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ABSTRACT

In this work, we investigate a particular implicit bias in the gradient descent
training process, which we term “Feature Averaging”, and argue that it is one
of the principal factors contributing to non-robustness of deep neural networks.
Despite the existence of multiple discriminative features capable of classifying
data, neural networks trained by gradient descent exhibit a tendency to learn
the average (or certain combination) of these features, rather than distinguishing
and leveraging each feature individually. In particular, we provide a detailed
theoretical analysis of the training dynamics of gradient descent in a two-layer
ReLU network for a binary classification task, where the data distribution consists
of multiple clusters with orthogonal cluster center vectors. We rigorously prove
that gradient descent converges to the regime of feature averaging, wherein the
weights associated with each hidden-layer neuron represent an average of the
cluster centers (each center corresponding to a distinct feature). It leads the network
classifier to be non-robust due to an attack that aligns with the negative direction
of the averaged features. Furthermore, we prove that, with the provision of more
granular supervised information, a two-layer multi-class neural network is capable
of learning individual features, which is able to induce a binary classifier with
the optimal robustness under our setting. Besides, we also conduct extensive
experiments using synthetic datasets, MNIST and CIFAR-10 to substantiate the
phenomenon of feature averaging and its role in adversarial robustness of neural
networks. We hope the theoretical and empirical insights can provide a deeper
understanding of the impact of the gradient descent training on feature learning
process, which in turn influences the robustness of the network, and how more
detailed supervision may enhance model robustness.

1 INTRODUCTION

Deep learning has achieved unprecedented success in a vast range of application domains. These
models have been adopted in numerous applications including many safety-sensitive systems, such as
autonomous driving and diagnostic assistance technologies. Despite the success of deep learning, a
landmark study by Szegedy et al. (2013) exposed that deep neural networks are extremely vulnerable
to adversarial attacks. These attacks involve adding nearly imperceptible and carefully chosen
perturbations to input data to confound deep learning models into making incorrect predictions. The
perturbed inputs are termed adversarial examples and their existence has attracted significant attention
from the research community. Since then, various attacks (Biggio et al., 2013; Szegedy et al., 2013;
Goodfellow et al., 2014; Madry et al., 2018) and defenses (Goodfellow et al., 2014; Madry et al.,
2018; Shafahi et al., 2019; Pang et al., 2022) were developed, but the issue of adversarial robustness
is still far from being resolved.

Gaining a deeper understanding of the adversarial robustness of neural networks is crucial not only for
improving the reliability of deep learning systems in practice but also for illuminating the underlying
theory of deep learning. Daniely & Shacham (2020); Bubeck et al. (2021a); Bartlett et al. (2021);
Montanari & Wu (2023) proved the existence of adversarial examples for neural networks with
random weights across various architectures. Tsipras et al. (2019); Zhang et al. (2019) analyzed the
fundamental trade-off between robustness and accuracy. Bubeck et al. (2021b); Bubeck & Sellke
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(2021); Li et al. (2022a); Li & Li (2023) proved that having a large model size is necessary for
achieving robustness in many settings. Ilyas et al. (2019); Tsilivis & Kempe (2022); Kumano et al.
(2024) studied the relationship between adversarial examples and the presence of non-robust but
predictive features in the data distribution.

Another important line of work in deep learning theory studies the implicit bias of gradient descent to
explain why neural networks generalize so well. Training deep neural networks is a highly non-convex
and over-parametrized optimization problem, in which there are many solutions that fit the training
data correctly. Recent studies suggest that, without explicit regularization, gradient descent seems to
implicitly bias towards solutions that enjoy favorable properties, particularly good generalization.
Hence, characterizing various implicit biases in favor of better generalization has been extensively
studied in recent years (Gunasekar et al., 2017; Soudry et al., 2018; Arora et al., 2019b; Lyu &
Li, 2020; Blanc et al., 2020). However, good generalization properties do not necessarily imply
good robustness with respect to inputs. Indeed, even well-trained neural networks are vulnerable
to adversarial examples. In fact, recent studies by Vardi et al. (2022) and Frei et al. (2024) proved
that the implicit bias of gradient descent can be a “double-edged sword”, in the sense that it leads
to generalizable solutions with perfect clean accuracy, but being non-robust (susceptible to small
adversarial ℓ2-perturbations), even though there exist robust networks with perfect robust accuracy.
Under the similar data setup, Min & Vidal (2024) further conjectured that the weight vectors of a
two-layer ReLU network trained by gradient flow converge to an average of the cluster centers.

In this paper, we perform a detailed analysis of the training dynamics of gradient descent on two-layer
ReLU networks (under data distributions similar to Vardi et al. (2022), Frei et al. (2024) and Min &
Vidal (2024), and the detailed discussion about the connection between their works and our paper is
deferred to Section 2), and rigorously prove that the learnt weights exhibit a particular implicit bias,
which we term feature averaging and solves the conjecture of Min & Vidal (2024). Then, we prove
that it leads to non-robust solutions. Feature averaging has a particularly simple form in our setting
with two-layer ReLU networks: the network trained by gradient descent tends to learn the average
of useful features, in the sense that the weight vector associated with each hidden-layer neuron is
a weighted average of feature vectors. One can easily show that such average is more susceptible
to small adversarial perturbations than individual features, rendering the learnt solution non-robust.
In our experiments, we observe similar phenomena empirically in several other settings. We argue
that feature averaging it is one of the major factors contributing to non-robustness of deep neural
networks, and show it is closely related and collaborate several known phenomena and theoretical
models in the study of adversarial robustness, such as the robustness of the features (Tsipras et al.,
2019; Ilyas et al., 2019; Allen-Zhu & Li, 2022; Tsilivis & Kempe, 2022), the Lipschitzness of the
model (Bubeck et al., 2021b; Bubeck & Sellke, 2021; Li et al., 2022a; Li & Li, 2023), simplicity
bias (Shah et al., 2020; Lyu et al., 2021), and the dimpled manifold model (Shamir et al., 2021) (the
detailed discussion can be found in Section A).

Nevertheless, we remark that feature averaging may appear in a form beyond the linear average
of feature vectors in more complex settings (where there is no predefined set of features). In such
setting, we refer the implicit bias of feature averaging as a tendency of combining many localized,
semantically meaningful (hence more robust (Ilyas et al., 2019; Tsilivis & Kempe, 2022)) features
into one discriminative but non-robust feature.

In light of the feature averaging phenomena, we propose to enhance the robustness by learning
individual features. In particular, we explore a natural and simple, yet less explored method in the
study of adversarial robustness, that is to provide more granular supervised information related to
individual features, and force the model to learn the individual features. Theoretically, we prove
that if the model is provided with the feature level labels, a similar two-layer network can learn the
individual features, and then one can easily derive a corresponding binary classifier with optimal
robustness. Empirically, we design several experiments, using synthetic and real datasets, and the
experimental results demonstrate that feature-level supervised information can be very effective in
enhancing the robustness of the model (even with standard training). Our technical contributions can
be summarized as follows:

1. (Section 4) Under certain multi-cluster data distributions (similar to that in Frei et al.
(2024)), we prove that two-layer ReLU networks trained by gradient descent converge to
feature-averaging solutions (Theorem 4.5). In particular, we show that the weight vector
associated with each hidden-layer neuron converges to the average of cluster-center features
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and the feature-averaging solution is non-robust w.r.t. the radius Ω(
√
d/k), while there

exist solutions with optimal robust radius O(
√
d) (where d is the data dimension, k is

the number of clusters, and the existence of such optimal robust solutions is shown in
Theorem G.3). This result also solves the conjecture of Min & Vidal (2024) under our
settings (Theorem 4.6).

2. (Section 4) We show that if the model is provided with the feature level labels (in fact a
multi-class classification problem in our multi-cluster data distribution setting), a two-layer
network can learn the individual features, which furthermore can induce a robust model with
optimal robust radius O(

√
d) (Theorem 4.7).

3. (Section 5) We validate our theoretical results on synthetic data and real-world datasets
such as MNIST and CIFAR-10. We empirically show that gradient descent learns averaged
features. Our experiments also demonstrate enhanced robustness through the incorporation
of fine-grained supervisory information.

2 RELATED WORK

Implicit Bias of Gradient Descent. The implicit bias of gradient descent has been studied from
various perspectives. The most prominent line of works establishes an equivalence between neural
networks in certain training regimes to kernel regression with Neural Tangent Kernel (NTK) (Du
et al., 2019b;a; Allen-Zhu et al., 2019a; Zou et al., 2020; Chizat et al., 2019; Arora et al., 2019b; Ji &
Telgarsky, 2020b; Cao & Gu, 2019), but the generalization of kernel regression is usually worse than
that of real-world neural networks. Other works prove other types of implicit biases beyond this NTK
regime, including margin maximization (Soudry et al., 2018; Nacson et al., 2019; Lyu & Li, 2020;
Ji & Telgarsky, 2020a), parameter norm minimization (Gunasekar et al., 2017; 2018; Arora et al.,
2019a) and sharpness reduction (Blanc et al., 2020; Damian et al., 2021; HaoChen et al., 2021; Li
et al., 2022b; Lyu et al., 2022; Gu et al., 2023). All these works focus on implicit biases that may
lead to good generalization except that Vardi et al. (2022) and Frei et al. (2024) connected the line of
works on margin to the non-robustness of neural networks, which we discuss shortly.

Feature Learning Theory for Two-Layer Networks. The feature learning theory of two-layer
neural networks as proposed in various recent studies (Wen & Li, 2021; Allen-Zhu & Li, 2022;
Chen et al., 2022; Cao et al., 2022; Zhou et al., 2022; Chidambaram et al., 2023; Allen-Zhu &
Li, 2023; Kou et al., 2023a; Simsek et al., 2023) aims to explore how features are learned in deep
learning. This theory extends the theoretical optimization analysis beyond the scope of the neural
tangent kernel (NTK) theory (Jacot et al., 2018; Du et al., 2019b;a; Allen-Zhu et al., 2019b; Arora
et al., 2019b). Among these feature learning works, there exist various data assumptions about
feature-noise structure. Based on the data assumption of sparse coding model, Wen & Li (2021) study
feature learning process of self-supervised contrastive learning, and Allen-Zhu & Li (2022) propose
a principle called feature purification to explain the workings of adversarial training. Allen-Zhu
& Li (2023) utilize multi-view-based patch-structured data assumption to understand the benefits
of ensembles in deep learning. Following the multi-view data proposed in Allen-Zhu & Li (2023),
Chidambaram et al. (2023) show that data mix-up algorithm can provably learn diverse features
to improve generalization. Cao et al. (2022); Kou et al. (2023a) explore the benign overfitting
phenomenon of two-layer convolutional neural networks by leveraging a technique of signal-noise
decomposition. Zhou et al. (2022) study feature condensation and prove that, for two-layer network
with small initialization, input weights of hidden neurons condense onto isolated orientations at the
initial training stage. Simsek et al. (2023) focus on the regression setting and study the compression
of the teacher network, and they find that weight vectors, whether copying an individual teacher
vector or averaging a set of teacher vectors, are critical points of the loss function.

Comparisons with Vardi et al. (2022), Frei et al. (2024) and Min & Vidal (2024). Recently,
Vardi et al. (2022) and Frei et al. (2024) demonstrated that for two-layer ReLU networks, any
KKT solution to the maximum margin program (it is known that gradient flow converges to such
KKT solution (Lyu & Li, 2020; Ji & Telgarsky, 2020a)) leads to non-robust solutions under the
assumption of synthetic cluster data, and Min & Vidal (2024) further conjectured that the weight
vectors of two-layer ReLU network converge to an average of cluster-center vectors. Their finding
highlights the significance of the optimization process in the (non)robustness of neural networks. Our
theoretical results are inspired by theirs, but differ from theirs in the following important aspects: (1)
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Conceptually, feature averaging is arguably more intuitive and concrete (in the feature level) than the
set of KKT properties. Moreover, feature averaging (or its nonlinear extensions) may appear in more
complex and general setting even when the solution is far from a KKT point. (2) Technically, we
perform a detailed and finite-time analysis of the gradient descent dynamics, in contrast to their result
about limiting behavior of gradient descent. In particular, our analysis of gradient descent dynamics
reveals the feature learning process. Furthermore, we comment that the time complexity converging
from an initialization point to a KKT solution can be slow (i.e., Ω(1/ log(t)) proven in Soudry et al.
(2018); Lyu & Li (2020); Kou et al. (2023b)). (3) Our analysis of the GD dynamics requires small
initialization, whereas their results depend on starting from a solution that already correctly classifies
the training set (an assumption made in (Lyu & Li, 2020) for achieving KKT points). (4) Our result
(Theorem 4.5) solves the conjecture proposed by Min & Vidal (2024), where we show that the weight
vector associated with each neuron aligns with a weighted average of cluster features, and the ratio
between weights of distinct clusters is close to 1.

3 PROBLEM SETUP

In this section, we introduce some useful notations and concepts, including the multi-cluster data
distribution, the two-layer neural network learner and the gradient descent algorithm.

Notations. We use bold-face letters to denote vectors, e.g., x = (x1, . . . , xd). For x ∈ Rd, we
denote by ∥x∥ the Euclidean (ℓ2) norm. We denote by 1(·) the standard indicator function.We denote
sgn(z) = 1 if z > 0 and -1 otherwise. For an integer n ≥ 1, we denote [n] = {1, . . . , n}. We
denote by N

(
µ, σ2

)
the normal distribution with mean µ ∈ R and variance σ2, and by N (µ,Σ) the

multivariate normal distribution with mean vector µ and covariance matrix Σ. The identity matrix
of size d is denoted by Id. We use Unif(A) to denote the uniform distribution on the support set A.
We use standard asymptotic notation O(·) and Ω(·) to hide constant factors, and Õ(·), Ω̃(·) to hide
logarithmic factors.

3.1 DATA DISTRIBUTION

Following Vardi et al. (2022); Frei et al. (2024), we consider binary classification on the following
data distribution with multiple clusters.

Definition 3.1 (Multi-Cluster Data Distribution). Given k vectors µ1, . . . ,µk ∈ Rd, called the cluster
features, and a partition of [k] into two disjoint sets J± = (J+, J−), we define D({µj}kj=1, J±) as a
data distribution on Rd × {−1, 1}, where each data point (x, y) is generated as follows:

1. Draw a cluster index as j ∼ Unif([k]);

2. Set y = +1 if j ∈ J+; otherwise j ∈ J− and set y = −1;

3. Draw x := µj + ξ, where ξ ∼ N (0, Id).

For convenience, we write D instead of D({µj}kj=1, J±) if {µj}kj=1 and J± are clear from the
context. For s ∈ {±1}, we write Js to denote J+ if s = +1 and J− if s = −1.

To ease the analysis, we make the following simplifying assumptions on the distribution.

Assumption 3.2 (Orthogonal Equinorm Cluster Features). The cluster features {µj}kj=1 satisfy the
properties that (1) ∥µj∥ =

√
d for all j ∈ [k]; and (2) µi ⊥ µj for all 1 ≤ i < j ≤ k.

Assumption 3.3 (Nearly Balanced Classification). The partition J± satisfies c−1 ≤ |J+|
|J−| ≤ c for

some absolute constant c ≥ 1.

Our data distribution is similar to that in Vardi et al. (2022) and Frei et al. (2024). In particular, Vardi
et al. (2022) consider a setting where data are comprised of k nearly orthogonal data points in Rd.
This assumption is further relaxed in Frei et al. (2024), where they assume k clusters with nearly
orthogonal cluster means {µi}ki=1 (i.e., they have that |⟨µi,µj⟩|

∥µi∥∥µj∥ = O
(
1
k

)
holds for all i ̸= j). For

simplicity, we focus on the exactly orthogonal cluster setting in our work.
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3.2 NEURAL NETWORK LEARNER

A training dataset S := {(xi, yi)}ni=1 ⊆ Rd × {−1, 1} of size n is randomly sampled from the data
distribution D({µj}kj=1, J±) and is used to train a two-layer neural network.

Network Architecture. We focus on learning two-layer ReLU networks. Such networks are usually
defined as fθ(x) :=

∑M
j=1 aj ReLU(⟨wj ,x⟩+ bj), where θ :=

(
{aj}Mj=1, {wj}Mj=1, {bj}Mj=1

)
are

the parameters of the network, and ReLU( · ) is the ReLU activation function defined as ReLU(z) =
max(0, z).

For the sake of simplicity, we consider the case where M = 2m is even and fix the second layer as
aj = 1

m for 1 ≤ j ≤ m and aj = − 1
m for m+ 1 ≤ j ≤ 2m, which is a widely adopted setting in

the literature of feature learning theory (Allen-Zhu & Li, 2022; Cao et al., 2022; Kou et al., 2023a).
With this simplification, we focus on training only the first layer ({wj}Mj=1, {bj}Mj=1) and rewrite the
network as

fθ(x) :=
1

m

∑
r∈[m]

ReLU(⟨w+1,r,x⟩+ b+1,r)−
1

m

∑
r∈[m]

ReLU(⟨w−1,r,x⟩+ b−1,r),

where θ = ({w+1,r}mr=1, {b+1,r}mr=1, {w−1,r}mr=1, {b−1,r}mr=1) are the trainable parameters, and
w+1,r and b+1,r correspond to the neurons with ar = 1

m , while w−1,r and b−1,r correspond to the
neurons with ar = − 1

m .

Training Objective and Gradient Descent. The neural network fθ(·) is trained to minimize the
following empirical loss on the training dataset S: L(θ) := 1

n

∑n
i=1 ℓ (yifθ (xi)), where ℓ(q) :=

log(1 + e−q) is the logistic loss. We apply gradient descent to minimize this loss:

θ(t+1) = θ(t) − η∇L(θ(t)), (1)

where θ(t) denotes the parameters at t-th iteration for all t ≥ 0, and η > 0 is the learning rate.
We specify the derivative of ReLU activation as ReLU′(z) = 1(z ≥ 0) in backpropagation. At
initialization, we set w(0)

s,r ∼ N (0, σ2
wId) and b

(0)
s,r ∼ N (0, σ2

b) for some σw, σb > 0.

Clean Accuracy and Robust Accuracy. For a given data distribution D over Rd × {−1, 1}, the
clean accuracy of a neural network fθ : Rd → R on D is defined as

AccDclean(fθ) := P(x,y)∼D [sgn(fθ(x)) = y] .

In this work, we focus on the ℓ2-robustness. The ℓ2 δ-robust accuracy of fθ on D is defined as

AccDrobust(fθ; δ) := P(x,y)∼D [∀ρ ∈ Bδ : sgn(fθ(x+ ρ)) = y] ,

where Bδ := {ρ ∈ Rd : ∥ρ∥ ≤ δ} is the ℓ2-ball centered at the origin with radius δ. We say that a
neural network fθ is δ-robust if AccDrobust(fθ; δ) ≥ 1− ϵ(d) for some function ϵ(d) that vanishes to
zero, i.e., ϵ(d) → 0 as d → ∞.

Robust Networks Exist. In a very similar setting to ours, Frei et al. (2024) show that there exists a
two-layer ReLU network that can achieve nearly 100% clean accuracy and Ω(

√
d)-robust accuracy

on their data distribution. In our setting, we can also construct a similar network that achieves nearly
100% clean accuracy and Ω(

√
d)-robust accuracy. In particular, such network utilizes one hidden

neuron to capture one feature/cluster (i.e., the neural is activated only if the input point is from
the corresponding cluster). See Theorem G.3 in Appendix G.2 for the details and Figure 1 for an
illustration. However, we will soon show that, despite such Ω(

√
d)-robust network exists, gradient

descent is incapable of learning such a robust network, but instead converges to a very different
solution with a robust radius that is Θ(

√
k) times smaller.

4 MAIN RESULTS

In this section, we present our main technical results. In Subsection 4.1, we first present the main result
(Theorem 4.5) regarding feature averaging, that is standard gradient descent training finds feature
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𝜇1 𝜇2
𝜇3

𝜇4 𝜇5

𝑂
𝑓𝐹𝐴 ≔ 3𝑅𝑒𝐿𝑈( 𝜇+, 𝑥 ) − 2𝑅𝑒𝐿𝑈( 𝜇−, 𝑥 )

𝑓𝐹𝐷: = 𝑓1 + 𝑓2 + 𝑓3 − 𝑓4 − 𝑓5, 

𝑓𝑗 𝑥 : = 𝑅𝑒𝐿𝑈 𝜇𝑗 , 𝑥 + 𝑏𝑗 , 𝑗 ∈ [5] 

𝐽+ = 1,2,3 , 𝐽− = 4,5 , 𝑘 = 5,
𝜇+ ≔ (𝜇1+ 𝜇2 + 𝜇3)/3,

𝜇− ≔ (𝜇4 + 𝜇5)/2

𝜇+ ≔ (𝜇1 + 𝜇2 + 𝜇3)/3

𝜇− ≔ (𝜇4 + 𝜇5)/2

Figure 1: Schematic illustration of feature-averaging and feature-decoupling: We consider a
dataset with 5 clusters. The first three clusters belong to J+, and the other two to J−. Denote µ+ :=

(µ1 + µ2 + µ3)/3,µ− := (µ4 + µ5)/2. For ease of illustration, we assume that
∑5

j=1 µj = 0.
The feature-averaging classifier fFA leverages two neurons with averaged features to classify all
data, which corresponds to a linear classifier (the gray line). The feature-decoupling classifier fFD
leverages individual features and has more complex polyhedral decision boundary (green lines). Note
that the instance is high dimensional and this is only a schematic illustration. The distance between
data points and the decision boundary of fFD (green lines) is much larger than that of fFA (gray line),
which implies that the feature-decoupling classifier is more robust than the feature-averaging one.

averaging solutions for the data distribution D and such feature averaging solution is non-robust.
In Subsection 4.2, we demonstrate that if more supervisory information can be obtained (specific
cluster categories rather than just binary classification labels), we can achieve feature decoupling via
gradient descent on a similar two layer multi-class network. Consequently, we can obtain a binary
classification network with optimal robust perturbation radius (Theorem 4.7).

4.1 NETWORK LEARNER PROVABLY LEARNS FEATURE-AVERAGING SOLUTION

The prior work by Frei et al. (2024) has showed that, under certain conditions, training a two-layer
ReLU network for infinite time converges to a network that can achieve nearly 100% clean accuracy
on D but is only o(

√
d/k)-robust. A subsequent work by Min & Vidal (2024) conjectured that the

network converges to a specific form of solution, which we refer to as the feature-averaging network.
Definition 4.1 (Feature-Averaging Network). We define fFA(x) as the following function:

fFA(x) := |J+| · ReLU (⟨µ+,x⟩)− |J−| · ReLU (⟨µ−,x⟩) ,

where µ+ := 1
|J+|

∑
j∈J+

µj is the average of cluster centers in the positive class, and similarly
µ− := 1

|J−|
∑

j∈J−
µj is that for the negative class. We say that a two-layer ReLU network fθ(x) is

a feature-averaging network if fθ(x) = C · fFA(x) for some C > 0.
Remark 4.2. The feature-averaging network uses the first neuron to process all data within positive
clusters, and the second neuron negative clusters. Thus, it can correctly classify clean data. However,
it fails to robustly classify perturbed data for a radius larger than Ω(

√
d/k): in particular, consider

the attack vector ρ that aligns with the negative direction of the averaged features, i.e., ρ ∝
−
∑

j∈J+
µj +

∑
j∈J−

µj . One can easily check that with ∥ρ∥ = δ = Ω(
√

d/k), the attack is
successful, i.e., sgn(fFA(x + ρ)) ̸= sgn(fFA(x)) due to the linearity of fFA(x + ρ) over ρ. See
Appendix G.1 for the details, and see Figure 1 for an illustration.

Our first main result is a non-asymptotic analysis of the training dynamics that explicitly characterizes
the solution learned by gradient descent on distribution D after a finite number of iterations. For
theoretical analysis, we make the following assumptions about the hyper-parameters.
Assumption 4.3 (Choices of Hyper-Parameters). We assume that:

d = Ω(k10) c = Θ(1) n ∈ [Ω(k7), exp(O(log2(d)))]

m = Θ(k) η = O(d−2) σ2
b = σ2

w = O(ηk−5).

Remark 4.4 (Discussion of Hyper-Parameter Choices). We make specific choices of hyper-parameters
for the sake of calculations, and we emphasize that these may not be the tightest possible choices. In
particular, we need the data dimension d to be significantly larger than the number of clusters k to
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ensure all k cluster features are orthogonal within Rd. We further require that the number of samples
n is a large polynomial of k to ensure that the network can learn all k cluster features. We assume
the learning rate η and the initialization magnitude σw, σb are sufficiently small, which helps the
network to be trained in the feature learning regime (Lyu et al., 2021; Cao et al., 2022; Allen-Zhu &
Li, 2023; Kou et al., 2023a).

Now, everything is ready to state the first main theorem of our paper, which characterizes the weights
of the learned network and shows that after a certain number of iterations, the network can be closely
approximated by the feature-averaging network (defined in Definition 4.1).

Theorem 4.5. In the setting of training a two-layer ReLU network on the binary classification
problem D({µj}kj=1, J±) as described in Section 3, under Assumptions 3.2, 3.3 and 4.3, for some
γ = o(1), after Ω(η−1) ≤ T ≤ exp(Õ(k1/2)) iterations, with probability at least 1− γ, the neural
network satisfies the following properties:

1. The clean accuracy is nearly perfect: AccDclean(fθ(T )) ≥ 1− exp(−Ω(log2 d)).

2. Gradient descent leads the network to the feature-averaging regime: there exists a time-
variant coefficient λ(T ) ∈ [Ω(1),+∞) such that for all s ∈ {±1}, r ∈ [m], the weight
vector w(T )

s,r can be approximated as∥∥∥∥w(T )
s,r − λ(T )

∑
j∈Js

∥µj∥−2µj

∥∥∥∥ ≤ o(d−1/2)

and the bias terms are sufficiently small, i.e.,
∣∣∣b(T )

s,r

∣∣∣ ≤ o(1).

