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Abstract001

Existing RAG benchmarks often overlook002
query difficulty, leading to inflated performance003
on simpler questions and unreliable evaluations.004
A robust benchmark dataset must satisfy three005
key criteria: quality, diversity, and difficulty,006
which capturing the complexity of reasoning007
based on hops and the distribution of support-008
ing evidence. In this paper, we propose MHTS009
(Multi-Hop Tree Structure), a novel dataset010
synthesis framework that systematically con-011
trols multi-hop reasoning complexity by lever-012
aging a multi-hop tree structure to generate013
logically connected, multi-chunk queries. Our014
fine-grained difficulty estimation formula ex-015
hibits a strong correlation with the overall per-016
formance metrics of a RAG system, validating017
its effectiveness in assessing both retrieval and018
answer generation capabilities. By ensuring019
high-quality, diverse, and difficulty-controlled020
queries, our approach enhances RAG evalua-021
tion and benchmarking capabilities.022

1 Introduction023

Recent advancements in retrieval-augmented gen-024

eration (RAG) have significantly enhanced the025

capabilities of large language models (LLMs)026

by enabling them to incorporate external knowl-027

edge (Brown et al., 2020; Lewis et al., 2020; Gao028

et al., 2023; Sharma et al., 2024). These systems029

are now widely used in open-domain question an-030

swering, customer support, and domain-specific031

retrieval tasks (Karpukhin et al., 2020; Meng et al.,032

2025; Sen et al., 2024). As the adoption of RAG033

systems continues to grow, evaluating their effec-034

tiveness becomes increasingly critical (Izacard and035

Grave, 2021). Existing RAG benchmarks have pri-036

marily focused on factual consistency and retrieval037

relevance, offering metrics that assess whether the038

generated answers align with the retrieved docu-039

ments and ground-truth responses (Simon et al.,040

2024; Yu et al., 2024). However, these bench-041

marks often assume that all queries are of equal042

difficulty, overlooking the inherent variability in 043

question complexity. These limitations highlight 044

the need for a more holistic evaluation paradigm. 045

In particular, performance differences across ques- 046

tion difficulty levels must be examined to properly 047

assess RAG systems. 048

A robust RAG benchmark must satisfy three core 049

properties: First, it must ensure the quality of the 050

data by providing ground truth (GT) answers that 051

are both accurate and complete. Second, it should 052

promote diversity by covering a wide range of 053

semantic domains, thereby avoiding bias toward 054

narrow topical distributions and enabling more gen- 055

eralizable evaluations. Third, and perhaps most crit- 056

ically, it needs to reflect varying levels of difficulty, 057

capturing the complexity of reasoning required to 058

arrive at correct answers. Despite its importance, 059

the concept of difficulty remains particularly under- 060

explored in recent studies and existing benchmark 061

datasets. Prior research tends to define difficulty 062

using coarse metrics, such as the number of reason- 063

ing hops or the count of supporting evidence (Yang 064

et al., 2018; Tang and Yang, 2024). However, such 065

research often overlook the semantic complexity 066

and logical integration required to produce a high- 067

fidelity answer. 068

In practice, answering a complex question often 069

requires synthesizing information scattered across 070

multiple, semantically distant documents (Lu et al., 071

2019; De Cao et al., 2019). The cognitive and com- 072

putational cost of such synthesis grows not just 073

with the number of reasoning steps but also with 074

the semantic dispersion of the supporting evidence. 075

In particular, reasoning across documents from dif- 076

ferent topical clusters is typically more demanding 077

than connecting closely related passages. For ex- 078

ample, answering a multi-hop question like “What 079

legal implications has the use of facial recognition 080

technology had in European countries?” requires 081

synthesizing technical documents on facial recog- 082

nition systems with legal texts or policy reports 083

1



from EU jurisdictions. Therefore, a fine-grained084

measure of query difficulty must take both factors085

into account: the number of multi-hop reasoning086

steps and the semantic spread of evidence across087

source chunks.088

To address the lack of fine-grained difficulty con-089

trol in existing RAG benchmarks, we introduce090

MHTS (Multi-Hop Tree Structure), a novel frame-091

work for synthesizing QA datasets with explicit092

control over query difficulty. Our approach fol-093

lows an answer-first generation strategy: we first094

construct answers requiring multi-hop reasoning095

