
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

FEATURE AVERAGING: AN IMPLICIT BIAS OF
GRADIENT DESCENT LEADING TO NON-ROBUSTNESS
IN NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

In this work, we investigate a particular implicit bias in the gradient descent
training process, which we term “Feature Averaging”, and argue that it is one
of the principal factors contributing to non-robustness of deep neural networks.
Despite the existence of multiple discriminative features capable of classifying
data, neural networks trained by gradient descent exhibit a tendency to learn
the average (or certain combination) of these features, rather than distinguishing
and leveraging each feature individually. In particular, we provide a detailed
theoretical analysis of the training dynamics of gradient descent in a two-layer
ReLU network for a binary classification task, where the data distribution consists
of multiple clusters with orthogonal cluster center vectors. We rigorously prove
that gradient descent converges to the regime of feature averaging, wherein the
weights associated with each hidden-layer neuron represent an average of the
cluster centers (each center corresponding to a distinct feature). It leads the network
classifier to be non-robust due to an attack that aligns with the negative direction
of the averaged features. Furthermore, we prove that, with the provision of more
granular supervised information, a two-layer multi-class neural network is capable
of learning individual features, which is able to induce a binary classifier with
the optimal robustness under our setting. Besides, we also conduct extensive
experiments using synthetic datasets, MNIST and CIFAR-10 to substantiate the
phenomenon of feature averaging and its role in adversarial robustness of neural
networks. We hope the theoretical and empirical insights can provide a deeper
understanding of the impact of the gradient descent training on feature learning
process, which in turn influences the robustness of the network, and how more
detailed supervision may enhance model robustness.

1 INTRODUCTION

Deep learning has achieved unprecedented success in a vast range of application domains. These
models have been adopted in numerous applications including many safety-sensitive systems, such as
autonomous driving and diagnostic assistance technologies. Despite the success of deep learning, a
landmark study by Szegedy et al. (2013) exposed that deep neural networks are extremely vulnerable
to adversarial attacks. These attacks involve adding nearly imperceptible and carefully chosen
perturbations to input data to confound deep learning models into making incorrect predictions. The
perturbed inputs are termed adversarial examples and their existence has attracted significant attention
from the research community. Since then, various attacks (Biggio et al., 2013; Szegedy et al., 2013;
Goodfellow et al., 2014; Madry et al., 2018) and defenses (Goodfellow et al., 2014; Madry et al.,
2018; Shafahi et al., 2019; Pang et al., 2022) were developed, but the issue of adversarial robustness
is still far from being resolved.

Gaining a deeper understanding of the adversarial robustness of neural networks is crucial not only for
improving the reliability of deep learning systems in practice but also for illuminating the underlying
theory of deep learning. Daniely & Shacham (2020); Bubeck et al. (2021a); Bartlett et al. (2021);
Montanari & Wu (2023) proved the existence of adversarial examples for neural networks with
random weights across various architectures. Tsipras et al. (2019); Zhang et al. (2019) analyzed the
fundamental trade-off between robustness and accuracy. Bubeck et al. (2021b); Bubeck & Sellke

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

(2021); Li et al. (2022a); Li & Li (2023) proved that having a large model size is necessary for
achieving robustness in many settings. Ilyas et al. (2019); Tsilivis & Kempe (2022); Kumano et al.
(2024) studied the relationship between adversarial examples and the presence of non-robust but
predictive features in the data distribution.

Another important line of work in deep learning theory studies the implicit bias of gradient descent to
explain why neural networks generalize so well. Training deep neural networks is a highly non-convex
and over-parametrized optimization problem, in which there are many solutions that fit the training
data correctly. Recent studies suggest that, without explicit regularization, gradient descent seems to
implicitly bias towards solutions that enjoy favorable properties, particularly good generalization.
Hence, characterizing various implicit biases in favor of better generalization has been extensively
studied in recent years (Gunasekar et al., 2017; Soudry et al., 2018; Arora et al., 2019b; Lyu &
Li, 2020; Blanc et al., 2020). However, good generalization properties do not necessarily imply
good robustness with respect to inputs. Indeed, even well-trained neural networks are vulnerable
to adversarial examples. In fact, recent studies by Vardi et al. (2022) and Frei et al. (2024) proved
that the implicit bias of gradient descent can be a “double-edged sword”, in the sense that it leads
to generalizable solutions with perfect clean accuracy, but being non-robust (susceptible to small
adversarial ℓ2-perturbations), even though there exist robust networks with perfect robust accuracy.
Under the similar data setup, Min & Vidal (2024) further conjectured that the weight vectors of a
two-layer ReLU network trained by gradient flow converge to an average of the cluster centers.

In this paper, we perform a detailed analysis of the training dynamics of gradient descent on two-layer
ReLU networks (under data distributions similar to Vardi et al. (2022), Frei et al. (2024) and Min &
Vidal (2024), and the detailed discussion about the connection between their works and our paper is
deferred to Section 2), and rigorously prove that the learnt weights exhibit a particular implicit bias,
which we term feature averaging and solves the conjecture of Min & Vidal (2024). Then, we prove
that it leads to non-robust solutions. Feature averaging has a particularly simple form in our setting
with two-layer ReLU networks: the network trained by gradient descent tends to learn the average
of useful features, in the sense that the weight vector associated with each hidden-layer neuron is
a weighted average of feature vectors. One can easily show that such average is more susceptible
to small adversarial perturbations than individual features, rendering the learnt solution non-robust.
In our experiments, we observe similar phenomena empirically in several other settings. We argue
that feature averaging it is one of the major factors contributing to non-robustness of deep neural
networks, and show it is closely related and collaborate several known phenomena and theoretical
models in the study of adversarial robustness, such as the robustness of the features (Tsipras et al.,
2019; Ilyas et al., 2019; Allen-Zhu & Li, 2022; Tsilivis & Kempe, 2022), the Lipschitzness of the
model (Bubeck et al., 2021b; Bubeck & Sellke, 2021; Li et al., 2022a; Li & Li, 2023), simplicity
bias (Shah et al., 2020; Lyu et al., 2021), and the dimpled manifold model (Shamir et al., 2021) (the
detailed discussion can be found in Section A).

Nevertheless, we remark that feature averaging may appear in a form beyond the linear average
of feature vectors in more complex settings (where there is no predefined set of features). In such
setting, we refer the implicit bias of feature averaging as a tendency of combining many localized,
semantically meaningful (hence more robust (Ilyas et al., 2019; Tsilivis & Kempe, 2022)) features
into one discriminative but non-robust feature.