3. Consequently, the network is non-robust: for perturbation radius δ = Ω(
√

d/k), the
δ-robust accuracy is nearly zero, i.e., AccDrobust(fθ(T ) ; δ) ≤ exp(−Ω(log2 d)).

We provide a proof sketch for Theorem 4.5 in Appendix C (see the full proof in Appendix E.2).
Theorem 4.5 suggests that the weight vector aligns with the average of cluster features: the direction
of the weight vector associated with a positive neuron converges to the average of positive cluster
features µ+, and that associated with a negative neuron to the average of negative cluster features
µ+. Moreover, the above feature-averaging property of learned network implies non-robustness, i.e.,
the learned network is only o(

√
d/k)-robust although an Ω(

√
d)-robust solution exists as we proved

in Section 3.

As a corollary of Theorem 4.5, we resolve the conjecture proposed in Min & Vidal (2024) in our
setting.

Theorem 4.6 (Conjecture 1 from Min & Vidal (2024)). In the setting of Theorem 4.5, we have that
infC>0 supx∈Rd:∥x∥2=

√
d |CfFA(x)− fθ(T )(x)| = o(1), where fFA(x) is the feature-averaging

network (Definition 4.1).

Under a similar orthogonal cluster data assumption, Min & Vidal (2024) conjecture that two-layer
neural network converges to the feature-averaging solution via gradient flow training with small
initialization. They empirically validate the conjecture via experiments on synthetic datasets. The-
orem 4.6 provides a rigorous proof for the conjecture, although the original conjecture is stated
under a slightly different setting from ours. In their setting, the second layer of the network is also
trainable, but we fix the second layer for simplicity. We also require certain assumptions on the
hyperparameters, which has been discussed in details in Assumption 4.3 and Remark 4.4.

4.2 FINE-GRAINED SUPERVISION IMPROVES ROBUSTNESS

We have shown that gradient descent is unable to differentiate individual cluster features, which
causes non-robustness. Hence, a natural question is what if we are provided with more fine-grained
feature level supervision, can gradient descent learn a robust solution? We show that this is indeed
possible in the case where each data point is labeled with the cluster it belongs to, rather than just a
binary label.

7
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Fine-Grained Supervision. Following the setting in Section 3, we consider the binary classification
task with data distribution D({µj}kj=1, J±). But instead of training the model directly to predict the
binary labels, we assume that we are able to label each data point with the cluster ŷ ∈ [k] it belongs
to, and then we train a k-class classifier to predict the cluster labels. More specifically, we first sample
a training set S := {(xi, yi)}ni=1 ⊆ Rd × {±1} from D, along with the cluster labels {ỹi}ni=1 for all
data points. Then a k-class neural network classifier is trained on S̃ := {(xi, ỹi)}ni=1 ⊆ Rd × [k].

Multi-Class Network Classifier. We train the following two-layer neural network for the
k-class classification mentioned above: Fθ(x) := (f1(x), f2(x), . . . , fk(x)) ∈ Rk, where
fj(x) := 1

h

∑h
r=1 ReLU(⟨wj,r,x⟩), θ := (w1,1,w1,2, . . . ,wk,h) ∈ Rkhd are trainable weights,

and h = Θ(1). One can think {ReLU(⟨wj,r,x⟩)}j∈[k],r∈[h] as kh = Θ(k) neurons partitioned into
k groups, where the corresponding second layer weights are set in a way that the j-th group only
contributes to the j-th output fj(x) of the network. The output Fθ(x) is converted to probabilities
using the softmax function, namely pj(x) :=

exp(fj(x))∑k
i=1 exp(fi(x))

for j ∈ [k]. For predicting the binary
label for the original binary classification task on D, we take the difference of the probabilities of the
positive and negative classes, i.e., F binary

θ (x) :=
∑

j∈J+
pj(x)−

∑
j∈J−

pj(x). The clean accuracy

AccDclean(F
binary
θ ) and δ-robust accuracy AccDrobust(F

binary
θ ; δ) are then defined similarly as before.

Training Objective and Gradient Descent with Fine-Grained Supervision. We train the multi-
class network Fθ(x) to minimize the cross-entropy loss LCE(θ) := − 1

n

∑n
i=1 log pỹi

(xi). Similar
to Section 3, we use gradient descent to minimize the loss function LCE(θ) with learning rate η, i.e.,
θ(t+1) = θ(t) − η∇θLCE(Fθ(t)). At initialization, we set w(0)

j,r ∼ N (0, σ2
wId) for some σw > 0.

GD Finds Robust Networks. In contrast to the feature-averaging implicit bias in our previous setting
(Theorem 4.5), the following theorem shows that with fine-grained supervision, gradient descent
converges to a neural network that learns decoupled features, i.e., the weight of each neuron is aligned
with one cluster feature.
Theorem 4.7. In the setting of training a multi-class network on the multiple classification problem
S̃ := {(xi, ỹi)}ni=1 ⊆ Rd × [k] as described in the above, under Assumptions 3.2, 3.3 and 4.3, for
some γ = o(1), after Ω(η−1k8) ≤ T ≤ exp(Õ(k1/2)) iterations, with probability at least 1− γ, the
neural network satisfies the following properties:

1. The clean accuracy is nearly perfect: AccDclean(F
binary
θ(T ) ) ≥ 1− exp(−Ω(log2 d)).

2. The network converges to the feature-decoupling regime: there exists a time-variant coeffi-
cient λ(T ) ∈ [Ω(log k),+∞) such that for all j ∈ [k], r ∈ [h], the weight vector w(T )

j,r can
be approximated as ∥∥∥∥w(T )

j,r − λ(T )∥µj∥−2µj

∥∥∥∥ ≤ o(d−1/2).

3. Consequently, the corresponding binary classifier achieves optimal robustness: for
perturbation radius δ = O(

√
d), the δ-robust accuracy is also nearly perfect, i.e.,

AccDrobust(F
binary
θ(T ) ; δ) ≥ 1− exp(−Ω(log2 d)).

The detailed proof can be found in Appendix F.3. Theorem 4.7 manifests that the multi-class network
learns the decoupled features, and the induced binary classifier achieves optimal robustness. See
Figure 1 for an illustration. Instead of leveraging the bias term to filter out cluster noise as the
feature-decoupling classifier fFD that we illustrated in Figure 1 and Theorem G.3, the soft-max
operator of F binary

θ plays a similar role here.

It can be easily verified that F binary
θ(T ) achieves optimal robustness radius (up to constant factor) since

the distance between distinct cluster centers is at most Θ(
√
d) (i.e. ∥µi − µj∥ = Θ(

√
d),∀i ̸= j).

Convergence to Robust Networks Requires Implicit Bias. In fact, adding more fine-grained
supervision signals does not trivially lead to decoupled features and robustness, since the above
network found by gradient descent is not the only solution that can achieve 100% clean accuracy.
As a counterexample, we show that there exists a multi-class network that achieves perfect clean
accuracy but is not Ω(

√
d/k)-robust, which is formally given in the following proposition.

8
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Figure 2: Illustration of feature averaging and feature decoupling on synthetic dataset (a,b) and
CIFAR-10 dataset (c,d). Figure (a) and Figure (c) correspond to models trained using 2-class labels,
and Figure (b) and Figure (d) correspond to models trained using 10-class labels, respectively. Each
element in the matrix, located at position (i, j), represents the average cosine value of the angle
between the feature vector µi of the i-th feature and the equivalent weight vector wj of the fj(·).

Proposition 4.8. Consider the following multi-class network Fθ̃: for all j ∈ [k], the sub-network
fj has only single neuron (h = 1) and is defined as fj(x) = ReLU

(〈
µj +

∑
l∈Js

µl,x
〉)

, where
cluster j has binary label s ∈ {±1}. With probability at least 1 − exp(−Ω(log2 d)) over S̃,
we have that LCE(θ̃) ≤ exp(−Ω(d)) = o(1), where θ̃ denotes the weights of Fθ̃. Moreover,
AccDclean(F

binary

θ̃
) ≥ 1− exp(−Ω(log2 d)), AccDrobust(F

binary

θ̃
; Ω(
√
d/k)) ≤ exp(−Ω(log2 d)).

5 EXPERIMENTS

5.1 FEATURE AVERAGING AND FEATURE DECOUPLING

To validate our theoretical results about feature averaging and feature decoupling, we conduct
experiments on the synthetic dataset as we mentioned in Section 3 and the CIFAR-10 dataset,
described as follows:

• Synthetic Dataset. We generate the synthetic data following the data distribution in Section
3. Specifically, we choose the hyper-parameters as k = 10, d = 3072,m = 5, n =
1000, α = σ = 1, η = 0.001, σw = σb = 0.00001, T = 100. For simplicity, we denote
the weights of the two-layer network as w1,w2, . . . ,w10 (where the first five weights
correspond positive neurons and the other five weights correspond negative neurons). We
also set the first five clusters as positive and the others as negative. Additionally, we provide
an ablation study for other choices of hyper-parameters (see the details in Appendix B).

• Binary Classification on CIFAR-10. We create a binary classification task from the CIFAR-
10 dataset by merging the first five classes into one class and the other five classes into
the other class. We used the normal 10-class classification on the CIFAR-10 dataset as the
10-class task.

• Pre-trained Feature Extractor. We utilize a ResNet18 model pre-trained on CIFAR-10 and
replaced the model’s final layer with a two-layer ReLU neural network as described in our
theory (fixed second layer as diagonal form, i.e., fj(z) := 1

h

∑h
r=1 ReLU(⟨wj,r, z⟩),∀j ∈

[10], where z denotes the hidden representation of the penultimate layer). We only train
the last two layers. We choose the width of the first layer to be 30 (h = 3) to ensure
that the accuracy of the pre-trained model was not compromised. Then, inspired by the
theoretical study about neuron collapse (Papyan et al., 2020), we calculate the average value
of the penultimate layer output of the neural network for each class as the corresponding
feature µi of that class i ∈ [10]. For 10-classification, we use wj := 1

h

∑h
r=1 wj,r as

the equivalent weight of fj . For the 15 positive weights and 15 negative weights in the
binary classification network, we equally divide them into 5 positive classes and 5 negative
classes to ensure a fair comparison , which ensures that two models both have the same form
F := (f1, f2, . . . , f10) ∈ R10 and each sub-network fj corresponds to a weight vectors wj .

9
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Figure 3: Verifying robustness improvement: We compare adversarial robustness between model
trained by 2-class labels (red line) and model trained by 10-class labels (blue line) on synthetic data
(the left), MNIST (the middle) and CIFAR-10 (the right).

Experiment Results. Our theory suggests that if we train the network using binary (2-class) labels,
we obtain a feature-averaging solution, while we can obtain a feature-decoupling solution, if we train
the model using 10-class labels. The experiment results are shown in Figure 2, which demonstrates our
theoretical findings: 2-classification model learns feature-averaging solution while 10-classification
model learns the feature-decoupling solution. Concretely, Figure 2a and Figure 2c correspond to
our feature-averaging regime in Theorem 4.5, where the correlations between each weight vector of
positive (negative) neuron and all positive (negative) cluster features are nearly-equally larger than
those between each weight vector of positive (negative) neuron and all negative (positive) cluster
features; Figure 2b and Figure 2d correspond to our feature-decoupling regime in Theorem 4.7, where
the correlation matrix is nearly diagonal.

5.2 ROBUSTNESS IMPROVEMENT FROM FINE-GRAINED SUPERVISION INFORMATION

Moreover, we aim to verify whether the model trained with fine-grained supervision information (i.e.,
10-class labels) is more robust compared to the model trained with only binary (2-class) labels.

Experiment Settings. To ensure fairness in the comparison, we sum the logits corresponding to the
5 positive classes and subtracted the sum of the logits corresponding to the 5 negative classes from
the 10-class model’s output. This result is used as the binary classification output for the 10-class
model. The robust accuracy is measured by using the standard PGD attacks (Madry et al., 2018) with
different ℓ2-pertubation radius. We run experiments in the following datasets:

• Synthetic Dataset. We generate synthetic data as the same as that in Section 5.1.

• Binary Classification on MNIST and CIFAR-10. To further verify our theory in deep
neural networks, on both MNIST and CIFAR-10 datasets, we train ResNet18 models from
scratch with normal 10-classification labels and 2-classification labels (MNIST: parity-
classification; CIFAR-10: binary-classification as that we mentioned in Section 5.1).

Experiment Results. The results are presented in Figure 3. With the perturbation radius increasing,
we can see that the models trained with 10-class labels have higher robust test accuracy than those
trained with 2-class labels in all datasets. This collaborates with our theoretical results (Theorem 4.5
and Theorem 4.7) that the models can achieve better robustness with more supervised information.

6 CONCLUSION

This paper exposes ”Feature Averaging” as an implicit bias in gradient descent that may compromise
the robustness of deep neural networks. Theoretical insights from a two-layer ReLU network reveal a
tendency for gradient descent to average/combine individually meaningful features, which can lead
to a loss of distinct discriminative information. We demonstrate that with more detailed feature level
supervision, the networks can learn to differentiate these features, enhancing model robustness. This
is supported by empirical evidence from both synthetic and real-world data, including MNIST and
CIFAR-10. Our findings not only deepen our understanding of adversarial examples in deep learning
but also suggest that fine-grained supervision can enhance the robustness of deep neural networks
against adversarial attacks.

10
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A CONNECTIONS OF OUR RESULTS WITH OTHER EXPLANATIONS OF
ADVERSARIAL EXAMPLES

(1) Approximate Linearity of the Model: Earlier hypothesis about the origin of adversarial examples
(e.g., Goodfellow et al. (2014)) had proposed the idea that the existence of adversarial examples is
related to the fact the model fθ(x) is approximately linear. Subsequently, there is a sequence of
theoretical studies showing that adversarial examples exists abundantly in the input space for neural
networks with random weights (without training) and a main insight is that such random networks
is approximately linear and with high probability an input point is close to the decision boundary
(by isoperimetry argument) (see e.g., (Gilmer et al., 2018; Bubeck et al., 2021a; Bartlett et al., 2021;
Montanari & Wu, 2023) . Our Theorem 4.5 proves similar approximate linearity (see details in
the proof intuition of Theorem G.2) 1 and show it leads to adversarial examples for trained neural
network (albeit with different data distribution from the aforementioned work). Our result is also
related to the dimpled manifold hypothesis (Shamir et al., 2021), which proposed that during training
neural network first finds a simple decision boundary that is close to most training points.

(2) Non-robust Features: Another appealing point of view was developed in Ilyas et al. (2019), which
proposed that adversarial examples are related to the presence of non-robust features. They showed
empirically that neural networks learn both robust and non-robust features that are useful to classify
clean images. In image classification tasks, Ilyas et al. (2019), Engstrom et al. (2019) and Tsilivis
& Kempe (2022) visualized both robust and nonrobust features. While robust features are more
perceptually meaningful for human, nonrobust features resemble noise and artifacts. Interestingly,
they showed that nonrobust feature can be leveraged to construct adverserial examples for DNN. Our
paper presents a theoretical setting in which neural networks provably learn non-robust features (due
to feature averaging), despite the existence of more robust features. Moreover, we prove that the
learnt non-robust feature (µ+ or µ−) can be utilized to attack the feature-averaging network.

(3) Relation to the Lower Bound Examples in Li et al. (2022a): From the perspective of expressivity,
Li et al. (2022a) constructed a lower bound example (see an illustration in Figure 4), for which there
is non-robust linear classifier, but the set of robust solutions requires a hypothesis class of a much
larger (in fact exponentially large) VC-dimension. This partially explains why neural networks are
non-robust (unless they are exponentially large). The construction of our data distribution (as well as
that in (Vardi et al., 2022; Frei et al., 2024)) echoes the essence of this lower bound example in spirit,
and our results can be seen as an explanation from the perspective of optimization.

(4) Relation to Frequency Bias in Xu et al. (2019) and Xu et al. (2024): These works refer to the
phenomena that deep neural networks generally learn lower-frequency features first, and then the
higher-frequency ones. This can be seen as a particular form of simplicity bias. The feature averaging
bias studied is also a form of simplicity bias: under our theoretical setup, the simplicity refers to the
linear combination of cluster features, and it is closely related to the approximate linearity of the
decision boundary, as discussed in (1). Hence, both studies assert that neural networks tend to favor
simplicity during the initial stages of training, sharing a similar underlying spirit.

(5) Relation to Superposition in Gandelsman et al. (2024): We would like to mention that similar
“averaging” or “superposition” effects also observed in the work of Gandelsman et al. (2024). In
particular, the authors observe that in CLIP models each neuron may encode several distinct and
unrelated concepts, and they leveraged such effect to construct ”semantic” adversarial examples. See
Figure 1 in Gandelsman et al. (2024) for details.

1Think of the special case that the weight vector corresponding to each neuron is exactly the average of
the cluster means (µ+ := 1

|J+|
∑

j∈J+
µj or µ− := 1

|J−|
∑

j∈J−
µj) and

∑k
j=1 µj = 0. In this case, the

two-layer network reduces to a simple linear model w.r.t. the perturbation.
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Figure 4: A schematic illustration of the construction in Li et al. (2022a): The positive class
consists of blue points and the negative class the red points. In their lower bound, there are in fact
exponentially blue points slightly above the hyperplane and exponentially many red ones slightly
below it. The hyperplane has perfect clean accuracy but is non-robust, while a more robust classifier
exists (by classifying the blue balls from the red balls). One can observe the conceptual similarity
with Figure 1.

B ADDITIONAL SYNTHETIC EXPERIMENTS

B.1 ABLATION STUDY ON SYNTHETIC DATASETS

We conducted several additional experiments on synthetic datasets, as an ablation study for choices
of hyper-parameters. The goal is to show that feature averaging happens in different settings.

Baseline Setting. We choose the hyper-parameters as k = 10, d = 3072,m = 5, n = 1000, α =
σ = 1, η = 0.001, σw = σb = 0.00001, T = 100. We denote the weights of the two-layer network
as w1,w2, . . . ,w10 (where the first five weights correspond positive neurons and the other five
weights correspond negative neurons). We also set that the first five clusters are positive and the
others are negative. Each element in the matrix, located at position (i, j), represents the average
cosine value of the angle between the feature vector µi and the weight vector wj . The experiment
result under baseline setting is presented as Figure 5 (a), Figure 6 (b), Figure 7 (c) and Figure 8 (b).

Effect of the number of samples. We vary the number of samples as n = 1000, 10000, 50000. See
results in Figure 5. It shows that feature-averaging can not be mitigated via more training data.

Effect of the learning rate. We vary the learning rate as η = 0.01, 0.001, 0.0001. See results in
Figure 6. It shows that the assumption about small learning rate is necessary for feature averaging.

Effect of the initialization magnitude. We vary the initialization magnitude as σw = σb =
0.001, 0.0001, 0.00001. See results in Figure 7. It shows that the assumption about small initialization
is necessary for feature averaging.

Effect of the signal-to-noise ratio. We vary the signal-to-noise ratio as SNR := α/σ = 0.5, 1, 2.
See results in Figure 8. It shows that our results can also apply to SNR = Θ(1) case.

Effect of the orthogonal condition. We vary the cosine value of the angle between different cluster
center features as cos(µi,µj) = 0.00001, 0.001, 0.09,∀i ̸= j. See results in Figure 9. It shows that
the exact orthogonal condition can be relaxed to a nearly orthogonal setting, under which feature
averaging still happens.

Effect of the equinorm condition. We vary the minimal and maximal norms of cluster centers
as mini ∥µi∥/maxi ∥µ∥ = 1.0/1.0, 0.8/1.2, 0.6/1.4 (from the smallest norm to the largest norm,
an arithmetic progression is formed). See results in Figure 10. It shows that the exact equinorm
condition can be relaxed to general non-equinorm setting, where feature averaging still occurs.

B.2 ADVERSARIAL TRAINING ON SYNTHETIC DATASETS

To investigate the relationship between our theoretical results and adversarial training, we conducted
the following experiments on synthetic data.

Experiment Settings. We employ hyper-parameters that are largely consistent with the baseline
settings: k = 10, d = 3072, m = 50, n = 1000, α = σ = 1, η = 0.001, σw = σb = 0.00001,
and T = 100. The only modification is increasing the network width m, as adversarial training
requires a wider network for optimal performance. We utilize PGD-based adversarial training. During
adversarial training, we need to select the ℓ2 radius for adversarial attacks. Through experiment, we
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find that training with an attack radius of 40 achieved the best robustness. We visualize the weights
and feature correlations of the network trained with this radius using the same methods.

Additionally, we compare the robustness of the network obtained via adversarial training with that of
networks trained using binary and 10-class labels. To illustrate the effect of different attack radii on
the robustness of networks trained with adversarial Training, we include results for a network trained
with an attack radius of 20 in the robustness experiments.

Experiment Results. See experiment results in Figure 11. The results indicate that networks trained
with adversarial training do exhibit a tendency to learn feature decoupling solutions. However, the
degree of decoupling is less pronounced compared to networks trained with fine-grained supervision.
In terms of robustness, adversarial training does provide significant improvements, but it remains
slightly inferior to the robustness achieved through fine-grained supervision.
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Figure 5: Illustration of feature averaging on synthetic dataset, when varying the number of samples
n.
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Figure 6: Illustration of feature averaging on synthetic dataset, when varying learning rate η.
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Figure 7: Illustration of feature averaging on synthetic dataset, when varying the initialization
magnitude (σ2

b , σ
2
w).
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Figure 8: Illustration of feature averaging on synthetic dataset, when varying the signal-to-noise ratio
(SNR).
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Figure 9: Illustration of feature averaging on synthetic dataset, when varying the orthogonal condition.
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Figure 10: Illustration of feature averaging on synthetic dataset, when varying the equinorm condition.
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Figure 11: Adversarial Training on Synthetic Datasets. The left: we compare adversarial robust-
ness among model trained by 2-class labels (red line), models trained by adversarial training with
perturbation radius = 20 (purple) and = 40 (green) and model trained by 10-class labels (blue line)
on synthetic data. The right: each element in the matrix, located at position (i, j), represents the
average cosine value of the angle between the feature vector µi of the i-th feature and the equivalent
weight vector wj of the fj(·).

C ANALYSIS OF TRAINING DYNAMICS FOR FEATURE-AVERAGING REGIME

In this section, we present a proof sketch of Theorem 4.5, where we provide a detailed analysis of
training dynamics in feature-averaging regime.

C.1 DERIVING DYNAMICS OF COEFFICIENTS FROM GRADIENT DESCENT

By rigorously analyzing the gradient descent iterations, we know that each neuron is situated within a
span that encompasses the collective cluster features and the intrinsic noise of the training data points.
This span is explicitly characterized by the weight-feature correlations, which is shown as:
Lemma C.1 (Weight Decomposition). During the training dynamics, there exists the following
normalized coefficient sequences λ(t)

s,r,j and σ
(t)
s,r,i for each pair s ∈ {−1,+1}, r ∈ [m], j ∈ [k], i ∈

[n] such that
w(t)

s,r = w(0)
s,r +

∑
j∈[k]

λ
(t)
s,r,j∥µj∥−2µj +

∑
i∈[n]

σ
(t)
s,r,i∥ξi∥

−2ξi.

Then, we give the restatement of Theorem 4.5 as follows.
Theorem C.2 (Restatement of Theorem 4.5). In the setting of training a two-layer ReLU network on
the binary classification problem D({µj}kj=1, J±) as described in Section 3, under Assumptions 3.2,
3.3 and 4.3, for some γ = o(1), after Ω(η−1) ≤ T ≤ exp(Õ(k1/2)) iterations, with probability at
least 1− γ, the neural network satisfies the following properties:

1. The clean accuracy is nearly perfect: AccDclean(fθ(T )) ≥ 1− exp(−Ω(log2 d)).
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2. Gradient descent leads the network to the feature-averaging regime: there exists a time-
variant coefficient λ(T ) ∈ [Ω(1),+∞) such that for all s ∈ {±1}, r ∈ [m], the weight
vector w(T )

s,r can be approximated as∥∥∥∥w(T )
s,r − λ(T )

∑
j∈Js

∥µj∥−2µj

∥∥∥∥ ≤ o(d−1/2)

and the bias terms are sufficiently small, i.e.,
∣∣∣b(T )

s,r

∣∣∣ ≤ o(1).

3. Consequently, the network is non-robust: for perturbation radius δ = Ω(
√

d/k), the
δ-robust accuracy is nearly zero, i.e., AccDrobust(fθ(T ) ; δ) ≤ exp(−Ω(log2 d)).

In light of Lemma C.1 and the second item of the above theorem indicates that w(t)
s,r is approximately

proportional to the average of features in Js (the coefficients from the same class are large and
approximately the same, and those from the opposite class are small).

In order to deal with the behavior of ReLU activation, we define S
(t)
s,i := {j ∈ [m] : ⟨w(t)

s,j ,xi⟩ +
b
(t)
s,j > 0}, for s ∈ {−1,+1} and i ∈ [n], denoting the set of indices of neurons in positive or negative

class (determined by s) which is activated by training data point xi at time step t. Then, we apply
Lemma C.1 to the gradient descent iteration (1), deriving the following result.

