
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

UNIVERSAL INVERSE DISTILLATION FOR MATCHING
MODELS WITH REAL-DATA SUPERVISION (NO GANS)

Anonymous authors
Paper under double-blind review

ABSTRACT

While achieving exceptional generative quality, modern diffusion, flow, and other
matching models suffer from slow inference, as they require many steps of iterative
generation. Recent distillation methods address this by training efficient one-
step generators under the guidance of a pre-trained teacher model. However,
these methods are often constrained to only one specific framework, e.g., only to
diffusion or only to flow models. Furthermore, these methods are naturally data-
free, and to benefit from the usage of real data, it is required to use an additional
complex adversarial training with an extra discriminator model. In this paper, we
present RealUID, a universal distillation framework for all matching models that
seamlessly incorporates real data into the distillation procedure without GANs.
Our RealUID approach offers a simple theoretical foundation that covers previous
distillation methods for Flow Matching and Diffusion models, and is also extended
to their modifications, such as Bridge Matching and Stochastic Interpolants.

1 INTRODUCTION

In generative modeling, the goal is to learn to sample from complex data distributions (e.g., images),
and two powerful paradigms for it are the Diffusion Models (DM) and the Flow Matching (FM)
models. While they share common principles and are even equivalent under certain conditions
(Holderrieth et al., 2024; Gao et al., 2025), they are typically studied separately. Diffusion models
(Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2021) transform data into noise through
a forward process and then learn a reverse-time stochastic differential equation (SDE) to recover
the data distribution. Training minimizes score-matching objectives, yielding unbiased estimates of
intermediate scores. Sampling requires simulating the reverse dynamics, which is computationally
heavy but delivers high-quality and diverse results. Flow Matching (Lipman et al., 2023; Liu, 2022)
instead interpolates between source and target distributions by learning the vector field of an ordinary
differential equation (ODE). The field is estimated through unbiased conditional objectives, but the
resulting ODE often has curved trajectories, making sampling costly due to expensive integration.
Beyond these, Bridge Matching (Peluchetti, 2023; Liu et al., 2022b) and Stochastic Interpolants
(Albergo et al., 2023) generalize the framework and naturally support data couplings, which are
crucial for data-to-data translation. Since all of the above optimize conditional matching objectives
to recover an ODE/SDE for generation, we refer to them collectively as matching models.

Despite their success, matching models share a major drawback: sampling is slow, as generation
requires integrating many steps of an SDE or ODE. To address this, a range of distillation techniques
have been proposed to compress multi-step dynamics into efficient one-step or few-step generators.
Although matching models follow a similar mathematical framework, many distillation works
consider only one particular framework, e.g., only Diffusion Models (Zhou et al., 2024a;b), Flow
Matching (Huang et al., 2024), or Bridge Matching (Gushchin et al., 2025). Furthermore, these
distillation methods are data-free by construction and cannot benefit from the utilization of real data
without using additional GAN-based losses. Thus, the following problems remain:

1. Similar distillation techniques developed separately for similar matching models frameworks.

2. Absence of a natural way to incorporate real data in distillation procedures (without GANs).

Contributions. In this paper, we address these issues and present the following main contributions:

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

1. We present the Universal Inverse Distillation with real data (RealUID) framework for matching
models, including diffusion and flow matching models (§3) as well as Bridge Matching and
Stochastic Interpolants (Appendix C.). It unifies previously introduced Flow Generator Matching
(FGM), Score Identity Distillation (SiD) and Inverse Bridge Matching Distillation (IBMD) meth-
ods (§3.2) for flow, score and bridge matching models respectively, provides simple yet rigorous
theoretical explanations based on a linearization technique, and reveals the connections between
these methods and inverse optimization (§3.3).

2. Our RealUID introduces a novel and natural way to incorporate real data directly into the distilla-
tion loss, eliminating the need for extra adversarial losses which require additional discriminator
networks used in GANs from the previous works (§3.4).

2 BACKGROUNDS ON TRAINING AND DISTILLING MATCHING MODELS

We describe the Diffusion Models and Flow Matching frameworks (§2.1) and distillation methods for
them (§2.3). Then, we discuss how real data can be added to distilling methods via GANs (§2.4)

Preliminaries. We work on the D-dimensional Euclidean space RD. This space is equipped with
the standard scalar product ⟨x, y⟩ =

∑D
d=1 xdyd, the ℓ2-norm ∥x∥ =

√
⟨x, x⟩ and ℓ2-distance

∥x − y∥,∀x, y ∈ RD. We consider probability distributions from the set P(RD) of absolutely
continuous distributions with finite variance and support on the whole RD.

2.1 DIFFUSION AND FLOW MODELS

Diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2021) consider a forward
noising process that gradually transforms clean data p0 into a noise pT on the time interval [0, T]:

dxt = ft · xtdt+ gt · dwt, x0 ∼ p0,

where ft and gt are time-dependent scalars. This process defines a conditional distribution pt(xt|x0):
pt(xt|x0) = N (αtx0|σ2

t I), where

αt = exp

(∫ t

0

fs ds

)
, σt =

(∫ t

0

g2s exp

(
−2

∫ s

0

fu du

)
ds

)1/2

.

Each conditional distribution admits a conditional score function, describing it:
st(xt|x0) := ∇xt log pt(xt|x0) = −(xt − αtx0)/σ

2
t .

The reverse dynamics from the noise distribution pT to the data distribution p0 is provided by the
following reverse-time SDE:

dxt = (ft · xt − g2t · st(xt))dt+ gtdw̄t,

where st(xt) is the unconditional score function of pt(xt)=
∫
p(xt|x0)p(x0)dx0 given by st(xt)=

Ex0∼p0(·|xt)[st(xt|x0)]. This conditional expectation is learned via denoising score matching:

LDSM(s′, p0) = Et∼[0,T],x0∼p0,xt∼pt(·|x0)

[
wt∥s′t(xt)− st(xt|x0)∥22

]
, (1)

where wt are some positive weights. The reverse dynamics admits a probability flow ODE (PF-ODE):
dxt = (ft · xt − g2t · st(xt)/2)dt, ut(xt) := (ft · xt − g2t · st(xt)/2),

which provides faster inference than the SDE formulation.
Flow Matching framework (Lipman et al., 2023; Liu et al., 2023) constructs the flow directly by
learning the drift ut(xt). Specifically, for each data point x0 ∼ p0, one defines a conditional flow
pt(xt|x0) with the corresponding conditional vector field ut(xt|x0) generating it via ODE:

dxt = ut(xt|x0)dt.
Then to construct the flow between the noise pT and data p0, one needs to compute the unconditional
vector field ut(xt) = Ex0∼p0(·|xt)[ut(xt|x0)] which generates the flow pt(xt)=

∫
p(xt|x0)p(x0)dx0.

It can be done by solving the following Conditional Flow Matching problem:
LCFM(v, p0) = Et∼[0,T],x0∼p0,xt∼pt(xt|x0)

[
wt∥vt(xt)− ut(xt|x0)∥22

]
.

In practice, the most popular choice is the Gaussian conditional flows pt(xt|x0) = N (αtx0, σ
2
t I).

For this conditional flow samples can be obtained as xt = αtx0+σtϵ, ϵ ∼ N (0, I) and the conditional
drift can be calculated as ut(xt|x0) = α̇tx0 + σ̇tϵ.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

2.2 UNIVERSAL LOSS FOR MATCHING MODELS

From a mathematical point of view, it was shown in (Holderrieth et al., 2024; Gao et al., 2025) that
flow and diffusion models basically share the same loss structure. We recall this structure but use our
own notation. We call diffusion and flow models and their extensions as matching models.

Matching models work with a probability path {pt}t∈[0,T] on the time interval [0, T], trans-
forming the desired data p0 ∈ P(RD) to the noise pT ∈ P(RD). This path is built as a
mixture of simple conditional paths {pt(·|x0)}t∈[0,T] conditioned on samples x0 ∼ p0, i.e.,
pt(xt) =

∫
RD pt(xt|x0)p0(x0)dx0,∀xt ∈ RD. The path {pt}t∈[0,T] determines the function

fp0 : [0, T] × RD → RD which recovers it (e.g., score function or drift generating it). The
conditional paths also determine their own simple conditional functions fp0(·|x0) so that they ex-
press fp0t (xt) = Ex0∼p0(·|xt)f

p0
t (xt|x0), where p0(·|xt) denotes data distribution p0 conditioned

on the sample xt at time t. Since fp0 cannot be computed directly, it is approximated by function
f : [0, T]× RD → RD via minimizing the squared ℓ2-distance between the functions:

∥ft(xt)−fp0t (xt)∥2 = ∥ft(xt)−Ex0∼p0(·|xt)f
p0
t (xt|x0)∥2 ∝ Ex0∼p0(·|xt)∥ft(xt)−f

p0
t (xt|x0)∥2.

Definition 1. We define Universal Matching (UM) loss LUM(f, p0) that takes fake function f and
distribution p0 ∈ P(RD) as arguments and upon minimization over f returns the function fp0

LUM(f, p0):= Et∼[0,T]Ex0∼p0,xt∼pt(·|x0)∥ft(xt)− fp0t (xt|x0)∥2, fp0:=argmin fLUM(f, p0), (2)

where t ∼ [0, T] denotes uniform or weighted sampling of time t from the interval [0, 1].

2.3 DISTILLATION OF MATCHING-BASED MODELS

To solve the long inference problem of matching models, a line of distillation approaches sharing
similar principles was introduced: Score Identity Distillation (SiD) (Zhou et al., 2024b), Flow
Generator Matching (FGM) (Huang et al., 2024), and Inverse Bridge Matching Distillation
(IBMD) (Gushchin et al., 2025), for diffusion, flow, and bridge matching models, respectively.

The Score Identity Distillation (SiD) approach (Zhou et al., 2024b;a) trains a student generator
Gθ : Z → RD (parameterized by θ) that produces a distribution pθ0 from a latent distribution pZ
on Z . This approach minimizes the squared ℓ2-distance between the known teacher score function
s∗ := argmins′ LDSM(s′, p∗0) on real data p∗0 and the unknown student score function sθ:

Et∼[0,T]Exθ
t∼pθt ∥s

θ
t (x

θ
t)− s∗t (x

θ
t)∥2, s.t. sθ = argmin s′LDSM(s′, pθ0), (3)

where pθt is the forward noising process for the generator distribution pθ0. The authors propose the
tractable loss without argmin and with parameter αSiD to approximate the real gradients of (3) :

LSiD(θ) := Et∼[0,T]Ez∼pZ ,xθ
0=Gθ(z),xθ

t∼pθt [−2ωtαSiD∥s∗t (xθt)− s
sg[θ]
t (xθt)∥2

+ 2ωt⟨s∗t (xθt)− s
sg[θ]
t (xθt), s

∗
t (x

θ
t)− sθt (x

θ
t |xθ0)⟩], sθ=argmin s′LDSM(s′, pθ0),(4)

where gradients w.r.t. θ are not calculated for the variables under stop-gradient sg[·] operator. The
SiD pipeline is two alternating steps: first, refine the fake score ssg[θ] by minimizing the DSM loss
(1) on new pθ0 from the previous step. Then, update the generator Gθ using the gradient of (4) with
the frozen ssg[θ]. The αSiD parameter is chosen from the range [0.5, 1.2], although theoretically only
the value αSiD = 0.5 restores true gradient as we show in our paper.

The authors of FGM considered a similar approach, but for the Flow Matching models. Specifically,
they also use a generator Gθ to produce a distribution pθ0, but instead of denoising score matching
loss, consider conditional FM loss. The method minimizes the squared ℓ2-distance between the fields:

Et∼[0,T]Ext∼pθt ∥u
θ
t (xt)− u∗t (xt)∥2, s.t. uθ := argmin vLCFM(v, pθ0), (5)

where the interpolation path {pθt }t∈[0,T] is constructed between the noise pT and generator pθ0
distributions. To avoid the same problem of differentiating through argmin operator as in SiD, the
authors derive a tractable loss whose gradients match those of (5):

LFGM(θ) := Et∼[0,T]Ez∼pZ ,xθ
0=Gθ(z),xθ

t∼pθt [−∥u∗t (xθt)− u
sg[θ]
t (xθt)∥2 (6)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

+ 2⟨u∗t (xθt)− u
sg[θ]
t (xθt), u

∗
t (x

θ
t)− uθt (x

θ
t |xθ0)⟩], s.t. uθ = argmin vLCFM(v, pθ0).

We consider distillation of matching models working with data couplings such as Inverse Bridge
Matching Distillation for Bridge Matching models and Stochastic Interpolants in Appendix C.
Notably, all these approaches (SiD, FGM, IBMD) are data-free, i.e., they do not use any real data
from p∗0 to train a generator by construction of the used objective functions.

2.4 GANS FOR REAL DATA INCORPORATION

FGM and SiD methods exhibit strong performance in one-step generation tasks. However, the
generator in these methods is trained under the guidance of the teacher model alone. This means the
generator cannot get more information about the real data that the teacher has learned. For example,
it cannot correct the teacher’s errors. To address this, recent works (Yin et al., 2024a; Zhou et al.,
2024a) propose adding real data via a GAN framework (Goodfellow et al., 2014). In such approaches,
the encoder of fake model f is typically augmented with an additional head to serve as a discriminator
D with the following adversarial loss:

Ladv = Et∼[0,T]

[
Ex∗

t∼p∗t
[
lnDt

(
x∗t
)]

+ Exθ
t∼pθt

[
ln[1−Dt

(
xθt
)
]
]]
. (7)

The overall objective in such hybrid frameworks (Zhou et al., 2024a) consists of:

Generator loss:
LGθ

= λdistLGθ

FGM/SiD + λGθ

advL
Gθ

adv, (8)

Fake model loss:
LD = λdistLfFGM/SiD + λDadvLDadv. (9)

Here, λdist, λGθ

adv, and λDadv are weighting coefficients for the distillation and adversarial components.
Despite empirical gains, the GAN-augmented formulation entails nontrivial costs: it necessitates
architectural modifications, such as an auxiliary discriminator head, and inherits the well-known
optimization problems of adversarial training, such as non-stationary objectives, mode collapse, and
sensitivity to training dynamics.

3 UNIVERSAL DISTILLATION OF MATCHING MODELS WITH REAL DATA

In this section, we present our novel RealUID approach for matching models enhanced by real data.
First, we show that the previous data-free distillation methods can be unified under the single UID
framework (§3.1). Then, we describe how this framework is connected to prior works (§3.2) and
inverse optimization (§3.3). Using this intuition, we propose and discuss the real data modified UID
framework (RealUID) with a natural way to incorporate real data without GANs (§3.4).

