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Abstract

Graph representation learning has been used in neural architecture search, for1

example in performance prediction. Existing works focused mostly on neural2

graph similarity without considering functionally similar networks with different3

architectures. In this work, we adress this issue by using meta-information of4

input images and output features of a particular neural network. We extended5

the arch2vec model, a graph variational autoencoder for neural architecture search,6

to learn from this novel kind of data. We demonstrate our approach on the NAS-7

Bench-101 search space and the CIFAR-10 dataset, and compare our model with8

the original arch2vec on a REINFORCE search task and a performance prediction9

task.10

1 Introduction11

Representation learning has been an essential part of the Neural Architecture Search (NAS). While12

some NAS systems use encodings designed for the specific search algorithm, other systems learn the13

representation of the neural graph during the search process, for example as a part of a performance14

estimator. Alternatively, unsupervised pretraining is performed to extract more general features. The15

advantage of this approach is that the features can represent the similarities between the architectures16

better than the supervised variant [20].17

Although the unsupervised embedding of neural networks is a promising direction in NAS, existing18

works focused mostly on the neural graphs. However, neural networks with a relatively different19

architecture may still learn a similar function of the input (as has been shown in works on network20

morphism [19]). In other words, we need to gather some meta-knowledge about the learned functions21

to improve the representation.22

In our work, we adress this issue by extending an existing model for unsupervised network embedding,23

arch2vec [20], with input-output meta-information. That is, along with the architecture embedding,24

we learn the output features of the network on the input images.25

2 Related Work26

Existing works used different models for feature extraction on input architectures. In PNAS, NAO27

and SemiNAS [8, 12, 13], a string-based representation of the networks is passed to a LSTM model.28

The graph neural networks are widely used in NAS, notably as surrogate models for performance29

prediction [10, 18, 22]. In BONAS [17], a GCN is trained to perform the embedding through a global30

node, then a regressor is trained on the embeddings to predict network accuracy. The GATES model31

[14] simulates the information flow through the computational graph. Unsupervised pretraining has32

been done through graph variational autoencoders. The arch2vec model utilizes GIN layers and inner33
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product adjacency matrix decoding [20]. SVGe is a two-sided variational autoencoder that focuses34

on smooth encoding and accurate reconstruction of networks [11].35

Some recent works used meta-information to improve the accuracy of performance prediction or36

the running time. FEAR ranks the architectures according to usefulness of extracted features by37

freezing most weights after a short time of training [1]. In zero-shot architecture design, the network38

performance is estimated by the non-linearity coefficient, a scalar statistics, without training the39

networks [16]. Another work introduces the coefficient of variation of untrained accuracy as a40

powerful estimation metric for the final accuracy [3].41

3 Our solution42

In this section, we first shortly introduce the original arch2vec model, then we describe the labeled43

input-output dataset (IO-dataset), and finally we present our extended model and its training. The44

whole workflow is summarized in Figure 1.45

Figure 1: The training workflow of our model.

3.1 The arch2vec Model46

The arch2vec is a variational graph autoencoder similar to VGAE [5] with some differences — it uses
GIN layers instead of GCN, and unlike VGAE, its output is not only the decoded adjacency matrix,
but the features as well. The features X̂ are decoded using a dense layer with softmax activation, and
the adjacency matrix Â through inner product of latent vectors. Since X̂ and Â are reconstructed
independently, it holds:

P (Â, X̂|Z) = p(X̂|Z) · P (Â|Z).