Lemma C.3 (Updates of Coefficients λ
(t)
s,r,j , σ

(t)
s,r,i). For each pair s ∈ {−1,+1}, r ∈ [m], j ∈

[k], i ∈ [N ] and time t ≥ 0, we have the following update equations:

λ
(t+1)
s,r,j = λ

(t)
s,r,j −

sη

nm
·
∑
i∈Ij

ℓ
′(t)
i ∥µj∥21

(
r ∈ S

(t)
s,i

)
, (2)

σ
(t+1)
s,r,i = σ

(t)
s,r,i −

sη

nm
· ℓ′(t)i ∥ξi∥21

(
r ∈ S

(t)
s,i

)
, (3)

where ℓ
′(t)
i := ℓ′(yifθ(t)(xi)) denotes the point-wise loss derivative at point xi, and Ij := {i ∈ [n] :

xi in cluster j} denotes the set of the training points in the j-th cluster.

According to equations (2) and (3) from Lemma C.3, we know

λ
(t)
s,r,j =

∑
i∈Ij

∥ξi∥2

∥µj∥2
σ
(t)
s,r,i ≈

∑
i∈Ij

σ
(t)
s,r,i, (4)

where we also use λ
(0)
s,r,j = σ

(0)
s,r,i = 0 and the fact that, w.h.p., we have ∥ξi∥ ≈

√
d = ∥µj∥. It

suggests that we only need to focus on the dynamics of the noise coefficients σ(t)
s,r,i (i.e., equation

(3)).

C.2 TWO KEY TECHNIQUES ABOUT LOSS DERIVATIVE AND ACTIVATION REGION

It seems that the main difficulty in analyzing the iteration (3) is addressing the time-variant loss
derivative ℓ

′(t)
i and ReLU activation region S

(t)
s,i . To overcome these two challenges, we provide two

corresponding key techniques (Lemma C.4 and Lemma C.6) as follows, which can usefully simplify
the analysis of noise coefficients’ dynamics.

Key Technique 1: Bounding Loss Derivative Ratio. We will establish the connection between loss
derivative ratio yiℓ

′(t)
i /yjℓ

′(t)
j and the training data margin gap ∆

(t)
q (i, j) := q

(t)
i − q

(t)
j , where q

(t)
i

denotes the margin of the i-th training data at iteration t defined as q(t)i := yifθ(t) (xi). Then, we
have:
Lemma C.4 (Training data margins are balanced during training dynamics). There exists a time
threshold T0 such that, for any time 1 ≤ t ≤ T0 and distinct data points (xi,xj), it holds that

∆(t)
q (i, j) ≤ ϵ(k), (5)

where we use ϵ(k) to denote a time-independent error term satisfying ϵ(k) → 0 as k → ∞.
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According to Lemma C.4, for any distinct training data points xi and xj with the same label, the loss
derivative ratio can be bounded as:

yiℓ
′(t)
i /yjℓ

′(t)
j ≈ exp(∆(t)

q (j, i)) ≈ 1 + ∆(t)
q (j, i)

(5)
= 1± o(1), (6)

where the first approximation holds due to ℓ′(z) = 1/(1 + exp(z)) and we use the fact ez ≈ 1 + z
for small z in the second approximation.
Remark C.5. This method was initially proposed by Chatterji & Long (2021) in the context of
benign overfitting for linear classification and was subsequently extended to networks with non-linear
activation (Frei et al., 2022; Kou et al., 2023a). In this paper, we extend the auto-balance technique
of Kou et al. (2023a) from the single-feature case to our multi-cluster scenario to prove Lemma C.4.

Key Technique 2: Analyzing ReLU Activation Regions. Then, we turn to the analysis of the
activation regions S(t)

s,i . In fact, after the first gradient descent update, the set of activated neurons can
be described in the following lemma.
Lemma C.6 (Each training data can activate all its corresponding neurons). For the same time
threshold T0 as that in Lemma C.4 and all time 1 ≤ t ≤ T0, it holds that S(t)

1,i = [m] for all i ∈ I+

and S
(t)
−1,i = [m] for all i ∈ I−, where I+ := {i : i ∈ I, yi = 1} and I− := {i : i ∈ I, yi = −1}.

We rewrite our model as fθ(t) = f
(t)
1 + f

(t)
−1, where f (t)

s := s
m

∑
r∈[m] ReLU(⟨w(t)

s,r,x⟩+ b
(t)
s,r), s ∈

{−1, 1}. Then, Lemma C.6 manifests that f (t)
s is linear in the training data point (xi, yi) with

label yi = s. If we show f
(t)
−yi

keeps small, we will have the linearization fθ(t) ≈ f
(t)
yi =

yi

m

∑
r∈[m](⟨w

(t)
yi,r,xi⟩ + b

(t)
yi,r), which allows us to approximate the data margin by noise coef-

ficients (applying Lemma C.1 and (4)).
Remark C.7. Indeed, we use induction to prove Lemma C.4 and Lemma C.6 together (see Lemma
E.7 in the appendix), where we show the case when t = 1 by our small initialization assumption and
use the auto-balance technique to complete the inductive step (see the full proof in Appendix E.1).

C.3 PROOF SKETCH OF THEOREM C.2

Now, based on the two key techniques above, we provide a proof sketch of Theorem C.2, which
consists of five steps.

Step 1: Proving that feature coefficient ratio λ
(T )
s1,r1,j1

/λ
(T )
s2,r2,j2

(j1 ∈ Js1 , j2 ∈ Js2) is close to 1.

By Lemma C.6, for all s ∈ {−1, 1}, i ∈ Is, we know

σ
(t+1)
s,r,i = σ

(t)
s,r,i −

sη

nm
ℓ
′(t)
i ∥ξi∥2. (7)

Combined with the loss derivative ratio bound (6), it furthermore implies that the noise coefficient
ratio is close to 1, i.e., for any r1, r2 ∈ [m], i1, i2 ∈ I , we have

σ
(t)
yi1

,r1,i1
/σ

(t)
yi2

,r2,i2

(7)
≈

t∑
t′=0

ℓ
′(t′)
i1

/

t∑
t′=0

ℓ
′(t′)
i2

(6)
≈ 1± o(1). (8)

Thus, for any s1, s2 ∈ {−1, 1}, j1 ∈ Js1 , j2 ∈ Js2 and time t ≤ T , we can derive

λ
(t)
s1,r1,j1

/λ
(t)
s2,r2,j2

(4)
≈

∑
i1∈Ij1

σ
(t)
s1,r1,i1

/
∑

i2∈Ij2

σ
(t)
s2,r2,i2

(8)
≈ |Ij1 |/|Ij2 | = 1± o(1).

Step 2: Proving that λ(T )
s,r,j attains Ω(1) for j ∈ Js, and keeps o(1) for j ∈ J−s.

By induction, we can show that both bias terms b
(t)
s,r and λ

(t)
s,r,j(j ∈ J−s) keep o(1)-order dur-

ing the learning process (Lemma E.10 and Corollary E.16), which thereby implies the following
approximation, i.e., for any s ∈ {−1, 1}, r ∈ [m], i ∈ Ij , we have

⟨w(t)
s,r,xi⟩+ b(t)s,r ≈ λ

(t)
s,r,j + σ

(t)
s,r,i, (9)
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where we also need time t satisfying t = exp(Õ(k0.5)) (see details in Lemma E.13).

Then, for any s ∈ {−1, 1}, i ∈ Ij and data point (xi, yi) satisfying yi = −s, we know

ReLU(⟨w(t)
s,r,xi⟩+ b(t)s,r)

(9)
= ReLU(λ

(t)
s,r,j + σ

(t)
s,r,i + o(1)) ≤ o(1), (10)

where the last inequality holds due to λ
(t)
s,r,j , σ

(t)
s,r,i ≤ 0 (Lemma E.5).

Next, we approximate the model output for training data point (xi, yi) belonging to the j-th cluster as

fθ(t)(xi) =
∑

s∈{−1,1}

∑
r∈[m]

s

m
ReLU(⟨w(t)

s,r,xi⟩+ b(t)s,r)
(10)
≈ yi

m

∑
r∈[m]

(⟨w(t)
yi,r,xi⟩+ b(t)yi,r)

(9)
≈ yi

m

∑
r∈[m]

(λ
(t)
yi,r,j

+ σ
(t)
yi,r,i

)
(4)
≈ yi

m

∑
r∈[m]

( ∑
i′∈Ij

σ
(t)
yi,r,i′

+ σ
(t)
yi,r,i

)
(8)
≈ yi(|Ij |+ 1)σ

(t)
yi,1,i

.

(11)

Therefore, we derive the following approximate update w.r.t. σ
(t)
yi,1,i

, i.e., for any iteration

t ∈ [0, exp(Õ(k1/2))], we have σ
(t+1)
yi,1,i

(7)(11)
≈ σ

(t)
yi,1,i

+ ηd
nm exp

(
−n

kσ
(t)
yi,1,i

)
(Lemma E.21). By

leveraging log(z + 1) − log(z) ≈ 1
z , we inductively prove σ

(t)
yi,1,i

≈ k
n log(ηt) (Lemma E.7) and

λ
(t)
s,r,j ≈ log(ηt), j ∈ Js (Lemma E.23). When the assumption T = Ω(η−1) holds, we have

λ
(T )
s,r,j = Ω(1), j ∈ Js.

Step 3: Gradient descent leads the network to the feature-averaging regime.

We can choose λ(T ) = λ
(T )
1,1,j0

for some j0 ∈ J+ as the representative of Λ(T ) = {λ(T )
s,r,j : s ∈

{−1,+1}, r ∈ [m], j ∈ Js}.

Combining the result in Step 1 and Step 2, we know that for any λ
(T )
s,r,j ∈ Λ(T ),

λ(T ) ≈ λ
(T )
s,r,j ≈ log(ηT ).

We can also prove that the w(T )
s,r is minimally affected by the coefficient σ(T )

s,r,i in weight decomposition.
Thus, we have (Lemma E.25)∥∥∥∥w(T )

s,r − λ(T )
∑
j∈Js

∥µj∥−2µj

∥∥∥∥ ≤ o(d−1/2)

.

Step 4: Proving that the clean accuracy is perfect.

For a randomly-sampled test data point (x = µj + ξ, y) ∼ D within cluster j ∈ Jy, we can
prove that, with probability at least 1 − exp(Ω(log2 d)), it holds that |⟨w(T )

s,r , ξ⟩| = o(1) for all
s ∈ {±1}, r ∈ [m] (Lemma E.26). Then, for data satisfying the above condition, we can calculate the
data margin as yfθ(T )(x) ≈ 1

m

∑
r∈[m] λ

(T )
s,r,j = Ω(1) > 0, which implies that AccDclean(fθ(T )) ≥

1− exp(−Ω(log2 d)).

Step 5: Proving that the robust accuracy is poor.

We consider the perturbation ρ = −2(1 + c)

k

(∑
j∈J+

µj −
∑

j∈J−
µj

)
. By applying Lemma E.26

again, we can derive that sgn(fθ(T )(x+ ρ)) ̸= sgn(fθ(T )(x)), which means AccDrobust(fθ(T ) ; 2(1 +

c)
√
d/k) ≤ exp(−Ω(log2 d)) and finishes the proof of Theorem C.2.
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D PRELIMINARY PROPERTIES

In this section, we provide some useful properties of our training dataset and neural network learner at
the initialization. These properties hold with high probability under our assumptions. Our subsequent
proofs will be based on the validity of these properties. The proofs of the inlined claims are concluded
with the ■ symbol, while the proofs of the overarching results are concluded with the □ symbol.

D.1 DETAILED DATA MODEL AND ASSUMPTIONS

First, we recall the definition of multi-class feature data distribution that we defined in Section 3.
Definition D.1 (Multi-Cluster Data Distribution). Given k vectors µ1, . . . ,µk ∈ Rd, called the clus-
ter features, and a partition of [k] into two disjoint sets J± = (J+, J−), we define D({µj}kj=1, J±)

as a data distribution on Rd × {−1, 1}, where each data point (x, y) is generated as follows:

1. Draw a cluster index as j ∼ Unif([k]);

2. Set y = +1 if j ∈ J+; otherwise j ∈ J− and set y = −1;

3. Draw x := µj + ξ, where ξ ∼ N (0, Id).

For convenience, we write D instead of D({µj}kj=1, J±) if {µj}kj=1 and J± are clear from the
context. For s ∈ {±1}, we write Js to denote J+ if s = +1 and J− if s = −1.

To ease the analysis, we make the following simplifying assumptions on the distribution.
Assumption D.2 (Orthogonal Equinorm Cluster Features). The cluster features {µj}kj=1 satisfy the
properties that (1) ∥µj∥ =

√
d for all j ∈ [k]; and (2) µi ⊥ µj for all 1 ≤ i < j ≤ k.

Assumption D.3 (Nearly Balanced Classification). The partition J± satisfies c−1 ≤ |J+|
|J−| ≤ c for

some absolute constant c ≥ 1.

Next, we summarize the assumptions of these hyper-parameters that we mentioned in the main text,
as listed below.
Assumption D.4 (Choices of Hyper-Parameters). We state the range of parameters for our proofs in
the appendix to hold.

• d = Ω(k10) (recall d is the data dimension)

• c = Θ(1) (recall c is the balance ratio)

• n ∈ [Ω(k7), exp(O(log2(d)))] (recall n is the number of samples)

• m = Θ(k) (recall 2m is the width of network learner)

• η ≤ O(d−2) (recall η is the learning rate)

• σ2
b = σ2

w ≤ ηk−5, (recall w(0)
s,r ∼ N (0, σ2

wId), b
(0)
s,r ∼ N (0, σ2

b ) give the initialization)
Remark D.5 (Discussion of Hyper-Parameter Choices). In this paper, we make specific choices of
hyper-parameters for the sake of calculations (and we emphasize that these may not be the tightest
possible choices), which is a widely-applied simplicity in the literature of feature learning works (Wen
& Li, 2021; Chen et al., 2022; Allen-Zhu & Li, 2022; 2023; Chidambaram et al., 2023). Namely, we
need the data dimension d to be a significantly larger polynomial in the number of clusters k to ensure
all k cluster features µ1,µ2, . . . ,µk can be orthogonal within the space Rd. The balance ratio c is
an absolute constant that is independent with d and k. Our results can be extended to x := αµj +σξ
for some parameters α = Θ(1) and σ = Θ(1), but here we set α = σ = 1 for simplicity. And
we further require that n is a large polynomial in k due to our choice of large signal-noise-ratio
(recall that we have α/σ = Θ(1), which implies that ∥µj∥ =

√
d ≈ ∥ξ∥ with high probability). We

need m ∈ [max{|J+|, |J−|}, k] for the existence of robust solution (Theorem G.3). We assume the
learning rate η and the initialization magnitude σw, σb are sufficiently small, which helps the network
to be trained in the feature learning regime (Lyu et al., 2021; Cao et al., 2022; Allen-Zhu & Li, 2023;
Kou et al., 2023a).
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D.2 USEFUL PROPERTIES OF THE TRAINING DATASET

Now, we introduce some useful notations, for simplifying our proof.

• Denote I = {i : i = 1, 2, · · · , n} as the set of indices of all training data points.
• Define c(·) as the map I → J where c(i) represents the index of the cluster to which point
xi belongs.

• Ij = {i : i ∈ I, c(i) = j} denotes the set of the training points in the j-th cluster.
• I+ = {i : i ∈ I, c(i) ∈ J+} and I− = {i : i ∈ I, c(i) ∈ J−} denote the index sets of all

positive class data points and negative class data points respectively.

Then, under Assumption D.2,D.3,D.4, we show that Proposition D.6 of the training dataset hold
with high probability. It is worth noting that most of the proofs of Proposition D.6 follow standard
methodologies and closely resemble those presented in Frei et al. (2024), as our data distribution is
similar to theirs.

Recall the cumulative distribution function (CDF) of the standard normal distribution, usually denoted
as Φ(x), which is defined as the integral

Φ(x) :=
1√
2π

∫ x

−∞
e−t2/2dt =

1√
2π

∫ ∞

−x

e−t2/2dt.

Additionally, we have the following commonly used bounds on the tail probabilities of the standard
normal distribution.(

x2 − 1√
2πx3

)
exp(−x2/2) ≤ 1− Φ(x) ≤ 1√

2πx
exp(−x2/2) (12)

Proposition D.6. Let ∆ = 4
√
d ln(d) and δ = 8n2d−

ln(d)
2 + 2k (n/k)

− ln(n/k). With probability at
least 1− δ over sampled training dataset S ∼ Dn, we have the following properties:

1. For every i ∈ I we have
√
d− 2 ln(d) ≤ ∥ξi∥ ≤

√
d+ 2 ln(d).

2. For every i ∈ I we have ∥xi∥ ≤ 3
√
d.

3. For every i, j ∈ I, i ̸= j we have |⟨ξi, ξj⟩| ≤ ∆.

4. For every i ∈ I and j ∈ J we have |⟨µj , ξi⟩| ≤ ∆.

5. For every i, j ∈ I with c(i) ̸= c(j) we have |⟨xi,xj⟩| ≤ ∆.

6. For every i, j ∈ I with c(i) = c(j) we have
1

2
d ≤ ⟨xi,xj⟩ ≤ 2d.

7. For every j ∈ J we have
n

k
−
√

2n

k
ln(

n

k
) ≤ |Ij | ≤

n

k
+

√
2n

k
ln(

n

k
).

Remark D.7. Property 1 and Property 2 show that the data-wise noise and training data point are
bounded, i.e., ∥ξi∥ ≈

√
d and ∥xi∥ = O(

√
d). Property 3 and Property 4 show that the correlation

between different noises (or between cluster center feature and random noise) is very small. Property
5 and Property 6 suggest that the correlation between training data points of different clusters is
very small, but the correlation between training data points within the same cluster is very large.
Property 7 manifests that the training dataset S approximately includes n

k (= Ω(k6)) examples from
each cluster.

Proof of Proposition D.6. Now, we prove Property 1-7 one by one.

Property 1: We notice that ∥ξ∥2 follows the Chi-squared distribution.

The concentration bound in Lemma 1 by Laurent & Massart (2000) implies that for all t ≥ 0, we
have

Pr
[
∥ξ∥2 − d ≥ 2

√
dt+ 2t

]
≤ e−t,

Pr
[
∥ξ∥2 − d ≤ −2

√
dt
]
≤ e−t.
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Plugging in t = ln2(d), we can see that

Pr
[
∥ξ∥2 ≥ (

√
d+ 2 ln(d))2

]
≤ Pr

[
∥ξ∥2 − d ≥ 2

√
d ln(d) + 2 ln2(d)

]
≤ d− ln(d),

Pr
[
∥ξ∥2 ≤ (

√
d− 2 ln(d))2

]
≤ Pr

[
∥ξ∥2 − d ≤ −2

√
d ln(d)

]
≤ d− ln(d).

Thus, we have
Pr
[√

d− 2 ln(d) ≤ ∥ξi∥ ≤
√
d+ 2 ln(d)

]
≤ 2d− ln(d). (13)

Then by union bound, we have Property 1 holds for every i ∈ I with probability at least 1−2nd− ln(d).

Property 2: When Property 1 holds, by triangle inequality, we know Property 2 holds:

∥xi∥ ≤ ∥µc(i)∥+ ∥ξi∥ ≤
√
d+

√
d+ ln(d) ≤ 3

√
d.

The proofs for other properties require calculations pertaining to Gaussian distribution. We first
introduce a useful lemma below.

Lemma D.8. Let ξ ∼ N(0, Id). For any x ∈ Rd we have

Pr [|⟨x, ξ⟩| ≥ ∥x∥ ln(d)] ≤ 2d−
ln(d)

2 .

Proof of Lemma D.8. Note that
〈

x

∥x∥
, ξ

〉
has the distribution N (0, 1).

By standard Gaussian tail bound, we have for every t ≥ 0 that Pr
[∣∣∣〈 x

∥x∥ , ξ
〉∣∣∣ ≥ t

]
≤ 2 exp

(
− t2

2

)
.

Plugging in t = ln(d), we can see that

Pr

[∣∣∣∣〈 x

∥x∥
, ξ

〉∣∣∣∣ ≥ ln(d)

]
≤ 2 exp

(
− ln2(d)

2

)
= 2d−

ln(d)
2 .

■

Property 3: Next, we prove Property 3 using the result in Lemma D.8.

Noting that if |⟨ξi, ξj⟩| ≥
√
2d ln(d), we have that at least one of the following holds:

1. ∥ξi∥ ≥
√
2d;

2.
∣∣∣〈 ξi

∥ξi∥ , ξj

〉∣∣∣ ≥ ln(d).

Now we bound the probabilities of these two events separately. By Property 1, we have

Pr[∥ξi∥ ≥
√
2d] ≤ 2d− ln(d).

Next, by Lemma D.8, we have

Pr

[∣∣∣∣〈 ξi
∥ξi∥

, ξj

〉∣∣∣∣ ≥ ln(d)

]
≤ 2d−

ln(d)
2 .

Then, by union bound, we know that,

Pr
[
|⟨ξi, ξj⟩| ≥

√
2d ln(d)

]
≤ 2d−

ln(d)
2 + 2d− ln(d) ≤ 4d−

ln(d)
2

Then, applying the union bound for all pairs i, j ∈ I, i ̸= j, we have |⟨ξi, ξj⟩| ≤
√
2d ln(d)2 holds

with probability at least 1− 4n2d−
ln(d)

2 .
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Property 4: Applying Lemma D.8, we have

Pr
[
|⟨µj , ξ⟩| ≥

√
d ln(d)

]
≤ 2d−

ln(d)
2 .

Then for all pairs i ∈ I, j ∈ J , applying union bound we have that |⟨µj , ξi⟩| ≤
√
d ln(d) for all

i ∈ I, j ∈ J holds with probability at least 1− 2n2d−
ln(d)

2 .

Property 5: By using the results above, we have

|⟨xi,xj⟩| ≤
∣∣⟨µc(i),µc(j)⟩

∣∣+ ∣∣⟨µc(i), ξj⟩
∣∣+ ∣∣⟨µc(j), ξi⟩

∣∣+ |⟨ξi, ξj⟩|
=
∣∣⟨µc(i), ξj⟩

∣∣+ ∣∣⟨µc(j), ξi⟩
∣∣+ |⟨ξi, ξj⟩|

≤ 4
√
d ln(d) = ∆.

Property 6: By using the results above and noting that ⟨µc(i), µc(j)⟩ = d for i, j with c(i) = c(j),
we have

|⟨xi,xj⟩ − d| ≤
∣∣⟨µc(i), ξj⟩

∣∣+ ∣∣⟨µc(j), ξi⟩
∣∣+ |⟨ξi, ξj⟩|

≤ 4
√
d ln(d) = ∆.

Thus, we have
1

2
d ≤ ⟨xi,xj⟩ ≤ 2d.

Property 7: We define Xi for i ∈ I as the indicator random variable that the i-th point is in the j-th
cluster. It takes value 1 with probability 1

k , and 0 with probability 1− 1
k .

Then we know that |Ij | =
∑
i∈I

Xi. Applying Chernoff bound, we have that

Pr

[
n

k
−
√

2n

k
ln(

n

k
) ≤ |Ij | ≤

n

k
+

√
2n

k
ln(

n

k
)

]
≥ 1− 2 exp(− ln2(n/k)) = 1− 2(n/k)− ln(n/k).

Then for all j ∈ J , applying union bound, we have Property 7 holds with probability at least
1− 2k(n/k)− ln(n/k).

Combining all of the above together, we have Proposition D.6 holds with probability at least 1 −
8n2d−

ln(d)
2 − 2k(n/k)− ln(n/k). □

D.3 USEFUL PROPERTIES OF THE NETWORK INITIALIZATION

The proofs for properties of the network initialization require the range of the maximum value
obtained from multiple independent samples drawn from a Gaussian distribution. We first present the
following useful lemma.

Lemma D.9 (Concentration of Maximum of Gaussians). Let Xi ∼ N (0, 1), 1 ≤ i ≤ l be i.i.d.
random variables. Denote Xmax = max1≤i≤l{Xi}, Xmin = min1≤i≤l{Xi}. For any t ≥ 0, we have

• Pr
[
Xmin ≤ −

√
2 log(l)− t

]
≤ 1

2 exp
(
−t2/2

)
,

• Pr
[
Xmax ≤

√
2 log(l)− t

]
≤ exp

(
− et/2√

2π(
√

2 log(l)+1)

)
.

Proof of Lemma D.9. The proof is standard and similar to Proposition A.1 and A.2 from Chi-
dambaram et al. (2023). We include it for convenience of the readers.

For any a ≥ 0, we have

Pr [Xmin ≥ −a] = (Φ(a))l = (1−Q(a))l,
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where Q(x) = 1− Φ(x). By using (1− x)n ≥ 1− nx for any x ∈ [0, 1] and n ∈ N, we then get

Pr [Xmin ≥ −a] ≥ 1− lQ(a).

Now we use the elementary inequality for the tail of the normal distribution:

Q(a) ≤ 1

2
e−

a2

2 ,

so that
Pr [Xmin ≥ −a] ≥ 1− 1

2
le−

a2

2 .

Plugging a =
√

2 log(l) + t, we get

Pr
[
Xmin ≥ −

√
2 log(l)− t

]
≥ 1− l exp

(
−
(
√
2 log(l) + t)2

2

)

= 1− 1

2
l exp

(
−2 log(2l) + t2

2

)
= 1− 1

2
e−

t2

2 .