In light of the feature averaging phenomena, we propose to enhance the robustness by learning
individual features. In particular, we explore a natural and simple, yet less explored method in the
study of adversarial robustness, that is to provide more granular supervised information related to
individual features, and force the model to learn the individual features. Theoretically, we prove
that if the model is provided with the feature level labels, a similar two-layer network can learn the
individual features, and then one can easily derive a corresponding binary classifier with optimal
robustness. Empirically, we design several experiments, using synthetic and real datasets, and the
experimental results demonstrate that feature-level supervised information can be very effective in
enhancing the robustness of the model (even with standard training). Our technical contributions can
be summarized as follows:

1. (Section 4) Under certain multi-cluster data distributions (similar to that in Frei et al.
(2024)), we prove that two-layer ReLU networks trained by gradient descent converge to
feature-averaging solutions (Theorem 4.5). In particular, we show that the weight vector
associated with each hidden-layer neuron converges to the average of cluster-center features

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

and the feature-averaging solution is non-robust w.r.t. the radius Ω(
√
d/k), while there

exist solutions with optimal robust radius O(
√
d) (where d is the data dimension, k is

the number of clusters, and the existence of such optimal robust solutions is shown in
Theorem G.3). This result also solves the conjecture of Min & Vidal (2024) under our
settings (Theorem 4.6).

2. (Section 4) We show that if the model is provided with the feature level labels (in fact a
multi-class classification problem in our multi-cluster data distribution setting), a two-layer
network can learn the individual features, which furthermore can induce a robust model with
optimal robust radius O(

√
d) (Theorem 4.7).

3. (Section 5) We validate our theoretical results on synthetic data and real-world datasets
such as MNIST and CIFAR-10. We empirically show that gradient descent learns averaged
features. Our experiments also demonstrate enhanced robustness through the incorporation
of fine-grained supervisory information.

2 RELATED WORK

Implicit Bias of Gradient Descent. The implicit bias of gradient descent has been studied from
various perspectives. The most prominent line of works establishes an equivalence between neural
networks in certain training regimes to kernel regression with Neural Tangent Kernel (NTK) (Du
et al., 2019b;a; Allen-Zhu et al., 2019a; Zou et al., 2020; Chizat et al., 2019; Arora et al., 2019b; Ji &
Telgarsky, 2020b; Cao & Gu, 2019), but the generalization of kernel regression is usually worse than
that of real-world neural networks. Other works prove other types of implicit biases beyond this NTK
regime, including margin maximization (Soudry et al., 2018; Nacson et al., 2019; Lyu & Li, 2020;
Ji & Telgarsky, 2020a), parameter norm minimization (Gunasekar et al., 2017; 2018; Arora et al.,
2019a) and sharpness reduction (Blanc et al., 2020; Damian et al., 2021; HaoChen et al., 2021; Li
et al., 2022b; Lyu et al., 2022; Gu et al., 2023). All these works focus on implicit biases that may
lead to good generalization except that Vardi et al. (2022) and Frei et al. (2024) connected the line of
works on margin to the non-robustness of neural networks, which we discuss shortly.

Feature Learning Theory for Two-Layer Networks. The feature learning theory of two-layer
neural networks as proposed in various recent studies (Wen & Li, 2021; Allen-Zhu & Li, 2022;
Chen et al., 2022; Cao et al., 2022; Zhou et al., 2022; Chidambaram et al., 2023; Allen-Zhu &
Li, 2023; Kou et al., 2023a; Simsek et al., 2023) aims to explore how features are learned in deep
learning. This theory extends the theoretical optimization analysis beyond the scope of the neural
tangent kernel (NTK) theory (Jacot et al., 2018; Du et al., 2019b;a; Allen-Zhu et al., 2019b; Arora
et al., 2019b). Among these feature learning works, there exist various data assumptions about
feature-noise structure. Based on the data assumption of sparse coding model, Wen & Li (2021) study
feature learning process of self-supervised contrastive learning, and Allen-Zhu & Li (2022) propose
a principle called feature purification to explain the workings of adversarial training. Allen-Zhu
& Li (2023) utilize multi-view-based patch-structured data assumption to understand the benefits
of ensembles in deep learning. Following the multi-view data proposed in Allen-Zhu & Li (2023),
Chidambaram et al. (2023) show that data mix-up algorithm can provably learn diverse features
to improve generalization. Cao et al. (2022); Kou et al. (2023a) explore the benign overfitting
phenomenon of two-layer convolutional neural networks by leveraging a technique of signal-noise
decomposition. Zhou et al. (2022) study feature condensation and prove that, for two-layer network
with small initialization, input weights of hidden neurons condense onto isolated orientations at the
initial training stage. Simsek et al. (2023) focus on the regression setting and study the compression
of the teacher network, and they find that weight vectors, whether copying an individual teacher
vector or averaging a set of teacher vectors, are critical points of the loss function.

Comparisons with Vardi et al. (2022), Frei et al. (2024) and Min & Vidal (2024). Recently,
Vardi et al. (2022) and Frei et al. (2024) demonstrated that for two-layer ReLU networks, any
KKT solution to the maximum margin program (it is known that gradient flow converges to such
KKT solution (Lyu & Li, 2020; Ji & Telgarsky, 2020a)) leads to non-robust solutions under the
assumption of synthetic cluster data, and Min & Vidal (2024) further conjectured that the weight
vectors of two-layer ReLU network converge to an average of cluster-center vectors. Their finding
highlights the significance of the optimization process in the (non)robustness of neural networks. Our
theoretical results are inspired by theirs, but differ from theirs in the following important aspects: (1)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Conceptually, feature averaging is arguably more intuitive and concrete (in the feature level) than the
set of KKT properties. Moreover, feature averaging (or its nonlinear extensions) may appear in more
complex and general setting even when the solution is far from a KKT point. (2) Technically, we
perform a detailed and finite-time analysis of the gradient descent dynamics, in contrast to their result
about limiting behavior of gradient descent. In particular, our analysis of gradient descent dynamics
reveals the feature learning process. Furthermore, we comment that the time complexity converging
from an initialization point to a KKT solution can be slow (i.e., Ω(1/ log(t)) proven in Soudry et al.
(2018); Lyu & Li (2020); Kou et al. (2023b)). (3) Our analysis of the GD dynamics requires small
initialization, whereas their results depend on starting from a solution that already correctly classifies
the training set (an assumption made in (Lyu & Li, 2020) for achieving KKT points). (4) Our result
(Theorem 4.5) solves the conjecture proposed by Min & Vidal (2024), where we show that the weight
vector associated with each neuron aligns with a weighted average of cluster features, and the ratio
between weights of distinct clusters is close to 1.

3 PROBLEM SETUP

In this section, we introduce some useful notations and concepts, including the multi-cluster data
distribution, the two-layer neural network learner and the gradient descent algorithm.

Notations. We use bold-face letters to denote vectors, e.g., x = (x1, . . . , xd). For x ∈ Rd, we
denote by ∥x∥ the Euclidean (ℓ2) norm. We denote by 1(·) the standard indicator function.We denote
sgn(z) = 1 if z > 0 and -1 otherwise. For an integer n ≥ 1, we denote [n] = {1, . . . , n}. We
denote by N

(
µ, σ2

)
the normal distribution with mean µ ∈ R and variance σ2, and by N (µ,Σ) the

multivariate normal distribution with mean vector µ and covariance matrix Σ. The identity matrix
of size d is denoted by Id. We use Unif(A) to denote the uniform distribution on the support set A.
We use standard asymptotic notation O(·) and Ω(·) to hide constant factors, and Õ(·), Ω̃(·) to hide
logarithmic factors.

3.1 DATA DISTRIBUTION

Following Vardi et al. (2022); Frei et al. (2024), we consider binary classification on the following
data distribution with multiple clusters.