3.1 UNIVERSAL INVERSE DISTILLATION

To learn a complex real data distribution p∗0, one usually trains a teacher function f∗ :=
argminf LUM(f, p∗0) which is then used in a multi-step sampling procedure (Def. 1). To avoid
time-consuming sampling, one can train a simple student generator Gθ : Z → RD with parameters
θ to reproduce the real data p∗0 from the distribution pZ on the latent space Z . The teacher function
serves as a guide that shows how close the student distribution pθ0 and the real data p∗0 are. FGM and
SiD methods (§2.3) train such generator via minimizing the squared ℓ2-distance between the known
teacher function f∗ and an unknown student function fθ := argminf LUM(f, pθ0):

Et∼[0,T]Exθ
t∼pθt ∥f

∗
t (x

θ
t)− fθt (x

θ
t)∥2 = Et∼[0,T]Exθ

t∼pθt ∥f
∗
t (x

θ
t)− Exθ

0∼pθ0(·|xθ
t)
fθt (x

θ
t |xθ0)∥2

= Et∼[0,T]Exθ
t∼pθt [∥f

∗
t (x

θ
t)∥2]− 2Et∼[0,T]Exθ

t∼pθt ,xθ
0∼pθ0(·|xθ

t)
[⟨f∗t (xθt), fθt (xθt |xθ0)⟩]

+Et∼[0,T]Exθ
t∼pθt [∥Exθ

0∼pθ0(·|xθ
t)
[fθt (x

θ
t |xθ0)]∥2]︸ ︷︷ ︸

not tractable

, (10)

where {pθt }t∈[0,T] is the probability path constructed between generator distribution pθ0 and noise pT .
The problem is that the final term (10) cannot be calculated directly. This is because it involves the

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

math expectation inside the squared norm, unlike the other terms which are linear in the expectations.
It means that a simple estimate of ∥fθt (xθt |xθ0)∥2 using samples xθ0 and xθt will be biased. Moreover,
to differentiate through the math expectation inside the norm, an explicit dependence of pθ0 on θ is
required, while, in practice, usually only dependence of samples xθ0 on θ is known.

Making loss tractable via linearization. To resolve this, we use a linearization technique. For a
fixed point xθt and time t, we reformulate the squared norm as a maximization problem. We achieve
this by introducing an auxiliary function δ : [0, T]× RD → RD and using the identity

∥f∗t (xθt)− fθt (x
θ
t)∥2 = max

δt(xθ
t)

{
−∥δt(xθt)∥2 + 2⟨δt(xθt), f∗t (xθt)− fθt (x

θ
t)⟩
}

= max
δt(xθ

t)
Exθ

0∼pθ0(·|xθ
t)

{
−∥δt(xθt)∥2 + 2⟨δt(xθt), f∗t (xθt)⟩ − 2⟨δt(xθt), fθt (xθt |xθ0)⟩

}
. (11)

The reparameterization δ = f∗ − f with a fake function f : [0, T]× RD → RD allows to get:

(11)=max
ft(xθ

t)
Exθ

0∼pθ0(·|xθ
t)

{
−∥f∗t (xθt)− ft(x

θ
t)∥2+ 2⟨f∗t (xθt)− ft(x

θ
t), f

∗
t (x

θ
t)− fθt (x

θ
t |xθ0)⟩

}
(12)

=max
ft(xθ

t)
Exθ

0∼pθ0(·|xθ
t)

{
∥f∗t (xθt)− fθt (x

θ
t |xθ0)∥2︸ ︷︷ ︸

=LUM(f∗,pθ0)

− ∥ft(xθt)− fθt (x
θ
t |xθ0)∥2︸ ︷︷ ︸

=LUM(f,pθ0)

}
. (13)

Since now all expectations are linear and can be estimated, the final step is to compute the expectation
over all points xθt and times t and minimize it over the generator distribution pθ.

Summary. We build a universal distillation framework as a single min-max optimization (14),
implicitly minimizing squared ℓ2-distance between teacher and student functions. When real and
generated probability paths match, these functions match as well, and the distance attains its minimum.

Theorem 1 (Real data generator minimizes UID loss). Let teacher f∗ := argminf LUM(f, p
∗
0)

be the minimizer of UM loss (Def. 1) on real data p∗0 ∈ P(RD). Then real data generator Gθ∗ , s.t.
pθ

∗

0 = p∗0, is a solution to the min-max optimization of Universal Inverse Distillation (UID) loss
LUID(f, p

θ
0) over fake function f and generator distribution pθ0

min θmax f
{
LUID(f, p

θ
0) := LUM(f

∗, pθ0)− LUM(f, p
θ
0)
}
. (14)

Lemma 1 (UID loss minimizes squared ℓ2-distance). Maximization of UID loss (14) over fake
function f retrieves student function fθ := argmin fLUM(f, p

θ
0) and represents the squared ℓ2-

distance between it and the teacher f∗:

fθ = argmax
f

LUID(f, p
θ
0), max

f
LUID(f, p

θ
0) = Et∼[0,T]Exθ

t∼pθt ∥f
∗
t (x

θ
t)− fθt (x

θ
t)∥2. (15)

Note that the distance (15) mostly captures mismatches for the points from generator main domain
which do not cover real data, i.e., points xθt s.t. pθ(xθt) ≫ 0, p∗(xθt) → 0. For out-of-domain points
pθt (x

θ
t) → 0, the generator cannot receive feedback, because distance (15) for xθt also vanishes.

Moreover, if teacher function is inaccurate, the generator will learn it with all inaccuracies.

3.2 RELATION TO PRIOR DISTILLATION WORKS

FGM and SiD approaches formulate distillation as a constraint minimization of generator loss subject
to the optimal fake model. For generator updates, the explicit UID loss (12) matches SiD loss (4)
with αSiD = 0.5 and FGM loss (6) up to weighting. For a fake model, it also minimizes the UM loss
on the generated data. The work (Gushchin et al., 2025) was the first to formulate the distillation of
Bridge Matching models in their IBMD framework as a min-max optimization of the single loss (13).

Although previous works derive the same losses, we give a new, simple explanation using a lin-
earization technique. This technique is more powerful and general for handling intractable math
expectations than complex proofs for concrete models from FGM, SiD, IBMD. Furthermore, it allows
adding real data directly into the distillation loss (see §3.4 and Appendix A.2) and extending it, e.g.,
deriving a loss for minimizing the ℓ2-distance instead of the squared one (Appendix A.4).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Generator

Fake model

Teacher model

Interpolation

🔥🔥

❄️

❄️

🔥

🔥

Figure 1: Pipeline of our RealUID distillation framework (§3) with the direct incorporation of real data p∗0
adjusted by hyperparameters α, β ∈ (0, 1]. In the figure, it is depicted for Flow Matching models predicting
denoised samples. It distills a costly frozen teacher model f∗ (blue) into a one-step generator Gθ (red) upon
min-max optimization of Lα,β

R-UID(f, p
θ
0) loss over fake model f (green) and generator distribution pθ0 with

parameters θ. We use alternating optimization, updating the fake model several times per one generator update
for stability. Algorithm’s pseudocode is located in Appendix B.

3.3 CONNECTION WITH INVERSE OPTIMIZATION

We derived UID loss (14) by minimizing the squared ℓ2-distance between teacher and student
functions. However, this loss admits another interpretation: its structure is typical for inverse
optimization (Chan et al., 2025). In this framework, one considers a parametric family of optimization
problems minf L(f, θ) with objective loss L(f, θ) depending on argument f and parameters θ. The
goal is to find the parameters θ∗ that yield a known, desired solution f∗ = argminf L(f, θ∗). One
standard way to recover the required parameters is to solve the same min-max problem as (14):

min θmax f {L(f∗, θ)− L(f, θ)} ∼ min θ
{
L(f∗, θ)−min f{L(f, θ)}

}
. (16)

The inverse problem (16) always has minimum 0 which is attained when θ = θ∗.

Although the inverse optimization can handle arbitrary losses L, it does not describe the properties of
the optimized functions or how to find solutions. In our case, we show that all losses are tractable
and minimize the distances between teacher and student functions (Lemmas 1 and 2). Furthermore,
in Appendix A, we provide and justify a list of extensions of our framework that cannot be stated as
inverse problems. All our proofs are self-contained and do not rely on inverse optimization, which
only provides intuition and understanding.

3.4 REALUID: NATURAL APPROACH FOR REAL DATA INCORPORATION

Previous distillation methods add real data during training only via GANs with extra discriminator
and adversarial loss. We propose a simpler, more natural way that requires no extra models or losses.

Based on intuition from inverse optimization (§3.3), we see that the min-max inverse problem (16) is
compatible with other losses. This allows us to redesign the UM loss (2) to incorporate real data into
it. A key constraint is that the loss must still yield the same teacher upon minimization on the real
data. Thus, we derive a novel Unified Matching loss with real data - a weighted sum of two UM-like
losses on generated and real data parameterized by α, β ∈ (0, 1] which control the weights.

Definition 2. We define Universal Matching loss with real data on generated data pθ0 ∈ P(RD)
with α, β ∈ (0, 1] (when α = 1 the real data term becomes 2(1− β)⟨ft(x∗t), f∗t (x∗t |x∗0)⟩):

Lα,βR-UM(f, p
θ
0) = α · Et∼[0,T]Exθ

0∼pθ0,xθ
t∼pθt (·|xθ

0)

[
∥ft(xθt)−

β

α
fθ(xθt |xθ0)∥2

]
︸ ︷︷ ︸

generated data pθ0 term

+ (1− α) · Et∼[0,T]Ex∗
0∼p∗0 ,x∗

t∼p∗t (·|x∗
0)

[
∥ft(x∗t)−

1− β

1− α
f∗t (x

∗
t |x∗0)∥2

]
︸ ︷︷ ︸

real data p∗0 term

. (17)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

RealUM loss (17) for all α, β and UM loss (2) yield the same teacher when input distribution is
real data p∗0, i.e., argminf L

α,β
R-UM(f, p∗0) = argminf LUM(f, p∗0) = f∗. Hence, the min-max inverse

scheme (16) with RealUM loss and the old teacher f∗ will still have a real data generator as a solution:

min θ{Lα,βR-UM(f∗, pθ0)−min f{Lα,βR-UM(f, pθ0)}︸ ︷︷ ︸
≥0

} = Lα,βR-UM(f∗, p∗0)−min f{Lα,βR-UM(f, p∗0)}︸ ︷︷ ︸
=Lα,β

R-UM(f∗,p∗0)

= 0.

But now distillation loss will incorporate real data through the real data terms of Lα,βR-UM(f, pθ0).

Theorem 2 (Real data generator minimizes RealUID loss). Let teacher f∗ :=
argminf LUM(f, p

∗
0) be the minimizer of UM loss on real data p∗0. Then real data generator Gθ∗ , s.t.

pθ
∗

0 = p∗0, is a solution to the min-max optimization of Universal Inverse Distillation loss with real
data (RealUID) Lα,βR-UID(f, p

θ
0) over fake function f and generator distribution pθ0:

min θmax f

{
Lα,βR-UID(f, p

θ
0) := Lα,βR-UM(f

∗, pθ0)− Lα,βR-UM(f, p
θ
0)
}
. (18)

We provide analysis of RealUID in Appendix A.1, below we highlight the most important findings.

Role of coefficients α, β. The RealUID framework uses real data samples only to minimize RealUM
loss for the fake model. As shown in Lemma 2, RealUID also implicitly minimizes the rescaled
distance (20) between the teacher and generator functions. This distance is still minimal when
pθ0 = p∗0, alternatively proving Theorem 2. The proof of Lemma 2 is located in Appendix A.1.

Lemma 2 (Distance minimized by RealUID loss). Maximization of RealUID loss Lα,βR-UID (17)
over fake function f returns the weighted sum between the teacher f∗ and student function fθ :=
argminf LUM(f, p

θ
0) and represents the weighted squared ℓ2-distance between them:[

argmax
f

Lα,βR-UID(f, p
θ
0)

]
(t, xt) =

(1− β)p∗t (xt) · f∗t (xt) + βpθt (xt) · fθt (xt)
(1− α)p∗t (xt) + αpθt (xt)

, (19)

max
f

Lα,β

R-UID(f, p
θ
0)=Et∼[0,T]Ex∗

t ∼p∗t

[
∥ β

α · [p∗t (x
∗
t)f

∗
t (x

∗
t) − pθt (x

∗
t)f

θ
t (x

∗
t)] + (pθt (x

∗
t) − p∗t (x

∗
t)) · f

∗
t (x

∗
t)∥

2

p∗t (x
∗
t)((1 − α)p∗t (x

∗
t) + αpθt (x

∗
t))/α

2

]
. (20)

With the help of real data, the distance (20) captures mismatches for both incorrectly generated
points from the generator’s main domain and the real data points, which the generator fails to
cover. Thus, unlike data-free UID loss (Lemma 1), RealUID loss provides the generator with
feedback also on the real data domain it needs to cover (see Appendix A.1.2). Moreover, if teacher
function is inaccurate, RealUID can now provably fix teacher’s errors (see Appendix A.1.3).

Choice of coefficients α, β. Lemma 2 shows that, instead of values α and β, actually the values
α and β/α determine the balance between real and generated data in the minimized distance (20).
Furthermore, coefficient α only sets the general scaling of the distance, while β/α plays the most
important role, as it determines the relation between fθt and f∗t inside the distance.

Value β/α = 1 yields the distance identical to the data-free distance (15) up to scaling. Even when
α = β < 1 and real data is formally added, it has no, or negative, effect on the generator. Excessively
low α and β diminish the effect of the generated data term fθt in the optimal fake (19), leading to
vanishing gradients. The same issue occurs with β/α ≪ 1 in (20), while β/α ≫ 1 diminish the effect
of the right real data term f∗t . Plus, configurations β < α = 1 may be unstable due to out-of-domain
samples. See Appendix A.1.2 for more details of the distance analysis. Moreover, if teacher function
is inaccurate, only the choice β/α ̸= 1 can fix teacher’s errors (see Appendix A.1.3).
Hence, good coefficients α, β ∈ (0, 1] can be chosen by first finding good β/α ̸= 1, as it has the
largest impact, and then adjusting α < 1. Both β/α and α should be close to 1.

Comparison with GAN-based methods. Unlike SiD and FGM with GANs, we do not use extra
adversarial losses and discriminator to incorporate real data. We only modify UM loss, preserving its
core structure and fake model architecture. While general adversarial loss is unrelated to the main
distillation loss and has uninterpretable scaling hyperparameters, our RealUID loss and weighting

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Generation α⧹β 0.94 0.96 0.98 1.0

Unconditional

0.94 2.66 2.28 2.58 2.98
0.96 2.37 2.58 2.29 2.65
0.98 2.97 2.33 2.62 2.38
1.0 5.81 4.51 3.29 2.58

Conditional

0.94 2.35 2.19 2.25 2.47
0.96 2.09 2.32 2.13 2.27
0.98 2.34 2.02 2.26 2.05
1.0 4.32 3.27 2.43 2.21

Generation λGθ

adv λDadv FID (↓)

Unconditional

0.1 0.3 2.42
0.3 1 2.29
1 3 2.39
5 15 2.54

Conditional

0.1 0.3 2.22
0.3 1 2.12
1 3 2.15
5 15 2.40

Table 1: Ablation studies of (α, β) coefficients in the left table and adversarial weighting parameters
(λ

Gθ
adv , λ

D
adv) in the right table for CIFAR-10 in both unconditional and conditional settings. The baseline

RealUID (α = 1.0, β = 1.0) does not use real data. Configurations that outperform the baseline are high-
lighted. All values report FID ↓, where lower is better. The best configuration in each case is bolded.

coefficients α, β ∈ (0, 1] come naturally from the data-free UID loss. The original UID loss (14),
equivalent to SiD (4) with αSiD = 0.5 and FGM (6), is obtained when α = β = 1.