Similar to the previous proof, we know that

Pr [Xmax ≤ a] = (Φ (a))
l ≤

(
1− a√

2π (a2 + 1)
exp

(
−a2

2

))l

.

Plugging a =
√

2 log(l)− t,

Pr
[
Xmax ≤

√
2 log(l)− t

]
≤

(
1−

√
2 log(l)− t√

2πl(2 log(l)− t+ 1)
exp

(
t

2

))l

≤

(
1− exp (t/2)√

2πl(
√
2 log(2l) + 1)

)l

≤ exp

(
− exp (t/2)√

2π(
√

2 log(2l) + 1)

)

□

By applying Proposition D.6, we can derive the following result, which gives the range of network
parameters at the initialization.

Proposition D.10. With probability at least 1−4md− ln(d)−2m−3 , we have the following properties
for our network initialization:

• For any s ∈ {−1,+1}, r ∈ [m], we have σw

(√
d− 2 ln(d)

)
≤ ∥w(0)

s,r∥ ≤

σw

(√
d+ 2 ln(d)

)
.

• For any s ∈ {−1,+1}, r ∈ [m], we have |b(0)s,r | ≤ 2σb

√
2 ln(m).

Proof of Proposition D.10. For w(0)
s,r , reusing the same argument as the proof of Property (1) in

Proposition D.6, we know that

σw

(√
d− 2 ln(d)

)
≤ ∥w(0)

s,r∥ ≤ σw

(√
d+ 2 ln(d)

)
holds for all s ∈ {−1,+1}, r ∈ [m] with probability at least 1− 4md− ln(d).
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For b(0)s,r , by standard Gaussian tail bound, we know that

Pr
[
|b(0)s,r | ≥ 2σb

√
2 ln(m)

]
≤ exp (−4 ln(m)) = m−4.

Then using union bound, we know that |b(0)s,r | ≥ 2σb

√
2 ln(m) holds for all s ∈ {−1,+1}, r ∈ [m]

with probability at least 1− 2m−3.

In conclusion, we know that these properties hold with probability at least 1−2md− ln(d)−2m−3. □

We then show that each neuron is activated by at least one training data point in each cluster upon
initialization with high probability. We first formally define the notion of activation region as follows.

Definition D.11 (Activation Region over Data Input). Let Ts,r,j := {i ∈ Ij : ⟨w(0)
s,r ,xi⟩+ b

(0)
s,r ≥ 0}

be the set of indices of training data points in the j-th cluster which can activate the r-th neuron with
weight ws,r at time step 0.

Then, we give the following result about the activation region Ts,r,j .
Proposition D.12. Assuming Proposition D.6 and Proposition D.10 holds. Then with probability at
least 1−m−0.01 − 2mk exp

(
− n

9km2

)
, for all s ∈ {−1,+1}, r ∈ [m], j ∈ J , we have

|Ts,r,j | ≥
n

3km2
.

Proof of Proposition D.12. Given µj for j ∈ J , we have ⟨w(0)
s,r ,µj⟩ ∼ N (0, σw

√
d).

Using the conclusion in Lemma D.9, with probability at least 1−m0.01, we have

mins∈{−1,+1},r∈J⟨w(0)
s,r ,µj⟩ ≥ −1.1σw

√
d
√
2 ln(2m).

In the following proof, we assume that the above conclusion holds.

Given w
(0)
s,r , we have ⟨w(0)

s,r , ξi⟩ ∼ N (0, ∥w(0)
s,r∥).

Then by Gaussian tail bound (12), we have

Pr
[
⟨w(0)

s,r , ξi⟩ ≥ 1.2σw

√
d
√
2 ln(2m)

]
= 1− Φ

(
1.2σw

√
d
√

2 ln(2m)

∥w(0)
s,r∥

)
≥ 1− Φ(

√
3 ln(2m))

≥ 1

2
√

3 ln(2m)
exp

(
−3 ln(2m)

2

)
≥ m−2.

We denote Xs,r,i = 1

(
⟨w(0)

s,r , ξi⟩ ≥ 1.2σw

√
d
√

2 ln(2m)
)
, T ′

s,r,j =
∑
i∈Ij

Xs,r,i,

Ys,r,i = 1

(
⟨w(0)

s,r ,xi⟩+ b
(0)
s,r ≥ 0

)
and we know that |Ts,r,j | =

∑
i∈Ij

Ys,r,i.

If ⟨w(0)
s,r , ξi⟩ ≥ 1.2σw

√
d
√

2 ln(2m), then

⟨w(0)
s,r ,xi⟩+ b(0)s,r ≥ mins∈{−1,+1},r∈J⟨w(0)

s,r ,µp⟩+ ⟨w(0)
s,r , ξi⟩ − 2σb

√
2 ln(m)

≥ 0.1σw

√
d
√
2 ln(2m)− 2σb

√
2 ln(m) ≥ 0.

That is to say Ys,r,i = 1 if Xs,r,i = 1. Thus

Pr
[
|Ts,r,j | ≥

n

2m2k

]
≥ Pr

[
T ′
s,r,j ≥

n

2m2k

]
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For any given s ∈ {−1,+1}, r ∈ [m] and i ∈ Ij , we know that Xs,r,i are i.i.d. and E[Xs,r,i] ≥ m−2.

Then by Chernoff bound, we have

Pr
[
T ′
s,r,j ≥

|Ij |
2m2

]
≥ 1− exp

(
|Ij |
8m2

)
≥ 1− exp

( n

9km2

)
Then

Pr
[
|Ts,r,j | ≥

n

3km2

]
≥ Pr

[
T ′
s,r,j ≥

n

3km2

]
≥ Pr

[
T ′
s,r,j ≥

|Ij |
2m2

]
≥ 1− exp

( n

9km2

)
.

Then by union bound, we know that |Ts,r,j | ≥
n

3km2
holds for all s ∈ {−1,+1}, r ∈ [m], p ∈ J

with probability at least 1− 2mk exp
( n

9km2

)
.

Combing the above together, with probability at least 1 −m−0.01 − 2mk exp
( n

9km2

)
, we have

|Ts,r,j | ≥
n

3km2
. □

Next, we show that the pre-activation output of the network is very small, at the initialization.

Lemma D.13. For any i ∈ I, r ∈ [m], s ∈ {−1,+1}, we have |⟨w(0)
s,r ,xi⟩+ b

(0)
s,r | ≤

η
√
d

nm
.

Proof of Lemma D.13. By Property (2) in Proposition D.6 and Lemma D.8, we have

∥xi∥ ≤ 3
√
d, ∥w(0)

s,r∥ ≤ σw

(√
d+ 2 ln(d)

)
, ∥b(0)s,r∥ ≤ 2σb

√
2 ln(2m).

Therefore, by triangle inequality, we know that

|⟨w(0)
s,r ,xi⟩+ b(0)s,r | ≤ ∥xi∥∥w(0)

s,r∥+ ∥b(0)s,r∥ ≤ 3
√
d · 2σw

√
d+ 2σb

√
2 ln(2m) ≤ η

√
d

nm

□

Finally, we present the following two lemmas about the range of the loss derivative.

Denote ℓ
′(t)
i := ∇f

θ(t) (xi)ℓ(yifθ(t)(x)) = − yi exp (−yifθ(t)(xi))

1 + exp (−yifθ(t)(xi))
= − yi

1 + exp (yifθ(t)(xi))
.

Lemma D.14. For each i ∈ I , we have−2

3
≤ yiℓ

′(0)
i ≤ −1

3
.

Proof of Lemma D.14. By applying Lemma D.13, we know

|fθ(0)(xi)| ≤
1

m

 ∑
s∈{−1,+1}

∑
r∈[m]

|⟨w(0)
s,r ,xi⟩+ b(0)s,r |

 ≤ 2η
√
d

nm
≤ ln 2

Then, we have 1/2 ≤ exp (yifθ(0)(xi)) ≤ 2, and we can derive that

−2

3
≤ yiℓ

′(0)
i = − 1

1 + exp (yifθ(0)(xi))
≤ −1

3
.

□

Lemma D.15. For each i ∈ I and any time step t, we have −1 ≤ yiℓ
′(t)
i ≤ 0.
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Proof of Lemma D.15. It can be easily checked as follows.

−1 ≤ yiℓ
′(t)
i = − 1

1 + exp (yifθ(t)(xi))
≤ 0.

□
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E PROOF FOR SECTION 4: FEATURE-AVERAGING REGIME

In this section, we provide the proof of Theorem 4.5. We analyze the training dynamics of gradient
descent, which constitutes the main part of our proof.

E.1 ANALYSIS OF TRAINING DYNAMICS

We first assume that all the properties and lemmas mentioned in Appendix D hold with high probability
over the sampled training dataset and the network initialization.

Now, we introduce some useful notations. Denote S
(t)
s,i as the set of indices of neurons in positive or

negative class (determined by s) which has been activated by training data point xi at time step t.
Formally, we define it as S(t)

s,i = {r ∈ [m] : ⟨w(t)
s,r,xi⟩+ b

(t)
s,r ≥ 0} for s ∈ {−1,+1} and i ∈ I . The

following lemma describes the set of activated neurons after the first gradient descent update.

Lemma E.1. S
(1)
1,i = [m] for all i ∈ I+ and S

(1)
−1,i = [m] for all i ∈ I−.

Proof of Lemma E.1. Without loss of generality, we consider the case when xi belongs to the positive
class. We show that ⟨w(1)

1,r ,xi⟩+ b
(1)
1,r ≥ 0 for all r ∈ [m]. By applying the gradient descent update

and Lemma D.13, we have

⟨w(1)
1,r ,xi⟩+ b

(1)
1,r =⟨w(0)

1,r ,xi⟩+ b
(0)
1,r − η

(
⟨∇w1,r

L(θ(0)),xi⟩+∇b1,rL(θ(0))
)

≥ η

nm

(
−d1/2 −mn

(〈
∇w1,r

L(θ(0)),xi

〉
+∇b1,rL(θ(0))

))
First, we examine the update of linear terms as follows:

−mn⟨∇w1,r
L(θ(0)),xi⟩

=− ⟨
∑
p∈I+

ℓ′(0)p 1

(
⟨w(0)

1,r ,xp⟩+ b
(0)
1,r ≥ 0⟩

)
xp −

∑
p∈I−

ℓ′(0)p 1

(
⟨w(0)

1,r ,xi⟩+ b
(0)
1,r ≥ 0⟩

)
xp,xi⟩

≥ −
∑

p∈Ic(i)

ℓ′(0)p 1

(
⟨w(0)

1,r ,xp⟩+ b
(0)
1,r ≥ 0⟩

)
⟨xp,xi⟩+

∑
p/∈Ic(i)

ℓ′(0)p 1

(
⟨w(0)

1,r ,xp⟩+ b
(0)
1,r ≥ 0⟩

)
|⟨xp,xi⟩|

≥ 1

3

∑
p∈Ic(i)

1

(
⟨w(0)

1,r ,xp⟩+ b
(0)
1,r ≥ 0⟩

)
⟨xp,xi⟩ −

2

3

∑
p/∈Ic(i)

1

(
⟨w(0)

1,r ,xi⟩+ b
(0)
1,r ≥ 0⟩

)
|⟨xp,xi⟩|

≥ d

6

∑
p∈Ic(i)

1

(
⟨w(0)

1,r ,xp⟩+ b
(0)
1,r ≥ 0⟩

)
− 2∆

3

∑
p/∈Ic(i)

1

(
⟨w(0)

1,r ,xp⟩+ b
(0)
1,r ≥ 0⟩

) (
Recall ∆ = 4

√
d ln(d)

)
=

1

6
d|T1,r,c(i)| −

2∆

3

∑
l∈r/{c(i)}

|T1,r,l|

≥ nd

18km2
− 2n∆

3
(By Proposition D.12)

≥ n∆ (14)

Next, we examine the update of the bias term as follows:

−mn∇b1,rL(θ(0)) =−
∑
p∈I+

ℓ′(0)p 1

(
⟨w(0)

1,r ,xp⟩+ b
(0)
1,r ≥ 0⟩

)
+
∑
p∈I−

ℓ′(0)p 1

(
⟨w(0)

1,r ,xp⟩+ b
(0)
1,r ≥ 0⟩

)
≥− 2

3

∑
p∈I

1

(
⟨w(0)

1,r ,xp⟩+ b
(0)
1,r ≥ 0⟩

)
≥− 2n

3
(15)
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Combining (14) and (15) together, we know

⟨w(1)
1,r ,xi⟩+ b

(1)
1,r ≥ η

nm

(
−d1/2 −mn

(〈
∇w1,r

L(θ(0)),xi

〉
+∇b1,rL(θ(0))

))
≥ η

nm
(−d1/2 + n∆− 2n

3
)

≥0

Since this inequality holds for all r ∈ [m], we have that S(1)
1,i = [m]. For the case when xi belongs to

the negative class, we have S
(1)
−1,i = [m] using the same argument. □

Now, we analyze the dynamics of the coefficients in the training process, where we first give the
following weight-decomposition lemma.

Lemma E.2 (Weight Decomposition). During the training dynamics, there exists the following
coefficient sequences λ(t)

s,r,j and σ
(t)
s,r,i for each s ∈ {−1,+1}, r ∈ [m], j ∈ J, i ∈ I such that

w(t)
s,r = w(0)

s,r +
∑
j∈J

λ
(t)
s,r,jµj∥µj∥−2 +

∑
i∈I

σ
(t)
s,r,iξi∥ξi∥

−2

Proof of Lemma E.2. First, we construct a set of {λ̂(t)
s,r,j} and {σ̂(t)

s,r,i} according to the following
recursive formulas:

λ̂
(t+1)
s,r,j = λ̂

(t)
s,r,j −

sη

nm
·
∑
i∈Ij

ℓ
′(t)
i ∥µj∥21

(
⟨w(t)

s,r,xi⟩+ b(t)s,r ≥ 0
)
.

σ̂
(t+1)
s,r,i = σ̂

(t)
s,r,i −

sη

nm
· ℓ′(t)i ∥ξi∥21

(
⟨w(t)

s,r,xi⟩+ b(t)s,r ≥ 0
)
.

λ̂
(0)
s,r,j = 0, σ̂

(0)
s,r,i = 0.

Now, we prove by induction on t that {λ̂(t)
s,r,j} and {σ̂(t)

s,r,i} constructed as above satisfy that

w(t)
s,r = w(0)

s,r +
∑
j∈J

λ̂
(t)
s,r,jµj∥µj∥−2 +

∑
i∈I

σ̂
(t)
s,r,iξi∥ξi∥

−2

The base case when t = 0 the conclusion holds trivially. Assuming the inductive hypothesis holds at
time step t, we now consider the case at time step t+ 1. By the update equation in gradient descent,
we know that

w(t+1)
s,r = w(t)

s,r −
sη

nm

∑
i∈I

ℓ
′(t)
i xi1

(
⟨w(t)

s,r,xi⟩+ b(t)s,r ≥ 0
)

= w(t)
s,r −

sη

nm

∑
i∈I

ℓ
′(t)
i

(
µc(i) + ξi

)
1

(
⟨w(t)

s,r,xi⟩+ b(t)s,r ≥ 0
)

= w(t)
s,r −

sη

nm

∑
j∈J

µj

∑
i∈Ij

ℓ
′(t)
i 1

(
⟨w(t)

s,r,xi⟩+ b(t)s,r ≥ 0
)
+
∑
i∈I

ξiℓ
′(t)
i 1

(
⟨w(t)

s,r,xi⟩+ b(t)s,r ≥ 0
)

= w(0)
s,r +

∑
j∈J

µj∥µj∥−2

λ̂
(t)
s,r,j −

sη

nm
·
∑
i∈Ij

ℓ
′(t)
i ∥µj∥21

(
⟨w(t)

s,r,xi⟩+ b(t)s,r ≥ 0
)

+
∑
i∈I

ξi∥ξi∥−2
(
σ̂
(t)
s,r,i −

sη

nm
· ℓ′(t)i ∥ξi∥21

(
⟨w(t)

s,r,xi⟩+ b(t)s,r ≥ 0
))

= w(0)
s,r +

∑
j∈J

λ̂
(t+1)
s,r,j µj∥µj∥−2 +

∑
i∈I

σ̂
(t+1)
s,r,i ξi∥ξi∥−2

This concludes the inductive step and the proof of the lemma. □
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Naturally, we have the following corollaries.

Corollary E.3. The coefficients λ
(t)
s,r,j , σ

(t)
s,r,i for s ∈ {−1,+1}, r ∈ [m], j ∈ J, i ∈ I defined in

Corollary (E.2) satisfy the following update equations:

λ
(t+1)
s,r,j = λ

(t)
s,r,j −

sη

nm
·
∑
i∈Ij

ℓ
′(t)
i ∥µj∥21

(
⟨w(t)

s,r,xi⟩+ b(t)s,r ≥ 0
)
,

σ
(t+1)
s,r,i = σ

(t)
s,r,i −

sη

nm
· ℓ′(t)i ∥ξi∥21

(
⟨w(t)

s,r,xi⟩+ b(t)s,r ≥ 0
)
,

λ
(0)
s,r,j = 0, σ

(0)
s,r,i = 0.

Indeed, we can only focus on the dynamics of noise coefficients due to the following lemma.

Corollary E.4. The coefficient sequences λ(t)
s,r,j and σ

(t)
s,r,i for each pair s ∈ {−1,+1}, r ∈ [m], j ∈

J, i ∈ I defined in Lemma F.6 satisfy:

λ
(t)
s,r,j∥µj∥−2 =

∑
i∈Ij

σ
(t)
s,r,i∥ξi∥

−2.

Proof of Corollary E.4. Using the result in Corollary E.3, we know that(
λ
(t′+1)
s,r,j − λ

(t′)
s,r,j

)
∥µj∥−2 =− sη

nm
·
∑
i∈Ij

ℓ
′(t′)
i 1

(
⟨w(t′)

s,r ,xi⟩+ b(t
′)

s,r ≥ 0
)

=
∑
i∈Ij

(
σ
(t′+1)
s,r,i − σ

(t′)
s,r,i

)
∥ξi∥−2.

Then summing up the above equations from t′ = 0 to t′ = t− 1, we have

λ
(t)
s,r,j∥µj∥−2 =

∑
i∈Ij

σ
(t)
s,r,i∥ξi∥

−2.

□

We show that the sign of each feature/noise coefficient remains unchanged during the full training
process as in the following lemma.

Corollary E.5. The coefficient sequences λ(t)
s,r,j and σ

(t)
s,r,i for each pair s ∈ {−1,+1}, r ∈ [m], j ∈

J, i ∈ I, t ≥ 0 defined in Lemma E.2 satisfy:

λ
(t)
s,r,j

{
≥ 0 if i ∈ Js,

< 0 if i /∈ Js.

σ
(t)
s,r,i

{
≥ 0 if i ∈ Is,

< 0 if i /∈ Is.

Proof of Corollary E.5. Using the results in Corollary E.3 and Lemma D.15, we know that

sgn
(
σ
(t+1)
s,r,i − σ

(t)
s,r,i

)
=sgn

(
− sη

nm
· ℓ′(t)i ∥ξi∥21

(
⟨w(t)

s,r,xi⟩+ b(t)s,r ≥ 0
))

=sgn
(
−sℓ

′(t)
i

)
=sgn (syi)

Noting that σ(0)
s,r,i = 0, we know that

sgn
(
σ
(t)
s,r,i

)
= sgn (syi)
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That is to say

σ
(t)
s,r,i

{
≥ 0 if i ∈ Is,

< 0 if i /∈ Is.

Then using the result in Corollary E.4, we know

λ
(t)
s,r,j

{
≥ 0 if j ∈ Js,

< 0 if j /∈ Js.

□

In the following proof, we need the concept of margin. We denote the margin of training data point
xi at time step t as q(t)i = yifθ(t) (xi) and the margin gap between training data points xi and xj at
time step t as ∆(t)

q (i, j) = yifθ(t) (xi)− yjfθ(t) (xj).

First, we analyze the relationship between the margin gap and the loss derivatives’ ratio for the two
training data points in the following lemma.

Lemma E.6. For any time step t and two training data points xi,xj , if qi ≥ qj , we have

e∆
(t)
q (i,j)/2 ≤

yjℓ
′(t)
j

yiℓ
′(t)
i

≤ e∆
(t)
q (i,j).

Proof of Lemma E.6. Recall ℓ′(x) = − e−x

1 + e−x
=

1

1 + ex
. Then

ℓ
′(t)
j

ℓ
′(t)
i

· e−∆(t)
q (i,j) =

1 + eqi

e∆
(t)
q (i,j) + eqi

≤ 1.

Since the exponential function is convex, we know that

ℓ
′(t)
j

ℓ
′(t)
i

· e−∆(t)/2
q (i,j) =

1 + eqi

e(qi−qj)/2 + e(qi+qj)/2
≥ 1.

□

Next, we establish the relationship between the coefficient λ(t)
s,r,j’s and σ

(t)
s,r,i’s in Corollary E.2 and

margin q we defined before. We denote

q̂
(t)
i =

1

m

∑
r∈[m]

λ
(t)
yi,r,c(i)

+
∑
r∈[m]

σ
(t)
yi,r,i

 ,

∆̂(t)
q (i, j) = q̂i − q̂j =

1

m

∑
r∈[m]

(
λ
(t)
yi,r,c(i)

− λ
(t)
yj ,r,c(j)

)
+

1

m

∑
r∈[m]

(
σ
(t)
yi,r,i

− σ
(t)
yj ,r,j

)
.

Later, we will show that q̂(t)i is a good approximation for margin qi and ∆̂
(t)
q (i, j) is a good approxi-

mation for margin gap ∆
(t)
q (i, j) in Lemma E.14 and Corollary E.15.

Next, we arrive at the main part of the proof. Inspired by Kou et al. (2023a), we can prove that the
training data’s margin tends to balance automatically.

Denote ϵ = max

{
2 ln(nk )√
n
k − ln(nk )

,
k2∆

d
,
k2

n

}
. We know that ϵ = o(k−2.5) according to our hyper-

parameter Assumption D.4.

Lemma E.7. For t ≤ T0 = exp(Õ(k0.5)), i, j ∈ I, s ∈ {−1, 1}, the following statements hold:
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1.
k

2n
ln(tη) ≤ σ

(t)
yi,r,i

≤ 2k

n
ln(t+ 1),

2. ∆̂
(t)
q (i, j) ≤ 5ϵ when c(i) = c(j),

3. ∆̂
(t)
q (i, j) ≤ 63ϵ,

4. ∆
(t)
q (i, j) ≤ 65ϵ,

5. yiℓ
′(t)
i /yjℓ

′(t)
j ≤ 1 + 14ϵ when c(i) = c(j),

6. yiℓ
′(t)
i /yjℓ

′(t)
j ≤ 1 + 130ϵ,

7. S
(t)
s,i = [m] for i ∈ Is,

8. |λ(t)
−s,r,c(i)| ≤ ϵ, |σ(t)

−s,r,i| ≤ 2ϵ for i ∈ Is.

Remark E.8. Property 1 of Lemma E.7 shows that the growth rate of noise coefficient is the logarithm
of time, i.e., σ(t)

s,r,i ≈ log t. Property 2 and Property 3 show that the approximate margin gap is small,
and the gap between two training data points with the same cluster index is smaller. Property 4
suggests that the exact margin gap is also small. Property 5 and Property 6 provide upper bounds for
the loss derivative ratio. Property 7 manifests that the positive training data points can activate all
positive neurons and the negative training data points can activate all negative neurons, respectively.

Proof of Lemma E.7. Without loss of generality, we assume that i ∈ I+.

We use induction to prove this lemma.

Step 1: We first consider the base case when t = 1 for the induction.

Property 7: Property 7 is exactly the conclusion of Lemma E.1.

Indeed, other properties can be easily verified because we adopted a small initialization.

Property 1 and 8: By Lemma E.3, η ≤ d−2 and noting that σ(0)
s,r,i = 0, we have

|σ(1)
s,r,i| = |σ(0)

s,r,i −
η

nm
· ℓ′(0)i ∥ξi∥21

(
⟨w(0)

s,r ,xi⟩+ b(0)s,r ≥ 0
)
| ≤ 2ηd

nm
≤ 2k

n
ln 2 ≤ 2ϵ.

and by Corollary E.5, for i ∈ Is we have

σ
(1)
s,r,i ≥ 0 ≥ k

2n
ln(η).