Definition 3.1 (Multi-Cluster Data Distribution). Given k vectors µ1, . . . ,µk ∈ Rd, called the cluster
features, and a partition of [k] into two disjoint sets J± = (J+, J−), we define D({µj}kj=1, J±) as a
data distribution on Rd × {−1, 1}, where each data point (x, y) is generated as follows:

1. Draw a cluster index as j ∼ Unif([k]);

2. Set y = +1 if j ∈ J+; otherwise j ∈ J− and set y = −1;

3. Draw x := µj + ξ, where ξ ∼ N (0, Id).

For convenience, we write D instead of D({µj}kj=1, J±) if {µj}kj=1 and J± are clear from the
context. For s ∈ {±1}, we write Js to denote J+ if s = +1 and J− if s = −1.

To ease the analysis, we make the following simplifying assumptions on the distribution.

Assumption 3.2 (Orthogonal Equinorm Cluster Features). The cluster features {µj}kj=1 satisfy the
properties that (1) ∥µj∥ =

√
d for all j ∈ [k]; and (2) µi ⊥ µj for all 1 ≤ i < j ≤ k.

Assumption 3.3 (Nearly Balanced Classification). The partition J± satisfies c−1 ≤ |J+|
|J−| ≤ c for

some absolute constant c ≥ 1.

Our data distribution is similar to that in Vardi et al. (2022) and Frei et al. (2024). In particular, Vardi
et al. (2022) consider a setting where data are comprised of k nearly orthogonal data points in Rd.
This assumption is further relaxed in Frei et al. (2024), where they assume k clusters with nearly
orthogonal cluster means {µi}ki=1 (i.e., they have that |⟨µi,µj⟩|

∥µi∥∥µj∥ = O
(
1
k

)
holds for all i ̸= j). For

simplicity, we focus on the exactly orthogonal cluster setting in our work.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

3.2 NEURAL NETWORK LEARNER

A training dataset S := {(xi, yi)}ni=1 ⊆ Rd × {−1, 1} of size n is randomly sampled from the data
distribution D({µj}kj=1, J±) and is used to train a two-layer neural network.

Network Architecture. We focus on learning two-layer ReLU networks. Such networks are usually
defined as fθ(x) :=

∑M
j=1 aj ReLU(⟨wj ,x⟩+ bj), where θ :=

(
{aj}Mj=1, {wj}Mj=1, {bj}Mj=1

)
are

the parameters of the network, and ReLU(·) is the ReLU activation function defined as ReLU(z) =
max(0, z).

For the sake of simplicity, we consider the case where M = 2m is even and fix the second layer as
aj = 1

m for 1 ≤ j ≤ m and aj = − 1
m for m+ 1 ≤ j ≤ 2m, which is a widely adopted setting in

the literature of feature learning theory (Allen-Zhu & Li, 2022; Cao et al., 2022; Kou et al., 2023a).
With this simplification, we focus on training only the first layer ({wj}Mj=1, {bj}Mj=1) and rewrite the
network as

fθ(x) :=
1

m

∑
r∈[m]

ReLU(⟨w+1,r,x⟩+ b+1,r)−
1

m

∑
r∈[m]

ReLU(⟨w−1,r,x⟩+ b−1,r),

where θ = ({w+1,r}mr=1, {b+1,r}mr=1, {w−1,r}mr=1, {b−1,r}mr=1) are the trainable parameters, and
w+1,r and b+1,r correspond to the neurons with ar = 1

m , while w−1,r and b−1,r correspond to the
neurons with ar = − 1

m .

Training Objective and Gradient Descent. The neural network fθ(·) is trained to minimize the
following empirical loss on the training dataset S: L(θ) := 1

n

∑n
i=1 ℓ (yifθ (xi)), where ℓ(q) :=

log(1 + e−q) is the logistic loss. We apply gradient descent to minimize this loss:

θ(t+1) = θ(t) − η∇L(θ(t)), (1)

where θ(t) denotes the parameters at t-th iteration for all t ≥ 0, and η > 0 is the learning rate.
We specify the derivative of ReLU activation as ReLU′(z) = 1(z ≥ 0) in backpropagation. At
initialization, we set w(0)

s,r ∼ N (0, σ2
wId) and b

(0)
s,r ∼ N (0, σ2

b) for some σw, σb > 0.

Clean Accuracy and Robust Accuracy. For a given data distribution D over Rd × {−1, 1}, the
clean accuracy of a neural network fθ : Rd → R on D is defined as

AccDclean(fθ) := P(x,y)∼D [sgn(fθ(x)) = y] .

In this work, we focus on the ℓ2-robustness. The ℓ2 δ-robust accuracy of fθ on D is defined as

AccDrobust(fθ; δ) := P(x,y)∼D [∀ρ ∈ Bδ : sgn(fθ(x+ ρ)) = y] ,

where Bδ := {ρ ∈ Rd : ∥ρ∥ ≤ δ} is the ℓ2-ball centered at the origin with radius δ. We say that a
neural network fθ is δ-robust if AccDrobust(fθ; δ) ≥ 1− ϵ(d) for some function ϵ(d) that vanishes to
zero, i.e., ϵ(d) → 0 as d → ∞.

Robust Networks Exist. In a very similar setting to ours, Frei et al. (2024) show that there exists a
two-layer ReLU network that can achieve nearly 100% clean accuracy and Ω(

√
d)-robust accuracy

on their data distribution. In our setting, we can also construct a similar network that achieves nearly
100% clean accuracy and Ω(

√
d)-robust accuracy. In particular, such network utilizes one hidden

neuron to capture one feature/cluster (i.e., the neural is activated only if the input point is from
the corresponding cluster). See Theorem G.3 in Appendix G.2 for the details and Figure 1 for an
illustration. However, we will soon show that, despite such Ω(

√
d)-robust network exists, gradient

descent is incapable of learning such a robust network, but instead converges to a very different
solution with a robust radius that is Θ(

√
k) times smaller.

4 MAIN RESULTS

In this section, we present our main technical results. In Subsection 4.1, we first present the main result
(Theorem 4.5) regarding feature averaging, that is standard gradient descent training finds feature

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

𝜇1 𝜇2
𝜇3

𝜇4 𝜇5

𝑂
𝑓𝐹𝐴 ≔ 3𝑅𝑒𝐿𝑈(𝜇+, 𝑥) − 2𝑅𝑒𝐿𝑈(𝜇−, 𝑥)

𝑓𝐹𝐷: = 𝑓1 + 𝑓2 + 𝑓3 − 𝑓4 − 𝑓5,

𝑓𝑗 𝑥 : = 𝑅𝑒𝐿𝑈 𝜇𝑗 , 𝑥 + 𝑏𝑗 , 𝑗 ∈ [5]

𝐽+ = 1,2,3 , 𝐽− = 4,5 , 𝑘 = 5,
𝜇+ ≔ (𝜇1+ 𝜇2 + 𝜇3)/3,

𝜇− ≔ (𝜇4 + 𝜇5)/2

𝜇+ ≔ (𝜇1 + 𝜇2 + 𝜇3)/3

𝜇− ≔ (𝜇4 + 𝜇5)/2

Figure 1: Schematic illustration of feature-averaging and feature-decoupling: We consider a
dataset with 5 clusters. The first three clusters belong to J+, and the other two to J−. Denote µ+ :=