Extension for Bridge Matching and Stochastic Interpolants framework. In Appendix C, we
demonstrate that our framework can be easily extended to other matching models by parametrizing
the generated data coupling πθ(x0, xT) instead of the data distribution pθ0.

4 EXPERIMENTS

All implementations were developed in PyTorch, and the code will be made publicly available.

This section provides an ablation study and evaluation of our RealUID, assessing both its performance
and computational efficiency. We begin in (§4.1) by detailing the experimental setup. In (§4.2), we
show that our incorporation of real data via coefficients α, β improves performance, speeds up conver-
gence, and enables effective fine-tuning. In (§4.3), we assess the benchmark performance and compu-
tational demands of RealUID relative to SOTA methods. Additional experimental details and results
are provided in Appendix D and Appendix E, respectively.

4.1 EXPERIMENTAL SETUP

Datasets and Evaluation Protocol. Due to computational resources constraints, the experiments
were conducted only on the conditional/unconditional CIFAR-10 dataset with 32 × 32 resolution
(Krizhevsky et al., 2009) and on the CelebA dataset with 64× 64 resolution (Liu et al., 2015), see
Appendix E.2. In line with the prior works (Karras et al., 2019; 2022), we report test FID scores
(Heusel et al., 2017), computed using 50k generated samples.
Implementation Details. In contrast to prior studies (Zhou et al., 2024b;a; Huang et al., 2024),
which employ the computationally demanding EDM architecture (Karras et al., 2022), our work
adopts a more lightweight alternative (Tong et al., 2023) due to resource constraints (see (§4.3) for
efficiency analysis). We also trained our own flow-matching model, denoted by f∗, which served as
the teacher. Further implementation details are provided in Appendix D.

4.2 BENCHMARKING METHODS UNDER A UNIFIED EXPERIMENTAL CONFIGURATION

We evaluate RealUID under a unified experimental protocol (fixed architecture and implementation).
We begin by (i) conducting an ablation over α, β to assess the influence of real-data incorporation. We
then (ii) compare RealUID to a GAN-based alternative, showing that RealUID achieves comparable
or superior accuracy. Furthermore, (iii) we analyze convergence, indicating that RealUID variants
with real data train substantially faster than baselines without real-data. Finally, (iv) we explore a
fine-tuning stage initialized from strong RealUID checkpoints, showing further performance gains.

Ablation study of coefficients α, β. The search for optimal α and β parameters was restricted to
values near 1, specifically α, β ∈ [0.9, 1.0] with increments of 0.02 to cover the full grid. Setting these
parameters too low prevents the student from accurately capturing the true generator gradient, which

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Table 2: This table presents the results of our ablation study on the RealUID framework, evaluated using the
FID metric under both unconditional and conditional generation setups. The Teacher Flow model with 100
NFE is reported as a reference. The performance of the baseline RealUID (α = 1.0, β = 1.0) without real-data
incorporation is indicated in italic. For emphasis, we underline the two counterparts that incorporate real data:
the GAN-based and our RealUID methods. The best-performing configurations, obtained via an additional
fine-tuning stage with adjusted (αFT, βFT), are highlighted in bold. Qualitative results are presented in § E.3.

Model FID (↓)

Teacher Flow (NFE=100) 3.57
RealUID (α = 1.0, β = 1.0) 2.58
RealUID (α = 1.0, β = 1.0) + GAN (λGθ

adv = 0.3, λDadv = 1) 2.29
RealUID (α = 0.94, β = 0.96) 2.28
RealUID (α = 0.94, β = 0.96 | αFT = 0.94, βFT = 1.0) 2.03

Model FID (↓)

Teacher Flow (NFE=100) 5.56
RealUID (α = 1.0, β = 1.0) 2.21
RealUID (α = 1.0, β = 1.0) + GAN (λGθ

adv = 0.3, λDadv = 1) 2.12
RealUID (α = 0.98, β = 0.96) 2.02
RealUID (α = 0.98, β = 0.96 | αFT = 0.94, βFT = 1.0) 1.91

50 100 150 200 250 300 350
Iterations (×10³)

2

4

6

8

10

12

14

FI
D

fin
e-

tu
ni

ng
 st

ag
e

3.57
2.29

Unconditional = 1.0, = 1.0
= 0.94, = 0.96
FT = 0.94, FT = 1.0

50 100 150 200 250 300 350
Iterations (×10³)

2

3

4

5

6

7

FI
D

fin
e-

tu
ni

ng
 st

ag
e

5.56

2.12

Conditional = 1.0, = 1.0
= 0.98, = 0.96
FT = 0.94, FT = 1.0

Figure 2: Evolution of FID during CIFAR-10 distillation for (i) the baseline RealUID (α = 1.0, β = 1.0), (ii)
the best-performing RealUID configurations, and (iii) subsequent fine-tuning, evaluated in both unconditional
and conditional settings. The performances of Teacher Flow and UID+GAN are indicated by horizontal
reference lines in their respective colors. Methods that incorporate real data—best-performing RealUID and
UID+GAN—are highlighted in green to facilitate comparison.

in turn leads the generator to produce noisy samples. The results are reported in Table 1. As a baseline,
we highlight the model without data incorporation our RealUID (α = 1.0, β = 1.0). As shown in the
table, using real data with α = β < 1.0 or with α = 1.0, β < 1.0 or with substantially different α and
β consistently degraded performance. In contrast, parameter settings close to the diagonal α/β = 1.02
or α/β = 0.98 produced improved results, with the best performance achieved by our RealUID (α =
0.94, β = 0.96) for the unconditional case and our RealUID (α = 0.98, β = 0.96) for the conditional
case. Note that the practical results for various α, β match the theoretical description from (§3.4.)

Comparison with GAN-based method. We integrated the GAN-based approach proposed by
Zhou et al. (2024a) into our experimental framework as an alternative method for incorporating real
data, enabling a direct comparison with our RealUID formulation. Specifically, we combined the
GAN loss with the baseline RealUID (α = 1.0, β = 1.0). As shown in Table 1, the best-performing
configurations are achieved with GAN losses (λGθ

adv = 0.3, λDadv = 1). While this setup performs
comparably to RealUID (α = 0.94, β = 0.96) in the unconditional setting, it remains clearly inferior
to RealUID (α = 0.98, β = 0.96) in the conditional case.

Convergence Speed. Our RealUID (α, β) with parameters, which are highlighted in Table 1,
achieves faster convergence than the baseline RealUID (α = 1.0, β = 1.0). For clarity, we present
qualitative comparisons of the best-performing configurations against their baselines in Figure 2. As
shown in figure, the best RealUID configurations reach the saturated performance level of the baseline
after ∼100k iterations, whereas the baseline requires ∼300k iterations to achieve comparable metrics.
These results demonstrate that incorporating real data substantially accelerates convergence.

Fine-tuning stage. We observe that the RealUID framework offers substantial flexibility for fine-
tuning. In this procedure, the generatorGθ is initialized from the best-performing RealUID checkpoint
obtained during training from scratch, while the fake model f is initialized from the teacher model
f∗. Fine-tuning then proceeds with new hyperparameter values αFT and βFT, allowing for refined
control over the degree of real-data incorporation during this stage. We find that the configurations
RealUID (α = 0.94, β = 0.96 | αFT = 0.94, βFT = 1.0) and RealUID (α = 0.98, β = 0.96 | αFT =
0.94, βFT = 1.0) produced the best results in the unconditional and conditional cases, respectively, as
shown in Tables 2. Ablation studies analyzing the effect of αFT and βFT are provided in Appendix E.1.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Table 3: Comparison of unconditional generation on
CIFAR-10. The best method under the FID metric in each
section is highlighted with bold.

Family Model NFE FID (↓)

Diffusion & GAN

DDPM (Ho et al., 2020) 1000 3.17
VP-EDM (Karras et al., 2022) 35 1.97
StyleGAN2+ADA+Tune (Karras et al., 2020) 1 2.92
StyleGAN2+ADA+Tune+DI (Luo et al., 2023) 1 2.71
Diffusion ProjectedGAN (Wang et al., 2022) 1 2.54
iCT-deep (Song & Dhariwal, 2023) 1 2.51
Diff-Instruct (Luo et al., 2023) 1 4.53
DMD (Yin et al., 2024b) 1 3.77
CTM (Kim et al., 2023) 1 1.98
sCD (Lu & Song, 2024) 1 3.66
sCT (Lu & Song, 2024) 1 2.85
SiD, αSiD = 1.0 (Zhou et al., 2024b) 1 2.03
SiD, αSiD = 1.2 (Zhou et al., 2024b) 1 1.92
SiDA, αSiD = 1.0 (Zhou et al., 2024a) 1 1.52
SiD2A, αSiD = 1.2 (Zhou et al., 2024a) 1 1.52
SiD2A, αSiD = 1.0 (Zhou et al., 2024a) 1 1.50

Flow-based

CFM (Yang et al., 2024) 2 5.34
IMM (Zhou et al., 2025) 1 3.20
MeanFlow (Geng et al., 2025) 1 2.92
FACM (Peng et al., 2025) 1 2.69
1-ReFlow (+Distill) (Liu et al., 2022a) 1 6.18
2-ReFlow (+Distill) (Liu et al., 2022a) 1 4.85
3-ReFlow (+Distill) (Liu et al., 2022a) 1 5.21
FGM (Huang et al., 2024) 1 3.08
RealUID (α = 0.94, β = 0.96 | αFT = 0.94, βFT = 1.0) (Ours) 1 2.03

Table 4: Comparison of conditional generation on
CIFAR-10. The best method under the FID metric in
each section is highlighted with bold.

Family Model NFE FID (↓)

Diffusion & GAN

VP-EDM (Karras et al., 2022) 35 1.79
GET-Base (Geng et al., 2023) 1 6.25
BigGAN (Brock et al., 2018) 1 14.73
BigGAN+Tune (Brock et al., 2018) 1 8.47
StyleGAN2+ADA (Karras et al., 2020) 1 3.49
StyleGAN2+ADA+Tune (Karras et al., 2020) 1 2.42
StyleGAN2+ADA+Tune+DI (Luo et al., 2023) 1 2.27
StyleGAN-XL (Sauer et al., 2022) 1 1.85
StyleSAN-XL (Takida et al., 2023) 1 1.36
Diff-Instruct (Luo et al., 2023) 1 4.19
DMD (Yin et al., 2024b) 1 2.66
DMD (w.o. KL) (Yin et al., 2024b) 1 3.82
DMD (w.o. reg.) (Yin et al., 2024b) 1 5.58
GDD-I (Zheng et al., 2024) 1 1.44
CTM (Kim et al., 2023) 1 1.73
SiD, αSiD = 1.0 (Zhou et al., 2024b) 1 1.93
SiD , αSiD = 1.2 (Zhou et al., 2024b) 1 1.71
SiDA, αSiD = 1.0 (Zhou et al., 2024b) 1 1.44
SiD2A, αSiD = 1.0 (Zhou et al., 2024a) 1 1.40
SiD2A, αSiD = 1.2 (Zhou et al., 2024a) 1 1.39

Flow-based FGM (Huang et al., 2024) 1 2.58
RealUID (α = 0.98, β = 0.96 | αFT = 0.94, βFT = 1.0) (Ours) 1 1.91

Methods Inference Time (ms) # Total Param (M) Max GPU Mem Alloc (MB) Max GPU Mem Reserved (MB)

RealUID (Ours) 18.636 36.784 165 172
FGM (Huang et al., 2024) / SiD (Zhou et al., 2024b;a) 30.745 55.734 242 276

Table 5: Inference complexity on an Ascend 910B3 (65 GB) NPU. For each method, we report (i) the mean
inference time per image (bs=1, fp32), averaged over 10,000 iterations; (ii) the total number of parameters
(Millions); and (iii) peak NPU memory usage (maximum allocated and reserved, in MB). Best values are bolded.

Scaling to larger datasets. In Appendix E.2, we provide the similar results of the same ablation
studies on the CelebA dataset with 64× 64 resolution.

4.3 BENCHMARK PERFORMANCE AND COMPUTATIONAL COMPARISONS

As shown in Tables 3 and 4, RealUID consistently outperforms all prior flow-based models on
CIFAR-10, significantly surpassing the strongest flow distillation baseline, FGM. Despite its compact
architecture (§4.1), it achieves performance comparable to leading diffusion distillation methods-
matching SiD (αSiD=1.0) and closely approaching SiD (αSiD=1.2), while falling short of adversari-
ally enhanced models such as SiD2A. Based on ablation studies and comparisons with GANs (§4.2),
we hypothesis that this performance gap is attributed to architectural and teacher capacity differences
rather than the lack of adversarial loss. In terms of efficiency, RealUID leverages a lightweight
architecture based on Tong et al. (2023). Therefore, as summarized in Table 5, it achieves nearly
2× faster inference, lower memory usage, and reduced model size compared to recent distillation
approaches (Zhou et al., 2024b;a; Huang et al., 2024). The results indicate that our approach achieves
competitive performance while maintaining a lower computational footprint.

5 DISCUSSION, EXTENSION, FUTURE WORKS

Extensions. Our RealUID (§3.4) framework can distill Flow/Bridge Matching, Diffusion models,
and Stochastic Interpolants enhanced by a novel natural way to incorporate real data. In Appendix A,
we provide three extensions of our RealUID beyond the inverse scheme: General RealUID with 3
coefficients (Appendix A.2), SiD framework with real data for αSiD ̸= 1

2 (Appendix A.3) and Normal-
ized RealUID for minimizing non-squared ℓ2-distance between teacher and student (Appendix A.4).
Relation to DMD. Instead of minimizing the squared ℓ2-distance between the score functions,
Distribution Matching Distillation (Luo et al., 2023; Wang et al., 2023; Yin et al., 2024b;a) (DMD)
approach minimizes the KL divergence between the real and generated data. Its gradients are
computed using the generator and teacher score functions, leading to the similar alternating updates.
We would like to highlight that DMD does not fit UID framework. Nevertheless, we investigated an
opportunity to incorporate real data into DMD without GANs in Appendix A.5.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

REFERENCES

Michael S Albergo, Nicholas M Boffi, and Eric Vanden-Eijnden. Stochastic interpolants: A unifying
framework for flows and diffusions. arXiv preprint arXiv:2303.08797, 2023.

Andrew Brock, Jeff Donahue, and Karen Simonyan. Large scale gan training for high fidelity natural
image synthesis. arXiv preprint arXiv:1809.11096, 2018.