across semantically diverse evidence chunks, then096

generate corresponding queries. This ensures that097

the reasoning process demands logical integration098

across dispersed information. We further define a099

difficulty estimation formula that jointly models100

two key dimensions of complexity: the number101

of reasoning hops (i.e., distinct evidence chunks102

involved) and the semantic distance between the103

query and each supporting chunk. By capturing104

both structural and semantic reasoning factors, our105

difficulty score aligns closely with real RAG perfor-106

mance trends, offering a practical tool for dataset107

curation and system evaluation.108

In addition to enabling fine-grained difficulty109

control, we validate the quality and diversity of our110

synthesized dataset. For quality, we ensure that GT111

answers are logically complete and reflect a com-112

prehensive understanding of the original source113

documents, providing full answers to the evalua-114

tion questions. For diversity, we embed the multi-115

hop claims that form the backbone of each answer,116

along with the associated document chunks and117

their semantically related multi-level summaries,118

into a shared semantic space. This embedding pro-119

cess reveals that our evaluation dataset (Q, GT) not120

only spans a wide range of the semantic spectrum121

but also covers underrepresented regions—thereby122

ensuring balanced and enriched semantic coverage123

across the document corpus. While our primary124

contribution lies in the data generation framework,125

its implications extend to a broad range of systems,126

including recent developments in agent-based and127

modular RAG architectures that require complex128

multi-hop reasoning. Our benchmark provides a129

principled foundation for evaluating such systems130

under varying reasoning difficulty levels.131

In summary, this work contributes:132

• Fine-grained dataset synthesis framework:133

We design a data generation framework that134

controls reasoning difficulty by combining evi- 135

dence chunks with varying semantic distances, 136

enabling precise difficulty labeling. 137

• Validated difficulty metric: We introduce 138

a new metric capturing both reasoning hops 139

and semantic distance, which aligns well with 140

actual RAG performance trends. 141

• High-quality benchmark dataset: Our 142

dataset offers logically complete answers, 143

topic diversity, and multi-hop complexity, 144

making it a robust benchmark for evaluating 145

RAG systems. 146

2 Related Work 147

2.1 Multi-Hop QA Datasets and Generation 148

Methods 149

Multi-hop QA requires reasoning across multiple 150

pieces of evidence to answer complex questions, 151

often involving logical composition or information 152

synthesis. Datasets such as HotPotQA (Yang et al., 153

2018), 2WikiMultiHopQA (Ho et al., 2020), and 154

MuSiQue (Trivedi et al., 2022) have advanced this 155

area by introducing multi-hop structures and sup- 156

porting evidence. However, many of these allow 157

shortcut-based solutions or lack structured diffi- 158

culty control. More recent work like MultiHop- 159

RAG (Tang and Yang, 2024) introduces LLM- 160

generated multi-hop queries with supporting evi- 161

dence, but still lacks explicit mechanisms to model 162

and control reasoning complexity. Our work ad- 163

dresses this gap by introducing a tree-based frame- 164

work that enables fine-grained control over multi- 165

hop query difficulty. 166

2.2 Difficulty Adjustment in Evaluation 167

Datasets 168

As QA systems continue to improve, evaluation 169

datasets must evolve to maintain their discrimi- 170

native power. Prior work has attempted to in- 171

crease task difficulty through compositional filter- 172

ing, unanswerable contrast questions (Trivedi et al., 173

2022), or adversarial data collection, where humans 174

iteratively craft questions to fool models (Bartolo 175

et al., 2020). 176

More recent efforts have explored predict- 177

ing query difficulty dynamically, such as 178

multHP (Samadi and Rafiei, 2023), which 179

estimates question complexity prior to retrieval. 180

Though useful for tuning system parameters or 181

balancing query sets, these approaches still do not 182
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Figure 1: Overall process of the Multi-hop Tree Structure (MHTS) framework which synthesizes RAG evaluation
dataset by fine-grained difficulty adjustment. 1⃝ The source document is chunked and claims are extracted to
construct a hierarchical multi-hop tree. 2⃝ Each multi-hop claim is used to generate a corresponding question. 3⃝
The claim is decomposed into atomic evidences, which are traced back to supporting chunks to estimate reasoning
difficulty. 4⃝ These verified chunks, combined with top retrieved chunks, are used to synthesize the final answer,
forming a complete QA pair.