The optimised loss is the variational lower bound (Equation 1).47

L = Eqφ(Z|X,A)[log pθ(X,A|Z)]−DKL(qφ(Z|X,A) || pθ(Z)) (1)

During the training, the input matrix A is augmented to Ā = A + AT to allow information flow in48

both directions.49

3.2 IO-dataset50

The IO-dataset is a set of triplets (net, in, out), where net is a network architecture, in is the input51

image and out is the output obtained through passing in to net. The out data can be any intermediate52

output of the network, e.g. feature maps or vector features.53

In our work, we focus on the CIFAR-10 dataset and NAS-Bench-101 search space [6, 21]. We now54

describe the process of creating the dataset.55
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Pretraining We sampled 608 training networks and 77 validation networks from the train and test56

set respectively, using the same split of the search space as in arch2vec. From the CIFAR-10 dataset,57

we split off a validation set of size 1 000, and pretrained the networks on the rest of the train set.58

The training was done according to the NAS-Bench-101 paper [21] with some differences. Since59

arch2vec is implemented in PyTorch [15], we did not use the original TensorFlow implementation60

of NAS-Bench-101, but a PyTorch implementation (NASBench-PyTorch1 [4]). We used the same61

augmentation techniques and most of the hyperparameters, although we had to alter some settings62

due to resource limits (batch size 128, 12 training epochs, batch normalization and learning rate set to63

default values). The hyperparameters along with other training details are specified in the Appendix64

(Section A.1).65

Dataset Construction The IO-dataset is created by passing input images from the CIFAR-1066

validation set through the pretrained networks. As the outputs, we use the features preceding the67

last dense layer (the output of the global average pooling layer), which is a vector of size 512. The68

predictions of the sampled training networks are the labeled train set, while the validation networks69

create an unseen networks validation set. Additionaly, the CIFAR-10 test set is used to create a second70

validation set — predictions of training networks on unseen images. More details about the dataset71

splits are listed in Section A.2.72

Preprocessing The preprocessing of networks is the same as in the arch2vec implementation, and73

the input images from CIFAR-10 do not have to be modified for the training. However, there are two74

main problems with the output data that need to be solved.75

The first problem is that there is no ordering defined on the features, in other words, the output of76

the global average pooling of two different networks may be the same, but permuted. The weights77

of the last dense layer determine the feature importance of the global average pooling outputs for a78

specific class. We use them in the following way: for an input image, we choose the dense weights79

corresponding to the image class, and we also append 1 to the vector to represent the bias. Then,80

we sort the feature vector according to the weights. Lastly, we multiply the result and the weight81

vector. This preprocessing ensures better comparability among the networks. It does not alleviate82

all shuffling errors — for example, two networks may still extract the same feature with a slightly83

different importance, e.g. as feature number 2 in the first network and feature number 3 in the second84

one — nevertheless, two very similar networks should still have a similar response to the same image.85

The second issue is that the networks may produce outputs with a different scale. Since the activation86

of the last layer is softmax, the final output is normalized and it does not matter whether the features87

before applying softmax are large or small. However, in our use-case we need to make the outputs of88

networks comparable. As so, we fit a scaler for every network separately and normalize the features89

before sorting them. There are multiple ways to do so, e.g. scaling each feature separately or scaling90

all features by a global value. In the preliminary experiments, we normalize the dataset using the91

mean and standard deviation (scalars computed from all outputs). Lastly, the final sorted dataset is92

normalized once more along the features, so that all features contribute equally to the loss.93

3.3 The Extended Model94

In this section, we describe how we have extended the arch2vec model to learn from the IO-dataset.95

Figure 2 shows the overall structure of the model.96

We use the original arch2vec VAE to encode the neural architecture into the latent matrix Z. The97

matrix is passed through the decoder, producing the first model output. In the next step, we flatten the98

matrix and pass it through a dense layer to create a vector representation of the input network. The99

second part of the model processes the input image using a sequence of 3× 3 convolutional layers2100

with batch normalization and ReLU activation, followed by a global average pooling, obtaining the101

vector representation of the image. Finally, the network and image vectors are concatenated and102

passed through dense layers as to predict the output features — the second model output.103

Since our dataset contains both labeled and unlabeled data, our model is trained in a semi-supervised104

manner. As there is more labeled than unlabeled data, we interchangeably train on 300 labeled105

1Used with kind permission of the author, Romulus Hong.
2We use stride 2 at the end of every convolutional block to decrease the spatial dimensions.
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Figure 2: The architecture of the our model.

