastic Interpolants from diffusion models and
Flow Matching with a Gaussian path is that they additionally introduce coupling π(x0, xT) used to
sample xt and can work with conditional drifts.

This difference can be easily incorporated to our RealUID distillation framework just by parametrizing
the generator Gθ to output not the samples from the initial distribution pθ0, but from the coupling
πθ. One can do it by setting πθ(x0, xT) = pT (xT)π

θ
0(x0|xT), where conditional data distribution

πθ0(x0|xT) is parametrized by the student generator Gθ : Z × RD → RD conditioned on a sample
xT ∼ pT . This approach is specifically used in Inverse Bridge Matching Distillation (IBMD)
(Gushchin et al., 2024). Hence, our Universal Inverse Distillation objective can be written just by
substituting student distribution pθ0 by student coupling πθ, substituting real data p∗0 by real data
coupling π∗ and adding extra conditions.
Definition 5. We define Universal Matching loss with real data for general coupling on generated
data coupling πθ ∈ P(RD × RD) with α, β ∈ (0, 1]:

Lα,βR-UM-coup(f, π
θ) = α · Et∼[0,T]ExT∼pT ,xθ

0∼πθ
0(·|xT),xθ

t∼pθt (·|xθ
0,xT)

[
∥ft(xθt , xT)−

β

α
fθ(xθt |xθ0, xT)∥2

]
︸ ︷︷ ︸

generated data πθ term

+ (1− α) · Et∼[0,T]ExT∼pT ,x∗
0∼π∗

0 (·|xT),x∗
t∼p∗t (·|x0,xT)

[
∥ft(x∗t , xT)−

1− β

1− α
f∗t (x

∗
t |x∗0, xT)∥2

]
︸ ︷︷ ︸

real data π∗ term

.

And the corresponding Universal Inverse Distillation loss with real data for general coupling is:

min
θ

max
f

{Lα,βR-UID-coup(f, π
θ) := Lα,βR-UM-coup(f

∗, πθ)− Lα,βR-UM-coup(f, π
θ)}.

In case of coupling matchπθ = π∗, the RealUID loss for couplings attains its minimum, .i.e.,

min θ{Lα,βR-UM-coup(f
∗, πθ)−min f{Lα,βR-UM-coup(f, π

θ)}︸ ︷︷ ︸
≥0

} = Lα,βR-UM-coup(f
∗, π∗)−min f{Lα,βR-UM-coup(f, π

∗)}︸ ︷︷ ︸
=Lα,β

R-UM-coup(f
∗,π∗)

= 0.

D EXPERIMENTAL DETAILS

Training hyperparameters. We train with AdamW (Loshchilov & Hutter, 2017), using (β1, β2) =
(0, 0.999). The learning rate is 3× 10−5 for training from scratch and 1× 10−5 for fine-tuning. A
500-step linear warm-up is applied only when training from scratch. We use a batch size of 256 and
maintain an EMA of the generator parameters with decay 0.999. To regulate adaptation between the
generator and the fake model, the generator is updated once for every K = 5 updates of the fake
model, following DMD2 (Yin et al., 2024a). Additionally, at each optimization step we apply ℓ2
gradient-norm clipping with threshold 1.0 to both the generator and the fake model.

Training time. All distillation experiments were trained for 400,000 gradient updates, correspond-
ing to approximately 4.5 days. All finetuning experiments were conducted for 100,000 gradient
updates, which took a little more than 1 day, starting from the best distillation checkpoints. All

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

experiments were executed on a single Ascend910B NPU with 65 GB of VRAM memory. The
reported results are based on the checkpoints that achieved the best Fréchet Inception Distance (FID)
during training.

Codebase and Dataset. Building on the reference codebase of Tong et al. (2023), which serves as
our primary experimental infrastructure, we integrate the training algorithm described in Algorithm 1.
We evaluate the resulting approach on CIFAR-10 (32×32) under both conditional and unconditional
settings, benchmarking against established baselines.

Models Initialization and Generator Parametrization. The generatorGθ is initialized by replicat-
ing both the architecture and parameters of the teacher model f∗, while the fake model f is initialized
with random weights. We parameterize the generator using a residual formulation:

Gθ(z) = z + gθ(0, z),

where the input t = 0 corresponds to the fixed control input used in the teacher model f∗. Empirically,
we observe that this initialization strategy and parameterization lead to improved performance.