offer fine-grained, controllable representations of183

difficulty. Our work addresses this limitation by184

proposing a structured generation framework that185

explicitly models and manipulates difficulty during186

dataset synthesis.187

2.3 Fine-Grained Reasoning Evaluation in188

RAG Systems189

Retrieval-augmented generation (RAG) systems190

consist of modular components—retrieval and gen-191

eration—which require evaluation methods beyond192

single aggregate scores. To address this, recent193

studies have proposed diagnostic metrics that sep-194

arately assess retrieval and answer quality (Ru195

et al., 2025), improving alignment with human196

judgments and aiding system design. Other work197

leverages large language models (LLMs) as eval-198

uators. For instance, ARES (Saad-Falcon et al.,199

2023) and related efforts (Liu et al., 2025) prompt200

LLMs to assess aspects such as relevance, cor-201

rectness, and hallucination, offering interpretable,202

multi-dimensional evaluation. More robust se-203

tups, like CONQRET (Dhole et al., 2024), miti-204

gate prompt sensitivity via multi-judge ensembles205

to enhance consistency across domains. While206

prior approaches provide detailed post hoc evalua-207

tions, they lack control over input complexity. Our208

framework complements this by explicitly encod-209

ing multi-hop reasoning difficulty, enabling more210

systematic and fine-grained evaluation of RAG sys-211

tems.212

2.4 Benchmarking RAG systems’s Retrieval 213

and Synthesis 214

Evaluating retrieval-augmented generation (RAG) 215

system requires not only assessing answer correct- 216

ness but also how effectively relevant evidence is 217

retrieved. Benchmarks such as KILT (Petroni et al., 218

2020), MultiHop-RAG (Tang and Yang, 2024), 219

and CRUD-RAG (Lyu et al., 2025) have advanced 220

this goal by jointly measuring retrieval and gen- 221

eration performance across a range of knowledge- 222

intensive tasks. These efforts highlight persistent 223

challenges in multi-hop reasoning, long-context 224

understanding, and real-world applicability, with 225

recent metrics like Key Point Recall (KPR) (Qi 226

et al., 2024) aiming to capture more nuanced evi- 227

dence utilization. Most existing benchmarks lack 228

explicit control over multi-hop difficulty. Our tree- 229

based framework (MHTS) fills this gap by enabling 230

fine-grained difficulty modeling, allowing for more 231

diagnostic evaluation of RAG systems. 232

3 Methodology 233

Our method constructs multi-hop QA data through 234

a structured pipeline. First, claims are extracted 235

from the source text. Then, semantic clustering and 236

multi-hop composition are recursively performed 237

to build a hierarchical multi-hop structure. Finally, 238

questions and answers are synthesized based on the 239

resulting multi-hop claims. This recursive process 240

enables fine-grained control over reasoning com- 241

plexity and question difficulty. An overview of the 242
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process is illustrated in Figure 1.243