Timothy CY Chan, Rafid Mahmood, and Ian Yihang Zhu. Inverse optimization: Theory and
applications. Operations Research, 73(2):1046–1074, 2025.

Ruiqi Gao, Emiel Hoogeboom, Jonathan Heek, Valentin De Bortoli, Kevin Patrick Murphy, and Tim
Salimans. Diffusion models and gaussian flow matching: Two sides of the same coin. In The
Fourth Blogpost Track at ICLR 2025, 2025.

Zhengyang Geng, Ashwini Pokle, and J Zico Kolter. One-step diffusion distillation via deep
equilibrium models. Advances in Neural Information Processing Systems, 36:41914–41931, 2023.

Zhengyang Geng, Mingyang Deng, Xingjian Bai, J Zico Kolter, and Kaiming He. Mean flows for
one-step generative modeling. arXiv preprint arXiv:2505.13447, 2025.

Ian J Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Advances in neural information
processing systems, 27, 2014.

Nikita Gushchin, Alexander Kolesov, Alexander Korotin, Dmitry P Vetrov, and Evgeny Burnaev. En-
tropic neural optimal transport via diffusion processes. Advances in Neural Information Processing
Systems, 36, 2024.

Nikita Gushchin, David Li, Daniil Selikhanovych, Evgeny Burnaev, Dmitry Baranchuk, and Alexan-
der Korotin. Inverse bridge matching distillation. 2025.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans
trained by a two time-scale update rule converge to a local nash equilibrium. Advances in neural
information processing systems, 30, 2017.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Peter Holderrieth, Marton Havasi, Jason Yim, Neta Shaul, Itai Gat, Tommi Jaakkola, Brian Karrer,
Ricky TQ Chen, and Yaron Lipman. Generator matching: Generative modeling with arbitrary
markov processes. arXiv preprint arXiv:2410.20587, 2024.

Zemin Huang, Zhengyang Geng, Weijian Luo, and Guo-jun Qi. Flow generator matching. arXiv
preprint arXiv:2410.19310, 2024.

Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative
adversarial networks. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 4401–4410, 2019.

Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, and Timo Aila. Analyzing
and improving the image quality of stylegan. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 8110–8119, 2020.

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-
based generative models. Advances in neural information processing systems, 35:26565–26577,
2022.

Dongjun Kim, Chieh-Hsin Lai, Wei-Hsiang Liao, Naoki Murata, Yuhta Takida, Toshimitsu Ue-
saka, Yutong He, Yuki Mitsufuji, and Stefano Ermon. Consistency trajectory models: Learning
probability flow ode trajectory of diffusion. arXiv preprint arXiv:2310.02279, 2023.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maximilian Nickel, and Matthew Le. Flow
matching for generative modeling. In The Eleventh International Conference on Learning Repre-
sentations, 2023. URL https://openreview.net/forum?id=PqvMRDCJT9t.

Qiang Liu. Rectified flow: A marginal preserving approach to optimal transport. arXiv preprint
arXiv:2209.14577, 2022.

Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate and
transfer data with rectified flow. arXiv preprint arXiv:2209.03003, 2022a.

Xingchao Liu, Lemeng Wu, Mao Ye, and Qiang Liu. Let us build bridges: Understanding and
extending diffusion generative models. arXiv preprint arXiv:2208.14699, 2022b.

Xingchao Liu, Chengyue Gong, and qiang liu. Flow straight and fast: Learning to generate and transfer
data with rectified flow. In The Eleventh International Conference on Learning Representations,
2023. URL https://openreview.net/forum?id=XVjTT1nw5z.

Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the wild. In
Proceedings of International Conference on Computer Vision (ICCV), December 2015.

Cheng Lu and Yang Song. Simplifying, stabilizing and scaling continuous-time consistency models.
arXiv preprint arXiv:2410.11081, 2024.

Weijian Luo, Tianyang Hu, Shifeng Zhang, Jiacheng Sun, Zhenguo Li, and Zhihua Zhang. Diff-
instruct: A universal approach for transferring knowledge from pre-trained diffusion models.
Advances in Neural Information Processing Systems, 36:76525–76546, 2023.

Stefano Peluchetti. Non-denoising forward-time diffusions. arXiv preprint arXiv:2312.14589, 2023.

Yansong Peng, Kai Zhu, Yu Liu, Pingyu Wu, Hebei Li, Xiaoyan Sun, and Feng Wu. Flow-anchored
consistency models. arXiv preprint arXiv:2507.03738, 2025.

A Sauer, K Schwarz, and A StyleGAN-XL Geiger. scaling stylegan to large diverse datasets. In
Proceedings of the SIGGRAPH Conference. ACM, pp. 1–10, 2022.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International conference on machine learning,
pp. 2256–2265. pmlr, 2015.

Yang Song and Prafulla Dhariwal. Improved techniques for training consistency models. arXiv
preprint arXiv:2310.14189, 2023.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. In International
Conference on Learning Representations, 2021. URL https://openreview.net/forum?
id=PxTIG12RRHS.

Yuhta Takida, Masaaki Imaizumi, Takashi Shibuya, Chieh-Hsin Lai, Toshimitsu Uesaka, Naoki
Murata, and Yuki Mitsufuji. San: Inducing metrizability of gan with discriminative normalized
linear layer. arXiv preprint arXiv:2301.12811, 2023.

Alexander Tong, Kilian Fatras, Nikolay Malkin, Guillaume Huguet, Yanlei Zhang, Jarrid Rector-
Brooks, Guy Wolf, and Yoshua Bengio. Improving and generalizing flow-based generative models
with minibatch optimal transport. arXiv preprint arXiv:2302.00482, 2023.

Zhendong Wang, Huangjie Zheng, Pengcheng He, Weizhu Chen, and Mingyuan Zhou. Diffusion-gan:
Training gans with diffusion. arXiv preprint arXiv:2206.02262, 2022.

Zhengyi Wang, Cheng Lu, Yikai Wang, Fan Bao, Chongxuan Li, Hang Su, and Jun Zhu. Pro-
lificdreamer: High-fidelity and diverse text-to-3d generation with variational score distillation.
Advances in neural information processing systems, 36:8406–8441, 2023.

12

https://openreview.net/forum?id=PqvMRDCJT9t
https://openreview.net/forum?id=XVjTT1nw5z
https://openreview.net/forum?id=PxTIG12RRHS
https://openreview.net/forum?id=PxTIG12RRHS

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Ling Yang, Zixiang Zhang, Zhilong Zhang, Xingchao Liu, Minkai Xu, Wentao Zhang, Chenlin Meng,
Stefano Ermon, and Bin Cui. Consistency flow matching: Defining straight flows with velocity
consistency. arXiv preprint arXiv:2407.02398, 2024.

Tianwei Yin, Michaël Gharbi, Taesung Park, Richard Zhang, Eli Shechtman, Fredo Durand, and Bill
Freeman. Improved distribution matching distillation for fast image synthesis. Advances in neural
information processing systems, 37:47455–47487, 2024a.

Tianwei Yin, Michaël Gharbi, Richard Zhang, Eli Shechtman, Fredo Durand, William T Freeman,
and Taesung Park. One-step diffusion with distribution matching distillation. In Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition, pp. 6613–6623, 2024b.

Kaiwen Zheng, Guande He, Jianfei Chen, Fan Bao, and Jun Zhu. Diffusion bridge implicit models.
arXiv preprint arXiv:2405.15885, 2024.

Linqi Zhou, Stefano Ermon, and Jiaming Song. Inductive moment matching. arXiv preprint
arXiv:2503.07565, 2025.

Mingyuan Zhou, Huangjie Zheng, Yi Gu, Zhendong Wang, and Hai Huang. Adversarial score identity
distillation: Rapidly surpassing the teacher in one step. arXiv preprint arXiv:2410.14919, 2024a.

Mingyuan Zhou, Huangjie Zheng, Zhendong Wang, Mingzhang Yin, and Hai Huang. Score identity
distillation: Exponentially fast distillation of pretrained diffusion models for one-step generation.
In Forty-first International Conference on Machine Learning, 2024b.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

CONTENTS

1 Introduction 1

2 Backgrounds on training and distilling matching models 2

2.1 Diffusion and Flow Models . 2

2.2 Universal loss for matching models . 3

2.3 Distillation of matching-based models . 3

2.4 GANs for real data incorporation . 4

3 Universal distillation of matching models with real data 4

3.1 Universal Inverse Distillation . 4

3.2 Relation to prior distillation works . 5

3.3 Connection with Inverse Optimization . 6

3.4 RealUID: natural approach for real data incorporation 6

4 Experiments 8

4.1 Experimental Setup . 8

4.2 Benchmarking Methods under a Unified Experimental Configuration 8

4.3 Benchmark performance and Computational comparisons 10

5 Discussion, extension, future works 10

A Theoretical proofs and extensions 15

A.1 RealUID theoretical properties . 15

A.1.1 Proof of RealUID Distance Lemma 2 . 15

A.1.2 Explanation of the choice of coefficients α and β 16

A.1.3 Correction of teacher’s errors . 17

A.2 General RealUID loss . 19

A.3 SiD with real data . 21

A.4 Normalized UID and RealUID losses for minimizing ℓ2-distance 22

A.5 DMD approach with real data . 22

B RealUID Algorithm for Flow Matching models 25

C Unified Inverse Disillation for Bridge Matching and Stochastic Interpolants 25

C.1 Bridge Matching . 25

C.2 Stochastic Interpolants . 26

C.3 Objective for Unified Inverse Distillation for general data coupling 26

D Experimental details 27

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

E Additional Results 28

E.1 Fine-tuning ablation study on coefficients αFT, βFT. 28

E.2 Ablation study on CelebA dataset . 28

E.3 Example of samples for different methods. 28

A THEORETICAL PROOFS AND EXTENSIONS

In this appendix, we discuss our RealUID framework (Appendix A.1) in theoretical details and provide
three extensions of it: General RealUID framework with 3 degrees of freedom (Appendix A.2), SiD
framework with real data (Appendix A.3) and Normalized RealUID framework for minimizing ℓ2-
distance between teacher and student functions instead of the squared one (Appendix A.4). All proofs
are based on the linearization technique and splitting terms in linearized decomposition between real
and generated data.

We also propose an approach to incorporate real data into DMD framework, which is unsuitable for
our RealUID Appendix A.5.

A.1 REALUID THEORETICAL PROPERTIES

In this section, we discuss our RealUID loss in detail. We begin by presenting its explicit form and
how it connects linearization technique and real data incorporation. We then demonstrate that the loss
minimizes a squared ℓ2-distance between the rescaled teacher and student functions (Appendix A.1.1).
Finally, we provide the motivation of the best choice of coefficients α ̸= β from the perspectives of
the better distance (Appendix A.1.2) and the correction of the teacher’s errors (Appendix A.1.3).

A.1.1 PROOF OF REALUID DISTANCE LEMMA 2

Putting explicit values for RealUM loss (17) in RealUID loss (18) and denoting δt = f∗t − ft, we get:

Lα,βR-UID(δ, p
θ
0) = Et∼[0,T],xθ

0∼p
θ
0,

xθ
t∼p

θ
t (·|x

θ
0)

[−α∥δt(xθt)∥2 + 2α⟨δt(xθt), f∗t (xθt)⟩ − 2β⟨δt(xθt), fθt (xθt |xθ0)⟩]

+Et∼[0,T],x∗
0∼p

∗
0 ,

x∗
t∼p

∗
t (·|x

∗
t)

[−(1−α)∥δt(x∗t)∥2 +2(1−α)⟨δt(x∗t), f∗t (x∗t)⟩ − 2(1− β)⟨δt(x∗t), f∗t (x∗t |x∗0)⟩].

This form provides an alternative definition of coefficients α and β: they define the proportion in
which each summand in the data-free linearized representation (11) of the squared ℓ2-distance is
split between the real and generated data. The idea of splitting coefficients between two data types
helps extend RealUID to extra coefficients (Appendix A.2), new distances (Appendix A.4) and SiD
framework with αSiD ̸= 1

2 (Appendix A.3).

Proof of Lemma 2. First, we take math expectation over data points x∗0. Since the expectation can be
taken in a reverse order, i.e., Ex∗

0∼p∗0 ,x∗
t∼p∗t (·|x∗

0)
= Ex∗

t∼p∗t ,x∗
0∼p∗0(·|x∗

t)
, we see that

Ex∗
0∼p∗0 ,x∗

t∼p∗t (·|x∗
0)
[⟨δt(x∗t), f∗t (x∗t |x∗0)⟩] = Ex∗

t∼p∗t ⟨δt(x
∗
t),Ex∗

0∼p∗0(·|x∗
t)
[f∗t (x

∗
t |x∗0)]⟩

= Ex∗
t∼p∗t [⟨δt(x

∗
t), f

∗
t (x

∗
t)⟩]. (21)

For the generated data term Exθ
0∼pθ0,xθ

t∼pθt (·|xθ
0)
[⟨δt(xθt), fθt (xθt |xθ0)⟩] = Exθ

t∼pθt [⟨δt(x
θ
t), f

θ
t (x

θ
t)⟩],

the reasoning is similar. Thus, we can write down RealUID loss in an explicit form with δt = f∗t − ft

Lα,βR-UID(δ, p
θ
0) = Et∼[0,T]Exθ

t∼pθt [−α∥δt(x
θ
t)∥2 + 2α⟨δt(xθt), f∗t (xθt)⟩ − 2β⟨δt(xθt), fθt (xθt)⟩]

+Et∼[0,T]Ex∗
t∼p∗t [−(1− α)∥δt(x∗t)∥2 + 2(1− α)⟨δt(x∗t), f∗t (x∗t)⟩ − 2(1− β)⟨δt(x∗t), f∗t (x∗t)⟩]. (22)

Then, we rescale the generated data terms in RealUID loss (22) using the equality pθt (xt) =
pθt (xt)
p∗t (xt)

p∗t (xt) for xt ∈ RD (we assume p∗t (xt) > 0,∀xt, t) leaving only math expectation w.r.t.
the real data, i.e,

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Lα,βR-UID(δ, p
θ
0) = Et∼[0,T]

x∗
t∼p

∗
t

[
−[(1− α) + α

pθt (x
∗
t)

p∗t (x
∗
t)
]∥δt(x∗t)∥2

]
− Et∼[0,T]

x∗
t∼p

∗
t

[
2β
pθt (x

∗
t)

p∗t (x
∗
t)
⟨δt(x∗t), fθt (x∗t)⟩+ 2[(β − α) + α

pθt (x
∗
t)

p∗t (x
∗
t)
]⟨δt(x∗t), f∗t (x∗t)⟩

]
.