(µ1 + µ2 + µ3)/3,µ− := (µ4 + µ5)/2. For ease of illustration, we assume that
∑5

j=1 µj = 0.
The feature-averaging classifier fFA leverages two neurons with averaged features to classify all
data, which corresponds to a linear classifier (the gray line). The feature-decoupling classifier fFD
leverages individual features and has more complex polyhedral decision boundary (green lines). Note
that the instance is high dimensional and this is only a schematic illustration. The distance between
data points and the decision boundary of fFD (green lines) is much larger than that of fFA (gray line),
which implies that the feature-decoupling classifier is more robust than the feature-averaging one.

averaging solutions for the data distribution D and such feature averaging solution is non-robust.
In Subsection 4.2, we demonstrate that if more supervisory information can be obtained (specific
cluster categories rather than just binary classification labels), we can achieve feature decoupling via
gradient descent on a similar two layer multi-class network. Consequently, we can obtain a binary
classification network with optimal robust perturbation radius (Theorem 4.7).

4.1 NETWORK LEARNER PROVABLY LEARNS FEATURE-AVERAGING SOLUTION

The prior work by Frei et al. (2024) has showed that, under certain conditions, training a two-layer
ReLU network for infinite time converges to a network that can achieve nearly 100% clean accuracy
on D but is only o(

√
d/k)-robust. A subsequent work by Min & Vidal (2024) conjectured that the

network converges to a specific form of solution, which we refer to as the feature-averaging network.
Definition 4.1 (Feature-Averaging Network). We define fFA(x) as the following function:

fFA(x) := |J+| · ReLU (⟨µ+,x⟩)− |J−| · ReLU (⟨µ−,x⟩) ,

where µ+ := 1
|J+|

∑
j∈J+

µj is the average of cluster centers in the positive class, and similarly
µ− := 1

|J−|
∑

j∈J−
µj is that for the negative class. We say that a two-layer ReLU network fθ(x) is

a feature-averaging network if fθ(x) = C · fFA(x) for some C > 0.
Remark 4.2. The feature-averaging network uses the first neuron to process all data within positive
clusters, and the second neuron negative clusters. Thus, it can correctly classify clean data. However,
it fails to robustly classify perturbed data for a radius larger than Ω(

√
d/k): in particular, consider

the attack vector ρ that aligns with the negative direction of the averaged features, i.e., ρ ∝
−
∑

j∈J+
µj +

∑
j∈J−

µj . One can easily check that with ∥ρ∥ = δ = Ω(
√

d/k), the attack is
successful, i.e., sgn(fFA(x + ρ)) ̸= sgn(fFA(x)) due to the linearity of fFA(x + ρ) over ρ. See
Appendix G.1 for the details, and see Figure 1 for an illustration.

Our first main result is a non-asymptotic analysis of the training dynamics that explicitly characterizes
the solution learned by gradient descent on distribution D after a finite number of iterations. For
theoretical analysis, we make the following assumptions about the hyper-parameters.
Assumption 4.3 (Choices of Hyper-Parameters). We assume that:

d = Ω(k10) c = Θ(1) n ∈ [Ω(k7), exp(O(log2(d)))]

m = Θ(k) η = O(d−2) σ2
b = σ2

w = O(ηk−5).

Remark 4.4 (Discussion of Hyper-Parameter Choices). We make specific choices of hyper-parameters
for the sake of calculations, and we emphasize that these may not be the tightest possible choices. In
particular, we need the data dimension d to be significantly larger than the number of clusters k to

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

ensure all k cluster features are orthogonal within Rd. We further require that the number of samples
n is a large polynomial of k to ensure that the network can learn all k cluster features. We assume
the learning rate η and the initialization magnitude σw, σb are sufficiently small, which helps the
network to be trained in the feature learning regime (Lyu et al., 2021; Cao et al., 2022; Allen-Zhu &
Li, 2023; Kou et al., 2023a).

Now, everything is ready to state the first main theorem of our paper, which characterizes the weights
of the learned network and shows that after a certain number of iterations, the network can be closely
approximated by the feature-averaging network (defined in Definition 4.1).

Theorem 4.5. In the setting of training a two-layer ReLU network on the binary classification
problem D({µj}kj=1, J±) as described in Section 3, under Assumptions 3.2, 3.3 and 4.3, for some
γ = o(1), after Ω(η−1) ≤ T ≤ exp(Õ(k1/2)) iterations, with probability at least 1− γ, the neural
network satisfies the following properties:

1. The clean accuracy is nearly perfect: AccDclean(fθ(T)) ≥ 1− exp(−Ω(log2 d)).

2. Gradient descent leads the network to the feature-averaging regime: there exists a time-
variant coefficient λ(T) ∈ [Ω(1),+∞) such that for all s ∈ {±1}, r ∈ [m], the weight
vector w(T)

s,r can be approximated as∥∥∥∥w(T)
s,r − λ(T)

∑
j∈Js

∥µj∥−2µj

∥∥∥∥ ≤ o(d−1/2)

and the bias terms are sufficiently small, i.e.,
∣∣∣b(T)

s,r

∣∣∣ ≤ o(1).

3. Consequently, the network is non-robust: for perturbation radius δ = Ω(
√

d/k), the
δ-robust accuracy is nearly zero, i.e., AccDrobust(fθ(T) ; δ) ≤ exp(−Ω(log2 d)).

We provide a proof sketch for Theorem 4.5 in Appendix C (see the full proof in Appendix E.2).
Theorem 4.5 suggests that the weight vector aligns with the average of cluster features: the direction
of the weight vector associated with a positive neuron converges to the average of positive cluster
features µ+, and that associated with a negative neuron to the average of negative cluster features
µ+. Moreover, the above feature-averaging property of learned network implies non-robustness, i.e.,
the learned network is only o(

√
d/k)-robust although an Ω(

√
d)-robust solution exists as we proved

in Section 3.

As a corollary of Theorem 4.5, we resolve the conjecture proposed in Min & Vidal (2024) in our
setting.

Theorem 4.6 (Conjecture 1 from Min & Vidal (2024)). In the setting of Theorem 4.5, we have that
infC>0 supx∈Rd:∥x∥2=

√
d |CfFA(x)− fθ(T)(x)| = o(1), where fFA(x) is the feature-averaging

network (Definition 4.1).

Under a similar orthogonal cluster data assumption, Min & Vidal (2024) conjecture that two-layer
neural network converges to the feature-averaging solution via gradient flow training with small
initialization. They empirically validate the conjecture via experiments on synthetic datasets. The-
orem 4.6 provides a rigorous proof for the conjecture, although the original conjecture is stated
under a slightly different setting from ours. In their setting, the second layer of the network is also
trainable, but we fix the second layer for simplicity. We also require certain assumptions on the
hyperparameters, which has been discussed in details in Assumption 4.3 and Remark 4.4.