Property 2, 3 and 8: By applying Lemma E.3, η ≤ d−2 and noting that λ(0)
s,r,j = 0, we have

|λ(1)
s,r,j | = |λ(0)

s,r,j −
sη

nm
·
∑
i∈Ij

ℓ
′(0)
i ∥µj∥21

(
⟨w(0)

s,r ,xi⟩+ b(0)s,r ≥ 0
)
| ≤ 2ηd

m
≤ ϵ

2m
(Property 8)

Then, by the definition of ∆̂(t)
q (i, j), we know that

∆̂(1)
q (i, j) =

∑
r∈[m]

(
λ
(1)
1,r,c(i) − λ

(1)
1,r,c(j)

)
+
∑
r∈[m]

(
σ
(1)
1,r,i − σ

(1)
1,r,j

)
≤ 2m

ϵ

2m
+ 2m

2ηd

nm
≤ 5ϵ (Property 2)
≤ 63ϵ (Property 3)
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Property 4: By applying Lemma D.15, we know that∥∥∥w(1)
s,j

∥∥∥ =

∥∥∥∥∥w(0)
s,j −

η

nm

∑
i∈I

ℓ
′(0)
i 1

(
⟨w(t)

s,r,xi⟩+ b(t)s,r ≥ 0
)
xi

∥∥∥∥∥
≤
∥∥∥w(0)

s,j

∥∥∥+ η

nm

∑
i∈I

∥xi∥

≤
∥∥∥w(0)

s,j

∥∥∥+ 3
√
dη

m

≤ ϵ

4
√
d∥∥∥b(1)s,j

∥∥∥ =

∥∥∥∥∥b(0)s,j −
η

nm

∑
i∈I

ℓ
′(0)
i 1

(
⟨w(t)

s,r,xi⟩+ b(t)s,r ≥ 0
)∥∥∥∥∥

≤
∥∥∥b(0)s,j

∥∥∥+ η

m

≤ ϵ

10
(16)

Then, we have

|q(1)i | =|fθ(1)(xi)|

≤ 1

m

 ∑
s∈{−1,+1}

∑
r∈[m]

|⟨w(0)
s,j ,xi⟩+ b

(0)
s,j |


≤ 1

m

(
2m
( ϵ
4
+

ϵ

10

))
≤ϵ

By triangle inequality, we have

∆(1)
q (i, j) ≤ |q(1)i |+ |q(1)j | ≤ 2ϵ

Property 5 and 6: By using the inequality above, Lemma E.6 and noting that ex ≤ 1 + 2x for small
x, we have

ℓ
′(1)
j

ℓ
′(1)
i

≤ e∆
(1)
q (i,j) ≤ 1 + 2∆(1)

q (i, j) ≤ 1 + 14ϵ︸ ︷︷ ︸
Property 5

≤ 1 + 130ϵ︸ ︷︷ ︸
Property 6

.

Now we complete the proof of the base case when t = 1 for induction.

Step 2: Assuming that the inductive hypothesis at time step t holds, we consider time step t+ 1. We
first give some useful lemmas based on the inductive hypotheses, and then go on to inductive proofs
based on these lemmas.

Lemma E.9. Assuming the inductive hypotheses hold before time step t and i ∈ Is, the update
equations in Corollary E.3 can be simplified as follows:

λ
(t+1)
s,r,c(i) = λ

(t)
s,r,c(i) −

sη

nm
·
∑

p∈Ic(i)

ℓ′(t)p ∥µc(i)∥2.

σ
(t+1)
s,r,i = σ

(t)
s,r,i −

sη

nm
· ℓ′(t)i ∥ξi∥2.

Proof of Lemma E.9. By Property 7 in Lemma E.7 (inductive hypothesis) and Corollary E.3, the
conclusion is straightforward. ■
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Then, we demonstrate that the bias term remains consistently small as the following lemma.

Lemma E.10. For every s ∈ {−1,+1}, r ∈ [m], i ∈ I , we have

|b(t)s,r| ≤
ϵ

6
.

Proof of Lemma E.10. Without loss of generality, we assume that s = 1. Then, for any t′ ≤ t, by
using Lemma E.9, we know that

σ
(t′+1)
1,r,i = σ

(t′)
1,r,i −

η

nm
· ℓ′(t)i ∥ξi∥2.

b
(t′+1)
1,r = b

(t′)
1,r − η

nm

∑
p∈I

ℓ′(t)p 1

(
⟨w(t)

1,r,xp⟩+ b
(t)
1,r ≥ 0

)
≤ b

(t′)
1,r − η

nm

∑
p∈I+

ℓ′(t)p

Thus, we derive

σ
(t′+1)
1,r,i − σ

(t′)
1,r,i ≥

ℓ
′(t)
i ∥ξi∥2∑
p∈I+

ℓ
′(t)
p

(
b
(t′+1)
1,r − b

(t′)
1,r

)
≥ d

2n

(
b
(t′+1)
1,r − b

(t′)
1,r

)
.

Summing up the above inequality from t′ = 1 to t′ = t− 1, we have

b
(t)
1,r − b

(1)
1,r ≤ 2n

d

(
σ
(t)
1,r,i − σ

(1)
1,r,i

)
.

Then by inequality (16) and Property (1) in the inductive hypotheses, we know that

b
(t)
1,r ≤ 2n

d
σ
(t)
1,r,i −

2n

d
σ
(1)
1,r,i + b

(1)
1,r ≤ 4k ln(t+ 1)

d
+

ϵ

10
≤ ϵ

6
.

Reusing the same argument as in the previous proof, we know that b(t)1,r ≥ − ϵ

6
. ■

Next, we prove that the true value of the margin q
(t)
i is close to its estimated value q̂

(t)
i . To estimate

the margin, we first estimate the value of each neuron in the following Lemma E.11, Lemma E.12
and Lemma E.13.

Lemma E.11. Assuming the inductive hypotheses hold before time step t, for all s ∈ {−1,+1}, r ∈
[m], j ∈ J , we have ∣∣∣⟨w(t)

s,r,µj⟩ − λ
(t)
s,r,j

∣∣∣ ≤ ϵ

6
.

Proof of Lemma E.11. We bound the gap between the inner product ⟨w(t)
s,r,µj⟩ and feature coefficient

λ
(t)
s,r,j as follows:∣∣∣⟨w(t)

s,r,µj⟩ − λ
(t)
s,r,j

∣∣∣
=

∣∣∣∣∣∣
〈
w(0)

s,r +
∑
p∈J

λ(t)
s,r,pµp∥µp∥−2 +

∑
q∈I

σ(t)
s,r,qξq∥ξq∥−2,µj

〉
− λ

(t)
s,r,j

∣∣∣∣∣∣
≤
∣∣∣⟨w(0)

s,r ,µj⟩
∣∣∣+ ∣∣∣⟨λ(t)

s,r,jµj∥µj∥−2,µj⟩ − λ
(t)
s,r,j

∣∣∣+∑
p̸=j

λ(t)
s,r,p∥µp∥−2 |⟨µp,µj⟩|+

∑
q∈I

σ(t)
s,r,q∥ξq∥−2 |⟨ξq,µj⟩|

≤
∣∣∣⟨w(0)

s,r ,µj⟩
∣∣∣+∑

p ̸=j

λ(t)
s,r,p

2∆

d
+
∑
q∈I

σ(t)
s,r,q

2∆

d

=
∣∣∣⟨w(0)

s,r ,µj⟩
∣∣∣+ 2∆

d

∑
p ̸=j

∑
q∈Ip

σ(t)
s,r,q

∥ξq∥2

∥µp∥2
+
∑
q∈I

σ(t)
s,r,q


≤
√
d∥w(0)

s,r∥+
12∆ ln(t+ 1)k

d
≤ ϵ

6
.
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The first equation employs the weight decomposition in Lemma E.2; the second inequality expands
the inner product and applies the triangle inequality; the third inequality utilizes the properties from
Proposition D.6; the fourth equation utilizes Corollary E.4; the fifth inequality utilizes Property 1 and
Property 8 in the inductive hypotheses. ■

Lemma E.12. Assuming the inductive hypotheses hold before time step t, for all s ∈ {−1,+1}, r ∈
[m], i ∈ I , we have ∣∣∣⟨w(t)

s,r, ξi⟩ − σ
(t)
s,r,i

∣∣∣ ≤ ϵ

6
.

Proof of Lemma E.12. We bound the gap between the inner product ⟨w(t)
s,r, ξi⟩ and noise coefficient

σ
(t)
s,r,i as follows:∣∣∣⟨w(t)

s,r, ξi⟩ − σ
(t)
s,r,i

∣∣∣
=

∣∣∣∣∣∣
〈
w(0)

s,r +
∑
p∈J

λ(t)
s,r,pµp∥µp∥−2 +

∑
q∈I

σ(t)
s,r,qξq∥ξq∥−2, ξi

〉
− σ

(t)
s,r,i

∣∣∣∣∣∣
≤
∣∣∣⟨w(0)

s,r , ξi⟩
∣∣∣+ ∣∣∣⟨σ(t)

s,r,iξi∥ξi∥
−2, ξi⟩ − σ

(t)
s,r,i

∣∣∣+∑
p∈J

λ(t)
s,r,p∥µp∥−2 |⟨µp, ξi⟩|+

∑
q ̸=i

σ(t)
s,r,q∥ξq∥−2 |⟨ξq, ξi⟩|

≤
∣∣∣⟨w(0)

s,r , ξi⟩
∣∣∣+∑

p∈J

λ(t)
s,r,p

2∆

d
+
∑
q ̸=i

σ(t)
s,r,q

2∆

d

=
∣∣∣⟨w(0)

s,r ,µj⟩
∣∣∣+ 2∆

d

∑
p ̸=j

∑
q∈Ip

σ(t)
s,r,q

∥ξq∥2

∥µp∥2
+
∑
q∈I

σ(t)
s,r,q


≤
√
d∥w(0)

s,r∥+
12∆ ln(t+ 1)k

d
≤ ϵ

6
.

The first equation employs the weight decomposition in Lemma E.2; the second inequality expands
the inner product and applies the triangle inequality; the third inequality utilizes the properties from
Proposition D.6; the fourth equation utilizes Corollary E.4; the fifth inequality utilizes Property 1 and
Property 8 in the inductive hypotheses. ■

Lemma E.13. Assuming the inductive hypotheses hold before time step t, for all s ∈ {−1,+1}, r ∈
[m], i ∈ I , we have ∣∣∣⟨w(t)

s,r,xi⟩ − λ
(t)
s,r,c(i) − σ

(t)
s,r,i

∣∣∣ ≤ ϵ

3
.

Proof of Lemma E.13. Using the conclusion in Lemma E.11 and Lemma E.12 and triangle inequality,
we can directly obtain the conclusion in this lemma.∣∣∣⟨w(t)

s,r,xi⟩ − λ
(t)
s,r,c(i) − σ

(t)
s,r,i

∣∣∣ ≤ ∣∣∣⟨w(t)
s,r,µc(i)⟩ − λ

(t)
s,r,c(i)

∣∣∣+ ∣∣∣⟨w(t)
s,r, ξi⟩ − σ

(t)
s,r,i

∣∣∣ ≤ ϵ

3
.

■

Lemma E.14. Assuming the inductive hypotheses hold before time step t , for all i ∈ I , we have

|q(t)i − q̂
(t)
i | ≤ ϵ

Proof of Lemma E.14. Without loss of generality, we assume that i ∈ I+.
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Using Property 7 in the inductive hypotheses, we know that

|qi − q̂i| =
1

m

∣∣∣∣∣∣yifθ(t) (xi)−

∑
r∈[m]

λ
(t)
1,r,c(i) +

∑
r∈[m]

σ
(t)
1,r,i

∣∣∣∣∣∣
≤ 1

m

∑
r∈[m]

∣∣∣⟨w(t)
1,r,xi⟩+ b

(t)
1,r − λ

(t)
1,r,c(i) − σ

(t)
1,r,i

∣∣∣+ 1

m

∑
r∈[m]

ReLU
(
⟨w(t)

−1,r,xi⟩+ b
(t)
−1,r

)
≤ 1

m

∑
r∈[m]

∣∣∣⟨w(t)
1,r,xi⟩ − λ

(t)
1,r,c(i) − σ

(t)
1,r,i

∣∣∣
︸ ︷︷ ︸

L1

+
1

m

∑
r∈[m]

ReLU
(
⟨w(t)

−1,r,xi⟩
)

︸ ︷︷ ︸
L2

+
1

m

∑
r∈[m]

(
|b(t)−1,r|+ |b(t)1,r|

)
︸ ︷︷ ︸

L3

.

For L1 term, using the conclusion in Lemma E.13, we know that L1 ≤ ϵ

3
.

For L2 term, we consider each term in the summation by distinguishing between two scenarios..

Case(I): ⟨w(t)
−1,r,xi⟩ ≤ 0.

Then we know that ReLU
(
⟨w(t)

−1,r,xi⟩
)
= 0 <

ϵ

3
.

Case(II): ⟨w(t)
−1,r,xi⟩ ≥ 0.

Using the conclusion in Lemma E.13 and Corollary E.5, we know that

ReLU
(〈

w
(t)
−1,r,xi

〉)
= ⟨w(t)

−1,r,xi⟩ ≤ ⟨w(t)
−1,r,xi⟩ − λ

(t)
−1,r,c(i) − σ

(t)
−1,r,i ≤

ϵ

3
.

Combining Case (I) and (II) together, we know that L2 ≤ ϵ

3
.

For L3 term, using the conclusion in Lemma E.10, we know that L3 ≤ ϵ

3
.

Combining the above together, we know that

|q(t)i − q̂
(t)
i | ≤ ϵ.

■

Then, we can estimate the margin gap between two training data points using a simple triangle
inequality.

Corollary E.15. Assuming the inductive hypotheses hold before time step t, for all i, j ∈ I , we have∣∣∣∆(t)
q (i, j)− ∆̂(t)

q (i, j)
∣∣∣ ≤ 2ϵ.

Proof of Corollary E.15. By Lemma E.14 and triangle inequality, we have∣∣∣∆(t)
q (i, j)− ∆̂(t)

q (i, j)
∣∣∣ ≤ |q(t)i − q̂

(t)
i |+ |q(t)j − q̂

(t)
j | ≤ 2ϵ.

■

Then we will analyze update equations for ∆̂(t)
q (i, j).

By Lemma E.9, we know that∑
r∈[m]

(
λ
(t+1)
yi,r,c(i)

− λ
(t+1)
yj ,r,c(j)

)
=
∑
r∈[m]

(
λ
(t)
yi,r,c(i)

− λ
(t)
yj ,r,c(j)

)
− η

2n

 ∑
p∈Ic(i)

ℓ′(t)p ∥µc(i)∥2 −
∑

p∈Ic(j)

ℓ′(t)p ∥µc(j)∥2


∑
r∈[m]

(
σ
(t+1)
yi,r,i

− σ
(t+1)
yj ,r,j

)
=
∑
r∈[m]

(
σ
(t)
yi,r,i

− σ
(t)
yj ,r,j

)
− η

2n

(
ℓ
′(t)
i ∥ξi∥2 − ℓ

′(t)
j ∥ξj∥2

)
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Combining the above two equations together, we get the update equation for ∆̂(t)
q (i, j).

∆̂(t+1)
q (i, j) = ∆̂(t)

q (i, j)− η

2n

 ∑
p∈Ic(i)

ℓ′(t)p ∥µc(i)∥2 −
∑

p∈Ic(j)

ℓ′(t)p ∥µc(j)∥2 + ℓ
′(t)
i ∥ξi∥2 − ℓ

′(t)
j ∥ξj∥2


(17)

Lemma E.16 (Property 8). For s ∈ {−1,+1}, i ∈ Is, we have |λ(t)
−s,r,c(i)| ≤ ϵ, |σ−s,r,i| ≤ 2ϵ.

Proof of Lemma E.16. We prove that for j ∈ J+, |λ(t)
−1,r,j | ≤ ϵ for all r ∈ [m] and the proof of the

other part is similar.

We distinguish between two scenarios.

Case(I): For all i ∈ Ij , ⟨w(t)
−1,r,xi⟩+ b

(t)
−1,r < 0.

Then by Corollary E.3 and inductive hypothesis, we know that

|λ(t+1)
−1,r,j | = |λ(t)

−1,r,j | ≤ ϵ.

Case(II): There exists i ∈ Ij such that ⟨w(t)
−1,r,xi⟩+ b

(t)
−1,r ≥ 0.

By Lemma E.13, we know that

⟨w(t)
−1,r,xi⟩ − λ

(t)
−1,r,j − σ

(t)
−1,r,i ≤

ϵ

3
.

Then by Lemma E.10 and noting that ⟨w(t)
−1,r,xi⟩+ b

(t)
−1,r ≥ 0 and σ

(t)
−1,r,i ≤ 0, we have

λ
(t)
−1,r,j ≥ ⟨w(t)

−1,r,xi⟩ − σ
(t)
−1,r,i −

ϵ

3
≥ −b

(t)
−1,r −

ϵ

3
≥ −2ϵ

3
.

Then using the conclusion in Lemma E.3, we know that

|λ(t+1)
−1,r,j − λ

(t)
−1,r,j | ≤

ηd

nm

∑
i∈Ij

|ℓ′(t)i | ≤ ηd

m
≤ ϵ

3
.

Thus we have λ
(t+1)
−1,r,j ≥ −ϵ. Noting that λ(t+1)

−1,r,j ≤ 0, we have |λ(t+1)
−1,r,j | ≤ ϵ. Then by Corollary E.4,

we know that |σ(t)
s,r,i| ≤ 2|λ(t+1)

s,r,j | ≤ 2ϵ. ■

The lemmas we used for the inductive proof have all been proved, and now we can begin the main
part of our proof.

Property 2: We first prove that Property 2 as the following lemma.

Lemma E.17 (Property 2 of Lemma E.7). Assuming the inductive hypotheses hold before time step t
and c(i) = c(j), we have ∣∣∣∆̂(t+1)

q (i, j)
∣∣∣ ≤ 5ϵ.

Proof of Lemma E.17. Without loss of generality, we assume that q̂(t+1)
i ≥ q̂

(t+1)
j . We distinguish

between two scenarios., one is when
∣∣∣∆̂(t)

q (i, j)
∣∣∣ is relatively small and the other is when

∣∣∣∆̂(t)
q (i, j)

∣∣∣
is relatively large.

Case(I): ∆̂(t)
q (i, j) ≤ 4ϵ.

By equation (17), Lemma D.15 and η ≤ d−2, we know that∣∣∣∆̂(t+1)
q (i, j)− ∆̂(t)

q (i, j)
∣∣∣

=
η

2n

∣∣∣ℓ′(t)i ∥ξi∥2 − ℓ
′(t)
j ∥ξj∥2

∣∣∣ ≤ η

2n

(∣∣∣ℓ′(t)i ∥ξi∥2
∣∣∣+ ∣∣∣ℓ′(t)j ∥ξj∥2

∣∣∣) ≤ 2ηd

n
≤ ϵ

44



2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2025

So we have
∆̂(t+1)

q (i, j) ≤ 5ϵ.

Case(II) : ∆̂(t)
q (i, j) ≥ 4ϵ.

By Corollary E.15, we know that

∆(t)
q (i, j) ≥ ∆̂(t)

q (i, j)− 2ϵ ≥ 2ϵ.

By Lemma E.6, we know that

ℓ
′(t)
j

ℓ
′(t)
i

≥ e∆
(t)
q (i,j)/2 ≥ 1 + ∆(t)

q (i, j)/2 ≥ 1 + ϵ. (18)

By Equation (17) and c(i) = c(j), we know that

∆̂(t+1)
q (i, j)− ∆̂(t)

q (i, j)

=− η

2n

 ∑
p∈Ic(i)

ℓ′(t)p ∥µc(i)∥2 −
∑

p∈Ic(j)

ℓ′(t)p ∥µc(j)∥2 + ℓ
′(t)
i ∥ξi∥2 − ℓ

′(t)
j ∥ξj∥2


=− η

2n

(
ℓ
′(t)
i ∥ξi∥2 − ℓ

′(t)
j ∥ξj∥2

)

=− η

2n
∥ξj∥2ℓ′(t)i

 (1 + ϵ)−
ℓ
′(t)
j

ℓ
′(t)
i︸ ︷︷ ︸

<0, by inequality (18)

+
η

2n
ℓ
′(t)
i

(
(1 + ϵ)∥ξj∥2 − ∥ξi∥2

)

≤ 0 (19)

Furthermore, due to the inductive hypothesis,

∆̂(t+1)
q (i, j) ≤ ∆̂(t)

q (i, j) ≤ 5ϵ.

■

Property 5: Using the result in this lemma and Corollary E.15, we know that

∆(t+1)
q (i, j) ≤ 7ϵ.

Using the above inequality and Lemma E.6 and noting that ex ≤ 1 + 2x for small x we know that

ℓ
′(t+1)
j

ℓ
′(t+1)
i

≤ e∆
(t+1)
q (i,j) ≤ 1 + 2∆(t+1)

q (i, j) ≤ 1 + 14ϵ.

At this point, we have completed the inductive proofs for Property 2 and 5 in Lemma E.7.

Property 3, 4 and 6: Next, we consider the general case where the two training data points xi,xj

are not necessarily in the same cluster to prove Property 3 and 6 in Lemma E.7. This part of the proof
overlaps significantly with the previous one, with the main difference being the addition of an extra
term in the update equation of ∆̂(t)

q (i, j).

Lemma E.18 (Property 3). Assuming the inductive hypotheses hold before time step t, we have∣∣∣∆̂(t+1)
q (i, j)

∣∣∣ ≤ 63ϵ.

Proof of Lemma E.18. We distinguish between two scenarios, one is when
∣∣∣∆̂(t)

q (i, j)
∣∣∣ is relative

small and the other is when
∣∣∣∆̂(t)

q (i, j)
∣∣∣ is relative large.

Case(I): ∆̂(t)
q (i, j) ≤ 62ϵ.
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By equation (17), Lemma D.15 and η ≤ d−2, we know that∣∣∣∆̂(t+1)
q (i, j)− ∆̂(t)

q (i, j)
∣∣∣

=
η

2n

∣∣∣∣∣∣
∑

p∈Ic(i)

ℓ′(t)p ∥µc(i)∥2 −
∑

p∈Ic(j)

ℓ′(t)p ∥µc(j)∥2 + ℓ
′(t)
i ∥ξi∥2 − ℓ

′(t)
j ∥ξj∥2

∣∣∣∣∣∣
≤ η

2n

 ∑
p∈Ic(i)

ℓ′(t)p ∥µc(i)∥2 +
∑

p∈Ic(j)

ℓ′(t)p ∥µc(j)∥2 +
∣∣∣ℓ′(t)i ∥ξi∥2

∣∣∣+ ∣∣∣ℓ′(t)j ∥ξj∥2
∣∣∣


≤ η

2n

(
2nd

k
+

2nd

k
+ 2d+ 2d

)
≤ 5ηd

2k
≤ ϵ

So we have
∆̂(t+1)

q (i, j) ≤ 63ϵ.

Case(II): ∆̂(t)
q (i, j) ≥ 62ϵ.

By Lemma E.14, we know that

∆(t)
q (i, j) ≥ ∆̂(t)

q (i, j)− 2ϵ ≥ 60ϵ.

By Lemma E.6, we know that

ℓ
′(t)
j

ℓ
′(t)
i

≥ e∆
(t)
q (i,j)/2 ≥ 1 + ∆(t)

q (i, j)/2 ≥ 1 + 30ϵ. (20)

Furthermore, due to the inductive hypothesis, for any p ∈ Ic(i), q ∈ Ic(j), we know that

ℓ
′(t)
p

ℓ
′(t)
q

≤ (1 + 14ϵ)ℓ
′(t)
i

ℓ
′(t)
j /(1 + 14ϵ)

≤ (1 + 14ϵ)2

1 + 30ϵ
≤ 1

1 + ϵ
. (21)

By Equation 17 and c(i) = c(j), we know that

∆̂(t+1)
q (i, j)− ∆̂(t)

q (i, j)

=− η

2n

 ∑
p∈Ic(i)

ℓ′(t)p ∥µc(i)∥2 −
∑

p∈Ic(j)

ℓ′(t)p ∥µc(j)∥2 + ℓ
′(t)
i ∥ξi∥2 − ℓ

′(t)
j ∥ξj∥2


=− η

2n

(
ℓ
′(t)
i ∥ξi∥2 − ℓ

′(t)
j ∥ξj∥2

)
− η

2n

 ∑
p∈Ic(i)

ℓ′(t)p ∥µc(i)∥2 −
∑

p∈Ic(j)

ℓ′(t)p ∥µc(j)∥2


We analyze each of these two terms separately.

Similar to the proof of inequality (19),

− η

2n

(
ℓ
′(t)
i ∥ξi∥2 − ℓ

′(t)
j ∥ξj∥2

)

=− η

2n
∥ξj∥2ℓ′(t)i

(1 + 30ϵ)−
ℓ
′(t)
j

ℓ
′(t)
i︸ ︷︷ ︸

<0, by inequality (20)

+
η

2n
ℓ
′(t)
i

(
(1 + 30ϵ)∥ξj∥2 − ∥ξi∥2

)

≤ 0 (22)

By inequality (21) and Property 7 in Proposition D.6, we have∑
p∈Ic(i)

ℓ
′(t)
p ∥µc(i)∥2∑

q∈Ic(j)

ℓ
′(t)
q ∥µc(i)∥2

=

∑
p∈Ic(i)

ℓ
′(t)
p∑

q∈Ic(j)

ℓ
′(t)
q

≤ |Ii|
(1 + ϵ)|Ij |

≤ 1.
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Thus we know that

− η

2n

 ∑
p∈Ic(i)

ℓ′(t)p ∥µc(i)∥2 −
∑

p∈Ic(j)

ℓ′(t)p ∥µc(j)∥2
 ≤ 0. (23)

By combining (22) and (23) with the inductive hypothesis, we know that

∆̂(t+1)
q (i, j) ≤ ∆̂(t)

q (i, j) ≤ 63ϵ.

■

Using the result in this lemma and Corollary E.15, we know that

∆(t+1)
q (i, j) ≤ 65ϵ.

Using the above inequality and Lemma E.6 and noting that ex ≤ 1 + 2x for small x we know that

yjℓ
′(t+1)
j

yiℓ
′(t+1)
i

≤ e∆
(t+1)
q (i,j) ≤ 1 + 2∆(t+1)

q (i, j) ≤ 1 + 130ϵ.

Now, we have completed the inductive proofs for Property 2, 3, 4, 5 and 6 in Lemma E.7.