batches followed by 200 unlabeled batches. We use the same model and training hyperparameters as106

in the original arch2vec. For unlabeled batches, we optimize the original loss — variational lower107

bound with gaussian prior. The loss for labeled batches is the sum of the unlabeled loss and L1 loss108

between the predicted and original output features. The full list of training hyperparameters is listed109

in Table 3 in the Appendix.110

4 Experiments111

We verified our approach on the following tasks — we analyzed the labeled validation loss and112

compared it with a baseline, and we compared the extended model with arch2vec. Then, we evaluated113

our model on two NAS task — REINFORCE search and performance prediction.114

4.1 Training115

We trained the model from Section 3.3 on the IO-dataset (Section 3.2) for 30 epochs. Figures 3 and 4116

show the validation loss mean and bootstrapped 95% confidence interval during the training. For117

every dataset, we also compute the baseline — we take the mean vector of the output features in the118

dataset, and we compute the corresponding L1 loss between the examples and the mean. We report119

the mean of the losses and its 95% confidence interval. While the network generalizes well on unseen120

images, the unseen networks are challenging — although the loss is below the baseline, it does not121

improve during the training. Additional details of the training are reported in the Appendix (Section122

A.3). Looking at the reconstruction accuracy of operations and adjacency matrix (Figures 5, 6), the123

results are practically the same as in case of the original arch2vec model.124

4.2 REINFORCE on NAS-Bench-101125

In this experiment, we ran the REINFORCE search on NAS-Bench-101 and CIFAR-10 dataset, and126

compared the results of our model and arch2vec. We used two sets of latent features for each model —127

features extracted after 10 epochs, and after 30 epochs. We ran the REINFORCE search 500 times for128

the four feature sets, and we used the same run settings as in the original arch2vec paper — estimated129

106 seconds limit per one run (via querying NAS–Bench-101).130

The results are depicted in Figures 7 and 8, we report the regret, i.e. the difference between the131

maximal accuracy of the search space and the accuracy of the best performing network found during132

the search. The overall performance of the models was similar, with only small differences at the end133
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Figure 3: Unseen networks validation loss. Figure 4: Unseen images validation loss.

Figure 5: Operations reconstruction accuracy
(validation networks).

Figure 6: Adjacency matrix reconstruction accu-
racy (validation networks).

of the search. Arch2vec performed better in case of the validation regret, but the test regret was the134

same for both arch2vec runs and the 30 epoch features of our model.135

Figure 7: Validation accuracy during the
search using REINFORCE.

Figure 8: Test accuracy during the search using
REINFORCE.

Although our approach did not bring any significant improvement to the search process, the results are136

not worse, given that the model had to learn two tasks at the same time. Also, since NAS-Bench-101137

and CIFAR-10 are relatively easy benchmark datasets compared to other existing search spaces or138

datasets, the followup work should explore more challenging cases (like DARTS or ImageNet [9, 7]).139
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4.3 Performance Prediction on NAS-Bench-101140

To compare the models, we repeated the performance prediction experiment from the original141

arch2vec paper [20]. The authors trained a gaussian process regressor on 250 randomly chosen latent142

features for 10 different seeds, and then predicted the performance of the other architectures. The143

evaluation was done only for networks with accuracy larger than 0.8. The authors reported two144

metrics, RMSE (0.018 ± 0.001) and Pearson’s correlation coefficient r (0.67 ± 0.02), for the test145

accuracy prediction task.146

We used features extracted using our model, the arch2vec trained concurrently with our model, and147

the arch2vec trained using the settings from the original paper (only 8 epochs). Additionally, we tried148

different train set sizes. Unfortunately, we were not able to reproduce the results, since the authors149

did not report the exact hyperparameter settings for the gaussian process. As so, we used a random150

forest, since it yielded the best results from other common regressors.151

Figures 9 and 10 depict the distributions of RMSE and Pearson’s r respectively across the 10 seeds.152

We see that both our model and arch2vec trained on the same batches yield better results on the153

smaller train set sizes, possibly due to the longer training time. Our model had a better median154

statistics than the arch2vec model on sample sizes 600 and 1 000, but overall, the results are similar.155

Figure 9: RMSE distribution across 10 runs
for different sample sizes.