GAN details We integrate a GAN loss into our framework in line with SiD2A and DMD2 (Zhou
et al., 2024a; Yin et al., 2024a). In the original setup of Zhou et al. (2024a), the adversarial loss
employs a coefficient ratio of λDadv/λ

Gθ

adv = 102 (see Table 6 in Zhou et al. (2024a)), a choice that
poses practical difficulties due to the extreme imbalance between generator and discriminator losses.
To mitigate this issue, we adopt the formulation of Yin et al. (2024a), where the ratio is ≈ 3, and
evaluate different coefficient scales (see result in the Table 1).

Evaluation protocol. We evaluate image quality using the Fréchet Inception Distance (FID; Heusel
et al., 2017), computed from 50,000 generated samples following Karras et al. (2022; 2020; 2019). In
line with SiD (Zhou et al., 2024b), we periodically compute FID during distillation and select the
checkpoint achieving the minimum value. To ensure statistical reliability, we repeat the evaluation
over 3 independent runs—rather than 10, as in SiD—because the empirical variance of FID in our
experiments was below 0.01.

E THE USE OF LARGE LANGUAGE MODELS (LLMS)

Large Language Models were used only to check and correct grammar, as well as to rephrase short
parts of the text for improved clarity.

F ADDITIONAL RESULTS

F.1 FINE-TUNING ABLATION STUDY OF COEFFICIENTS αFT, βFT .

This section presents an ablation of the fine-tuning stage over the loss-balancing coefficients αFT and
βFT. Results are summarized in Table 6, where “–” denotes non-convergence. We observe that training
is highly sensitive to the choice of (αFT, βFT): many configurations do not converge, underscoring
the need for careful selection. Notably, the same set of (αFT, βFT) exhibit stable optimization and
yield improved FID for both conditional and unconditional CIFAR-10 generation.

F.2 EXAMPLE OF SAMPLES FOR DIFFERENT METHODS.

This section presents representative sample outputs from various studies conducted within the
RealUID framework.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Figure 4: Uncurated samples for unconditional generation by the one-step RealUID (α = 1.0, β =
1.0) trained on CIFAR-10. Quantitative results are reported in Table 2.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Figure 5: Uncurated samples for unconditional generation by the one-step RealUID (α = 1.0, β =
1.0) + GAN (λGθ

adv = 0.3, λDadv = 1) trained on CIFAR-10. Quantitative results are reported in Table 2.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Figure 6: Uncurated samples for unconditional generation by the one-step RealUID (α = 0.94, β =
0.96) trained on CIFAR-10. Quantitative results are reported in Table 2.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Figure 7: Uncurated samples for unconditional generation by the one-step RealUID (α = 0.94, β =
0.96 | αFT = 0.94, βFT = 1.0) trained on CIFAR-10. Quantitative results are reported in Table 2.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Figure 8: Uncurated samples for conditional generation by the one-step RealUID (α = 1.0, β = 1.0)
trained on CIFAR-10. Quantitative results are reported in Table 2.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Figure 9: Uncurated samples for conditional generation by the one-step RealUID (α = 1.0, β = 1.0)
+ GAN (λGθ

adv = 0.3, λDadv = 1) trained on CIFAR-10. Quantitative results are reported in Table 2.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Figure 10: Uncurated samples for conditional generation by the one-step RealUID (α = 0.98, β =
0.96) trained on CIFAR-10. Quantitative results are reported in Table 2.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

Figure 11: Uncurated samples for conditional generation by the one-step RealUID (α = 0.98, β =
0.96 | αFT = 0.94, βFT = 1.0) trained on CIFAR-10. Quantitative results are reported in Table 2.

32

	Introduction
	Backgrounds on training and distilling matching models
	Diffusion and Flow Models
	Universal loss for matching models
	Distillation of matching-based models
	GANs for real data incorporation

	Universal distillation of matching models with real data
	Universal Inverse Distillation
	Relation to prior distillation works
	Connection with Inverse Optimization
	RealUID: natural approach for real data incorporation

	Experiments
	Experimental Setup
	Benchmarking Methods under a Unified Experimental Configuration
	Benchmark performance and Computational comparisons

	Discussion, extension, future works
	Reproducibility statement.
	Theoretical proofs and extensions
	RealUID theoretical properties
	RealUID Distance Lemma 2
	Explanation of the choice of coefficients and

	General RealUID loss
	SiD with real data
	Normalized UID and RealUID losses for minimizing 2-distance
	DMD approach with real data

	RealUID Algorithm for Flow Matching models
	Unified Inverse Disillation for Bridge Matching and Stochastic Interpolants
	Bridge Matching
	Stochastic Interpolants
	Objective for Unified Inverse Distillation for general data coupling

	Experimental details
	The Use of Large Language Models (LLMs)
	Additional Results
	Fine-tuning ablation study of coefficients FT, FT.
	Example of samples for different methods.