Finally, we maximize the loss w.r.t. δt(x∗t) for each x∗t and t as a quadratic function. The maximum
is achieved when

δt(x
∗
t) =

[(β − α) + α
pθt (x

∗
t)

p∗t (x
∗
t)
]f∗t (x

∗
t)− β

pθt (x
∗
t)

p∗t (x
∗
t)
fθt (x

∗
t)

[(1− α) + α
pθt (x

∗
t)

p∗t (x
∗
t)
]

or in terms of the fake model f = f∗ − δ(
argmax

f
Lα,βR-UID(f, p

θ
0)

)
(t, xt) =

f∗t (xt) · (1− β) + fθt (xt) · β
pθt (xt)
p∗t (xt)

(1− α) + α
pθt (xt)
p∗t (xt)

. (23)

The maximum itself equals to

max
f

Lα,βR-UID(f, p
θ
0) = Et∼[0,T]Ex∗

t∼p∗t

∥f∗t (x∗t) · ((β − α) + α
pθt (x

∗
t)

p∗t (x
∗
t)
)− fθt (x

∗
t) · β

pθt (x
∗
t)

p∗t (x
∗
t)
∥2

(1− α) + α
pθt (x

∗
t)

p∗t (x
∗
t)

 .
It is easy to see that when pθ0 = p∗0 and fθ = f∗ this distance achieves its minimal value 0. Moreover,
optimal fake model in this case matches the teacher f∗, i.e.,(

argmax
f

Lα,βR-UID(f, p
∗
0)

)
(t, xt) =

f∗t (xt) · (1− β) + f∗t (xt) · β
p∗t (xt)
p∗t (xt)

(1− α) + α
p∗t (xt)
p∗t (xt)

= f∗t (xt).

A.1.2 EXPLANATION OF THE CHOICE OF COEFFICIENTS α AND β

Here we show that the best way to incorporate real data during generator training is to set β/α ̸= 1.

Following Lemma 2, we know exactly what distance our RealUID loss implicitly minimizes. Below
we examine it for various α, β ∈ (0, 1]:

max
f

Lα,βR-UID(f, p
θ
0) =

∫
xt

lt(xt, β, α)dxt,

lt(xt, β, α) :=
α2∥(p∗t (xt)(

β
α − 1) + pθt (xt)) · f∗t (xt)−

β
α · pθt (xt) · fθt (xt)∥2

(1− α)p∗t (xt) + αpθt (xt)
,

where lt(xt, β, α) denotes the distance for the particular point xt.

The total distance mostly sums up from the two groups of points: incorrectly generated points
from the generator’s main domain, i.e., pθt (xt) ≫ 0, p∗(xt) → 0, and real data points which are
not covered by the generator, i.e., pθt (xt) → 0, p∗(xt) ≫ 0. For the points out of both domains
pθt (xt) → 0, p∗t (xt) → 0, the distance tends to 0, as well as for matching points pθt (xt) ≈ p∗t (xt).

Choice of coefficients α, β. Next, we consider various coefficients α, β ∈ (0, 1] and how they
affect two main groups of points.

• All configurations affect the incorrectly generated points xt : p∗t (xt) → 0, pθ(xt) ≫ 0:

lt(xt, β, α) ≈
∥αpθt (xt) · f∗t (xt)− βpθt (xt) · fθt (xt)∥2

αpθt (xt)
≈ β2∥fθt (xt)∥2

α
pθt (xt) ≫ 0. (24)

Note that increasing β/α > 1 will diminish the weight of the distance in comparison with α = β =
1, while decreasing otherwise will lift the weight up.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

3 2 1 0 1 2 3
point xt

0.0

0.1

0.2

0.3

0.4

0.5

Re
al

UI
D

lo
ss

real data mean
gen data mean
(,) = (1, 1)
(,) = (0.75, 0.75)
(,) = (0.5, 0.5)

3 2 1 0 1 2 3
point xt

0.0

0.2

0.4

0.6

0.8

1.0

Re
al

UI
D

lo
ss

real data mean
gen data mean
(,) = (1, 1)
(,) = (0.5, 0.75)
(,) = (0.75, 0.5)
(,) = (0.25, 0.75)
(,) = (0.75, 0.25)
(,) = (0.5, 0.25)
(,) = (0.25, 0.5)

Figure 3: RealUID loss for 1D-Gaussians under various coefficients (α, β).

• Configuration β < α = 1 is unstable for uncovered real data points xt : pθt (xt) → 0, p∗(xt) ≫ 0:

lt(xt, β, α) ≈
∥p∗t (xt)(β − 1) · f∗t (xt)− βpθt (xt) · fθt (xt)∥2

pθt (xt)
→ ∞.

• Configuration β = α = 1 (UID loss) does not affect uncovered real data points xt : pθt (xt) →
0, p∗(xt) ≫ 0:

lt(xt, β, α) ≈
∥pθt (xt) · f∗t (xt)− pθt (xt) · fθt (xt)∥2

pθt (xt)
= ∥f∗t (xt)− fθt (xt)∥2pθt (xt) → 0.

• Configuration β = α < 1 does not affect uncovered real data points xt : pθt (xt) → 0, p∗(xt) ≫ 0:

lt(xt, β, α) ≈
∥αpθt (xt)f∗t (xt)− βpθt (xt)f

θ
t (xt)∥2

(1− α)p∗t (xt)
=

∥αf∗t (xt)− βfθt (xt)∥2

(1− α)

(pθt (xt))
2

p∗t (xt)
→ 0.

Notably, in this configuration, the distance drops even faster than when α = β = 1, what makes it
even less preferable.

• Only configuration β/α ̸= 1 affects the uncovered real data points xt : pθt (xt) → 0, p∗(xt) ≫ 0:

lt(xt, β, α) ≈
∥p∗t (xt)(β − α) · f∗t (xt)− βpθt (xt) · fθt (xt)∥2

(1− α)p∗t (xt)
≫ 0.

Visual illustration. We analytically calculate the loss surface lt(xt, α, β) between the FM models
transforming one-dimensional real data Gaussian N (µ∗, 1) and generated Gaussian N (µθ, 1) to
noise N (0, 1) on the time interval [0, 1]. In this case, the generated and real data interpolations
are pθt (xt) = N (xt|µθ(1 − t), t2 + (1 − t)2) and p∗t (xt) = N (xt|µ∗(1 − t), t2 + (1 − t)2). The
unconditional vector field u = f between N (0, 1) and N (µ, 1) can be calculated as

ut(xt) = Ex0∼p0(·|xt)

[
xt − x0

t

]
=

∫
x0

(
xt − x0

t

)
· N

(
xt − x0(1− t)

t
|0, 1

)
· N (x0|µ, 1)dx0

=
a(2t2 − 2t)− bt2√
2π(1− 2t+ 2t2)

3
2

exp

(
− (xt − µ(1− t))2

2(1− 2t+ 2t2)2

)
. (25)

In Figure 3, we depict the loss surfaces for the fixed time t = 1/3, real data µ∗ = 2, generated data
µθ = −2 and various pairs of (α, β). We can see that configurations β/α = 1 do not detect the real
data sample, even when α = β < 1 and real data is formally used. while β/α ̸= 1 actually spots both
domains, increasing the weight of generator domain when β/α > 1 and decreasing it otherwise.

A.1.3 CORRECTION OF TEACHER’S ERRORS

In this chapter, we assume that instead of accurate teacher f∗ = argminf LUM(f, p∗0) we have access
only to the arbitrary corrupted teacher f̃∗. We will show that adding real data via our approach with
α ̸= β provably mitigates the teacher’s errors in the final generator.

Minimized distance. With the corrupted teacher f̃∗ and δ̃ = f̃∗ − f , our corrupted Real-UID loss
(see Appendix A.1.1) has the explicit form

Lα,βR-UID(δ̃, p
θ
0) = Et∼[0,T],xθ

0∼p
θ
0,

xθ
t∼p

θ
t (·|x

θ
0)

[−α∥δ̃t(xθt)∥2 + 2α⟨δ̃t(xθt), f̃∗t (xθt)⟩ − 2β⟨δ̃t(xθt), fθt (xθt |xθ0)⟩]

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

+Et∼[0,T],x∗
0∼p

∗
0 ,

x∗
t∼p

∗
t (·|x

∗
t)

[−(1−α)∥δ̃t(x∗t)∥2 +2(1−α)⟨δ̃t(x∗t), f̃∗t (x∗t)⟩ − 2(1− β)⟨δ̃t(x∗t), f∗t (x∗t |x∗0)⟩].

Note that sampled terms f∗t (x
∗
t |x∗0) and fθt (x

θ
t |xθ0) are not affected by the corruption and give the

accurate functions f∗t (x
∗
t) = Ex∗

0∼p∗0(·|x∗
t)
[f∗t (x

∗
t |x∗0)] and fθt (x

θ
t) = Exθ

0∼pθ0(·|xθ
t)
[fθt (x

θ
t |xθ0)]:

Lα,βR-UID(δ̃, p
θ
0) = Et∼[0,T]Exθ

t∼pθt [−α∥δ̃t(x
θ
t)∥2 + 2α⟨δ̃t(xθt), f̃∗t (xθt)⟩ − 2β⟨δt(xθt), fθt (xθt)⟩]

+Et∼[0,T]Ex∗
t∼p∗t [−(1− α)∥δ̃t(x∗t)∥2 + 2(1− α)⟨δ̃t(x∗t), f̃∗t (x∗t)⟩ − 2(1− β)⟨δ̃t(x∗t), f∗t (x∗t)⟩].

Then, we rescale the generated data terms using the equality pθt (xt) =
pθt (xt)
p∗t (xt)

p∗t (xt) for xt ∈ RD

(we assume p∗t (xt) > 0,∀xt, t) leaving only math expectation w.r.t. the real data, i.e,

Lα,βR-UID(δ̃, p
θ
0) = Et∼[0,T],x∗

t∼p
∗
t

[
−[(1− α) + α

pθt (x
∗
t)

p∗t (x
∗
t)
](∥δ̃t(x∗t)∥2+2⟨δ̃t(x∗t), f̃∗t (x∗t)⟩)

]
− Et∼[0,T],

x∗
t∼p

∗
t

[
2⟨δ̃t(x∗t), (1− β)f∗t (x

∗
t) +β

pθt (x
∗
t)

p∗t (x
∗
t)
fθt (x

∗
t)⟩
]
.

Finally, we maximize the loss w.r.t. δ̃t(x
∗
t) for each x∗t and t as a quadratic function

maxδ̃ L
α,β
R-UID(δ̃, p

θ
0) =

Et∼[0,T]Ex∗
t∼p∗t

∥f̃∗t (x∗t) · ((1− α) + α
pθt (x

∗
t)

p∗t (x
∗
t)
)− (1− β)f∗t (x

∗
t)− β

pθt (x
∗
t)

p∗t (x
∗
t)
fθt (x

∗
t)∥2

(1− α) + α
pθt (x

∗
t)

p∗t (x
∗
t)

 . (26)

Hence, max-min optimization of the corrupted RealUID loss implicitly minimizes expected distance
(26). However, due to arbitrary function f̃ , we now cannot guarantee that minimum is achived when
the relation inside the norm equals 0. Previously, we could use the solution pθ = p∗ which obviously
achieved a minimum of 0. Now, due to the implicit and complex relationship between fθ and pθ, we
can neither find an explicit form for the optimal pθ nor guarantee the minimum of 0.

Choice of coefficients α, β. Here we give an intuition on why coefficients β/α ̸= 1 can fix the
teacher’s errors, while β/α = 1 cannot. For simplicity, we assume that the minimized distance (26)
actually attains minimum of 0 when

((1− α)p∗t (xt) + αpθt (xt)) · f̃∗t (xt)− (1− β)p∗t (xt) · f∗t (xt)− βpθt (xt) · fθt (x∗t) = 0. (27)

• In case of α = β = 1, we have f̃∗t = fθt , i.e., the generator learns the corrupted function.

• In case of α = β < 1, we have

f̃∗t (xt) =
(1− α)p∗t (xt)

(1− α)p∗t (xt) + αpθt (xt)
· f∗t (xt) +

αpθt (xt)

(1− α)p∗t (xt) + αpθt (xt)
· fθt (x∗t).

In this convex combination, the corrupted function f̃∗ is always between the true teacher function
f∗ and the optimal generator function fθ, i.e., the generator learns even worse function.

• In case of β/α ̸= 1, there exist intervals of α, β which can give better generator function than
the corrupted teacher. For example, coefficients α ̸= β close to 1 allow to neglect the terms
(1 − α)p∗t (xt) · f̃∗t (xt) and (1 − β)p∗t (xt) · f∗t (xt) in (27) to get fθt (xt) ≈ α

β f̃
∗
t (xt). Hence, we

can steer fθ towards the true teacher picking β/α < 1 or β/α > 1 depending on the corrupted and
clean teacher’s values. However, we cannot find all these intervals analytically due to complex
distributions and functions.

Note that we derive the same recommendation β/α ̸= 1 from the perspective of correcting the
teacher’s errors and from the perspective of the minimized distance surface from Appendix A.1.2.

Visual illustration. For visual demonstration, we consider the FM models transforming one-
dimensional real data Gaussian N (µ∗, 1) and generated Gaussian N (µθ, 1) to noise N (0, 1) on the
time interval [0, 1]. In this case, the generated and real data interpolations are pθt (xt) = N (xt|µθ(1−

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

t), t2+(1− t)2) and p∗t (xt) = N (xt|µ∗(1− t), t2+(1− t)2). The unconditional vector field u = f
between N (0, 1) and N (µ, 1) can be calculated as

ut(xt) = Ex0∼p0(·|xt)

[
xt − x0

t

]
=

∫
x0

(
xt − x0

t

)
· N

(
xt − x0(1− t)

t
|0, 1

)
· N (x0|µ, 1)dx0

=
a(2t2 − 2t)− bt2√
2π(1− 2t+ 2t2)

3
2

exp

(
− (xt − µ(1− t))2

2(1− 2t+ 2t2)2

)
. (28)

In Figure 4, we depict the optimal generator mean µθ and vector field uθ satisfying (27) for various
deviations ũ∗ − u∗ and fixed time t = 1/3, real data µ∗ = −2 and point xt = −1.

We can see that with α = β = 1, the generator learns the corrupted vector field, and with α = β < 1,
the learned field and means are often even worse. In contrast, with β/α ̸= 1, the generator can learn
vector fields and means which are closer to the real data. Although the generator cannot satisfy
relation (27) under large deviations, it still produces better results with the real data.