Figure 10: Pearson’s r distribution across 10 runs
for different sample sizes.

5 Conclusion156

In this work, we presented a novel approach to neural graph embedding. It is an extension of the157

graph variational autoencoder arch2vec in that it learns from input-output meta-information. We158

showed that the validation loss is better than a baseline, and we compared our model with the original159

arch2vec on two NAS tasks — REINFORCE-based search, and performance prediction with random160

forest.161

The followup work will focus on multiple directions. In case of the IO-dataset, an important question162

is if the results improve with more labeled networks or images. During the training, other batch163

sampling strategies should be explored, and the problem of the unbalanced datasets should be adressed.164

An interesting research direction would be a generative approach for semi-supervised regression.165

Finally, the work will be extended to other common search spaces like NAS-Bench-201 or DARTS166

[2, 9].167
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A Appendix239

A.1 Pretraining Details240

We performed the training on a cluster with the following resources per training process:241

• 16 GB GPU (nVidia Tesla T4)242

• 4 core CPU (Intel(R) Xeon(R) Gold 5218 CPU @ 2.30GHz, total 16 cores)243

• 16 GB RAM244

Table 1 summarizes the hyperparameters used for network pretraining on the CIFAR-10 dataset.245

Table 1: Pretraining hyperparameters for NAS-Bench-101 networks — our settings.

hyperparameters
batch size 128
initial convolution filters 128
validation size 1000
num_workers 4
num_epochs 12
gradient clipping norm 5
optimizer SGD
initial learning rate 0.025
final learning rate 0.0
momentum 0.9
weight_decay 10−4

learning rate schedule cosine annealing

A.2 Labeled Datasets246

The train set was created by passing training CIFAR-10 images (or seen images) through training247

networks. Furthermore, there are two validation datasets — one with seen images and unseen248

(validation) networks, the second with unseen images and seen (training) networks. The latter is249

created from a fraction of the test set — we selected 2 000 random images from the CIFAR-10 test set250

(denoted test_2k), and evaluated train networks on it. We used the results of 0.1 of training networks251

(61 networks) to create the aforementioned validation set, and the remaining networks to create the252

test set. The second test set are then unseen networks evaluated on unseen images from test_2k.253

Table 2 lists the datasets along with the number of examples.254
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Table 2: Division into train/validation/test datasets according to source dataset types.

labeled networks CIFAR-10 dataset size
train train validation 608 000
validation validation validation 77 000
validation 0.1 train test_2k 122 000
test 0.9 train test_2k 1 094 000
test validation test_2k 154 000

A.3 Training Details255

Table 3 summarizes the training hyperparameters used. Most of them are the same as in arch2vec,256

only the number of epochs is larger (originally 8 epochs).257

Table 3: Default model hyperparameters

hyperparameter

latent dimension 16
adjacency activation sigmoid
operations activations softmax
reconstruction loss binary crossentropy
dropout 0.3
GIN MLP layers 2
GIN MLP features 128
GIN iterations per layer 5

batch size 32
epochs 30
labeled loss L1

optimizer Adam
learning rate 10−3

betas [0.9, 0.999]
eps 10−8

We also show losses for the train set (Figure 11) and the two test sets (Figures 12, 13). Although they258

are still below the baseline, the results are worse than in case of the validation losses, meaning that259

combination of unseen images and networks is challenging for the model.260

Figure 11: Train labeled loss.
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Figure 12: Test loss — seen networks,
unseen images

Figure 13: Test loss — unseen networks, unseen
images.

Figure 14: Validity during the training. Figure 15: Uniqueness during the training.
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