3.1 Claim Extraction and Clustering244

To prepare each document for claim-level synthesis,245

we first segment it into smaller, semantically co-246

herent chunks. This splitting not only reduces the247

computational overhead for large language models248

(LLMs) but also ensures that each chunk contains249

self-contained information. Specifically, we divide250

the document based on logical boundaries, result-251

ing in a set of chunks {C1, C2, . . . , Cn}.252

Next, each chunk Ci is fed into an LLM to ex-253

tract factual statements (claims) spanning five rea-254

soning categories from (Kim et al., 2023)—namely,255

one-hop, conjunction, existence, multi-hop, and256

negation. During this extraction process, we257

perform decontextualization to minimize ambigu-258

ity (Trivedi et al., 2022), replacing pronouns or259

placeholders with explicit expressions. Each ex-260

tracted claim is mapped back to the index ixCi of261

its source chunk Ci, enabling us to trace the origin262

of every claim.263

Once the set of claims has been collected, we264

cluster semantically similar statements to facilitate265

downstream multi-hop claim generation. Follow-266

ing Sarthi et al. (2024), each claim ci is embedded267

into a d-dimensional vector Ei ∈ Rd using Ope-268

nAI’s text-embedding-3-small model.1 We then fit269

a Gaussian Mixture Model (GMM) with K compo-270

nents to these embeddings. Let αk, µk, and Σk re-271

spectively denote the mixture weight, mean vector,272

and covariance matrix for cluster k. In this frame-273

work, the posterior probability that ci belongs to274

cluster k is given by:275

γi(k) = P
(
zi = k

∣∣ Ei

)
=

αk N
(
Ei | µk,Σk

)∑K
j=1 αj N

(
Ei | µj ,Σj

) , (1)276

where zi is the latent cluster variable for claim ci.277

Since a single claim may be relevant to multiple278

clusters, we adopt a threshold-based soft assign-279

ment: claim ci is included in cluster k if γi(k) ≥ θ,280

where θ is a predefined probability threshold. This281

design allows overlapping cluster membership and282

avoids discarding nuanced information. By captur-283

ing semantic similarities in this way, we obtain a284

structured view of how claims interrelate. In sub-285

sequent stages, these cluster assignments enable286

fine-grained multi-hop claim synthesis.287

1https://platform.openai.com/docs/guides/
embeddings

3.2 Multi-Hop Claim Generation 288

Having grouped the extracted claims into clusters, 289

we next generate multi-hop claims that synthe- 290

size information from multiple source claims. Let 291

C(k) = {c1, . . . , cm} be the set of claims assigned 292

to cluster k. We provide C(k) as context to a large 293

language model (LLM) along with guidelines that 294

encourage the model to create statements reflecting 295

multiple reasoning steps. However, we do not im- 296

pose a strict requirement on the minimum number 297

of source claims to be combined; the LLM is free 298

to decide how many and which claims from C(k) to 299

incorporate into each new statement. 300

Formally, let G be a generative function parame- 301

terized by the LLM. We define a multi-hop claim 302

cmh as: 303

cmh = G
(
{ ci | i ∈ S}

)
, (2) 304

where S ⊆ {1, . . . , n} indexes the subset of source 305

claims selected by the LLM. In practice, the model 306

may combine facts, logical inferences, or even 307

negations from multiple ci to form cmh. During 308

generation, we retain the mapping between each 309

contributing claim ci and the set of chunks Cj from 310

which it was derived. 311

After processing all clusters, the newly created 312

multi-hop claims can be integrated back into sub- 313

sequent iterations if desired. These newly gener- 314

ated statements can then be fed back into the same 315

pipeline—clustering them again to produce yet 316

more complex reasoning required statements. Re- 317

peating this procedure yields increasingly sophis- 318

ticated layers of reasoning, effectively building a 319

claim-based MHTS (Multi-Hop Tree Structure). At 320

each level of MHTS, the LLM is exposed to claims 321

of growing complexity, thereby fostering deeper 322

logical inferences. This iterative approach provides 323

fine-grained control over how many hops of reason- 324

ing are embedded in each newly formed statement, 325

ultimately enabling the design of more challeng- 326

ing QA tasks for downstream retrieval-augmented 327

generation systems. 328

3.3 Question and Answer Generation 329

The generated multi-hop claims capture the core 330

essence of multi-hop reasoning within the docu- 331

ment. We therefore treat each claim as a poten- 332

tial “answer,” focusing on the directly connected 333

chunks that contributed to its creation. To con- 334

struct a QA pair, we first prompt an LLM with the 335

multi-hop claim alone to generate a question that 336

logically leads to it. 337
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However, because our claim-generation and clus-338