4.2 FINE-GRAINED SUPERVISION IMPROVES ROBUSTNESS

We have shown that gradient descent is unable to differentiate individual cluster features, which
causes non-robustness. Hence, a natural question is what if we are provided with more fine-grained
feature level supervision, can gradient descent learn a robust solution? We show that this is indeed
possible in the case where each data point is labeled with the cluster it belongs to, rather than just a
binary label.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Fine-Grained Supervision. Following the setting in Section 3, we consider the binary classification
task with data distribution D({µj}kj=1, J±). But instead of training the model directly to predict the
binary labels, we assume that we are able to label each data point with the cluster ŷ ∈ [k] it belongs
to, and then we train a k-class classifier to predict the cluster labels. More specifically, we first sample
a training set S := {(xi, yi)}ni=1 ⊆ Rd × {±1} from D, along with the cluster labels {ỹi}ni=1 for all
data points. Then a k-class neural network classifier is trained on S̃ := {(xi, ỹi)}ni=1 ⊆ Rd × [k].

Multi-Class Network Classifier. We train the following two-layer neural network for the
k-class classification mentioned above: Fθ(x) := (f1(x), f2(x), . . . , fk(x)) ∈ Rk, where
fj(x) := 1

h

∑h
r=1 ReLU(⟨wj,r,x⟩), θ := (w1,1,w1,2, . . . ,wk,h) ∈ Rkhd are trainable weights,

and h = Θ(1). One can think {ReLU(⟨wj,r,x⟩)}j∈[k],r∈[h] as kh = Θ(k) neurons partitioned into
k groups, where the corresponding second layer weights are set in a way that the j-th group only
contributes to the j-th output fj(x) of the network. The output Fθ(x) is converted to probabilities
using the softmax function, namely pj(x) :=

exp(fj(x))∑k
i=1 exp(fi(x))

for j ∈ [k]. For predicting the binary
label for the original binary classification task on D, we take the difference of the probabilities of the
positive and negative classes, i.e., F binary

θ (x) :=
∑

j∈J+
pj(x)−

∑
j∈J−

pj(x). The clean accuracy

AccDclean(F
binary
θ) and δ-robust accuracy AccDrobust(F

binary
θ ; δ) are then defined similarly as before.

Training Objective and Gradient Descent with Fine-Grained Supervision. We train the multi-
class network Fθ(x) to minimize the cross-entropy loss LCE(θ) := − 1

n

∑n
i=1 log pỹi

(xi). Similar
to Section 3, we use gradient descent to minimize the loss function LCE(θ) with learning rate η, i.e.,
θ(t+1) = θ(t) − η∇θLCE(Fθ(t)). At initialization, we set w(0)

j,r ∼ N (0, σ2
wId) for some σw > 0.

GD Finds Robust Networks. In contrast to the feature-averaging implicit bias in our previous setting
(Theorem 4.5), the following theorem shows that with fine-grained supervision, gradient descent
converges to a neural network that learns decoupled features, i.e., the weight of each neuron is aligned
with one cluster feature.
Theorem 4.7. In the setting of training a multi-class network on the multiple classification problem
S̃ := {(xi, ỹi)}ni=1 ⊆ Rd × [k] as described in the above, under Assumptions 3.2, 3.3 and 4.3, for
some γ = o(1), after Ω(η−1k8) ≤ T ≤ exp(Õ(k1/2)) iterations, with probability at least 1− γ, the
neural network satisfies the following properties:

1. The clean accuracy is nearly perfect: AccDclean(F
binary
θ(T)) ≥ 1− exp(−Ω(log2 d)).

2. The network converges to the feature-decoupling regime: there exists a time-variant coeffi-
cient λ(T) ∈ [Ω(log k),+∞) such that for all j ∈ [k], r ∈ [h], the weight vector w(T)

j,r can
be approximated as ∥∥∥∥w(T)

j,r − λ(T)∥µj∥−2µj

∥∥∥∥ ≤ o(d−1/2).

3. Consequently, the corresponding binary classifier achieves optimal robustness: for
perturbation radius δ = O(

√
d), the δ-robust accuracy is also nearly perfect, i.e.,

AccDrobust(F
binary
θ(T) ; δ) ≥ 1− exp(−Ω(log2 d)).

The detailed proof can be found in Appendix F.3. Theorem 4.7 manifests that the multi-class network
learns the decoupled features, and the induced binary classifier achieves optimal robustness. See
Figure 1 for an illustration. Instead of leveraging the bias term to filter out cluster noise as the
feature-decoupling classifier fFD that we illustrated in Figure 1 and Theorem G.3, the soft-max
operator of F binary

θ plays a similar role here.

It can be easily verified that F binary
θ(T) achieves optimal robustness radius (up to constant factor) since

the distance between distinct cluster centers is at most Θ(
√
d) (i.e. ∥µi − µj∥ = Θ(

√
d),∀i ̸= j).

Convergence to Robust Networks Requires Implicit Bias. In fact, adding more fine-grained
supervision signals does not trivially lead to decoupled features and robustness, since the above
network found by gradient descent is not the only solution that can achieve 100% clean accuracy.
As a counterexample, we show that there exists a multi-class network that achieves perfect clean
accuracy but is not Ω(

√
d/k)-robust, which is formally given in the following proposition.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

w1w2w3w4w5w6w7w8w9w10

1
2
3
4
5
6
7
8
9

10
0.0

0.1

0.2

0.3

0.4

(a) SynData: 2-class

w1w2w3w4w5w6w7w8w9w10

1
2
3
4
5
6
7
8
9

10 0.0

0.2

0.4

0.6

0.8

(b) SynData: 10-class

w1w2w3w4w5w6w7w8w9w10

1
2
3
4
5
6
7
8
9

10

0.0

0.1

0.2

(c) CIFAR-10: 2-class

w1w2w3w4w5w6w7w8w9w10

1
2
3
4
5
6
7
8
9

10 0.0

0.2

0.4

0.6

(d) CIFAR-10: 10-class

Figure 2: Illustration of feature averaging and feature decoupling on synthetic dataset (a,b) and
CIFAR-10 dataset (c,d). Figure (a) and Figure (c) correspond to models trained using 2-class labels,
and Figure (b) and Figure (d) correspond to models trained using 10-class labels, respectively. Each
element in the matrix, located at position (i, j), represents the average cosine value of the angle
between the feature vector µi of the i-th feature and the equivalent weight vector wj of the fj(·).

Proposition 4.8. Consider the following multi-class network Fθ̃: for all j ∈ [k], the sub-network
fj has only single neuron (h = 1) and is defined as fj(x) = ReLU

(〈
µj +

∑
l∈Js

µl,x
〉)

, where
cluster j has binary label s ∈ {±1}. With probability at least 1 − exp(−Ω(log2 d)) over S̃,
we have that LCE(θ̃) ≤ exp(−Ω(d)) = o(1), where θ̃ denotes the weights of Fθ̃. Moreover,
AccDclean(F

binary

θ̃
) ≥ 1− exp(−Ω(log2 d)), AccDrobust(F

binary

θ̃
; Ω(
√
d/k)) ≤ exp(−Ω(log2 d)).