0.560 0.565 0.570 0.575 0.580 0.585 0.590
u * u * = 0.01

gen u , = -2.09, (,) = (0.95, 0.9)
gen u , = -2.06, (,) = (0.9, 0.95)
gen u , = -2.07, (,) = (0.9, 0.9)
gen u , = -2.07, (,) = (1.0, 1.0)
real u * , * = -2
corrupted u *

0.50 0.52 0.54 0.56 0.58 0.60
u * u * = 0.05

gen u , = -2.34, (,) = (0.95, 0.9)
gen u , = -2.25, (,) = (0.9, 0.95)
gen u , = -2.29, (,) = (0.9, 0.9)
gen u , = -2.26, (,) = (1.0, 1.0)
real u * , * = -2
corrupted u *

0.400 0.425 0.450 0.475 0.500 0.525 0.550 0.575 0.600
u * u * = 0.1

gen u , = -2.62, (,) = (0.95, 0.9)
gen u , = -2.43, (,) = (0.9, 0.95)
gen u , = -2.52, (,) = (0.9, 0.9)
gen u , = -2.45, (,) = (1.0, 1.0)
real u * , * = -2
corrupted u *

0.0 0.1 0.2 0.3 0.4 0.5 0.6
u * u * = 0.5

gen u , = -2.82, (,) = (0.95, 0.9)
gen u , = -3.14, (,) = (0.9, 0.95)
gen u , = -2.84, (,) = (0.9, 0.9)
gen u , = -3.92, (,) = (1.0, 1.0)
real u * , * = -2
corrupted u *

0.570 0.575 0.580 0.585 0.590 0.595 0.600
u * u * =0.01

gen u , = -1.87, (,) = (0.95, 0.9)
gen u , = -1.92, (,) = (0.9, 0.95)
gen u , = -1.9, (,) = (0.9, 0.9)
gen u , = -1.91, (,) = (1.0, 1.0)
real u * , * = -2
corrupted u *

0.56 0.58 0.60 0.62 0.64 0.66 0.68 0.70
u * u * =0.1

gen u , = -1.73, (,) = (0.95, 0.9)
gen u , = -1.7, (,) = (0.9, 0.95)
gen u , = -1.71, (,) = (0.9, 0.9)
gen u , = -1.72, (,) = (1.0, 1.0)
real u * , * = -2
corrupted u *

Figure 4: Learned generators for RealUID loss between 1D-Gaussians with corrupted teachers.

A.2 GENERAL REALUID LOSS

Expanding our real data incorporation. We recall that UID loss (Theorem 1) can be restated via
linearization technique with δ = f∗ − f as:

LUID(δ, p
θ
0) = Et∼[0,T],xθ

0∼p
θ
0,

xθ
t∼p

θ
t (·|x

θ
0)

{
−∥δt(xθt)∥2 + 2⟨δt(xθt), f∗t (xθt)⟩ − 2⟨δt(xθt), fθt (xθt |xθ0)⟩

}
.

In turn, after real data incorporation, we obtain our RealUID loss (Theorem 2). Putting the explicit
values for RealUM loss (17) in RealUID loss (18), we get the explicit formula:

Lα,βR-UID(δ, p
θ
0) = Et∼[0,T],xθ

0∼p
θ
0,

xθ
t∼p

θ
t (·|x

θ
0)

[−α∥δt(xθt)∥2 + 2α⟨δt(xθt), f∗t (xθt)⟩ − 2β⟨δt(xθt), fθt (xθt |xθ0)⟩]

+ Et∼[0,T],x∗
0∼p

∗
0 ,

x∗
t∼p

∗
t (·|x

∗
0)

[−(1− α)∥δt(x∗t)∥2 + 2(1− α)⟨δt(x∗t), f∗t (x∗t)⟩ − 2(1− β)⟨δt(x∗t), f∗t (x∗t |x∗0)⟩].

These two formulas give us alternative explanation on how to add real data into arbitrary losses: we
need to split each term in the linearized representation of the data-free loss between real and generated
data. For example, in RealUID loss, its three terms are split with proportions α, α, β, respectively.
We can go even further and split the first quadratic coefficient −∥δt(·)∥2 using a new parameter
γ ∈ (0, 1] to create one more degree of freedom. Moreover, we can use other parametrization of δ,
since its form does not change the proofs.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Definition 3. We introduce General RealUID loss Lα,β,γR-UID(δ, p
θ
0) on generated data pθ0 ∈ P(RD)

with coefficients α, β, γ ∈ (0, 1]:

Lα,β,γR-UID(δ, p
θ
0) := Et∼[0,T],xθ

0∼p
θ
0,

xθ
t∼p

θ
t (·|x

θ
0)

[−γ∥δt(xθt)∥2 + 2α⟨δt(xθt), f∗t (xθt)⟩ − 2β⟨δt(xθt), fθt (xθt |xθ0)⟩]

+ Et∼[0,T],x∗
0∼p

∗
0 ,

x∗
t∼p

∗
t (·|x

∗
0)

[−(1− γ)∥δt(x∗t)∥2 + 2(1− α)⟨δt(x∗t), f∗t (x∗t)⟩ − 2(1− β)⟨δt(x∗t), f∗t (x∗t |x∗0)⟩].

Optionally, one can change default reparameterization δ = f∗ − f (e.g., with δ = β(f∗ − f)), and
substitute sampled real data term f∗t (x

∗
t |x∗0) with the unconditional teacher f∗t (x

∗
t) and vice versa.

In case of δ = f∗ − f and γ ̸= α, the General RealUID loss cannot be expressed as inverse min-max
problem (16) for simple losses, since some scalar products do not eliminate each other. Nevertheless,
min-max optimization of Lα,β,γR-UID still minimizes the similar squared ℓ2-distance between the weighted
teacher and generator-induced functions, attaining minimum when pθ0 = p∗0.
Lemma 3 (Distance minimized by General RealUID loss). Maximization of General RealUID
loss Lα,β,γR-UID over δ represents the squared ℓ2-distance between the weighted teacher f∗ and student
function fθ := argminf LUM(f, p

θ
0):

max
δ

Lα,β,γR-UID(δ, p
θ
0) = Et∼[0,T],

x∗
t ∼p∗t

[
∥βα [p

∗
t (x

∗
t)f

∗
t (x

∗
t)− pθt (x

∗
t)f

θ
t (x

∗
t)] + (pθt (x

∗
t)− p∗t (x

∗
t))f

∗
t (x

∗
t)∥2

p∗t (x
∗
t)((1− γ)p∗t (x

∗
t) + γpθt (x

∗
t))/α

2

]
.

The distances being minimized for RealUID (Lemma 2) and General RealUID (Lemma 3) are almost
identical except the scale factor. Thus, we keep the same recommendations for choosing coefficients
α, β as we discuss in Section 3.4. The factor β/α still has the largest impact within the distance, while
α and γ set the scaling. Values β/α and γ should be chosen close to 1, but not exactly 1.

Proof. First, we take math expectation over data points x∗0. Since the expectation can be taken in a
reverse order, i.e., Ex∗

0∼p∗0 ,x∗
t∼p∗t (·|x∗

0)
= Ex∗

t∼p∗t ,x∗
0∼p∗0(·|x∗

t)
, we see that

Ex∗
0∼p∗0 ,x∗

t∼p∗t (·|x∗
0)
[⟨δt(x∗t), f∗t (x∗t |x∗0)⟩] = Ex∗

t∼p∗t ⟨δt(x
∗
t),Ex∗

0∼p∗0(·|x∗
t)
[f∗t (x

∗
t |x∗0)]⟩

= Ex∗
t∼p∗t [⟨δt(x

∗
t), f

∗
t (x

∗
t)⟩]. (29)

For the term Exθ
0∼pθ0,xθ

t∼pθt (·|xθ
0)
[⟨δt(xθt), fθt (xθt |xθ0)⟩] = Exθ

t∼pθt [⟨δt(x
θ
t), f

θ
t (x

θ
t)⟩], the reasoning is

similar. Thus, we write down General RealUID loss (Def. 3) in an explicit form with δt = f∗t − ft

Lα,βR-UID(δ, p
θ
0) = Et∼[0,T]Exθ

t∼pθt [−γ∥δt(x
θ
t)∥2 + 2α⟨δt(xθt), f∗t (xθt)⟩ − 2β⟨δt(xθt), fθt (xθt)⟩]

+Et∼[0,T]Ex∗
t∼p∗t [−(1− γ)∥δt(x∗t)∥2 + 2(1− α)⟨δt(x∗t), f∗t (x∗t)⟩ − 2(1− β)⟨δt(x∗t), f∗t (x∗t)⟩].

Then, we rescale the generated data terms in the General RealUID loss using the equality pθt (xt) =
pθt (xt)
p∗t (xt)

p∗t (xt) for xt ∈ RD (we assume p∗t (xt) > 0,∀xt, t) leaving only math expectation w.r.t. the
real data, i.e,

Lα,β,γR-UID(δ, p
θ
0) = Et∼[0,T],

x∗
t∼p

∗
t

[
−[(1− γ) + γ

pθt (x
∗
t)

p∗t (x
∗
t)
]∥δt(x∗t)∥2

]
+ Et∼[0,T],

x∗
t∼p

∗
t

[
2[(β − α) + α

pθt (x
∗
t)

p∗t (x
∗
t)
]⟨δt(x∗t), f∗t (x∗t)⟩ − 2β

pθt (x
∗
t)

p∗t (x
∗
t)
⟨δt(x∗t), fθt (x∗t)⟩

]
.

Then we maximize the loss w.r.t. δt(x∗t) for each x∗t and t as a quadratic function. The maximum is
achieved when

δt(x
∗
t) =

[(β − α) + α
pθt (x

∗
t)

p∗t (x
∗
t)
]f∗t (x

∗
t)− β

pθt (x
∗
t)

p∗t (x
∗
t)
fθt (x

∗
t)

[(1− γ) + γ
pθt (x

∗
t)

p∗t (x
∗
t)
]

. (30)

The maximum itself equals to

max
δ

Lα,β,γR-UID(δ, p
θ
0) = Et∼[0,T]Ex∗

t∼p∗t

∥f∗t (x∗t) · ((β − α) + α
pθt (x

∗
t)

p∗t (x
∗
t)
)− fθt (x

∗
t) · β

pθt (x
∗
t)

p∗t (x
∗
t)
∥2

(1− γ) + γ
pθt (x

∗
t)

p∗t (x
∗
t)

 .
20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Alternative parameterization. In the proximity of the solution, when generated data approaches
real one, i.e., pθt ≈ p∗t , the optimal δt (30) approaches

δt(x
∗
t) ≈

[(β − α) + α · 1]f∗t (x∗t)− β · 1 · fθt (x∗t)
[(1− γ) + γ · 1]

≈ β(f∗t (x
∗
t)− fθt (x

∗
t)).

Thus, the parametrization δt = β(f∗t − ft) may naturally help reach the solution without making the
fake model learn extra information about the teacher near the optimum.

A.3 SID WITH REAL DATA

Our real data incorporation. We recall that data-free UID loss (Theorem 1), which is equivalent to
SiD with αSiD = 1/2, can be restated via linearization technique with δ = f − f∗ as

LUID(δ, p
θ
0) = Et∼[0,T],xθ

0∼p
θ
0,

xθ
t∼p

θ
t (·|x

θ
0)

{
−∥δt(xθt)∥2 + 2⟨δt(xθt), f∗t (xθt)⟩ − 2⟨δt(xθt), fθt (xθt |xθ0)⟩

}
. (31)

In turn, after real data incorporation, we obtain our RealUID loss (Theorem 2). Putting the explicit
values for RealUM loss (17) in RealUID loss (18), we get the explicit formula:

Lα,βR-UID(δ, p
θ
0) = Et∼[0,T],xθ

0∼p
θ
0,

xθ
t∼p

θ
t (·|x

θ
0)

[−α∥δt(xθt)∥2 + 2α⟨δt(xθt), f∗t (xθt)⟩ − 2β⟨δt(xθt), fθt (xθt |xθ0)⟩]

+ Et∼[0,T],x∗
0∼p

∗
0 ,

x∗
t∼p

∗
t (·|x

∗
0)

[−(1− α)∥δt(x∗t)∥2 + 2(1− α)⟨δt(x∗t), f∗t (x∗t)⟩ − 2(1− β)⟨δt(x∗t), f∗t (x∗t |x∗0)⟩].

These two formulas give us alternative explanation on how to add real data into arbitrary losses: we
need to split each term in the linearized representation of the data-free loss between real and generated
data. For example, in RealUID loss, its three terms are split with proportions α, α, β, respectively.

Combining with SiD. In SiD framework (Zhou et al., 2024a;b), the authors notice that UID loss
(31) for generator updates, with additional normalization and the first coefficient −∥δt(xθt)∥2 scaled
by 2αSiD, empirically yields better performance. Namely, the SiD loss for generator with parameter
αSiD ∈ [0.5, 1.2] is

LαSiD(p
θ
0) = Et∼[0,T],xθ

0∼p
θ
0,

xθ
t∼p

θ
t (·|x

θ
0)

{
−2αSiD∥δt(xθt)∥2 + 2⟨δt(xθt), f∗t (xθt)⟩ − 2⟨δt(xθt), fθt (xθt |xθ0)⟩

ωt

}
,

where ωt ∝ NO-GRAD{∥fθt (xθt |xθ0)−f∗t (xθt)∥1} are normalization weights. For more details about
time sampling and practical implementation, please refer to the original papers (Zhou et al., 2024a;b).

Following the structure of generator SiD loss, we propose to scale the first coefficient in our weighted
RealUID loss during generator updates. The whole SiD pipeline with real data, determined by
coefficients α, β ∈ (0, 1], αSiD ∈ [0.5, 1.2] and teacher f∗, is two alternating steps:

1. Make one or several fake model f update steps, minimizing the real data modified UM loss
Lα,βR-UM(f, pθ0) (Def. 2):

Lα,βR-UM(f, pθ0) = α · Et∼[0,T]Exθ
0∼pθ0,xθ

t∼pθt (·|xθ
0)

[
∥ft(xθt)−

β

α
fθ(xθt |xθ0)∥2

]
︸ ︷︷ ︸

generated data pθ0 term

+ (1− α) · Et∼[0,T]Ex∗
0∼p∗0 ,x∗

t∼p∗t (·|x∗
0)

[
∥ft(x∗t)−

1− β

1− α
f∗t (x

∗
t |x∗0)∥2

]
︸ ︷︷ ︸

real data p∗0 term

.

2. Make a generator update step, minimizing the loss Lα,βR-UID,αSiD
(pθ0) =

Et∼[0,T],xθ
0∼p

θ
0,

xθ
t∼p

θ
t (·|x

θ
0)

{
−2αSiD · α · ∥δt(xθt)∥2 + 2α⟨δt(xθt), f∗t (xθt)⟩ − 2β⟨δt(xθt), fθt (xθt |xθ0)⟩

ωt

}
,

where δt = ft − f∗t and ωt ∝ NO-GRAD{∥fθt (xθt |xθ0)− f∗t (x
θ
t)∥1}.

We keep the same recommendations for choosing coefficients α, β as we discuss in Section 3.4. The
optimal choice is slightly different α ̸= β which are close to 1. Following (Zhou et al., 2024a), the
best choice for αSiD is αSiD ∈ [1, 1.2].

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

A.4 NORMALIZED UID AND REALUID LOSSES FOR MINIMIZING ℓ2-DISTANCE

Using the linearization technique from Section 3.1, we can estimate the non-squared ℓ2-distance
between the teacher f∗ := argminf LUM(f, p∗0) and student fθ := argminf LUM(f, pθ0) functions.
In this case, the connection with the inverse optimization disappears.