tering processes focus on extracting and merging339

key facts, certain contextual details may be lost. To340

recover a more comprehensive answer, we perform341

an answer decontextualization procedure. Specifi-342

cally, for each generated question, we identify the343

top three chunks most similar to the question (based344

on a similarity metric) and merge them with the top345

three chunks associated with the claim that gave346

rise to the question. If there is overlap between347

these two sets, the final number of chunks may348

be fewer than six. This set of chunks is then pro-349

vided as context to the LLM, which reformulates or350

expands the claim into a fully contextualized "an-351

swer". By grounding the final answer in multiple,352

highly relevant chunks, we ensure faithfulness to353

the original source text.354

3.4 Difficulty via Multi-hop355

To confirm that each QA pair truly captures multi-356

hop reasoning and to quantify its complexity, we de-357

compose the “claim” into a sequence of evidences.358

Following four inference types—one-hop, conjunc-359

tion, existence, and negation—we exclude “multi-360

hop” itself because it can be represented as a com-361

bination of simpler one-hop evidences. Next, we362

check the entailment relationship between each de-363

composed evidence and the candidate chunk list.364

If a piece of evidence cannot be mapped to any365

chunk, we treat it as hallucination and exclude it366

through a verification process. However, if the pre-367

ceding and following evidences map correctly but368

one intermediate evidence does not, we classify it369

as an implicit supposition; although not explicitly370

stated in any chunk, it can be inferred from the371

surrounding context, so we retain it.372

The total hop count is determined by the number373

of these decomposed evidences. By distinguishing374

between direct mappings, hallucinations, and im-375

plicit suppositions, our approach verifies both the376

factual grounding of each claim and the depth of377

multi-hop inference required to answer the gener-378

ated questions. This final check ensures that our379

QA dataset accurately reflects the intended hierar-380

chical complexity, providing a more reliable bench-381

mark for retrieval-augmented generation systems.382

We defined the difficulty of question-answer383

pairs using two variables. The first variable is the384

number of pieces of evidence used in the answer.385

To determine this, we decomposed the multi-hop386

claims containing the core information of the an-387

swer into pieces of evidence based on the four rea-388

soning types in Kim et al. (2023): one-hop, con- 389

junction, existence, and negation. The number of 390

decomposed evidence pieces is referred to as the 391

"number of hops." 392

The second variable is the similarity between 393

the question and the supporting chunks used in the 394

answer. To compute this, we first retrieved support- 395

ing chunks for each piece of decomposed evidence. 396

Then, we calculated the cosine similarity between 397

the question embedding and each supporting chunk 398

and took the average. If a single piece of evidence 399

was supported by multiple chunks, we used the 400

average similarity across those chunks. 401

The final difficulty score D is defined as D = 402

h − λs where h is the number of hops, s is the 403

average similarity, λ is a scaling factor (set to 1 by 404

default). 405

4 Experiments 406

We evaluate the proposed MHTS dataset along 407

three dimensions: (1) Difficulty Calibration, by 408

demonstrating how our difficulty scores accurately 409

reflect reasoning complexity through fine-grained 410

analysis of win-rates (GT vs. RAG) across varying 411

hop counts; (2) Semantic Diversity, by quanti- 412

fying how comprehensively the generated dataset 413

spans the underlying knowledge space; and (3) An- 414

swer Quality, through qualitative analysis illustrat- 415

ing that our method captures complex multi-hop 416

reasoning and inference capabilities absent in RAG 417

outputs. 418

4.1 Experimental Setup 419

4.1.1 Dataset 420

The novel David Copperfield 2 has been chosen 421

as a dataset for QA generation. David Copper- 422

field provides various character relationships and 423

distributed event information, making it highly suit- 424

able for creating a multi-hop QA dataset. The 425

complex narrative structure of the novel and the 426

interconnectedness of the information provide an 427

ideal environment for tasks that require multi-hop 428

reasoning, where the QA system must go through 429

several steps to derive an answer. The entire data 430

was divided by paragraph, and then concatenated 431

to form chunks with a maximum length of 1024 432

tokens. As a result, 505 chunks were created, with 433

a minimum length of 540 tokens and a maximum 434

length of 1016 tokens. 435

2https://www.gutenberg.org/ebooks/766
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4.2 Baseline and Ground-Truth (GT) Context436

RAG Setup Our baseline employs a two-stage437

retrieval pipeline. Initially, we retrieve the top-10438

chunks by ranking their cosine similarity scores439

against the input question (Lewis et al., 2020). Sub-440

sequently, a reranker 3 selects the three most rele-441

vant chunks to form the final context (Glass et al.,442

2022).443

Ground-Truth (GT) Context Our ground-truth444

(GT) context leverages gold evidence chunks,445

mapped explicitly during claim construction. To446

ensure optimal relevance, we select the three447

chunks most similar to the input question among448

all mapped evidence chunks. These selected gold449

chunks typically capture key reasoning steps es-450

sential for accurate multi-hop inference—steps451

that naive embedding-based retrieval methods fre-452

quently miss. To further enrich the GT context and453

allow comparative evaluation, we include an addi-454

tional three chunks retrieved by the RAG pipeline.455

Consequently, the final GT context consists of up456

to six chunks. However, if there is overlap between457

the retrieved chunks and those already associated458

with the claim, the total number may be fewer than459

six. This ensures a comprehensive assessment of460

retrieval effectiveness while highlighting the advan-461

tages of our structured, tree-based chunk mapping462

approach over surface-level similarity retrieval.463

4.3 Fine-grained Difficulty464

To verify that our method generates questions in465

a fine-grained manner according to varying diffi-466

culty levels, and simultaneously ensures that the467

generated answers satisfy high-quality standards,468

we employed an LLM-as-a-Judge evaluation ap-469

proach (Zheng et al., 2023). Specifically, we pre-470

sented GPT-4o 4 with a question, our proposed an-471

swer, and a RAG answer, prompting it to select the472

better response according to three metrics, thereby473

measuring the win rate.474

The three metrics—Comprehensiveness, Diver-475

sity, and Empowerment—were adopted from (Edge476

et al., 2024). To mitigate potential positional bias,477

we repeated the evaluation twice, swapping the478

order in which our answer and the naive RAG an-479

swer were presented. The final classification into480

“win/tie/lose" was determined by aggregating re-481

sults from both evaluations. Additionally, to con-482

3https://huggingface.co/jinaai/
jina-reranker-v2-base-multilingual

4https://openai.com/index/hello-gpt-4o/

Figure 2: GT win rate increases with hop count (Pearson
r = 0.93).

Figure 3: GT win rate increases with difficulty (Pearson
r = 0.99).

firm that higher hop counts correspond to increased 483

difficulty in multi-hop QA tasks, we analyzed how 484

the win rate varied across different hop counts. 485

Figure 3 illustrates that our generated 486

(GT) answers consistently outperform naive 487

RAG outputs across various evaluation met- 488

rics—Comprehensiveness, Diversity, and 489

Empowerment. Importantly, we observe a clear 490

positive correlation between the difficulty level and 491

the GT win rate. This trend highlights that as the 492

complexity of multi-hop reasoning tasks increases, 493

naive RAG systems struggle more significantly, 494

either failing to provide adequate answers or 495

delivering incomplete responses. In contrast, our 496

MHTS-generated answers not only remain robust 497

but become increasingly advantageous at higher 498

difficulty levels. 499

However, when evaluating the win rate strictly 500
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based on hop count (Figure 3 (a)), although an over-501