5 EXPERIMENTS

5.1 FEATURE AVERAGING AND FEATURE DECOUPLING

To validate our theoretical results about feature averaging and feature decoupling, we conduct
experiments on the synthetic dataset as we mentioned in Section 3 and the CIFAR-10 dataset,
described as follows:

• Synthetic Dataset. We generate the synthetic data following the data distribution in Section
3. Specifically, we choose the hyper-parameters as k = 10, d = 3072,m = 5, n =
1000, α = σ = 1, η = 0.001, σw = σb = 0.00001, T = 100. For simplicity, we denote
the weights of the two-layer network as w1,w2, . . . ,w10 (where the first five weights
correspond positive neurons and the other five weights correspond negative neurons). We
also set the first five clusters as positive and the others as negative. Additionally, we provide
an ablation study for other choices of hyper-parameters (see the details in Appendix B).

• Binary Classification on CIFAR-10. We create a binary classification task from the CIFAR-
10 dataset by merging the first five classes into one class and the other five classes into
the other class. We used the normal 10-class classification on the CIFAR-10 dataset as the
10-class task.

• Pre-trained Feature Extractor. We utilize a ResNet18 model pre-trained on CIFAR-10 and
replaced the model’s final layer with a two-layer ReLU neural network as described in our
theory (fixed second layer as diagonal form, i.e., fj(z) := 1

h

∑h
r=1 ReLU(⟨wj,r, z⟩),∀j ∈

[10], where z denotes the hidden representation of the penultimate layer). We only train
the last two layers. We choose the width of the first layer to be 30 (h = 3) to ensure
that the accuracy of the pre-trained model was not compromised. Then, inspired by the
theoretical study about neuron collapse (Papyan et al., 2020), we calculate the average value
of the penultimate layer output of the neural network for each class as the corresponding
feature µi of that class i ∈ [10]. For 10-classification, we use wj := 1

h

∑h
r=1 wj,r as

the equivalent weight of fj . For the 15 positive weights and 15 negative weights in the
binary classification network, we equally divide them into 5 positive classes and 5 negative
classes to ensure a fair comparison , which ensures that two models both have the same form
F := (f1, f2, . . . , f10) ∈ R10 and each sub-network fj corresponds to a weight vectors wj .

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

0 10 20 30 40 50 60

Perturbation Radius

0

20

40

60

80

100

Ro
bu

st
 Te

st
 A

cc
ur

ac
y

Synthetic Data

10
2

0.0 0.4 0.8 1.2 1.6 2.0

Perturbation Radius

20

40

60

80

100

Ro
bu

st
 Te

st
 A

cc
ur

ac
y

MNIST

10
2

0.0 0.2 0.4 0.6 0.8

Perturbation Radius
30

40

50

60

70

80

90

100

Ro
bu

st
 Te

st
 A

cc
ur

ac
y

CIFAR-10

10
2

Figure 3: Verifying robustness improvement: We compare adversarial robustness between model
trained by 2-class labels (red line) and model trained by 10-class labels (blue line) on synthetic data
(the left), MNIST (the middle) and CIFAR-10 (the right).

Experiment Results. Our theory suggests that if we train the network using binary (2-class) labels,
we obtain a feature-averaging solution, while we can obtain a feature-decoupling solution, if we train
the model using 10-class labels. The experiment results are shown in Figure 2, which demonstrates our
theoretical findings: 2-classification model learns feature-averaging solution while 10-classification
model learns the feature-decoupling solution. Concretely, Figure 2a and Figure 2c correspond to
our feature-averaging regime in Theorem 4.5, where the correlations between each weight vector of
positive (negative) neuron and all positive (negative) cluster features are nearly-equally larger than
those between each weight vector of positive (negative) neuron and all negative (positive) cluster
features; Figure 2b and Figure 2d correspond to our feature-decoupling regime in Theorem 4.7, where
the correlation matrix is nearly diagonal.

5.2 ROBUSTNESS IMPROVEMENT FROM FINE-GRAINED SUPERVISION INFORMATION

Moreover, we aim to verify whether the model trained with fine-grained supervision information (i.e.,
10-class labels) is more robust compared to the model trained with only binary (2-class) labels.

Experiment Settings. To ensure fairness in the comparison, we sum the logits corresponding to the
5 positive classes and subtracted the sum of the logits corresponding to the 5 negative classes from
the 10-class model’s output. This result is used as the binary classification output for the 10-class
model. The robust accuracy is measured by using the standard PGD attacks (Madry et al., 2018) with
different ℓ2-pertubation radius. We run experiments in the following datasets:

• Synthetic Dataset. We generate synthetic data as the same as that in Section 5.1.

• Binary Classification on MNIST and CIFAR-10. To further verify our theory in deep
neural networks, on both MNIST and CIFAR-10 datasets, we train ResNet18 models from
scratch with normal 10-classification labels and 2-classification labels (MNIST: parity-
classification; CIFAR-10: binary-classification as that we mentioned in Section 5.1).

Experiment Results. The results are presented in Figure 3. With the perturbation radius increasing,
we can see that the models trained with 10-class labels have higher robust test accuracy than those
trained with 2-class labels in all datasets. This collaborates with our theoretical results (Theorem 4.5
and Theorem 4.7) that the models can achieve better robustness with more supervised information.

6 CONCLUSION

This paper exposes ”Feature Averaging” as an implicit bias in gradient descent that may compromise
the robustness of deep neural networks. Theoretical insights from a two-layer ReLU network reveal a
tendency for gradient descent to average/combine individually meaningful features, which can lead
to a loss of distinct discriminative information. We demonstrate that with more detailed feature level
supervision, the networks can learn to differentiate these features, enhancing model robustness. This
is supported by empirical evidence from both synthetic and real-world data, including MNIST and
CIFAR-10. Our findings not only deepen our understanding of adversarial examples in deep learning
but also suggest that fine-grained supervision can enhance the robustness of deep neural networks
against adversarial attacks.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Zeyuan Allen-Zhu and Yuanzhi Li. Feature purification: How adversarial training performs robust
deep learning. In 2021 IEEE 62nd Annual Symposium on Foundations of Computer Science
(FOCS), pp. 977–988. IEEE, 2022.

Zeyuan Allen-Zhu and Yuanzhi Li. Towards understanding ensemble, knowledge distillation and self-
distillation in deep learning. In The Eleventh International Conference on Learning Representations,
2023.

Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning via over-
parameterization. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings of the 36th
International Conference on Machine Learning, volume 97 of Proceedings of Machine Learning
Research, pp. 242–252. PMLR, 09–15 Jun 2019a.

Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning via over-
parameterization. In International Conference on Machine Learning, pp. 242–252. PMLR, 2019b.

Sanjeev Arora, Nadav Cohen, Wei Hu, and Yuping Luo. Implicit regularization in deep matrix
factorization. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett
(eds.), Advances in Neural Information Processing Systems, volume 32. Curran Associates, Inc.,
2019a.

Sanjeev Arora, Simon Du, Wei Hu, Zhiyuan Li, and Ruosong Wang. Fine-grained analysis of
optimization and generalization for overparameterized two-layer neural networks. In International
Conference on Machine Learning, pp. 322–332. PMLR, 2019b.