Property 1: To prove Property 1, we need to analyze the update equation for σ(t)
s,r,i. We first prove

that σ(t)
s,r,i’s are balanced as follows.

Lemma E.19. For all i1, i2 ∈ I, r1, r2 ∈ [m], we have

(1− 200ϵ)σ
(t)
yi2

,r2,i2
− 1

nd
≤ σ

(t)
yi1

,r1,i1
≤ (1 + 200ϵ)σ

(t)
yi2

,r2,i2
+

1

nd
.

Proof of Lemma E.19. We first prove the right-hand side of the inequality and the proof for the
left-hand side is similar. By Lemma E.9, for any t′ < t, we know that

σ
(t′+1)
yi1

,r1,i1
− σ

(t′)
yi1

,r1,i1

σ
(t′+1)
yi2

,r2,i2
− σ

(t′)
yi2

,r2,i2

=
yi1ℓ

′(t′)
i1

∥ξi1∥2

yi2ℓ
′(t′)
i2

∥ξi2∥2

≤ (1 + 130ϵ)

(√
d+ ln(d)√
d− ln(d)

)2

(Applying Property 1 in Proposition D.6)

≤ 1 + 200ϵ

That is to say
σ
(t′+1)
yi1

,r1,i1
− σ

(t′)
yi1

,r1,i1
≤ (1 + 200ϵ)

(
σ
(t′+1)
yi2

,r2,i2
− σ

(t′)
yi2

,r2,i2

)
.

Summing the above inequality from t′ = 1 to t′ = t− 1, we have

σ
(t)
yi1

,r1,i1
− σ

(1)
yi1

,r1,i1
≤ (1 + 200ϵ)

(
σ
(t)
yi2

,r2,i2
− σ

(1)
yi2

,r2,i2

)
.

Then, we can derive that

σ
(t)
yi1

,r1,i1
≤ (1 + 200ϵ)σ

(t)
yi2

,r2,i2
+ σ

(1)
yi1

,r1,i1

= (1 + 200ϵ)σ
(t)
yi2

,r2,i2
− η

nm
· ℓ′(t)i ∥ξi∥21

(
⟨w(t)

s,r,xi⟩+ b(t)s,r ≥ 0
)

≤ (1 + 200ϵ)σ
(t)
yi2

,r2,i2
+

2dη

nm

≤ (1 + 200ϵ)σ
(t)
yi2

,r2,i2
+

1

nd
.

Reusing the logic of the above proof, we know that

(1− 200ϵ)σ
(t)
yi2

,r2,i2
− 1

nd
≤ σ

(t)
yi1

,r1,i1
.

■
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Then, we estimate the margin q
(t)
i only using σ

(t)
s,r,i, which is presented as the following lemma.

Lemma E.20. For every i ∈ I, r0 ∈ [m], we have
n

2k
σ
(t)
yi,r0,i

− 2ϵ ≤ q
(t)
i ≤ 2n

k
σ
(t)
yi,r0,i

+ 2ϵ.

Proof of Lemma E.20. Without loss of generality, we assume that i ∈ I+.

We first prove the right-hand side of the inequality.

mq̂
(t)
i =

∑
r∈[m]

λ
(t)
1,r,c(i) +

∑
r∈[m]

σ
(t)
1,r,i

=
∑
r∈[m]

∑
p∈Ic(i)

∥ξi∥−2

∥µc(i)∥−2
σ
(t)
1,r,p +

∑
r∈[m]

σ
(t)
1,r,i

≤
∑
r∈[m]

∑
p∈Ic(i)

∥ξi∥−2

∥µc(i)∥−2

(
(1 + 200ϵ)σ

(t)
1,r0,i

+
1

nd

)
+
∑
r∈[m]

(
(1 + 200ϵ)σ

(t)
1,r0,i

+
1

nd

)

≤ 2mn

k
σ
(t)
1,r0,i

+
2m

kd

≤ 2mn

k
σ
(t)
1,r0,i

+mϵ.

Then, by Lemma E.14, we know that

q
(t)
i ≤ q̂

(t)
i + ϵ ≤ 2n

k
σ
(t)
1,r0,i

+ 2ϵ.

Reusing the argument of the above proof, we prove the left-hand side of the inequality.

mq̂
(t)
i =

∑
r∈[m]

λ
(t)
1,r,c(i) +

∑
r∈[m]

σ
(t)
1,r,i

=
∑
r∈[m]

∑
p∈Ic(i)

∥ξi∥−2

∥µc(i)∥−2
σ
(t)
1,r,p +

∑
r∈[m]

σ
(t)
1,r,i

≥
∑
r∈[m]

∑
p∈Ic(i)

∥ξi∥−2

∥µc(i)∥−2

(
(1− 200ϵ)σ

(t)
1,r0,i

− 1

nd

)
+
∑
r∈[m]

(
(1− 200ϵ)σ

(t)
1,r0,i

− 1

nd

)
≥ mn

2k
σ
(t)
1,r0,i

− m

2kd

≥ mn

2k
σ
(t)
1,r0,i

−mϵ.

Then by Lemma E.14, we know that

q
(t)
i ≥ q̂

(t)
i − ϵ ≥ n

2k
σ
(t)
1,r0,i

− 2ϵ.

■

Furthermore, we also need to estimate ℓ
′(t)
i using σ

(t)
s,r,i as the following lemma.

Lemma E.21. For every i ∈ I, r ∈ [m], we have

1

3
exp

(
−2n

k
σ
(t)
yi,r,i

)
≤ −yiℓ

′(t)
i ≤ 2 exp

(
− n

2k
σ
(t)
yi,r,i

)
.

Proof of Lemma E.21. Without loss of generality, we assume that i ∈ I+.

By Lemma E.20, we know that

−yiℓ
′(t)
i =

1

1 + exp
(
q
(t)
i

) ≥ 1

2 exp
(
q
(t)
i

) ≥ 1

2
exp

(
−2n

k
σ
(t)
1,r,i − 2ϵ

)
≥ 1

3
exp

(
−2n

k
σ
(t)
1,r,i

)
.
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−yiℓ
′(t)
i =

1

1 + exp
(
q
(t)
i

) ≤ 1

exp
(
q
(t)
i

) ≤ exp
(
− n

2k
σ
(t)
1,r,i + 2ϵ

)
≤ 2 exp

(
−2n

k
σ
(t)
1,r,i

)
.

■

Then, we can prove Property 1 based on the inductive hypothesis.

Without loss of generality, we assume that i ∈ I+.

We first prove the left-hand side of the inequality.

σ
(t+1)
1,r,i = σ

(t)
1,r,i −

η

nm
· ℓ′(t)i ∥ξi∥2

≤ σ
(t)
1,r,i +

2ηd

nm
exp

(
− n

2k
σ
(t)
1,r,i

)
(Applying Lemma E.21)

≤ 2k

n
ln(t+ 1) +

2ηd

nm

1

t+ 1
(Monotone with respect to σ

(t)
1,r,i)

≤ 2k

n
ln(t+ 2),

σ
(t+1)
−1,r,i ≤ 0 ≤ 2k

n
ln(t+ 2)(Corollary E.5).

Then we prove the right-hand side of the inequality.

σ
(t+1)
1,r,i = σ

(t)
1,r,i −

η

nm
· ℓ′(t)i ∥ξi∥2

≥ σ
(t)
1,r,i +

ηd

3nm
exp

(
−2n

k
σ
(t)
1,j,i

)
(Applying Lemma E.21)

≥ k

2n
(ln(t) + ln(η)) +

d

3nm

1

t
(Monotonic with respect to σ

(t)
1,r,i)

≥ k

2n
(ln ((t+ 1)) + ln(η))

=
k

2n
ln((t+ 1)η).

Finally, we prove Property 7. The proof is very similar to the proof of Lemma E.1. We show that
⟨w(t+1)

1,r ,xi⟩ + b
(t+1)
1,r ≥ 0 for all i ∈ I+. By the inductive hypothesis, we know that ⟨w(t)

1,r,xi⟩ +
b
(t)
1,r ≥ 0.

⟨w(t+1)
1,r ,xi⟩+ b

(t+1)
1,r =⟨w(t)

1,r,xi⟩+ b
(t)
1,r − η

(
⟨∇w1,r

L(θ(t)),xi⟩+∇b1,rL(θ(t))
)

≥− η
(〈

∇w1,r
L(θ(t)),xi

〉
+∇b1,rL(θ(t))

)
.

Denote ℓ′(t) := ℓ
′(t)
1 . By Property (6) in inductive hypotheses, we know that for all i ∈ I

1

1 + 130ϵ
ℓ
′(t)
i ≤ ℓ′(t) ≤ (1 + 130ϵ)ℓ

′(t)
i

We examine the update of linear term first.

−⟨∇w1,rL(θ(t)),xi⟩ =− ⟨
∑
p∈I+

ℓ′(t)p xp,xi⟩

≥ −
∑

p∈Ic(i)

ℓ′(t)p ⟨xp,xi⟩+
∑

p/∈Ic(i)

ℓ′(t)p |⟨xp,xi⟩|

≥ − d

2

∑
p∈Ic(i)

ℓ′(t)p +∆
∑

p/∈Ic(i)

ℓ′(t)p

≥− dnℓ′(t)

4k
+ 2n∆ℓ′(t)

≥− n∆ℓ′(t).

(24)
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Then we examine the update of bias term.

−∇b1,rL(θ(t)) = −
∑
p∈I

ℓ′(t)p 1

(
⟨w(t)

1,r,xi⟩+ b
(t)
1,r ≥ 0

)
≥ nℓ′(t). (25)

Combining (24) and (25) together, we know that

⟨w(t+1)
1,r ,xi⟩+ b

(t+1)
1,r ≥ 0

Thus we know that S(t+1)
1,i = [m].

For the case when xi belongs to the negative class, we can obtain S
(t+1)
−1,i = [m] using the same

argument. Now, we have completed the proof of Lemma E.7. □

E.2 PROOF OF THEOREM 4.5

Now, we start to prove the main result Theorem 4.5.
Theorem E.22 (Restatement of Theorem 4.5). In the setting of training a two-layer ReLU network on
the binary classification problem D({µj}kj=1, J±) as described in Section 3, under Assumptions 3.2,
3.3 and 4.3, for some γ = o(1), after Ω(η−1) ≤ T ≤ exp(Õ(k1/2)) iterations, with probability at
least 1− γ, the neural network satisfies the following properties:

1. The clean accuracy is nearly perfect: AccDclean(fθ(T )) ≥ 1− exp(−Ω(log2 d)).

2. Gradient descent leads the network to the feature-averaging regime: there exists a time-
variant coefficient λ(T ) ∈ [Ω(1),+∞) such that for all s ∈ {±1}, r ∈ [m], the weight
vector w(T )

s,r can be approximated as∥∥∥∥w(T )
s,r − λ(T )

∑
j∈Js

∥µj∥−2µj

∥∥∥∥ ≤ o(d−1/2),

and the bias term keeps sufficiently small, i.e.,
∣∣∣b(T )

s,r

∣∣∣ ≤ o(1).

3. Consequently, the network is non-robust: for perturbation radius δ = Ω(
√

d/k), the
δ-robust accuracy is nearly zero, i.e., AccDrobust(fθ(T ) ; δ) ≤ exp(−Ω(log2 d)).

Proof of Theorem E.22. We first prove that gradient descent leads the network to the feature-
averaging regime (Property 2).

Lemma E.23. For all s ∈ {−1,+1}, j ∈ Js, r ∈ [m], we have
ln(Tη)

4
≤ λ

(T )
s,r,j ≤ 4 ln(T + 1).

Proof of Lemma E.23. Without loss of generality, we assume that s = 1.

Using Property 1 in Lemma E.7 and Corollary E.4, we know that

λ
(T )
1,r,j =

∑
p∈Ij

∥ξp∥2

∥µj∥2
σ
(T )
1,r,p ≥ n

2k
σ
(T )
1,r,1 ≥ ln(Tη)

4

λ
(T )
1,r,j =

∑
p∈Ij

∥ξp∥2

∥µj∥2
σ
(T )
1,r,p ≤ 2n

k
σ
(T )
1,r,1 ≤ 4 ln(T + 1)

■

Lemma E.24. For r1, r2 ∈ [m], s1, s2 ∈ {−1,+1}, j1 ∈ Js1 , j2 ∈ Js2 , we have

λ
(T )
s1,r1,j1

λ
(T )
s2,r2,j2

≤ 1 + 204ϵ.
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Proof. By Lemma E.19, we know that for any i1, i2 ∈ I

σ
(t)
yi1

,r1,i1
≤ (1 + 200ϵ)σ

(t)
yi2

,r2,i2
+ (nd)−1 ≤ (1 + 201ϵ)σ

(t)
yi1

,r2,i2
.

λ
(T )
s1,r1,j1

λ
(T )
s2,r2,j2

=

∑
p∈Ij1

∥ξp∥2σ(t)
s1,r1,p∑

p∈Ij2

∥ξp∥2σ(t)
s2,r2,p

≤ (1 + 201ϵ)
∥
√
d+ ln(d)∥2

∥
√
d− ln(d)∥2

|Ij1 |
|Ij2 |

≤ (1 + 201ϵ)(1 + ϵ)(1 + ϵ)

≤ 1 + 204ϵ.

■

We denote λ(T ) = λ
(T )
1,1,j0

for some j0 ∈ J+ as the representative of {λs,r,j : s ∈ {−1,+1}, r ∈
[m], j ∈ Js}.

By Lemma E.23 and Lemma E.24 ,for all s ∈ {−1,+1}, r ∈ [m], j ∈ Js, we have

|λ(T ) − λ
(T )
s,r,j | ≤ 204ϵλ(T ),

λ(T ) ≤ 4 ln(T + 1),

λ(T ) ≥ ln(Tη)

4
= Ω(1).

Lemma E.25. For all s ∈ {−1,+1}, r ∈ [m], We have

√
d

∥∥∥∥∥∥w(T )
s,r − λ(T )

∑
j∈Js

µj∥µj∥−2

∥∥∥∥∥∥ = o(1).

Proof of Lemma E.25. Recall the weight decomposition in Lemma E.2.

√
d

w(T )
s,r − λ(T )

∑
j∈Js

µj∥µj∥−2

 =
√
dw(0)

s,r︸ ︷︷ ︸
L1

+
√
d
∑
j∈Js

(
λ
(T )
s,r,j − λ(T )

)
µj∥µj∥−2

︸ ︷︷ ︸
L2

+
√
d
∑

j∈J−s

λ
(T )
s,r,jµj∥µj∥−2

︸ ︷︷ ︸
L3

+
√
d
∑
i∈I

σ
(T )
s,r,iξi∥ξi∥

−2

︸ ︷︷ ︸
L4

For L1 term, using the conclusion in Lemma D.10, we know that

∥
√
dw(0)

s,r∥ ≤ 2dσw ≤ ϵ = o(1)

For L2 term, using the conclusion in Lemma E.23, Lemma E.24 and noting that µj are pairwise
orthogonal, we know that∥∥∥∥∥∥√d

∑
j∈J

(
λ
(T )
s,r,j − λ(T )

)
µj∥µj∥−2

∥∥∥∥∥∥ =

√∑
j∈Js

(
λ
(T )
s,r,j − λ(T )

)2
≤
√∑

j∈Js

(204ϵ)2
(
λ(T )

)2
≤ 204ϵ

√
kλ(T )

≤ 816ϵ
√
k ln(T + 1)

≤ 900kϵ = o(1).
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For L3 term, by Lemma E.16 and triangle inequality, we know that∥∥∥∥∥∥√d
∑

j∈J−s

λ
(T )
s,r,jµj∥µj∥−2

∥∥∥∥∥∥ ≤ kϵ = o(1).

For L4 term, by Property (1) in Lemma E.7, we have∥∥∥∥∥√d
∑
i∈I

σ
(T )
s,r,iξi∥ξi∥

−2

∥∥∥∥∥
2

= d
∑
i∈I

(
σ
(T )
s,r,i

)2
∥ξi∥−2 + d

∑
i1 ̸=i2

σ
(T )
s,r,i1

σ
(T )
s,r,i2

⟨ξi1 , ξi2⟩∥ξi∥−4

≤ 2
∑
i∈I

(
σ
(T )
s,r,i1

)2
+

2∆

d

∑
i1 ̸=i2

σ
(T )
s,r,i1

σ
(T )
s,r,i2

≤ 8k2 ln2(T + 1)

n
+

8k2 ln2(T + 1)∆

d

≤ 8k3

n
+

8k3∆

d
≤ 16kϵ = o(1).

Combining the above together, we know that

√
d

∥∥∥∥∥∥w(T )
s,r − λ(T )

∑
j∈Js

µj∥µj∥−2

∥∥∥∥∥∥ = o(1).

■

By Lemma E.10, we know that |b(T )
s,r | ≤ ϵ.

Then, we prove that the clean accuracy is nearly perfect (Property 1). We first need to prove the
following lemma, which shows that the correlation between network weight and random noise is
small.

Lemma E.26. Let ξ ∼ N (0, Id). Then, with probability at least 1 − 2nd− ln(d)/2, for all s ∈
{−1,+1}, r ∈ [m] we have

|⟨w(t)
s,r, ξ⟩| ≤

ϵ

6
.

Proof of Lemma E.26. Reusing the argument of proof of Property (3) and (4) in Proposition D.6. We
know that with probability at least 1− 2nd− ln(d)/2, for all i ∈ I, j ∈ J ,

|⟨µj , ξ⟩| ≤ ∆, |⟨ξi, ξ⟩| ≤ ∆.

The remaining part of the proof is similar to the proof of Lemma E.11 and Lemma E.12.

∣∣∣⟨w(t)
s,r, ξ⟩

∣∣∣ =
∣∣∣∣∣∣
〈
w(0)

s,r +
∑
p∈J

λ(t)
s,r,pµp∥µp∥−2 +

∑
q∈I

σ(t)
s,r,qξq∥ξq∥−2, ξ

〉∣∣∣∣∣∣
≤
∣∣∣⟨w(0)

s,r ,µj⟩
∣∣∣+∑

p∈J

λ(t)
s,r,p∥µp∥−2 |⟨µp,µj⟩|+

∑
q∈I

σ(t)
s,r,q∥ξq∥−2 |⟨ξq,µj⟩|

≤
∣∣∣⟨w(0)

s,r ,µj⟩
∣∣∣+ 2∆

d

∑
p∈J

λ(t)
s,r,p +

∑
q∈I

σ(t)
s,r,q

 ≤ ϵ

6
.

■

Assume (x, y) is randomly sampled from the data distribution D. Without loss of generality, we
assume that x = µj + ξ, y = 1. Using the conclusion in Lemma E.11, Lemma E.26 and Lemma
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E.10, we know that

⟨w(T )
1,r ,x⟩+ b

(T )
1,r = ⟨w(T )

1,r ,µj⟩+ ⟨w(T )
1,r , ξ⟩+ b

(T )
1,r

≥ λ
(T )
1,r,j −

ϵ

6
− ϵ

6
− ϵ

3

≥ λ
(T )
1,r,j − ϵ.

⟨w(T )
−1,r,x⟩+ b

(T )
1,r = ⟨w(T )

−1,r,µj⟩+ ⟨w(T )
−1,r, ξ⟩+ b

(T )
−1,r

≤ λ
(T )
−1,r,j +

ϵ

6
+

ϵ

6
+

ϵ

3

≤ λ
(T )
−1,r,j + ϵ

≤ ϵ.

Then, we have

fθ(T )(x) =
1

m

∑
r∈[m]

ReLU
(
⟨w(T )

1,r ,x⟩+ b
(T )
1,r

)
− 1

m

∑
r∈[m]

ReLU
(
⟨w(T )

−1,r,x⟩+ b
(T )
−1,r

)
≥ 1

m

∑
r∈[m]

(
λ
(T )
1,r,j − ϵ

)
− 1

m

∑
r∈[m]

ϵ

=
1

m

∑
r∈[m]

λ
(T )
1,r,j − 2ϵ ≥ 0.

Thus fθ(T ) has perfect standard accuracy.

Finally, we prove that the network is non-robust (Property 3).

We consider the following perturbation

ρ = −2(1 + c)

k

∑
j∈J+

µj −
∑
j∈J−

µj

 ,

where c is a constant such that c−1 ≤ |J+|/|J−| ≤ c. This is to say |J+|, |J−| ≥
k

1 + c
.

Then, we have

⟨w(T )
1,r ,x+ ρ⟩+ b

(T )
1,r

≤⟨w(T )
1,r ,µj0⟩+ ⟨w(T )

1,r , ξ⟩ −
2(1 + c)

k

∑
j∈J+

⟨w(T )
1,r ,µj⟩+

2(1 + c)

k

∑
j∈J−

⟨w(T )
1,r ,µj⟩+

ϵ

3

≤λ
(T )
1,r,j0

+
ϵ

6
+

ϵ

6
− 2(1 + c)

k

∑
j∈J+

(
λ
(T )
1,r,j −

ϵ

6

)
+

2(1 + c)

k

∑
j∈J−

(
λ
(T )
1,r,j +

ϵ

6

)
+

ϵ

3

≤λ
(T )
1,r,j0

− 2(1 + c)

k

∑
j∈J+

λ
(T )
1,r,j +

(3 + c)ϵ

3

≤λ
(T )
1,r,j0

− 2(1 + c)

k

∑
j∈J+

3

4
λ
(T )
1,r,j0

+
(3 + c)ϵ

3

≤λ
(T )
1,r,j0

(
1− 3(1 + c)|J+|

2k

)
+

(3 + c)ϵ

3

≤− 1

2
λ
(T )
1,r,j0

+
(3 + c)ϵ

3
< 0.

The first equation expands x and ρ and uses the conclusion in Lemma E.10; the second inequality
uses the conclusion in Lemma E.11 and Lemma E.26; the third inequality rearranges the terms and
uses the conclusion in Corollary E.5; the fourth inequality uses conclusion in Theorem 4.5.

53



2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915

Under review as a conference paper at ICLR 2025

Reusing the logic of the above inequality, we have

⟨w(T )
−1,r,x+ ρ⟩+ b

(T )
−1,r

≥⟨w(T )
−1,r,µj0⟩+ ⟨w(T )

−1,r, ξ⟩ −
2(1 + c)

k

∑
j∈J+

⟨w(T )
−1,r,µj⟩+

2(1 + c)

k

∑
j∈J−

⟨w(T )
−1,r,µj⟩ −

ϵ

3

≥λ
(T )
−1,r,j0

− ϵ

6
− ϵ

6
− 2(1 + c)

k

∑
j∈J+

(
λ
(T )
−1,r,j +

ϵ

6

)
+

2(1 + c)

k

∑
j∈J−

(
λ
(T )
−1,r,j −

ϵ

6

)
− ϵ

3

≥λ
(T )
−1,r,j0

+
2(1 + c)

k

∑
j∈J−

λ
(T )
−1,r,j −

(3 + c)ϵ

3

≥2(1 + c)

k

∑
j∈J−

λ
(T )
−1,r,j −

(6 + c)ϵ

3

≥2(1 + c)|J−|
k

− (6 + c)ϵ

3
≥ 0.

By combining the two inequalities above, we can obtain that

fθ(T )(x+ρ) =
1

m

∑
r∈[m]

ReLU
(
⟨w(T )

1,r ,x+ ρ⟩+ b
(T )
1,r

)
− 1

m

∑
r∈[m]

ReLU
(
⟨w(T )

−1,r,x+ ρ⟩+ b
(T )
−1,r

)
< 0.

This is to say sgn(fθ(T )(x+ρ)) ̸= sgn(fθ(T )(x)), which means AccDrobust(fθ(T ) ; 2(1+c)
√

d/k) =
o(1). □

E.3 PROOF OF THEOREM 4.6

Theorem E.27 (Restatement of Theorem 4.6). In the setting of Theorem 4.5,

inf
C>0

sup
x∈Rd:∥x∥2=

√
d

|CfFA(x)− fθ(T )(x)| = o(1),

where fFA(x) is the feature-averaging network (Definition 4.1).

Proof of Theorem E.27. By Lemma E.25, we have

∣∣∣∣∣∣ReLU
(
⟨w(T )

s,r ,x⟩
)
− ReLU

〈λ(T )
∑
j∈Js

µj∥µj∥−2,x

〉∣∣∣∣∣∣
≤

∣∣∣∣∣∣⟨w(T )
s,r ,x⟩ − ⟨λ(T )

∑
j∈Js

µj∥µj∥−2,x⟩

∣∣∣∣∣∣
≤∥x∥

∥∥∥∥∥∥w(T )
s,r − λ(T )

∑
j∈Js

µj∥µj∥−2

∥∥∥∥∥∥ = o(1).
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Thus we have∣∣∣∣∣∣ 1m
∑
r∈[m]

ReLU
(
⟨w(T )

1,r ,x⟩+ b
(T )
1,r

)
− ReLU

〈λ(T )
∑
j∈J+

µj∥µj∥−2,x

〉∣∣∣∣∣∣
=

∣∣∣∣∣∣ 1m
∑
r∈[m]

ReLU
(
⟨w(T )

1,r ,x⟩
)
− 1

m

∑
r∈[m]

ReLU

〈λ(T )
∑
j∈J+

µj∥µj∥−2,x

〉∣∣∣∣∣∣+ 1

m

∑
r∈[m]

|b(T )
1,r |

≤ 1

m

∑
r∈[m]

∣∣∣∣∣∣⟨w(T )
1,r ,x⟩ − ⟨λ(T )

∑
j∈J+

µj∥µj∥−2,x⟩

∣∣∣∣∣∣+ ϵ

≤ 1

m

∑
r∈[m]

∥x∥

∥∥∥∥∥∥w(T )
1,r − λ(T )

∑
j∈J+

µj∥µj∥−2

∥∥∥∥∥∥+ ϵ = o(1).