all increasing trend is observable, there are fluctu-502

ations where the win rate temporarily decreases503

before rising again. While the general trend still504

demonstrates a linear increase, these intermediate505

drops indicate limitations in relying solely on hop506

count for fine-grained difficulty control. In contrast,507

our proposed method (Figure 3 (b)) exhibits a con-508

sistent, linear improvement without fluctuations,509

achieving a correlation of 0.99 between difficulty510

level and win rate. Thus, compared to a simplistic511

hop-count-based approach, our method provides a512

more reliable and fine-grained difficulty calibration513

for multi-hop QA.514

In Figure 3 (a), the evaluation was conducted515

using 100 samples for hop counts 1 to 4, 41 sam-516

ples for 5-hop, and 9 samples for 6-hop. For the517

split-based analysis: Figure 3 (b), we selected518

90 samples per difficulty level, ensuring an equal519

number of samples across different difficulty splits.520

4.4 Diversity521

Evaluating semantic diversity is critical for un-522

derstanding the semantic coverage and reasoning523

breadth and comprehensiveness of a QA dataset.524

Traditional hierarchical summarization methods525

such as RAPTOR (Sarthi et al., 2024) rely on re-526

cursively clustering summarized nodes, which may527

limit semantic coverage by failing to capture the528

logical integration across multiple, semantically529

distinct chunks. To verify whether our MHTS-530

based method improves upon these limitations by531

capturing a wider semantic range, we conduct a532

comparative evaluation against a RAPTOR-style533

hierarchy.534

Specifically, we construct the RAPTOR-style hi-535

erarchical structure using 100-token chunks and536

their summaries, recursively clustering until four537

root nodes remain. We embed both RAPTOR538

nodes and our MHTS-generated (Q, A) pairs using539

the same embedding model for fair comparison,540

then assess semantic diversity via average pairwise541

distance (higher indicates broader topic coverage)542

and the sum of the eigenvalues of the covariance543

matrix (higher denotes richer semantic coverage).544

Table 1 presents the semantic diversity evalu-545

ation results. For a fair comparison, the same546

number of data points were used for both datasets.547

MHTS-generated (Q, A) pairs exhibit a higher aver-548

age embedding distance (1.23) compared to RAP-549

TOR nodes (1.12), indicating that our data points550

are more semantically dispersed and less redun-551

Dataset Avg. Dis. ↑ Eigen Var. ↑

RAPTOR Tree Nodes 1.12 0.63
MHTS (Q, A) Pairs 1.23 0.76

Table 1: Semantic diversity: higher distance and higher
variance indicate broader coverage.

dant. In addition, the total sum of eigenvalues is 552

also greater for MHTS (0.76 vs. 0.63), suggesting 553

that the semantic embeddings occupy a richer and 554

more varied subspace. 555

These results strongly indicate that our MHTS 556

framework effectively generates QA pairs that span 557

a more diverse and comprehensive semantic space 558

than traditional summarization-based hierarchical 559

structures. This broader coverage not only enriches 560

the dataset but also enables more fine-grained eval- 561

uation of a model’s ability to perform multi-hop 562

reasoning, ultimately allowing us to assess how 563

well systems handle complex, real-world QA tasks 564

in knowledge-intensive domains. A visual anal- 565

ysis of this semantic diversity is provided in Ap- 566

pendix A.1, further illustrating how MHTS QA 567

pairs span a broader range of topics compared to 568

RAPTOR nodes. 569

4.5 Quality 570

While difficulty calibration and semantic diversity 571

measure important aspects of a QA dataset, high- 572

quality reference answers(GT) are ultimately essen- 573

tial for evaluating system performance in realistic 574

scenarios. To assess whether our MHTS-generated 575

QA pairs maintain strong GT answer quality, we 576

conducted a qualitative comparison against naive 577

RAG outputs. 578

Table 2 presents an illustrative example compar- 579

ing a Ground Truth (GT) answer to that of a naive 580

RAG system. The question asks about "the relation- 581

ship between Emily and the person she was with 582

when the narrator saw her on the moving ship." 583

However, the top-3 chunks retrieved by naive RAG 584

omit the relevant portion of the text, resulting in a 585

hallucinated answer that describes Emily as being 586

romantically involved with Mr. James. In reality, 587

the source text reveals that she was with her uncle, 588

portrayed as a deeply trusted and protective figure. 589

The GT answer accurately reflects this relation- 590

ship, grounded in the original evidence, whereas 591

the RAG response fabricates a misleading narrative 592

due to missing context. 593

This discrepancy highlights the significance of 594

proper context retrieval and multi-hop integration 595

7



Question
What was the relationship between Emily and the person

she was with when the narrator saw her on the moving ship?

RAG

Based on the provided context, Emily was romantically involved with Mr. James.
When the narrator saw her on the moving ship,

she was with Mr. James, her former partner. Their relationship had become strained
because Mr. James had left Emily to marry another respectable person,

as arranged by Mr. Littimer. This departure led to Emily’s distress
and subsequent actions, highlighting the complexities and conflicts in their relationship.