For a fixed point xθt and time t, we derive:

∥f∗t (xθt)− fθt (x
θ
t)∥ = max

δt(xθ
t)

{
⟨ δt(x

θ
t)

∥δt(xθt)∥
, f∗t (x

θ
t)− fθt (x

θ
t)⟩
}

= max
δt(xθ

t)
Exθ

0∼pθ0(·|xθ
t)

{
⟨ δt(x

θ
t)

∥δt(xθt)∥
, f∗t (x

θ
t)⟩ − ⟨ δt(x

θ
t)

∥δt(xθt)∥
, fθt (x

θ
t |xθ0)⟩

}
. (32)

With the reparameterization δt = f∗t − ft, the Normalized UID loss L̂UID(f, p
θ
0) for min-max

optimization to solve minθ Et∼[0,T]Exθ
t∼pθt ∥f

∗
t (x

θ
t)− fθt (x

θ
t)∥ is:

min
θ

max
f

L̂UID(f, p
θ
0) := Et∼[0,T],xθ

0∼p
θ
0,

xθ
t∼p

θ
t (·|x

θ
0)

[
⟨ f∗t (x

θ
t)− ft(x

θ
t)

∥f∗t (xθt)− ft(xθt)∥
, f∗t (x

θ
t)− fθt (x

θ
t |xθ0)⟩

] . (33)

Adding real data. Following the intuition from the proof in Appendix A.1.1, we can incorporate
real data in Normalized UID loss (33) as well. We need to split two summands in the linearized
representation (32) into generated and real data parts with weights α, (1− α) and β, (1− β).

Definition 4. We introduce Normalized RealUID loss L̂α,βR-UID(f, p
θ
0) on generated data pθ0 ∈ P(RD)

with coefficients α, β ∈ (0, 1]:

L̂α,βR-UID(f, p
θ
0) := Et∼[0,T]E xθ

t∼p
θ
t ,

xθ
0∼p

θ
0(·|x

θ
t)

{
⟨ f∗t (x

θ
t)− ft(x

θ
t)

∥f∗t (xθt)− ft(xθt)∥
, α · f∗t (xθt)− β · fθt (xθt |xθ0)⟩

}

+Et∼[0,T]E x∗
t∼p

∗
t ,

x∗
0∼p

∗
0(·|x

∗
t)

{
⟨ f∗t (x

∗
t)− ft(x

∗
t)

∥f∗t (x∗t)− ft(x∗t)∥
, (1− α) · f∗t (x∗t)− (1− β) · f∗t (x∗t |x∗0)⟩

}
.

Similar to the proof of RealUID distance Lemma 2, we can show that min-max optimization of
Normalized RealUID loss minimizes the non-squared ℓ2-norm between the similar weighted student
fθ and teacher f∗ functions:

max
f

L̂α,βR-UID(f, p
θ
0) = Et∼[0,T]Ex∗

t∼p∗t

[
∥((β − α) + α

pθt (x
∗
t)

p∗t (x
∗
t)
) · f∗t (x∗t)− β

pθt (x
∗
t)

p∗t (x
∗
t)

· fθt (x∗t)∥
]
.

This distance attains minimum when pθ0 = p∗0, justifying the procedure.

A.5 DMD APPROACH WITH REAL DATA

Distribution Matching Distillation (Luo et al., 2023; Wang et al., 2023; Yin et al., 2024b;a) (DMD)
approach distills Gaussian diffusion models with forward process xt = x0 + σtϵ, ϵ ∼ N (0, I).

This approach minimizes KL divergence Et∼[0,T]DKL(p
θ
t ||p∗t) = Et∼[0,T]Exθ

t∼pθt

[
log
(
pθt (x

θ
t)

p∗t (x
θ
t)

)]
between the generated data pθt and the real data p∗t . The authors show the true gradient of
Et∼[0,T]DKL(p

θ
t ||p∗t) w.r.t. θ can be computed via the score functions:

Et∼[0,T]

[
dDKL(p

θ
t ||p∗t)

dθ

]
= Ez∼pZ ,xθ

0=G(z),xθ
t∼pθt

[
(∇xθ

t
ln pθt (x

θ
t)−∇xθ

t
ln p∗t (x

θ
t))

dGθ(z)

dθ

]
.

Then, this true gradient is estimated with the teacher score function s∗ := argmins LDSM(s, p∗0) and
student score sθ = argmins LDSM(s, pθ0) at each time moment:

Et∼[0,T]

[
dDKL(p

θ
t ||p∗t)

dθ

]
= Et∼[0,T]Ez∼pZ ,xθ

0=Gθ(z),xθ
t∼pθt

[
(sθt (x

θ
t)− s∗t (x

θ
t))

dGθ
dθ

]
.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

The final algorithm alternates updates for the fake model and the generator similar to SiD approach.

We would like to highlight that DMD does not fit our UID framework. The UID loss is uniquely
determined by its input UM loss. In the case of Diffusion models and DMD, the UM loss is the
LDSM (s, pθ0) loss. With this loss, the resulting UID loss becomes exactly the SiD loss, not DMD.

Adding real data. We investigated a theoretical possibility to incorporate real data into the DMD
framework. We found that we can use the Modified DSM loss (17) to train the modified student score
function sθ,αt = argmins L

α,α
M-DSM(s, pθ0) with coefficients α = β:

Lα,αM-DSM(s, pθ0) := α · Et∼[0,T]Exθ
0∼pθ0,xθ

t∼pθt (·|x0)

[
∥st(xθt)− sθ(xθt |xθ0)∥2

]︸ ︷︷ ︸
generated data pθ0 term

+ (1− α) · Et∼[0,T]Ex∗
0∼p∗0 ,x∗

t∼p∗t (·|x∗
0)

[
∥st(x∗t)− s∗t (x

∗
t |x∗0)∥2

]︸ ︷︷ ︸
real data p∗0 term

.

Then apply the generator parameters update based on the KL divergence between mixed distributions.

Lemma 4 (DMD with real data). Consider real data distribution p∗0 ∈ P(RD) and generated
by generator Gθ distribution pθ0 ∈ P(RD). Then, KL divergence between mixed and real data for
α ∈ (0, 1] has the following gradients with modified student score sθ,αt := argmins L

α,α
M-DSM(s, p

θ
0)

and teacher score s∗t := argmins LDSM(s, p
∗
0):

Et∼[0,T]

[
dDKL(α · pθt + (1− α) · p∗t ||p∗t)

dθ

]
= E t∼[0,T],z∼pZ ,

xθ
0=Gθ(z),x

θ
t∼p

θ
t

[
α(sθ,αt (xθt)− s∗t (x

θ
t))

dGθ
dθ

]
.

Although this approach is theoretically justified, it requires coefficients α = β which work poorly for
our RealUID, see Section 3.4. In the proof below, we also show that use of coefficients α ̸= β in the
fake model loss leads to the total collapse of a generator. The proof itself follows (Wang et al., 2023).

Proof. We aim to minimize KL divergence between generated distribution pθ0 and the real data p∗0

min
pθ0

E(pθ0) := Et∼[0,T]

[
DKL(α · pθt + (1− α) · p∗t ||p∗t)

]
.

First, we use (Wang et al., 2023, Lemma 1) which says that, for any two distributions p, q ∈ P(RD)
and point x ∈ RD, we have(

δDKL(q||p)
δq

)
[x] = log q(x)− log p(x) + 1.

Second, for the parametrization xθ0 = Gθ(z), z ∼ pZ and a fixed point xt, we have (Wang et al.,
2023, Lemma 2)

δpθt (xt)

δpθ0
[θ] =

∫
z

pθt (xt|xθ0)pZ(z)dz.

It allows us to obtain

δE(pθ0)

δpθ0
[θ] = Et

δDKL(

=:qt︷ ︸︸ ︷
α · pθt (·) + (1− α) · p∗t (·)||p∗t (·))

δpθ0
[θ]

= Et
∫
δDKL(qt||p∗t)

δqt
[xt] ·

δqt
δpθt

[xt] ·
δpθt (xt)

δpθ0
[θ] · dxt

= Et
∫ [

log(α · pθt (xt) + (1− α) · p∗t (xt))− log(p∗t (xt)) + 1
]
· α ·

∫
z

pθt (xt|xθ0)pZ(z)dz · dxt

= Et,ϵ,z[α log(α · pθt (xθt) + (1− α) · p∗t (xθt))− α log(p∗t (x
θ
t)) + α]

= Et,ϵ,z[α log

(
α · p

θ
t (x

θ
t)

p∗t (x
θ
t)

+ (1− α)

)
+ α], (34)

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

where xθ0 = Gθ(z), x
θ
t = xθ0 + σtϵ, ϵ ∼ N (0, I). Finally, we take derivative w.r.t. θ from (34):

∇θ
δE(pθ0)

δpθ0
[θ] = Et,ϵ,z

[
α · ∇xθ

t
log

(
α · p

θ
t (x

θ
t)

p∗t (x
θ
t)

+ (1− α)

)
· ∂x

θ
t

∂θ

]
= Et,ϵ,z

[
α · ∇xθ

t
log

(
α · p

θ
t (x

θ
t)

p∗t (x
θ
t)

+ (1− α)

)
· ∂Gθ(z)

∂θ

]

= Et,ϵ,z

α2
∇xθ

t

pθt (x
θ
t)/p∗t (x

θ
t)

α · p
θ
t (x

θ
t)

p∗(xθ
t)

+ (1− α)
· ∂Gθ(z)

∂θ

 . (35)

Now, we show how to obtain unbiased estimate of this gradient. We minimize the following loss
function over the fake model s:

Lα,αM−DSM (s, pθ0) := α · Et∼[0,T]Exθ
t∼pθt ,xθ

0∼pθ0(·|xt)

[
∥st(xθt)− sθ(xθt |xθ0)∥2

]
+ (1− α) · Et∼[0,T]Ex∗

t∼p∗t ,x∗
0∼p∗0(·|x∗

t)

[
∥st(x∗t)− s∗t (x

∗
t |x∗0)∥2

]
.

This loss is equivalent to the following sequence

min
s

{
αEt∼[0,T],

xθ
t∼p

θ
t

∥st(xθt)− sθt (x
θ
t)∥2 + (1− α)Et∼[0,T],

x∗
t∼p

∗
t

∥st(x∗t)− s∗t (x
∗
t)∥2

}
,

min
s

{
αEt∼[0,T],

xθ
t∼p

θ
t

∥st(xθt)−∇xθ
t
log pθt (x

θ
t)∥2 + (1− α)Et∼[0,T],

x∗
t∼p

∗
t

∥st(x∗t)−∇x∗
t
log p∗t (x

∗
t)∥2

}
,

min
s

Et∼[0,T],
x∗
t∼p

∗
t

[
α∥st(x∗t)−∇ log pθt (x

∗
t)∥2

pθt (x
∗
t)

p∗t (x
∗
t)

+ (1− α)∥st(x∗t)−∇ log p∗t (x
∗
t)∥2

]
.

The optimal solution sθ,α of this quadratic minimization for each point xt and time moment t is

sθ,αt (xt) =
α
pθt (xt)
p∗t (xt)

∇xt
log pθt (xt) + (1− α)∇xt

log p∗t (xt)

α
pθt (xt)
p∗t (xt)

+ (1− α)
.

Thus, we have the following estimate with modified student score sθ,α and teacher score s∗t (xt) :=
∇xt

log p∗t (xt)

sθ,αt (xt)− s∗t (xt) =
α
pθt (xt)
p∗t (xt)

∇xt
log pθt (xt) + (1− α)∇xt

log p∗t (xt)

α
pθt (xt)
p∗t (xt)

+ (1− α)
−∇xt log p

∗
t (xt)

=
α
pθt (xt)
p∗t (xt)

(∇xt
log pθt (xt)−∇xt

log p∗t (xt))

α
pθt (xt)
p∗t (xt)

+ (1− α)

=
α
pθt (xt)
p∗t (xt)

∇xt
log

pθt (xt)
p∗t (xt)

α
pθt (xt)
p∗t (xt)

+ (1− α)
=

α∇xt
pθt (xt)/p∗t (xt)

α
pθt (xt)
p∗t (xt)

+ (1− α)
.

Hence, this estimate completely matches with required gradient (35):

(35) = Et,ϵ,z
[
α · (sθ,α(xθt)− s∗t (x

θ
t)) ·

∂Gθ(z)

∂θ

]
.

The use of other coefficients during student score optimization does not work. For the other student
scores sθ,α,βt := argmins L

α,β
M-DSM(s, pθ0), the estimate sθ,α,βt (xt)−∇xt log p

∗
t (xt) does not lead to

the necessary difference ∇xt
log pθt (xt)−∇xt

log p∗t (xt) = 0. And the optimal generator collapses
due to large bias.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

B REALUID ALGORITHM FOR FLOW MATCHING MODELS

We provide a practical implementation of our RealUID approach for FM in Algorithm 1. In the
loss functions, we retain only the terms dependent on the target parameters. For the fake model, we
reformulate the maximization objective as a minimization. We use alternating optimization, updating
the fake model K times per one student update for stability.

Algorithm 1 Real data modified Unified Inversion Distillation (RealUID) for Flow Matching

Input: teacher u∗, student generator Gθ, fake model uψ, real data p∗0, coefficients α, β ∈ (0, 1],
generator update steps K, number of iterations N , batch size B, fake model minimizer Optst,
generator minimizer Optgen, latent distribution pZ , noise distribution p1.

1: for n = 0, . . . , N − 1 do
2: Sample noise batch {x1,i}Bi=1 ∼ p1 and generated batch {xθ0,i = Gθ(zi)}Bi=1, zi ∼ pZ ;
3: Sample time batch {ti}Bi=1 ∼ U [0, 1] and calculate xθti,i = (1− ti)x

θ
0,i + tix1,i;

4: if student step (n%K ̸= 0) then
5: Sample real data batch {x∗0,i}Bi=1 ∼ p∗0 and calculate x∗ti,i = (1− ti)x

∗
0,i + tix1,i;

6: Update fake model parameters ψ via minimizer Optst step with gradients of

1

B

B∑
i=1

[
α∥uψ(ti, xsg[θ]ti,i

)− β

α
(x1,i−xsg[θ]0,i)∥2+(1− α)∥uψ(ti, x∗ti,i)−

1−β
1−α

(x1,i−x∗0,i)∥2
]
;

7: else
8: Update generator parameters θ via minimizer Optgen step with gradients of

1

B

B∑
i=1

[
α∥u∗(ti, xθti,i)−

β

α
(x1,i − xθ0,i)∥2 − α∥usg[ψ](ti, xθti,i)−

β

α
(x1,i − xθ0,i)∥2

]
;

9: end if
10: end for

C UNIFIED INVERSE DISILLATION FOR BRIDGE MATCHING AND
STOCHASTIC INTERPOLANTS

C.1 BRIDGE MATCHING

Bridge Matching (Liu et al., 2022b; Peluchetti, 2023) is an extension of diffusion models specifically
design to solve data-to-data, e.g. image-to-image problems. Typically, the distribution pT is the
distribution of ”corrupted data” and p0 is the distribution of clean data, furthermore, there is some
coupling of clean and corrupted data π(x0, xT) with marginals p0(x0) and pT (xT). To construct
the diffusion which recovers clean data given a corrupted data, one first needs to build prior process
(which often is the same forward process used in diffusions):

dxt = ft(xt) + gtdwt,

where ft(·) is a drift function and gt is a time-dependent scalar noise scheduler. This prior process
defines conditional density pt(xt|x0) and the posterior density pt(xt|x0, xT) called ”diffusion bridge”.
To recover p0 from pT , one can use reverse-time SDE

dxt =
(
ft(xt)− g2t · vπ(xt)

)
dt+ gtdw̄t,

where the drift vπt (xt) is learned via solving of the bridge matching problem:

LBM(v, π) = Et∼[0,T],(x0,xT)∼π(x0,xT),xt∼pt(xt|x0,xT)

[
wt∥vt(xt)−∇xt log pt(xt|x0)∥2

]
. (36)

However, this reverse-time diffusion in general does not guarantee that the produced samples come
from the same coupling π(x0, xT) used for training. This happens only if π(x0, xT) solves entropic
optimal transport between p0 and pT . To guarantee the preservance of the coupling π(x0, xT), there

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

exists another version of Bridge Matching called either Augmented Bridge Matching or Conditional
Bridge Matching, which differs only by addition of a condition on xT to the drift function vt(xt, xT):

LABM(v, π) = Et∼[0,T],(x0,xT)∼π(x0,xT),xt∼p(xt|x0,xT)

[
wt∥vt(xt, xT)−∇xt

log pt(xt|x0)∥22
]
.