Similarly, we have∣∣∣∣∣∣ 1m
∑
r∈[m]

ReLU
(
⟨w(T )

−1,r,x⟩+ b
(T )
−1,r

)
− ReLU

〈λ(T )
∑
j∈J−

µj∥µj∥−2,x

〉∣∣∣∣∣∣ = o(1)

Combining these two inequalities together, we have

sup
x∈Rd:∥x∥2=

√
d

∣∣∣∣λ(T )

d
fFA(x)− fθ(T )(x)

∣∣∣∣ = o(1).

□
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F PROOF FOR SECTION 4: FEATURE-DECOUPLING REGIME

First, we recall the fine-Grained supervision, multi-Class network classifier and training algorithm.

Fine-Grained Supervision. Following the setting in Section 3, we consider the binary classification
task with data distribution D({µj}kj=1, J±). But instead of training the model directly to predict the
binary labels, we assume that we are able to label each data point with the cluster ŷ ∈ [k] it belongs
to, and then we train a k-class classifier to predict the cluster labels. More specifically, we first sample
a training set S := {(xi, yi)}ni=1 ⊆ Rd × {±1} from D, along with the cluster labels {ỹi}ni=1 for all
data points. Then a k-class neural network classifier is trained on S̃ := {(xi, ỹi)}ni=1 ⊆ Rd × [k].

Multi-Class Network Classifier. We train the following two-layer neural network for the k-class
classification mentioned above: Fθ(x) := (f1(x), f2(x), . . . , fk(x)) ∈ Rk, where fj(x) :=
1
m

∑h
r=1 ReLU(⟨wj,r,x⟩), and θ := (w1,1,w1,2, . . . ,wk,h) ∈ Rkhd are trainable weights, and

h = Θ(1) is the width of each sub-network. The outputs Fθ(x) are then converted to probabilities
using the softmax function, namely pj(x) :=

exp(fj(x))∑k
i=1 exp(fi(x))

for j ∈ [k]. For predicting the binary
label for the original binary classification task on D, we take the difference of the probabilities of the
positive and negative classes, i.e., F binary

θ (x) :=
∑

j∈J+
pj(x)−

∑
j∈J−

pj(x). The clean accuracy

AccDclean(F
binary
θ ) and δ-robust accuracy AccDrobust(F

binary
θ ; δ) are then defined similarly as before.

Training Objective and Gradient Descent. We train the multi-class network Fθ(x) to minimize the
cross-entropy loss LCE(θ) := − 1

n

∑n
i=1 log pỹi

(xi). Similar to Section 3, we use gradient descent
to minimize the loss function LCE(θ) with learning rate η, i.e., θ(t+1) = θ(t) − η∇θLCE(Fθ(t)). At
initialization, we set w(0)

j,r ∼ N (0, σ2
wId) for some σw > 0.

Denote ℓ
′(t)
i,j := ∇fj(xi)LCE(F

(t)) = −1(xi ∈ Ij) +
exp(f

(t)
j (xi))∑

p∈J

exp(f
(t)
p (xi))

.

Since many of the proofs in this section are very similar to those in Appendix E, we reuse the logic of
the proofs and present the key steps.

We also assume that the properties of the training dataset(Proposition D.6) in Appendix D hold.

F.1 PROPOSITIONS OF NETWORK INITIALIZATION

Proposition F.1. With probability at least 1 − 4hmd− ln(d) − 2h−3m−3 , we have the following
properties for our network initialization:

• For any r ∈ [m], we have σw

(√
d− 2 ln(d)

)
≤ ∥w(0)

s,r∥ ≤ σw

(√
d+ 2 ln(d)

)
.

The proof of Proposition F.1 is the same as the proof of D.10.

Definition F.2 (Activation Region over Data Input). Let Ts,r,j := {i ∈ Ij : ⟨w(0)
s,r ,xi⟩+ b

(0)
s,r ≥ 0}

be the set of indices of training data points in the j-th cluster which can activate the neuron with
weight ws,r at time step 0.

Then, we give the following result about the activation region Ts,r,j .
Proposition F.3. Assuming Proposition D.6 and Proposition D.10 holds. Then with probability at
least 1− (hk)−0.01 − 2hk2 exp

(
− n

9k3h2

)
, for all r ∈ [h], s, j ∈ J , we have

|Ts,r,j | ≥
n

3k3h2
.

The proof of this lemma is the same as the proof of Proposition D.12.
Lemma F.4. Assuming Proposition F.1 holds, for all i ∈ I, s ∈ J , we have

−1(xi ∈ Is) +
1

2k
≤ ℓ

′(0)
i,s ≤ −1(xi ∈ Is) +

2

k
.

56



3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077

Under review as a conference paper at ICLR 2025

Proof of Lemma F.4. By Proposition F.1 and Property 2 in D.6, for every s ∈ J , we have∣∣∣f (0)
s (xi)

∣∣∣ ≤ 1

h

∑
r∈[h]

∣∣∣⟨w(0)
s,r ,xi⟩

∣∣∣ ≤ 1

h

∑
r∈[h]

|w(0)
s,r | |xi| ≤ 4σwd ≤ ln(2).

Thus 1 ≤ exp(fs(xi)) ≤ 2. Then we have

1

2k
≤ exp(f

(0)
s (xi))∑

p∈J

exp(f
(0)
p (xi))

≤ 2

k
.

−1(xi ∈ Is) +
1

2k
≤ ℓ

′(0)
i,s = −1(xi ∈ Is) +

exp(f
(0)
s (xi))∑

p∈J

exp(f
(0)
p (xi))

≤ −1(xi ∈ Is) +
2

k
.

□

F.2 ANALYSIS OF TRAINING DYNAMICS

Denote S
(t)
i,s := {r ∈ [h] : ⟨w(t)

s,r,xi⟩ ≥ 0} for i ∈ I, s ∈ J .

Lemma F.5. For every i ∈ I , we have S
(1)
i,c(i) = [h].

Proof of Lemma F.5. This proof is similar to the proof of Lemma E.1.

For every i ∈ I, r ∈ [h], we have

⟨w(1)
c(i),r,xi⟩

=⟨w(0)
c(i),r,xi⟩ − η⟨∇wc(i),r

L(θ(0)),xi⟩

We examine the update term ⟨∇wc(i),r
L(θ(0)),xi⟩.

− hn⟨∇wc(i),r
L(θ(0)),xi⟩

=− hn⟨
∑

j∈Ic(i)

ℓ
′(0)
j,c(i)1

(
⟨w(0)

c(i),r,xj⟩ ≥ 0⟩
)
xj +

∑
j /∈Ic(i)

ℓ
′(0)
j,c(i)1

(
⟨w(0)

c(i),r,xj⟩ ≥ 0⟩
)
⟨xj ,xi⟩

≥ − hn
∑

j∈Ic(i)

ℓ
′(0)
j,c(i)1

(
⟨w(0)

c(i),r,xj⟩ ≥ 0⟩
)
⟨xj ,xi⟩ −

∑
j /∈Ic(i)

ℓ
′(0)
j,c(i)1

(
⟨w(0)

c(i),r,xj⟩ ≥ 0⟩
)
|⟨xj ,xi⟩|

By Lemma F.4 and Lemma F.3, we know that

−
∑

j∈Ic(i)

ℓ
′(0)
j,c(i)1

(
⟨w(0)

c(i),r,xj⟩ ≥ 0⟩
)
⟨xj ,xi⟩ ≥ (1− 2

k
)
d

2
|Tc(i),r,c(i)| ≥

dn

12k3h2
.

−
∑

j /∈Ic(i)

ℓ
′(0)
j,c(i)1

(
⟨w(0)

c(i),r,xj⟩ ≥ 0⟩
)
|⟨xj ,xi⟩| ≥ −2n∆

k
.

Combining the two inequalities above, we have

⟨w(1)
c(i),r,xi⟩ ≥ ⟨w(0)

c(i),r,xi⟩+
η

h

(
d

12k3h2
− 2∆

k

)
≥ −2σwd+

η∆

h
≥ 0.

Therefore, we have S
(1)
i,c(i) = [h] for every i ∈ I .

□
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Recall the definition of weight decomposition we will use in multi-classification tasks.
Lemma F.6 (Weight Decomposition). During the training dynamics, there exists the following
coefficient sequences λ(t)

s,r,j and σ
(t)
s,r,i for each neuron s, j ∈ J, r ∈ [h] such that

w(t)
s,r = w(0)

s,r +
∑
j∈J

λ
(t)
s,r,jµj∥µj∥−2 +

∑
i∈I

σ
(t)
s,r,iξi∥ξi∥

−2.

Corollary F.7. The coefficient sequencesλ(t)
r,j and σ

(t)
i,j for each pair i ∈ I, r, j ∈ J defined in Lemma

F.6 satisfy:
λ
(t)
s,r,j∥µj∥−2 =

∑
i∈Ij

σ
(t)
s.r,i∥ξi∥

−2.

Corollary F.8. For all i ∈ I, r, j ∈ J , we have the following update equation for λs,r,j and σs,r,i.

λ
(t+1)
s,r,j = λ

(t)
s,r,j −

η

nh

∑
p∈Ij

ℓ′(t)p,s ∥µj∥21
(
⟨w(t)

s,r,xp⟩ ≥ 0
)
,

σ
(t+1)
s,r,i = σ

(t)
s,r,i −

η

nh
ℓ
′(t)
i,s ∥ξi∥

2
1

(
⟨w(t)

s,r,xi⟩ ≥ 0
)
,

λ
(0)
s,r,j = 0, σ

(0)
s,r,i = 0.

Corollary F.9. The coefficient sequences λ
(t)
s,r,j and σ

(t)
s,r,i for each pair s, j ∈ J, i ∈ I, r ∈ [h]

defined in Lemma F.6 satisfy:

λ
(t)
s,r,j ≥ 0 iff s = j,

σ
(t)
s,r,i ≥ 0 iff s = c(i).

Then we reuse the logic of the proof of Lemma E.7 to prove the main result in our multi-classification
setting.

Denote q
(t)
i = f

(t)
c(i)(xi), q̂

(t)
i =

1

h

∑
r∈[h]

(
λ
(t)
c(i),r,c(i) + σ

(t)
c(i),r,i

)
.

∆
(t)
q (i, j) = q

(t)
i − q

(t)
j ,

∆̂
(t)
q (i, j) = q̂

(t)
i − q̂

(t)
j =

1

h

∑
r∈[h]

(
λ
(t)
c(i),r,c(i) − λ

(t)
c(j),r,c(j) + σ

(t)
c(i),r,i − σ

(t)
c(j),r,j

)
.

Denote ϵ = max

{
2 ln(nk )√
n
k − ln(nk )

,
k2∆

d
,
k2

n

}
. We know that ϵ = o(k−2.5) according to our hyper-

parameter Assumption D.4.

Lemma F.10. For t ≤ T0 = exp(Õ(k0.5), i, j ∈ I, r ∈ [h], we have

1.
k

2n
ln(tη) ≤ σc(i),r,i ≤

2k

n
ln(t+ 1)

2. ∆̂
(t)
q (i, j) ≤ 5kϵ when c(i) = c(j),

3. ∆̂
(t)
q (i, j) ≤ 32k2ϵ,

4. ∆
(t)
q (i, j) ≤ 33k2ϵ,

5. ℓ
′(t)
i,c(i)/ℓ

′(t)
j,c(j) ≤ 1 + 14kϵ when c(i) = c(j),

6. ℓ
′(t)
i,c(i)/ℓ

′(t)
j,c(j) ≤ 1 + 67k2ϵ,

7. S
(1)
i,c(i) = [h],
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8.
∣∣∣λ(t)

s,r,c(i)

∣∣∣ ≤ ϵ,
∣∣∣σ(t)

s,r,c(i)

∣∣∣ ≤ 2ϵ for s ∈ J, s ̸= c(i).

Proof of Lemma F.10. Since the proof of this lemma follows exactly the same logic as Lemma E.7,
we omit some details and only outlined the necessary lemmas and the key steps of the proof.

First, the base case of the induction is simple, so we only consider the inductive step.

Lemma F.11. Assuming the inductive hypotheses hold before time step t, for all r ∈ [h], s, j ∈ J ,
we have ∣∣∣⟨w(t)

s,r,µj⟩ − λ
(t)
s,r,j

∣∣∣ ≤ ϵ

6
.

Lemma F.12. Assuming the inductive hypotheses hold before time step t, for all r ∈ [h], s, j ∈ J ,
we have ∣∣∣⟨w(t)

s,r, ξi⟩ − σ
(t)
s,r,i

∣∣∣ ≤ ϵ

6
.

Lemma F.13. Assuming the inductive hypotheses hold before time step t, for all r ∈ [h], s, j ∈ J ,
we have ∣∣∣⟨w(t)

s,r,xi⟩ − λ
(t)
s,r,c(i) − σ

(t)
s,r,i

∣∣∣ ≤ ϵ

3
.

Lemma F.14. Assuming the inductive hypotheses hold before time step t, for all i ∈ I , we have

|q(t)i − q̂
(t)
i | ≤ ϵ

The proofs of these three lemmas are identical to the proofs of Lemma E.11, Lemma E.12,
Lemma E.13 and Lemma E.14 in Appendix Appendix E, except that in the previous proof, there was
an additional subscript s used to indicate 2-classification label, whereas here it is used to represent a
fine-grained k-classification label.

Corollary F.15. Assuming the inductive hypotheses hold before time step t, for all i, j ∈ I , we have∣∣∣∆(t)
q (i, j)− ∆̂(t)

q (i, j)
∣∣∣ ≤ 2ϵ.

Next, we present the key steps of the auto-balance process for ∆̂q(i, j).

Lemma F.16 (Property 8). Assuming the inductive hypotheses hold before time step t, for i ∈ I, s ∈
J, s ̸= c(i), r ∈ [m], we have |λ(t)

s,r,c(i)| ≤ ϵ, |σ(t)
s,r,i| ≤ 2ϵ.

Proof of Lemma F.16. We distinguish between two scenarios.

Case(I): For all i ∈ Ij , ⟨w(t)
s,r,xi⟩ < 0.

Then by Corollary F.8 and inductive hypothesis, we know that

|λ(t+1)
s,r,j | = |λ(t)

s,r,j | ≤ ϵ.

Case(II): There exists i ∈ Ij such that ⟨w(t)
s,r,xi⟩ ≥ 0.

By Lemma F.13, we know that

⟨w(t)
s,r,xi⟩ − λ

(t)
s,r,j − σ

(t)
s,r,i ≤

ϵ

3
.

Then noting that ⟨w(t)
s,r,xi⟩ ≥ 0 and σ

(t)
s,r,i ≤ 0, we have

λ
(t)
s,r,j ≥ ⟨w(t)

s,r,xi⟩ − σ
(t)
s,r,i −

ϵ

3
≥ − ϵ

3
.
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Then using the conclusion in Corollary F.8, we know that

|λ(t+1)
s,r,j − λ

(t)
s,r,j | ≤

ηd

nm

∑
i∈Ij

−ℓ
′(t)
i,s ≤ ηd

m
≤ ϵ

3
.

Thus we have λ
(t+1)
r,j ≥ −ϵ. Noting that λ(t+1)

s,r,j ≤ 0, we have |λ(t+1)
s,r,j | ≤ ϵ. Then by Corollary F.7,

we know that |σ(t)
s,r,i| ≤ 2|λ(t+1)

s,r,j | ≤ 2ϵ. ■

Lemma F.17. Assuming the inductive hypotheses hold before time step t, for all s ∈ J, i ∈ I, s ̸= c(i),
we have

fs(xi) ≤ ϵ.

Proof. By Lemma F.13 and Corollary F.9, we know that

fs(xi) =
1

h

∑
r∈[h]

ReLU(⟨w(t)
s,r,xi⟩)

≤ 1

h

∑
r∈[h]

|⟨w(t)
s,r,xi⟩|

≤ 1

h

∑
r∈[h]

(
ϵ

3
+ λ

(t)
s,r,c(i) + σ

(t)
s,r,i)

≤ 1

h

∑
r∈[h]

ϵ

3

≤ ϵ.

■

Lemma F.18. Assuming the inductive hypotheses hold before time step t, for any two training data
points xi,xj , if qi ≥ qj , we have

1

1 + 2ϵ

e∆
(t)
q (i,j) + k − 1

k
≤

ℓ
′(t)
j,c(j)

ℓ
′(t)
i,c(i)

≤ e∆
(t)
q (i,j)(1 + 2ϵ).

Proof of Lemma F.18. By Lemma F.17 and noting that exp(ϵ) ≤ 1 + 2ϵ, we know that

k − 1

k − 1 + exp(q
(t)
i )

≤ −ℓ
′(t)
i,c(i) =

∑
p ̸=c(i)

exp(f
(t)
p (xi))∑

p∈J

exp(f
(t)
p (xi))

≤ (k − 1) exp(ϵ)

(k − 1) exp(ϵ) + exp(q
(t)
i )

≤ (k − 1)(1 + 2ϵ)

k − 1 + exp(q
(t)
i )

Thus we know that

1

(1 + 2ϵ)

k − 1 + exp(q
(t)
i )

k − 1 + exp(q
(t)
j )

≤
ℓ
′(t)
j,c(j)

ℓ
′(t)
i,c(i)

≤ (1 + 2ϵ)
k − 1 + exp(q

(t)
i )

k − 1 + exp(q
(t)
j )

k − 1 + exp(q
(t)
i )

k − 1 + exp(q
(t)
j )

= 1 +
exp(q

(t)
i )− exp(q

(t)
j )

k − 1 + exp(q
(t)
j )

= 1 +
exp(q

(t)
j )

k − 1 + exp(q
(t)
j )

(
exp

(
∆(t)

q (i, j)
)
− 1
)

60



3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293

Under review as a conference paper at ICLR 2025

For the second term,

exp
(
∆

(t)
q (i, j)

)
− 1

k
≤

exp(q
(t)
j )

k − 1 + exp(q
(t)
j )

(
exp

(
∆(t)

q (i, j)
)
− 1
)
≤ exp

(
∆(t)

q (i, j)
)
− 1.

Thus we know

1

1 + 2ϵ

e∆
(t)
q (i,j) + k − 1

k
≤

ℓ
′(t)
j,c(j)

ℓ
′(t)
i,c(i)

≤ e∆
(t)
q (i,j)(1 + 2ϵ).

■

We first consider the case when c(i) = c(j). We distinguish between two scenarios, one is when∣∣∣∆̂(t)
q (i, j)

∣∣∣ is relatively small and the other is when
∣∣∣∆̂(t)

q (i, j)
∣∣∣ is relatively large.

Case(I): ∆̂(t)
q (i, j) ≤ 4kϵ.

In this case, we have ∆̂
(t+1)
q (i, j) ≤ 5kϵ due to small learning rate η.

Case(II): ∆̂(t)
q (i, j) ≥ 4kϵ.

By Lemma F.14, we know that

∆(t)
q (i, j) ≥ ∆̂(t)

q (i, j)− 2ϵ ≥ 3kϵ.

By Lemma F.18, we know that

ℓ
′(t)
j,c(j)

ℓ
′(t)
i,c(i)

≥ 1

1 + 2ϵ

e∆
(t)
q (i,j) + k − 1

k
≥ 1

1 + 2ϵ
(1 + ∆(t)

q (i, j)/k) ≥ 1 + ϵ/2.

Noting that c(i) = c(j), we know that

∆̂(t+1)
q (i, j)− ∆̂(t)

q (i, j)

=− η

nh

(
ℓ
′(t)
i,c(i)∥ξi∥

2 − ℓ
′(t)
j,c(j)∥ξj∥

2
)

≤ 0

Then due to the inductive hypothesis,

∆̂(t+1)
q (i, j) ≤ ∆̂(t)

q (i, j) ≤ 5kϵ.

By Corollary F.15, we can get Property 4

∆(t)
q (i, j) ≤ ∆(t)

q (i, j) + 2ϵ ≤ 6kϵ.

By Lemma F.18 and noting that ex ≤ 1 + 2x for small x we know that

ℓ
′(t+1)
j,c(j)

ℓ
′(t+1)
i,c(i)

≤ (1 + 2ϵ)e∆
(t+1)
q (i,j) ≤ (1 + 2ϵ)(1 + 2∆(t+1)

q (i, j)) ≤ 1 + 14kϵ.

Next, we consider the case when c(i) ̸= c(j). We also distinguish between the two scenarios.

Case(I): ∆̂(t)
q (i, j) ≤ 31k2ϵ. In this case, we have ∆̂

(t+1)
q (i, j) ≤ 32k2ϵ due to small learning rate η.

Case(II): ∆̂(t)
q (i, j) ≥ 31k2ϵ.

By Lemma F.14, we know that

∆(t)
q (i, j) ≥ ∆̂(t)

q (i, j)− 2ϵ ≥ 30k2ϵ.
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By Lemma F.18, we know that

ℓ
′(t)
j,c(j)

ℓ
′(t)
i,c(i)

≥ 1

1 + 2ϵ

e∆
(t)
q (i,j) + k − 1

k
≥ 1

1 + 2ϵ
(1 + ∆(t)

q (i, j)/k) ≥ 1 + 29kϵ.

Furthermore, due to the inductive hypothesis, for any p ∈ Ic(i), q ∈ Ic(j), we know that

ℓ
′(t)
p,c(p)

ℓ
′(t)
q,c(q)

≤
(1 + 14ϵ)ℓ

′(t)
i,c(i)

ℓ
′(t)
j,c(j)/(1 + 14kϵ)

≤ (1 + 14kϵ)2

1 + 29kϵ
≤ 1

1 + ϵ
.

We know that

∆̂(t+1)
q (i, j)− ∆̂(t)

q (i, j)

=− η

nh

 ∑
p∈Ic(i)

ℓ
′(t)
p,c(i)∥µc(i)∥2 −

∑
p∈Ic(j)

ℓ
′(t)
p,c(j)∥µc(j)∥2 + ℓ

′(t)
i,c(i)∥ξi∥

2 − ℓ
′(t)
j,c(j)∥ξj∥

2


=− η

nh

(
ℓ
′(t)
i,c(i)∥ξi∥

2 − ℓ
′(t)
j,c(j)∥ξj∥

2
)
− η

nh

 ∑
p∈Ic(i)

ℓ
′(t)
p,c(i)∥µc(i)∥2 −

∑
p∈Ic(j)

ℓ
′(t)
p,c(j)∥µc(j)∥2


≤0.

By inductive hypothesis, we know that

∆̂(t+1)
q (i, j) ≤ ∆̂(t)

q (i, j) ≤ 32k2ϵ.

Now, we have completed the main part of the proof, the inductive proofs of Properties 2 and 3.
Subsequently, Properties 4, 5, and 6 can be directly derived from Lemma F.18.

By Corollary F.15, we can get Property 4

∆(t)
q (i, j) ≤ ∆(t)

q (i, j) + 2ϵ ≤ 33k2ϵ

By Lemma F.18 and noting that ex ≤ 1 + 2x for small x we know that

ℓ
′(t+1)
j,c(j)

ℓ
′(t+1)
i,c(i)

≤ (1 + 2ϵ)e∆
(t+1)
q (i,j) ≤ (1 + 2ϵ)(1 + 2∆(t+1)

q (i, j)) ≤ 1 + 67k2ϵ.

Lemma F.19. For all i1, i2 ∈ I, r1, r2 ∈ [h], we have

(
1− 200k2ϵ

)
σ
(t)
c(i2),r2,i2

− 1

nd
≤ σ

(t)
c(i1),r1,i1

≤
(
1 + 200k2ϵ

)
σ
(t)
c(i2),r2,i2

+
1

nd
.

Lemma F.20. For every i ∈ I, r0 ∈ [h], we have
n

2k
σ
(t)
c(i),r0,i

− 2ϵ ≤ q
(t)
i ≤ 2n

k
σ
(t)
c(i),r0,i

+ 2ϵ.

The proof of these lemmas are the same as the proof of Lemma E.19 and Lemma E.20.

Lemma F.21. For every i ∈ I, r ∈ [h], we have

1

2
exp

(
−2n

k
σ
(t)
1,r,i

)
≤ −ℓ

′(t)
i,c(i) ≤ 2k exp

(
− n

2k
σ
(t)
1,r,i

)
.
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Proof of Lemma F.21. By Lemma F.20, we know that

−ℓ
′(t)
i,c(i) ≥

k − 1

k − 1 + exp
(
q
(t)
i

)
≥ k − 1

k − 1 + exp

(
2n

k
σ
(t)
1,r,i + 2ϵ

)
≥ k − 1

k − 1 + 2 exp

(
2n

k
σ
(t)
1,r,i

)
≥ 1

2
exp

(
−2n

k
σ
(t)
1,r,i

)
.

By Lemma F.17 and Lemma F.20, we have

−ℓ
′(t)
i,c(i) ≤

(k − 1) exp(ϵ)

(k − 1) exp(ϵ) + exp
(
q
(t)
i

)
≤ (1 + 2ϵ)

k − 1

k − 1 + exp
( n

2k
σ
(t)
1,r,i − 2ϵ

)
≤ 2(k − 1)

k − 1 + exp
( n

2k
σ
(t)
1,r,i

)
≤ 2k exp

(
− n

2k
σ
(t)
1,r,i

)
■

Next, we prove Property 1.