GT (MHTS)

Emily was accompanied by her uncle when the narrator saw her on the moving ship.
The context describes Emily "trembling on his shoulder" and clinging to him

"with the utmost trust of thy bruised heart," indicating a close
and trusting relationship between them.

The uncle is portrayed as someone who has shown "all the might of his great love" for Emily,
highlighting his protective and caring role in her life.

Chunk

As the sails rose to the wind, and the ship began to move,
there broke from all the boats three resounding cheers, which those on board took up,

and echoed back, and which were echoed and re-echoed.
My heart burst out when I heard the sound,

and beheld the waving of the hats and handkerchiefs–and then I saw her!
Then I saw her, at her uncle’s side, and trembling on his shoulder.

He pointed to us with an eager hand; and she saw us,
and waved her last good-bye to me. Aye, Emily, beautiful and drooping,

cling to him with the utmost trust of thy bruised heart;
for he has clung to thee, with all the might of his great love!

Table 2: Case study for quality evaluation. The question is answered using both RAG (RAG) and our proposed
method based on MHTS (GT (MHTS)). The supporting evidence for the question is shown in the bottom row
(Chunk) which is a mapped chunk for GT. Notably, the relevant chunk was not included in the top-3 retrieved
chunks used by naive RAG, leading to an incorrect, hallucinated response.

for answer quality. By leveraging a more com-596

prehensive evidence-mapping strategy, our MHTS-597

based pipeline avoids the crucial omissions that598

lead to RAG’s hallucinations, thereby producing599

answers that align with the factual details of the600

original source text. Additional examples used for601

quality evaluation can be found in Appendix A.2.602

5 Conclusion603

In this work, we introduced a novel frame-604

work—MHTS—for generating multi-hop QA605

datasets that systematically controls difficulty and606

ensures both semantic diversity and high-quality an-607

swers. By splitting source documents into chunks,608

extracting and clustering claims, and iteratively609

generating multi-hop statements, our method builds610

a tree structure that reflects progressively deeper611

reasoning. We demonstrated that relying solely on612

naive retrieval-augmented generation (RAG) meth-613

ods leads to suboptimal performance when han-614

dling complex queries. Specifically, we observed615

that as the difficulty level—defined by our formu-616

lation combining reasoning hops and semantic dis-617

persion—increases, MHTS-based answers achieve 618

higher win rates. These findings highlight the im- 619

portance of fine-grained difficulty calibration in 620

the development and evaluation of advanced RAG 621

systems, serving as a foundation for more robust 622

and comprehensive research in multi-hop question 623

answering. Since current RAG systems tend to per- 624

form poorly and frequently produce hallucinations 625

when faced with high-difficulty queries, the ability 626

to systematically synthesize such challenging ex- 627

amples with fine-grained difficulty control makes 628

our framework particularly valuable for advancing 629

robust and realistic RAG evaluation. 630

Limitation 631

While our proposed MHTS framework offers a sys- 632

tematic approach to generating difficulty-controlled 633

QA datasets, it has certain limitations. 634

First, the current evaluation is conducted exclu- 635

sively on a single literary corpus—David Copper- 636

field. Although this source provides a rich setting 637

for testing multi-hop reasoning due to its complex 638

narrative structure and character interactions, it 639

8



may not fully represent the challenges found in640

other domains such as scientific articles, encyclo-641

pedic entries, or real-world dialogues. Future work642

should explore the applicability of MHTS across643

a broader range of document types to assess its644

generalizability.645

Second, the framework relies on the performance646

of large language models (LLMs) for critical com-647

ponents such as claim extraction, clustering, and648

multi-hop synthesis. While strong results were649

achieved using powerful LLMs, the quality and650

controllability of the generated datasets may de-651

grade when using smaller or less capable models.652

This dependency raises concerns about the frame-653

work’s accessibility and robustness in resource-654

constrained environments.655
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A Example Appendix 820

Figure 4: UMAP projection of semantic embeddings
from MHTS claims (blue) and RAPTOR nodes (red).
Claims appear more semantically dispersed, suggesting
broader topic coverage.