The learned conditional drift is then used for sampling via the reverse-time SDE starting from a given
xT ∼ pT :

dxt =
(
ft(xt)− g2t · vπt (xt, xT)

)
dt+ gtdw̄t.

C.2 STOCHASTIC INTERPOLANTS

The Stochastic Interpolants framework generalizes Flow Matching and diffusion models, constructing
a diffusion or flow between two given distributions p0 and pT . To do so, one needs to consider the
interpolation between any pair of points (x0, xT) which are sampled from the coupling π(x0, xT)
with marginals p0 and pT . The interpolation itself is given by formula

xt = I(t, x0, xT) + γtϵ, ϵ ∼ N (0, I), t ∈ [0, T],

where I(0, x0, xT) = x0, I(T, x0, xT) = xT , γ0 = γT = 0 and γt > 0 for all t ∈ (0, T). This
interpolant defines a conditional Gaussian path pt(xt|x0, xT). Note that in the original paper (Albergo
et al., 2023), the authors consider the time interval [0, 1], but those two intervals are interchangeable
by using a change of variable t′ = T

t . Thus, the ODE interpolation between p0 and pT is given by:

dxt = ut(xt)dt, x0 ∼ p0,

where ut(x, xT) := E[ẋt|xt = x] = E[∂tI(t, x0, xT) + γ̇ϵ|xt = x] is the unique minimizer of the
quadratic objective:

LSI(v, π) = Et∼[0,T],(x0,xT)∼π(x0,xT),
(xt,ϵ)∼p(xt|x0,xT)

[
wt∥vt(xt, xT)− (∂tI(t, x0, xT) + γ̇tϵ))∥2

]
. (37)

The authors also provide a way of matching the score and the SDE drift of the reverse process by
solving similar MSE matching problems.

C.3 OBJECTIVE FOR UNIFIED INVERSE DISTILLATION FOR GENERAL DATA COUPLING

The essential difference of Bridge Matching and Stochastic Interpolants from diffusion models and
Flow Matching with a Gaussian path is that they additionally introduce coupling π(x0, xT) used to
sample xt and can work with conditional drifts.

This difference can be easily incorporated to our RealUID distillation framework just by parametrizing
the generator Gθ to output not the samples from the initial distribution pθ0, but from the coupling
πθ. One can do it by setting πθ(x0, xT) = pT (xT)π

θ
0(x0|xT), where conditional data distribution

πθ0(x0|xT) is parametrized by the student generator Gθ : Z × RD → RD conditioned on a sample
xT ∼ pT . This approach is specifically used in Inverse Bridge Matching Distillation (IBMD)
(Gushchin et al., 2024). Hence, our Universal Inverse Distillation objective can be written just by
substituting student distribution pθ0 by student coupling πθ, substituting real data p∗0 by real data
coupling π∗ and adding extra conditions.
Definition 5. We define Universal Matching loss with real data for general coupling on generated
data coupling πθ ∈ P(RD × RD) with α, β ∈ (0, 1]:

Lα,βR-UM-coup(f, π
θ) = α · Et∼[0,T]ExT∼pT ,xθ

0∼π
θ
0(·|xT),

xθ
t∼p

θ
t (·|x

θ
0,xT)

[
∥ft(xθt , xT)−

β

α
fθ(xθt |xθ0, xT)∥2

]
︸ ︷︷ ︸

generated data πθ term

+ (1− α) · Et∼[0,T]ExT∼pT ,x∗
0∼π

∗
0 (·|xT),

x∗
t∼p

∗
t (·|x0,xT)

[
∥ft(x∗t , xT)−

1− β

1− α
f∗t (x

∗
t |x∗0, xT)∥2

]
︸ ︷︷ ︸

real data π∗ term

.

And the corresponding Universal Inverse Distillation loss with real data for general coupling is:

min
θ

max
f

{Lα,βR-UID-coup(f, π
θ) := Lα,βR-UM-coup(f

∗, πθ)− Lα,βR-UM-coup(f, π
θ)}.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Table 6: Ablation of the fine-tuning for αFT and βFT for unconditional (left) and conditional (right) generation.
Each cell reports the resulting FID score for the corresponding (αFT, βFT); “–” indicates the method did not
converge. Best results are bolded.

αFT/βFT 0.94 0.96 0.98 1.0

0.94 - - 2.07 2.03
0.96 - - - 2.11
0.98 2.07 - - -
1.0 - - - -

αFT/βFT 0.94 0.96 0.98 1.0

0.94 - - 1.96 1.91
0.96 - - - 1.96
0.98 1.95 - - -
1.0 - - - -

In case of coupling match πθ = π∗, the RealUID loss for couplings attains its minimum, i.e.,

min
θ

max
f

Lα,βR-UID-coup(f, π
θ) = min θ{Lα,βR-UM-coup(f

∗, πθ)−min f{Lα,βR-UM-coup(f, π
θ)}︸ ︷︷ ︸

≥0

}

= Lα,βR-UM-coup(f
∗, π∗)−min f{Lα,βR-UM-coup(f, π

∗)}︸ ︷︷ ︸
=Lα,β

R-UM-coup(f
∗,π∗)

= 0.

D EXPERIMENTAL DETAILS

Training hyperparameters. We train with Adam (Kingma & Ba, 2014), using (β1, β2) =
(0, 0.999). The learning rate is 3× 10−5 for training from scratch and 1× 10−5 for fine-tuning. A
500-step linear warm-up is applied only when training from scratch. We use a batch size of 256 and
maintain an EMA of the generator parameters with decay 0.999. To regulate adaptation between the
generator and the fake model, the generator is updated once for every K = 5 updates of the fake
model, following DMD2 (Yin et al., 2024a). Additionally, at each optimization step we apply ℓ2
gradient-norm clipping with threshold 1.0 to both the generator and the fake model.

Training time. All distillation experiments were trained for 400,000 gradient updates, correspond-
ing to approximately 4.5 days. All finetuning experiments were conducted for 100,000 gradient
updates, which took a little more than 1 day, starting from the best distillation checkpoints. All
experiments were executed on a single Ascend910B NPU with 65 GB of VRAM memory. The
reported results are based on the checkpoints that achieved the best Fréchet Inception Distance (FID)
during training.

Codebase and Dataset. Building on the reference codebase of Tong et al. (2023), which serves as
our primary experimental infrastructure, we integrate the training algorithm described in Algorithm 1.
We evaluate the resulting approach on CIFAR-10 (32×32) under both conditional and unconditional
settings, benchmarking against established baselines.

Models Initialization and Generator Parametrization. The generatorGθ is initialized by replicat-
ing both the architecture and parameters of the teacher model f∗, while the fake model f is initialized
with random weights. We parameterize the generator using a residual formulation:

Gθ(z) = z + gθ(0, z),

where the input t = 0 corresponds to the fixed control input used in the teacher model f∗. Empirically,
we observe that this initialization strategy and parameterization lead to improved performance.

GAN details. We integrate a GAN loss into our framework in line with SiD2A and DMD2 (Zhou
et al., 2024a; Yin et al., 2024a). In the original setup of Zhou et al. (2024a), the adversarial loss
employs a coefficient ratio of λDadv/λ

Gθ

adv = 102 (see Table 6 in Zhou et al. (2024a)), a choice that
poses practical difficulties due to the extreme imbalance between generator and discriminator losses.
To mitigate this issue, we adopt the formulation of Yin et al. (2024a), where the ratio is ≈ 3, and
evaluate different coefficient scales (see result in the Table 1).

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

α⧹β 0.94 0.96 0.98 1.0

0.94 2.60 1.93 2.13 2.53
0.96 1.70 2.77 2.00 2.47
0.98 2.16 2.04 2.62 2.42
1.0 2.96 2.48 2.23 2.62

Table 7: Ablation studies of (α, β) coefficients for CelebA (400k training steps). The base-

line RealUID (α = 1.0, β = 1.0) does not use real data. Configurations that outperform and

significantly outperform the baseline are highlighted. All values report FID ↓, where lower is better. The best
configuration is bolded.

Evaluation protocol. We evaluate image quality using the Fréchet Inception Distance (FID; Heusel
et al., 2017), computed from 50,000 generated samples following Karras et al. (2022; 2020; 2019). In
line with SiD (Zhou et al., 2024b), we periodically compute FID during distillation and select the
checkpoint achieving the minimum value. To ensure statistical reliability, we repeat the evaluation
over 3 independent runs, rather than 10 as in SiD, because the empirical variance of FID in our
experiments was below 0.01.

E ADDITIONAL RESULTS

E.1 FINE-TUNING ABLATION STUDY ON COEFFICIENTS αFT, βFT .

This section presents an ablation of the fine-tuning stage over the loss-balancing coefficients αFT and
βFT. Results are summarized in Table 6, where “–” denotes non-convergence. We observe that training
is highly sensitive to the choice of (αFT, βFT): many configurations do not converge, underscoring
the need for careful selection. Notably, the same set of (αFT, βFT) exhibit stable optimization and
yield improved FID for both conditional and unconditional CIFAR-10 generation.

E.2 ABLATION STUDY ON CELEBA DATASET

In this section, we present the results of the same ablation studies from §4.2 on the CelebA dataset
with higher 64× 64 resolution (Liu et al., 2015). The results are summarized in Table 7.

Many pairs (α, β) demonstrate improvements relative to the baseline (α = 1.0, β = 1.0). Similar to
the results from Table 1 for CIFAR10, the same pairs of coefficients with β/α = 1.02 or β/α = 0.98
yield a significant improvement in quality. For example, pair (α = 0.96, β = 0.94) yields FID 1.70
against FID 2.62 for the data-free baseline.

Training hyperparameters. For training from zero, we take the same architecture (Tong et al.,
2023) as for the CIFAR-10 dataset with 32 × 32 resolution, but adapted it to a larger dimension.
We train it with Adam (Kingma & Ba, 2014), using (β1, β2) = (0, 0.999), learning rate 5 × 10−6

and a 500-step linear warm-up. We use a batch size of 64 and maintain an EMA of the generator
parameters with decay 0.999. To regulate adaptation between the generator and the fake model, the
generator is updated once for every K = 5 updates of the fake model, following DMD2 (Yin et al.,
2024a). Additionally, at each optimization step we apply ℓ2 gradient-norm clipping with threshold
1.0 to both the generator and the fake model.

E.3 EXAMPLE OF SAMPLES FOR DIFFERENT METHODS.

This section presents representative sample outputs from various studies conducted within the
RealUID framework.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Figure 5: Uncurated samples for unconditional generation by the one-step RealUID (α = 1.0, β =
1.0) trained on CIFAR-10. Quantitative results are reported in Table 2.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Figure 6: Uncurated samples for unconditional generation by the one-step RealUID (α = 1.0, β =
1.0) + GAN (λGθ

adv = 0.3, λDadv = 1) trained on CIFAR-10. Quantitative results are reported in Table 2.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Figure 7: Uncurated samples for unconditional generation by the one-step RealUID (α = 0.94, β =
0.96) trained on CIFAR-10. Quantitative results are reported in Table 2.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Figure 8: Uncurated samples for unconditional generation by the one-step RealUID (α = 0.94, β =
0.96 | αFT = 0.94, βFT = 1.0) trained on CIFAR-10. Quantitative results are reported in Table 2.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Figure 9: Uncurated samples for conditional generation by the one-step RealUID (α = 1.0, β = 1.0)
trained on CIFAR-10. Quantitative results are reported in Table 2.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Figure 10: Uncurated samples for conditional generation by the one-step RealUID (α = 1.0, β = 1.0)
+ GAN (λGθ

adv = 0.3, λDadv = 1) trained on CIFAR-10. Quantitative results are reported in Table 2.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Figure 11: Uncurated samples for conditional generation by the one-step RealUID (α = 0.98, β =
0.96) trained on CIFAR-10. Quantitative results are reported in Table 2.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Figure 12: Uncurated samples for conditional generation by the one-step RealUID (α = 0.98, β =
0.96 | αFT = 0.94, βFT = 1.0) trained on CIFAR-10. Quantitative results are reported in Table 2.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Figure 13: Uncurated samples by the one-step RealUID (α = 1.0, β = 1.0) trained on CelebA.
Quantitative results are reported in Table 7.

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Figure 14: Uncurated samples by the one-step RealUID (α = 0.96, β = 0.94) trained on CelebA.
Quantitative results are reported in Table 7.

38

	Introduction
	Backgrounds on training and distilling matching models
	Diffusion and Flow Models
	Universal loss for matching models
	Distillation of matching-based models
	GANs for real data incorporation

	Universal distillation of matching models with real data
	Universal Inverse Distillation
	Relation to prior distillation works
	Connection with Inverse Optimization
	RealUID: natural approach for real data incorporation

	Experiments
	Experimental Setup
	Benchmarking Methods under a Unified Experimental Configuration
	Benchmark performance and Computational comparisons

	Discussion, extension, future works
	Theoretical proofs and extensions
	RealUID theoretical properties
	Proof of RealUID Distance Lemma 2
	Explanation of the choice of coefficients and
	Correction of teacher's errors

	General RealUID loss
	SiD with real data
	Normalized UID and RealUID losses for minimizing 2-distance
	DMD approach with real data

	RealUID Algorithm for Flow Matching models
	Unified Inverse Disillation for Bridge Matching and Stochastic Interpolants
	Bridge Matching
	Stochastic Interpolants
	Objective for Unified Inverse Distillation for general data coupling

	Experimental details
	Additional Results
	Fine-tuning ablation study on coefficients FT, FT.
	Ablation study on CelebA dataset
	Example of samples for different methods.