σ
(t+1)
c(i),r,i = σ

(t)
c(i),r,i −

η

nh
· ℓ′(t)i,c(i)∥ξi∥

2

≤ σ
(t)
c(i),r,i +

2kηd

nh
exp(− n

2k
σ
(t)
c(i),r,i)

≤ 2k

n
ln(t+ 1) +

2k

n

1

2t

≤ 2k

n
ln(t+ 2)

σ
(t+1)
c(i),r,i = σ

(t)
c(i),r,i −

η

nh
· ℓ′(t)i,c(i)∥ξi∥

2

≥ σ
(t)
c(i),r,i +

ηd

2nh
exp(− k

2n
σ
(t)
c(i),r,i)

≥ k

2n
ln(tη) +

k

2n

2

t

≥ k

2n
ln((t+ 1)η)

Finally, we prove Property 7.

By Property 6 in the inductive hypotheses, we know that for all i ∈ I ,

− 1

1 + 67k2ϵ
ℓ
′(t)
1,c(1) ≤ |ℓ′(t)i,c(i)| ≤ −(1 + 67k2ϵ)ℓ

′(t)
1,c(1).
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Then we know that

−⟨∇wpL(θ(t)),xi⟩ ≥ −
∑

p∈Ic(i)

ℓ
′(t)
p,c(i)⟨xp,xi⟩ −

∑
p/∈Ic(i)

|ℓ′(t)p,c(i)|⟨xp,xi⟩|

≥ −
∑

p∈Ic(i)

ℓ
′(t)
p,c(p)⟨xp,xi⟩ −

∑
p/∈Ic(i)

|ℓ′(t)p,c(p)|⟨xp,xi⟩|

≥ − ℓ
(t)
1,c(1)

 ∑
p∈Ic(i)

d

2(1 + 67k2ϵ)
−
∑

p/∈Ic(i)

(1 + 67k2ϵ)∆


≥− ℓ

(t)
1,c(1)

(
dn

4k(1 + 67k2ϵ)
− (1 + 67k2ϵ)n∆

)
≥ 0.

By Property 7 in the inductive hypotheses, we know that ⟨w(t+1)
c(i) ,xi⟩ ≥ ⟨w(t)

c(i),xi⟩ ≥ 0.

We complete the proof of Lemma F.10.

□

F.3 PROOF OF THEOREM 4.7

Theorem F.22 (Restatement of Theorem 4.7). In the setting of training a multi-class network on
the multiple classification problem S̃ := {(xi, ỹi)}ni=1 ⊆ Rd × [k] as described in the above,
under Assumptions 3.2, 3.3 and 4.3, for some γ = o(1), after Ω(η−1k8) ≤ T ≤ exp(Õ(k1/2))
iterations, with probability at least 1− γ, the neural network satisfies the following properties:

1. The clean accuracy is nearly perfect: AccDclean(F
binary
θ(T ) ) ≥ 1− exp(−Ω(log2 d)).

2. The network converges to the feature-decoupling regime: there exists a time-variant coeffi-
cient λ(T ) ∈ [Ω(log k),+∞) such that for all j ∈ [k], r ∈ [h], the weight vector w(T )

j,r can
be approximated as ∥∥∥∥w(T )

j,r − λ(T )∥µj∥−2µj

∥∥∥∥ ≤ o(d−1/2).

3. Consequently, the corresponding binary classifier achieves optimal robustness: for
perturbation radius δ = O(

√
d), the δ-robust accuracy is also nearly perfect, i.e.,

AccDrobust(F
binary
θ(T ) ; δ) ≥ 1− exp(−Ω(log2 d)).

Proof of Theorem Theorem F.22. We first prove that the network converges to the feature-decoupling
regime(Property 2).

Lemma F.23. For all j ∈ J, r ∈ [h], we have
ln(Tη)

4
≤ λ

(T )
j,r,j ≤ 4 ln(T + 1).

Proof of Lemma F.23. Using Property 1 in Lemma F.10 and Corollary F.7, we know that

λ
(T )
j,r,j =

∑
p∈Ij

∥ξp∥2

∥µj∥2
σ
(T )
j,r,p ≥ ln(Tη)

4

λ
(T )
j,r,j =

∑
p∈Ij

∥ξp∥2

∥µj∥2
σ
(T )
j,r,p ≤ 4 ln(T + 1)

■

Lemma F.24. For r1, r2 ∈ [h], j1, j2 ∈ J , we have

λ
(T )
j1,r1,j1

λ
(T )
j2,r2,j2

≤ 1 + 204k2ϵ.
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Proof. By Lemma F.19, we know that for any i1 ∈ Ij1 , i2 ∈ Ij2

σ
(t)
j1,r1,i1

≤
(
1 + 200k2ϵ

)
σ
(t)
j2,r2,i2

+ (nd)−1 ≤ (1 + 201k2ϵ)σ
(t)
j1,r2,i2

.

λ
(T )
j1,r1,j1

λ
(T )
j2,r2,j2

=

∑
p∈Ij1

∥ξp∥2σ(t)
j1,r1,p∑

p∈Ij2

∥ξp∥2σ(t)
j2,r2,p

≤ (1 + 201k2ϵ)
∥
√
d+ ln(d)∥2

∥
√
d− ln(d)∥2

|Ij1 |
|Ij2 |

≤ (1 + 201k2ϵ)(1 + ϵ)(1 + ϵ)

≤ 1 + 204k2ϵ.

■

We denote λ(T ) = λ
(T )
1,1,1 as the representative of {λj,r,j : r ∈ [m], j ∈ J}.

By Lemma F.23 and Lemma F.24 ,for all r ∈ [h], j ∈ J , we have

|λ(T ) − λ
(T )
j,r,j | ≤ 204k2ϵλ(T ),

λ(T ) ≤ 4 ln(T + 1),

λ(T ) ≥ ln(Tη)

4
≥ 2 ln(k) = Ω(log(k)).

Lemma F.25. For all s ∈ J, r ∈ [h], We have

√
d
∥∥∥w(T )

s,r − λ(T )µs∥µs∥−2
∥∥∥ = o(1).

Proof of Lemma E.25. Recall weight decomposition in Lemma E.2.
√
d
(
w(T )

s,r − λ(T )µs∥µs∥−2
)
=

√
dw(0)

s,r︸ ︷︷ ︸
L1

+
√
d
(
λ(T )
s,r,s − λ(T )

)
µj∥µj∥−2︸ ︷︷ ︸

L2

+
√
d
∑
j ̸=s

λ
(T )
s,r,jµj∥µj∥−2

︸ ︷︷ ︸
L3

+
√
d
∑
i∈I

σ
(T )
s,r,iξi∥ξi∥

−2

︸ ︷︷ ︸
L4

For L1 term, using the conclusion in Lemma D.10, we know that

∥
√
dw(0)

s,r∥ ≤ 2dσw ≤ ϵ = o(1).

For L2 term, using the conclusion in Lemma F.23, Lemma F.24, we know that∥∥∥√d
(
λ(T )
s,r,s − λ(T )

)
µs∥µs∥−2

∥∥∥ = |λ(T )
s,r,s − λ(T )| ≤ 204k2ϵλ(T ) ≤ 816k2ϵ ln(T + 1) ≤ 900k2.5ϵ = o(1).

For L3 term, by Lemma F.16 and triangle inequality, we know that∥∥∥∥∥∥√d
∑
j ̸=s

λ
(T )
s,r,jµj∥µj∥−2

∥∥∥∥∥∥ ≤ kϵ = o(1).
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For L4 term, by Property (1) in Lemma E.7, we have∥∥∥∥∥√d
∑
i∈I

σ
(T )
s,r,iξi∥ξi∥

−2

∥∥∥∥∥
2

= d
∑
i∈I

(
σ
(T )
s,r,i

)2
∥ξi∥−2 + d

∑
i1 ̸=i2

σ
(T )
s,r,i1

σ
(T )
s,r,i2

⟨ξi1 , ξi2⟩∥ξi∥−4

≤ 2
∑
i∈I

(
σ
(T )
s,r,i1

)2
+

2∆

d

∑
i1 ̸=i2

σ
(T )
s,r,i1

σ
(T )
s,r,i2

≤ 8k2 ln2(T + 1)

n
+

8k2 ln2(T + 1)∆

d

≤ 8k3

n
+

8k3∆

d
≤ 16kϵ = o(1).

Combining the above together, we know that
√
d
∥∥∥w(T )

s,r − λ(T )µs∥µs∥−2
∥∥∥ = o(1).

■

Then we prove that the the clean accuracy is nearly perfect(Property 1).

Assume (x, y) is randomly sampled from the data distribution D. Without loss of generality, we
assume that x = µj + ξ, y = j.

Lemma F.26. Let ξ ∼ N (0, Id). Then, with probability at least 1−2nd− ln(d)/2, for all s ∈ J, r ∈ [h]
we have

|⟨w(T )
s,r , ξ⟩| ≤

ϵ

6
.

The proof of this lemma is the same as the proof of Lemma E.26.

Using the conclusion in Lemma F.13 and Lemma F.26, we know that for s ∈ J, r ∈ [h], s ̸= j

⟨w(T )
s,r ,x⟩ = ⟨w(T )

s,r ,µj⟩+ ⟨w(T )
s,r , ξ⟩ ≤ λ

(T )
s,r,j +

ϵ

6
+

ϵ

6
≤ ϵ

3
,

⟨w(T )
j,r ,x⟩ = ⟨w(T )

j,r ,µj⟩+ ⟨w(T )
j,r , ξ⟩ ≥ λ

(T )
j,r,j −

ϵ

6
− ϵ

6
≥ λ

(T )
j,r,j −

ϵ

3
≥ ϵ

3
.

Thus we know that fj(x) = maxs∈J{fs(x)}. So Fθ(T ) has standard perfect accuracy.

Finally, we prove that the corresponding binary classifier achieves optimal robustness(Property 3).

By Lemma F.25, we know that
√
d∥w(T )

s,r ∥ ≤ λ(T ) + o(1) ≤ 2λ(T ).

Then for any perturbation ρ with ρ ≤
√
d

10
.

We know that

⟨w(T )
j,r ,x+ ρ⟩ = ⟨w(T )

j,r ,µi⟩+ ⟨w(T )
j,r , ξ⟩+ ⟨w(T )

j,r ,ρ⟩

≥ λ
(T )
j,r,j −

ϵ

6
− ϵ

6
− ∥w(T )

j,r ∥∥ρ∥

≥ 3λ(T )

4
.

For s ∈ J, s ̸= j, we know that

⟨w(T )
s,r ,x+ ρ⟩ = ⟨w(T )

s,r ,µi⟩+ ⟨w(T )
s,r , ξ⟩+ ⟨w(T )

s,r ,ρ⟩

≤ λ
(T )
s,r,j +

ϵ

6
+

ϵ

6
+ ∥w(T )

s,r ∥∥ρ∥

≤ ϵ+
ϵ

3
+

λ(T )

5

≤ 3λ(T )

4
− ln(k).
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Thus we know that fj(x+ ρ) ≥ 3λ(T )

4
and fs(x+ ρ) ≤ 3λ(T )

4
− ln(k).

let G(x) denote the numerator of F binary
θ(T ) (x), where denominator is

∑
s∈J efs(x). We know

sgn(F binary
θ(T ) ) = sgn(G).

Thus we have

G(x+ ρ) =
∑
j∈J+

exp (fj(x+ ρ))−
∑
j∈J−

exp (fj(x+ ρ))

≥ exp
(
3λ(T )/4

)
−
∑
j∈J−

exp
(
3λ(T )/4− ln(k)

)
≥ 0.

That is to say sgn(G(x+ ρ)) = sgn(G(x)), which means F binary
θ(T ) is robust under any perturbation

with radius smaller than

√
d

10
. □
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G TWO FEATURE LEARNING REGIMES: FEATURE AVERAGING AND FEATURE
DECOUPLING

In this section, we present two distinct parameter regimes for our two-layer network learner: feature
averaging and feature decoupling. The former means the weights associated with each neuron is a
linear average of features, while the latter indicates that distinct features will be learned by separate
neurons. Our construction is similar to that in Frei et al. (2024) and Min & Vidal (2024). We illustrate
how a feature averaging solution leads to non-robustness, while a feature decoupling solution exists
and is more robust (w.r.t. to a much larger robust radius).

G.1 FEATURE-AVERAGING TWO-LAYER NEURAL NETWORK

Now, we begin by presenting the following example of a feature-averaging two-layer neural network,
which is a more general version (including a bias term) than the one we mentioned in Definition 4.1.

Feature-Averaging Two-Layer Neural Network. Consider the following two-layer neural network
with identical positive neurons and identical negative neurons, which can be simplified as (i.e., we
merge identical neurons as one neuron):

fθavg(x) := ReLU

(〈 ∑
j∈J+

µj ,x

〉
+ b+

)
︸ ︷︷ ︸

deals with all positive clusters

−ReLU

(〈 ∑
j∈J−

µj ,x

〉
+ b−

)
︸ ︷︷ ︸

deals with all negative clusters

,

where we choose weight ws,r =
∑

j∈Js
µj for s ∈ {−1,+1}, r ∈ [m] and bias bs,r = bs for

s ∈ {−1,+1}, r ∈ [m].

Indeed, the feature-averaging network uses the first neuron to process all data within positive clusters,
and it uses the second neuron to process all data within negative clusters. Thus, it can correctly
classify clean data, which is shown as the following proposition.
Theorem G.1. There exist values of b+ and b− such that the feature-averaging network fθavg achieves
1− o(1) standard accuracy over D.

Proof of Theorem G.1. Let b+ = b− = 0, and then we know, for data point (x = αµi + ξ, y) ∼ D
within cluster i (w.l.o.g. we assume cluster i is a positive cluster), with high probability, it holds that

fθavg(x) ≥ ⟨µi, αµi⟩+
∑

j∈J+\{i}

⟨µj , ξ⟩ −
∑
j∈J−

⟨µj , ξ⟩

≥ Θ(d)−O(k∆) = Θ(d)−O(kσ
√
d ln(d)) ≥ 0,

which implies that fθavg correctly classifies data (x, y) with high probability. □

However, it fails to robustly classify perturbed data no matter what the bias term is, shown in the
following theorem.
Theorem G.2. For any values of b+ and b− such that fθavg has 1 − o(1) standard accuracy, it
holds that the feature-averaging network fθavg has zero δ−robust accuracy for perturbation radius
δ = Ω(

√
d/k).

Proof of Theorem G.2. Indeed, we can choose the adversarial attack as ρ ∝ −
∑

j∈J+
µj +∑

l∈J−
µl and ∥ϵ∥ = δ. Then, for averaged features ws,r =

∑
j∈Js

µj , this perturbation can
activate almost all of ReLU neurons, which w.h.p. leads a linearization over the perturbation ρ

fθavg(x+ ρ) = fθavg(x) + ⟨∇xfθavg(x),ρ⟩.

Since fθavg has 1− o(1) standard accuracy, we know that the bias term satisfy that b+, b− = O(d),
which manifests that the classifier achieves a positive margin, i.e.

0 < yfθavg(x) ≤ O(d),

w.h.p. over (x, y) sampled from D.
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Then, due to a large gradient norm over data input, i.e.

∥∇xfθavg(x)∥ = ∥
∑
j∈J+

µj −
∑
l∈J−

µl∥ = Ω(
√
kd),

we derive that the feature-averaging network fθavg has zero δ−robust accuracy for perturbation radius
δ = Ω(

√
d/k). □

G.2 ROBUST TWO-LAYER NEURAL NETWORK EXISTS

In this section, we show a robust two-layer network exists for D, using a similar construction in Frei
et al. (2024).

Theorem G.3. There exists a two-layer network fθdec that is
√
d
3 -robust for D.

Proof of Theorem G.3. The construction is similar to that in Frei et al. (2024). We define fθdec :
Rd → R is a network that represents a positive constant times the following function:

fθdec(x) ∝
∑
j∈J+

ReLU

(
⟨µj ,x⟩ −

d

2

)
−
∑
l∈J−

ReLU

(
⟨µl,x⟩ −

d

2

)
,

In particular, we set a two-layer width-k ReLU network with ws,j = 1 (j ∈ Js)µj , bs,j =

−1 (j ∈ Js)
d
2 for s ∈ {±1} and j ∈ [k].

In this network, each neuron ReLU(⟨µj ,x⟩ − d
2 ) (or ReLU(⟨µl,x⟩ − d

2 )) deals with one certain
positive cluster j (or negative cluster l), and we also apply the bias term to filter out intra/inter cluster
noise. In this regime, for each data point (x, y) belonging to cluster i (we assume cluster i is a
positive cluster and y = 1) and any perturbation ρ (∥ρ∥ ≤

√
d
3 ), we have the following linearization,

w.h.p.

fθdec(x+ ρ) =
1

m
⟨µi,x+ ρ⟩.

Then, we know the network fθdec has 1− o(1) δ−robust accuracy for δ ≤
√
d
3 . □

Note that fθdec leverages individual decoupled features, which is a natural and robust solution to the
binary classification on D. In fact, one can easily verify that the robustness of fθdec is optimal up to a
constant factor, as the distance between distinct cluster centers is Θ(

√
d), i.e., ∥µi − µj∥ = Θ(

√
d),

for all i ̸= j. However, as we show in our main result that gradient descent does not learn this
feature-decoupled network directly from D, and instead converges to a different solution that is
Θ(

√
k) times less robust.

G.3 NON-ROBUST MULTI-CLASS NETWORK EXISTS

Similar to the feature-averaging binary-class network as that we mentioned in Definition 4.1, the
non-robust multi-class network also exists, which is shown as the following proposition.
Theorem G.4 (Restatement of Proposition 4.8). Consider the following multi-class network
Fθ̃: for all j ∈ [k], the sub-network fj has only single neuron (h = 1) and is defined as
fj(x) = ReLU

(〈
µj +

∑
l∈Js

µl,x
〉)

, where cluster j has binary label s ∈ {±1}. With prob-
ability at least 1 − exp(−Ω(log2 d)) over S̃, we have that LCE(θ̃) ≤ exp(−Ω(d)) = o(1),
where θ̃ denotes the weights of Fθ̃. Moreover, AccDclean(F

binary

θ̃
) ≥ 1 − exp(−Ω(log2 d)),

AccDrobust(F
binary

θ̃
; Ω(
√

d/k)) ≤ exp(−Ω(log2 d)).

Proof of Theorem G.4. Consider data point (x, y) that is randomly sampled from the data distribution
D. Without loss of generality, we assume that x = µj0 + ξ, j0 ∈ J+. Reusing the argument of proof
of Property (3) and (4) in Proposition D.6. We know that, with probability at least 1− 2kd− ln(d)/2,
for all j ∈ J , we have

|⟨µj , ξ⟩| ≤ ∆.
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First, we prove the network has perfect clean accuracy when the above properties hold. Indeed, we
calculate the output value of each sub-network as follows.

fj0(x) = ReLU

〈µj0 +
∑
l∈J+

µl,x

〉 ≥ 2d− k∆.

For j ∈ Js, j ̸= j0,

fj(x) = ReLU

(〈
µj +

∑
l∈Js

µl,x

〉)
≤ d+ k∆ < 2d− k∆ = fj0(x).

Thus, we know that Fθ̃(x) = j0 with probability at least 1− 2kd− ln(d)/2.

Then, with probability at least 1− exp(−Ω(log2 d)) over S̃ sampled from D, for all i ∈ I , we have

− log pỹi(xi) = − log
exp(fỹi

(xi))∑
j∈[k] exp(fj(xi))

≤ − log(1− exp(−Ω(d)))

≤ exp(−Ω(d)),

where the last inequality holds due to log(1 − z) ≥ Ω(z) for sufficiently small z. Therefore, we
derive that

LCE(θθ̃) =
1

n

n∑
i=1

log pỹi(xi) ≤ exp(−Ω(d)) = o(1).

Finally, we prove that the network has at most 2kd− ln(d)/2 robust test accuracy against perturbation
radius δ = Ω(

√
d/k).

Consider perturbation ρ =
3(1 + c)

k

( ∑
l∈J+

µl −
∑

l∈J−
µl

)
.

For any j ∈ J+, we know that〈
µj +

∑
l∈J+

µl,x− ρ

〉
=

〈
µj +

∑
l∈J+

µl,µj0 + ξ − ρ

〉

≤ 2d+ (k + 1)∆− k

1 + c

3(1 + c)d

k

< 0.

For any j ∈ J−, we know that〈
µj +

∑
l∈J−

µl,x− ρ

〉
=

〈
µj +

∑
l∈J+

µl,µj0 + ξ − ρ

〉

≥ d+ (k + 1)∆− k

1 + c
+

3(1 + c)d

k

> 0.

This is to say for any j ∈ J+,

fj(x− ρ) = ReLU

〈µj +
∑
l∈J+

µl,x− ρ

〉 = 0.

For any j ∈ J−,

fj(x− ρ) = ReLU

〈µj +
∑
l∈J−

µl,x− ρ

〉 > 0.

Thus, we obtain that AccDrobust(F
binary
FA ; δ) ≤ exp(−Ω(log2 d))

□
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H ADDITIONAL REAL-WORLD EXPERIMENTS

H.1 EMPIRICAL VERIFICATION OF FEATURE LEARNING PROCESS

Beyond verifying the alignment between our theoretical findings and the results of numerical simu-
lation on the synthetic multi-cluster data setup, as described in Section 3, we also consider a more
realistic setting where the multi-cluster structure of data naturally occurs.

Transfer Learning Based on CLIP Model. Here, we focus on a transfer learning setting, under which
we utilize a pre-trained CLIP ViT-B-32 model (Radford et al., 2021) to obtain the image embedding
for the CIFAR-10 dataset. We found that the embeddings of CIFAR-10 images approximately satisfy
the multi-cluster structure, where the correlation between embeddings of images from the same
class is significantly higher than that between embeddings of images from different classes. See
experimental results in Figure 12, where we verify the orthogonality of the extracted features (i.e.,
image embeddings of CLIP model) by calculating the correlation between them.

Binary Classification on CIFAR. We create a 2-classification task from the CIFAR-10 dataset by
merging the first 5 classes into one class and the other 5 classes into the other class. We apply
two training strategies for training a two-layer neural network on this 2-classification task: one
is to train directly on the image embedding labeled for 2-classification, and the other is to first
train on the image embedding labeled for 10 classes and then convert it to 2-classification, where
the two-layer network is as described in our theory (we fixe second layer as diagonal form, i.e.,
fj(z) :=

1
h

∑h
r=1 ReLU(⟨wj,r, z⟩),∀j ∈ [2] or [10], and z denotes the image embedding). We set

the width of the first layer to be 1000 (h = 10) to ensure that the accuracy of the pre-trained model
was not compromised. For 10-classification, we use wj :=

1
h

∑h
r=1 wj,r as the equivalent weight of

fj . For the 500 positive weights and 500 negative weights in the binary classification network, we
equally divide them into 5 positive classes and 5 negative classes to ensure a fair comparison, between
the two figures which ensures that two models both have the same form F := (f1, f2, . . . , f10) ∈ R10

and each sub-network fj corresponds to a weight vectors wj .

Experiment Results. See experiment results in Figure 13. Indeed, deep neural networks can be
viewed as consisting of two parts: a feature extractor that is a mapping from the input space to the
latent space, and a shallow classifier that predicts the classification results based on the extracted
features (in the latent space). Feature averaging means that the shallow classifier mixes extracted
features corresponding to different classes in the latent space. And our empirical results verify this.

H.2 INFINITY-NORM CASE

Here, we aim to verify whether the model trained with fine-grained supervision information (i.e.,
10-class labels) is more ℓ∞-robust compared to the model trained with only binary (2-class) labels.

Experiment Settings. To ensure fairness in the comparison, we sum the logits corresponding to the
5 positive classes and subtracted the sum of the logits corresponding to the 5 negative classes from
the 10-class model’s output. This result is used as the binary classification output for the 10-class
model. The robust accuracy is measured by using the standard PGD attacks (Madry et al., 2018) with
different ℓ∞-pertubation radius. We run experiments in the following datasets:

Binary Classification on MNIST and CIFAR-10. To further verify our theory in deep neural
networks, on both MNIST and CIFAR-10 datasets, we train ResNet18 models from scratch with
normal 10-classification labels and 2-classification labels (MNIST: parity-classification; CIFAR-10:
binary-classification as that we mentioned in Section 5.1).

Experiment Results. The results are presented in Figure 14. With the perturbation radius increasing,
we can see that the models trained with 10-class labels have higher robust test accuracy than those
trained with 2-class labels in all datasets, which empirically shows that fine-grained supervision also
improves ℓ∞ robustness.
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Figure 12: Verifying Orthogonal Condition: We plot the extracted feature correlation as a colormap,
where each pixel represents some cos(zi, zj) between two extracted features zi, zj of two data xi,xj

from CIFAR-10 training dataset (here, we sample 100 instances for each class).
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(a) CIFAR-10: 2-class
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Figure 13: Illustration of feature averaging and feature decoupling on CIFAR-10 dataset. Figure
(a) corresponds to models trained using 2-class labels, and Figure (b) corresponds to models trained
using 10-class labels, respectively. Each element in the matrix, located at position (i, j), represents the
average cosine value of the angle between the feature vector µi of the i-th feature and the equivalent
weight vector wj of the fj(·).
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Figure 14: Verifying robustness improvement in ℓ∞ case: We compare ℓ∞ adversarial robustness
between model trained by 2-class labels (red line) and model trained by 10-class labels (blue line) on
MNIST (the left) and CIFAR-10 (the right).
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