Peter Bartlett, Sébastien Bubeck, and Yeshwanth Cherapanamjeri. Adversarial examples in multi-
layer random relu networks. Advances in Neural Information Processing Systems, 34:9241–9252,
2021.

Battista Biggio, Igino Corona, Davide Maiorca, Blaine Nelson, Nedim Šrndić, Pavel Laskov, Giorgio
Giacinto, and Fabio Roli. Evasion attacks against machine learning at test time. In Machine
Learning and Knowledge Discovery in Databases: European Conference, ECML PKDD 2013,
Prague, Czech Republic, September 23-27, 2013, Proceedings, Part III 13, pp. 387–402. Springer,
2013.

Guy Blanc, Neha Gupta, Gregory Valiant, and Paul Valiant. Implicit regularization for deep neural
networks driven by an Ornstein-Uhlenbeck like process. In Jacob Abernethy and Shivani Agarwal
(eds.), Proceedings of Thirty Third Conference on Learning Theory, volume 125 of Proceedings of
Machine Learning Research, pp. 483–513. PMLR, 09–12 Jul 2020.

Sébastien Bubeck and Mark Sellke. A universal law of robustness via isoperimetry. Advances in
Neural Information Processing Systems, 34:28811–28822, 2021.

Sébastien Bubeck, Yeshwanth Cherapanamjeri, Gauthier Gidel, and Remi Tachet des Combes. A
single gradient step finds adversarial examples on random two-layers neural networks. Advances
in Neural Information Processing Systems, 34:10081–10091, 2021a.

Sébastien Bubeck, Yuanzhi Li, and Dheeraj M Nagaraj. A law of robustness for two-layers neural
networks. In Conference on Learning Theory, pp. 804–820. PMLR, 2021b.

Yuan Cao and Quanquan Gu. Generalization bounds of stochastic gradient descent for wide and
deep neural networks. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox,
and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 32. Curran
Associates, Inc., 2019.

Yuan Cao, Zixiang Chen, Misha Belkin, and Quanquan Gu. Benign overfitting in two-layer convo-
lutional neural networks. Advances in neural information processing systems, 35:25237–25250,
2022.

Niladri S Chatterji and Philip M Long. Finite-sample analysis of interpolating linear classifiers in the
overparameterized regime. Journal of Machine Learning Research, 22(129):1–30, 2021.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Zixiang Chen, Yihe Deng, Yue Wu, Quanquan Gu, and Yuanzhi Li. Towards understanding the
mixture-of-experts layer in deep learning. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and
Kyunghyun Cho (eds.), Advances in Neural Information Processing Systems, 2022.

Muthu Chidambaram, Xiang Wang, Chenwei Wu, and Rong Ge. Provably learning diverse features
in multi-view data with midpoint mixup. In International Conference on Machine Learning, pp.
5563–5599. PMLR, 2023.

Lénaı̈c Chizat, Edouard Oyallon, and Francis Bach. On lazy training in differentiable programming.
In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (eds.),
Advances in Neural Information Processing Systems, volume 32. Curran Associates, Inc., 2019.

Alex Damian, Tengyu Ma, and Jason D Lee. Label noise SGD provably prefers flat global minimizers.
In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.), Advances
in Neural Information Processing Systems, volume 34, pp. 27449–27461. Curran Associates, Inc.,
2021.

Amit Daniely and Hadas Shacham. Most relu networks suffer from \ellˆ2 adversarial perturbations.
Advances in Neural Information Processing Systems, 33:6629–6636, 2020.

Simon Du, Jason Lee, Haochuan Li, Liwei Wang, and Xiyu Zhai. Gradient descent finds global
minima of deep neural networks. In International conference on machine learning, pp. 1675–1685.
PMLR, 2019a.

Simon S. Du, Xiyu Zhai, Barnabas Poczos, and Aarti Singh. Gradient descent provably optimizes
over-parameterized neural networks. In International Conference on Learning Representations,
2019b.

Logan Engstrom, Justin Gilmer, Gabriel Goh, Dan Hendrycks, Andrew Ilyas, Aleksander Madry,
Reiichiro Nakano, Preetum Nakkiran, Shibani Santurkar, Brandon Tran, Dimitris Tsipras, and Eric
Wallace. A discussion of ’adversarial examples are not bugs, they are features’. Distill, 2019. doi:
10.23915/distill.00019. https://distill.pub/2019/advex-bugs-discussion.

Spencer Frei, Niladri S Chatterji, and Peter Bartlett. Benign overfitting without linearity: Neural
network classifiers trained by gradient descent for noisy linear data. In Conference on Learning
Theory, pp. 2668–2703. PMLR, 2022.

Spencer Frei, Gal Vardi, Peter Bartlett, and Nati Srebro. The double-edged sword of implicit bias:
Generalization vs. robustness in relu networks. Advances in Neural Information Processing
Systems, 36, 2024.

Yossi Gandelsman, Alexei A Efros, and Jacob Steinhardt. Interpreting the second-order effects of
neurons in clip. arXiv preprint arXiv:2406.04341, 2024.

Justin Gilmer, Luke Metz, Fartash Faghri, Samuel S Schoenholz, Maithra Raghu, Martin Wattenberg,
and Ian Goodfellow. Adversarial spheres. arXiv preprint arXiv:1801.02774, 2018.

Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. arXiv preprint arXiv:1412.6572, 2014.

Xinran Gu, Kaifeng Lyu, Longbo Huang, and Sanjeev Arora. Why (and when) does local SGD gen-
eralize better than SGD? In The Eleventh International Conference on Learning Representations,
2023.

Suriya Gunasekar, Blake E Woodworth, Srinadh Bhojanapalli, Behnam Neyshabur, and Nati Srebro.
Implicit regularization in matrix factorization. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Advances in Neural Information Processing
Systems, volume 30. Curran Associates, Inc., 2017.

Suriya Gunasekar, Jason Lee, Daniel Soudry, and Nathan Srebro. Characterizing implicit bias in
terms of optimization geometry. In Jennifer Dy and Andreas Krause (eds.), Proceedings of the 35th
International Conference on Machine Learning, volume 80 of Proceedings of Machine Learning
Research, pp. 1832–1841. PMLR, 10–15 Jul 2018.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Jeff Z HaoChen, Colin Wei, Jason Lee, and Tengyu Ma. Shape matters: Understanding the implicit
bias of the noise covariance. In Conference on Learning Theory, pp. 2315–2357. PMLR, 2021.

Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Logan Engstrom, Brandon Tran, and Aleksander
Madry. Adversarial examples are not bugs, they are features. Advances in neural information
processing systems, 32, 2019.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and
generalization in neural networks. Advances in neural information processing systems, 31, 2018.

Ziwei Ji and Matus Telgarsky. Directional convergence and alignment in deep learning. Advances in
Neural Information Processing Systems, 33:17176–17186, 2020a.

Ziwei Ji and Matus Telgarsky. Polylogarithmic width suffices for gradient descent to achieve
arbitrarily small test error with shallow relu networks. In International Conference on Learning
Representations, 2020b.

Yiwen Kou, Zixiang Chen, Yuanzhou Chen, and Quanquan Gu. Benign overfitting in two-layer relu
convolutional neural networks. In International Conference on Machine Learning, pp. 17615–
17659. PMLR, 2023a.