A.1 Diversity Visualization 821

To provide a visual illustration of the semantic di- 822

versity of our generated QA data, we project the 823

embeddings of claim-level representations into a 824

2D space using UMAP. From our full claim set, 825

we sample 5,527 claims via K-means clustering to 826

ensure broad coverage and compare them against 827

node representations extracted from a RAPTOR- 828

style summarization hierarchy (Sarthi et al., 2024). 829

As shown in Figure 4, although both distributions 830

overlap considerably, the MHTS-generated claims 831

(in blue) appear more dispersed across the semantic 832

space than the RAPTOR nodes (in red), which tend 833

to form tighter clusters. This dispersion suggests 834

a slightly higher degree of topic-level diversity in 835

our data. However, the difference is subtle, and the 836

10

https://doi.org/10.18653/v1/2024.findings-emnlp.279
https://doi.org/10.18653/v1/2024.findings-emnlp.279
https://doi.org/10.18653/v1/2024.findings-emnlp.279
https://doi.org/10.18653/v1/2024.findings-emnlp.279
https://doi.org/10.18653/v1/2024.findings-emnlp.279


overall semantic coverage of both datasets remains837

comparable.838

A.2 Additional Quality Experiments839

Table 3 presents an illustrative example comparing840

a Ground Truth (GT) answer to that of a naive RAG841

system. The question asks about "the location the842

narrator returned to and loitered at for half an hour843

before old Tiffey appeared with his key, after having844

breakfast on the Heath." However, the top-3 chunks845

retrieved by naive RAG omit the relevant portion of846

the text, resulting in an answer that simply repeats847

the question’s phrasing and lacks supporting detail.848

In contrast, the GT answer produced via MHTS849

correctly identifies that "the narrator walked back850

to Doctors’ Commons and loitered there for half851

an hour," as described in the source chunk.852

Table 4 presents an illustrative example compar-853

ing a Ground Truth (GT) answer to that of a naive854

RAG system. The question asks about the conse-855

quences declared by a nurse and some sage women856

for an infant born on a Friday night. However, the857

top-3 chunks retrieved by naive RAG omit the rele-858

vant portion of the text, resulting in a hallucinated859

mention of “Miss Betsey” and a falsely optimistic860

outlook. In contrast, the GT answer correctly iden-861

tifies that the nurse and the wise women believed862

the child would be both unlucky and able to see863

ghosts and spirits.864

This discrepancy highlights the significance of865

proper context retrieval and multi-hop integration866

for answer quality. By leveraging a more com-867

prehensive evidence-mapping strategy, our MHTS-868

based pipeline avoids the crucial omissions that869

lead to RAG’s hallucinations, thereby producing870

answers that align with the factual details of the871

original source text.872

11



Question
After having breakfast on the Heath,

to which location did the narrator walk back and loiter
for half an hour before old Tiffey appeared with his key?

Naiive RAG

After having breakfast on the Heath,
the narrator walked back to Doctors’ Commons.

Upon arriving at the office there, he loitered around
the Commons for half an hour before old Tiffey appeared with his key.

GT (MHTS)
After having breakfast on the shore,

the narrator walked back and loitered
for half an hour before old Tiffey appeared with his key.

Chunk

I got some breakfast on the Heath, and walked back to Doctors’ Commons,
along the watered roads and through a pleasant smell of summer flowers,

growing in gardens and carried into town on hucksters’ heads,
intent on this first effort to meet our altered circumstances.

I arrived at the office so soon, after all,
that I had half an hour’s loitering about the Commons,

before old Tiffey, who was always first, appeared with his key.

Table 3: Case study for quality evaluation. The question is answered using both naive RAG (Naive RAG) and
our proposed method based on MHTS (GT (MHTS)). The supporting evidence for the question is shown in the
bottom row (Chunk). Notably, the relevant chunk was not included in the top-3 retrieved chunks used by naive RAG,
leading to an incorrect, hallucinated response.
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Question What did the nurse and some sage women declare
about the consequences of being born on a Friday night for the narrator?

Naiive RAG

Based on the provided context, Miss Betsey was the one who indicated
that being born on a Friday had significant importance for the narrator.

She expressed that the narrator owes his birth on a Friday to her actions,
suggesting that this timing had positive consequences for his future.

There is no mention of a nurse or other sage women declaring anything
about the consequences of being born on a Friday night in the given text.

GT (MHTS)

The nurse and several wise women in the narrator’s neighborhood declared
two specific consequences of his birth on a Friday night at midnight.

They believed that:
1. **Destined for Unluckiness**:

The narrator was fated to experience misfortune throughout his life.
2. **Ability to See Ghosts and Spirits**:

He was granted the unique privilege of being able to perceive ghosts and spirits.
They held that these attributes were inevitably linked to all infants born

during the early hours of a Friday night, regardless of gender.

Chunk

In consideration of the day and hour of my birth, it was declared by the nurse,
and by some sage women in the neighbourhood

who had taken a lively interest in me several months
before there was any possibility of our becoming personally acquainted,

first, that I was destined to be unlucky in life;
and secondly, that I was privileged to see ghosts and spirits;

both these gifts inevitably attaching, as they believed,
to all unlucky infants of either gender,

born towards the small hours on a Friday night.

Table 4: Case study for quality evaluation. The question is answered using both naive RAG (Naive RAG) and our
proposed method based on MHTS (GT (MHTS)). The supporting evidence for the question is shown in the bottom
row (Chunk).
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