Yiwen Kou, Zixiang Chen, and Quanquan Gu. Implicit bias of gradient descent for two-layer reLU
and leaky reLU networks on nearly-orthogonal data. In Thirty-seventh Conference on Neural
Information Processing Systems, 2023b.

Soichiro Kumano, Hiroshi Kera, and Toshihiko Yamasaki. Theoretical understanding of learning from
adversarial perturbations. In The Twelfth International Conference on Learning Representations,
2024.

Beatrice Laurent and Pascal Massart. Adaptive estimation of a quadratic functional by model selection.
Annals of statistics, pp. 1302–1338, 2000.

Binghui Li and Yuanzhi Li. Why clean generalization and robust overfitting both happen in adversarial
training. arXiv preprint arXiv:2306.01271, 2023.

Binghui Li, Jikai Jin, Han Zhong, John Hopcroft, and Liwei Wang. Why robust generalization in deep
learning is difficult: Perspective of expressive power. Advances in Neural Information Processing
Systems, 35:4370–4384, 2022a.

Zhiyuan Li, Tianhao Wang, and Sanjeev Arora. What happens after SGD reaches zero loss? –a
mathematical framework. In International Conference on Learning Representations, 2022b.

Kaifeng Lyu and Jian Li. Gradient descent maximizes the margin of homogeneous neural networks.
In International Conference on Learning Representations, 2020.

Kaifeng Lyu, Zhiyuan Li, Runzhe Wang, and Sanjeev Arora. Gradient descent on two-layer nets:
Margin maximization and simplicity bias. Advances in Neural Information Processing Systems,
34:12978–12991, 2021.

Kaifeng Lyu, Zhiyuan Li, and Sanjeev Arora. Understanding the generalization benefit of normaliza-
tion layers: Sharpness reduction. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and
A. Oh (eds.), Advances in Neural Information Processing Systems, volume 35, pp. 34689–34708.
Curran Associates, Inc., 2022.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. In International Conference on
Learning Representations, 2018.

Hancheng Min and Rene Vidal. Can implicit bias imply adversarial robustness? In Forty-first
International Conference on Machine Learning, 2024.

Andrea Montanari and Yuchen Wu. Adversarial examples in random neural networks with general
activations. Mathematical Statistics and Learning, 6(1):143–200, 2023.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Mor Shpigel Nacson, Suriya Gunasekar, Jason Lee, Nathan Srebro, and Daniel Soudry. Lexicographic
and depth-sensitive margins in homogeneous and non-homogeneous deep models. In Kamalika
Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings of the 36th International Conference
on Machine Learning, volume 97 of Proceedings of Machine Learning Research, pp. 4683–4692.
PMLR, 09–15 Jun 2019.

Tianyu Pang, Min Lin, Xiao Yang, Jun Zhu, and Shuicheng Yan. Robustness and accuracy could
be reconcilable by (proper) definition. In International Conference on Machine Learning, pp.
17258–17277. PMLR, 2022.

Vardan Papyan, XY Han, and David L Donoho. Prevalence of neural collapse during the terminal
phase of deep learning training. Proceedings of the National Academy of Sciences, 117(40):
24652–24663, 2020.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever.
Learning transferable visual models from natural language supervision. In Marina Meila and Tong
Zhang (eds.), Proceedings of the 38th International Conference on Machine Learning, volume 139
of Proceedings of Machine Learning Research, pp. 8748–8763. PMLR, 18–24 Jul 2021.

Ali Shafahi, Mahyar Najibi, Mohammad Amin Ghiasi, Zheng Xu, John Dickerson, Christoph Studer,
Larry S Davis, Gavin Taylor, and Tom Goldstein. Adversarial training for free! Advances in
Neural Information Processing Systems, 32, 2019.

Harshay Shah, Kaustav Tamuly, Aditi Raghunathan, Prateek Jain, and Praneeth Netrapalli. The
pitfalls of simplicity bias in neural networks. Advances in Neural Information Processing Systems,
33:9573–9585, 2020.

Adi Shamir, Odelia Melamed, and Oriel BenShmuel. The dimpled manifold model of adversarial
examples in machine learning. arXiv preprint arXiv:2106.10151, 2021.

Berfin Simsek, Amire Bendjeddou, Wulfram Gerstner, and Johanni Brea. Should under-parameterized
student networks copy or average teacher weights? In Thirty-seventh Conference on Neural
Information Processing Systems, 2023.

Daniel Soudry, Elad Hoffer, Mor Shpigel Nacson, Suriya Gunasekar, and Nathan Srebro. The implicit
bias of gradient descent on separable data. The Journal of Machine Learning Research, 19(1):
2822–2878, 2018.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow,
and Rob Fergus. Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199, 2013.

Nikolaos Tsilivis and Julia Kempe. What can the neural tangent kernel tell us about adversarial
robustness? Advances in Neural Information Processing Systems, 35:18116–18130, 2022.

Dimitris Tsipras, Shibani Santurkar, Logan Engstrom, Alexander Turner, and Aleksander Madry. Ro-
bustness may be at odds with accuracy. In International Conference on Learning Representations,
2019.

Gal Vardi, Gilad Yehudai, and Ohad Shamir. Gradient methods provably converge to non-robust
networks. Advances in Neural Information Processing Systems, 35:20921–20932, 2022.

Zixin Wen and Yuanzhi Li. Toward understanding the feature learning process of self-supervised
contrastive learning. In International Conference on Machine Learning, pp. 11112–11122. PMLR,
2021.

Zhi-Qin John Xu, Yaoyu Zhang, Tao Luo, Yanyang Xiao, and Zheng Ma. Frequency principle:
Fourier analysis sheds light on deep neural networks. arXiv preprint arXiv:1901.06523, 2019.

Zhi-Qin John Xu, Yaoyu Zhang, and Tao Luo. Overview frequency principle/spectral bias in deep
learning. Communications on Applied Mathematics and Computation, pp. 1–38, 2024.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Hongyang Zhang, Yaodong Yu, Jiantao Jiao, Eric Xing, Laurent El Ghaoui, and Michael Jordan.
Theoretically principled trade-off between robustness and accuracy. In International conference on
machine learning, pp. 7472–7482. PMLR, 2019.

Hanxu Zhou, Qixuan Zhou, Tao Luo, Yaoyu Zhang, and Zhi-Qin John Xu. Towards understanding
the condensation of neural networks at initial training. In Alice H. Oh, Alekh Agarwal, Danielle
Belgrave, and Kyunghyun Cho (eds.), Advances in Neural Information Processing Systems, 2022.

Difan Zou, Yuan Cao, Dongruo Zhou, and Quanquan Gu. Gradient descent optimizes over-
parameterized deep ReLU networks. Machine learning, 109:467–492, 2020.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

CONTENTS

1 Introduction 1

2 Related Work 3

3 Problem Setup 4

3.1 Data Distribution . 4

3.2 Neural Network Learner . 5

4 Main Results 5

4.1 Network Learner Provably Learns Feature-Averaging Solution 6

4.2 Fine-Grained Supervision Improves Robustness 7

5 Experiments 9

5.1 Feature Averaging and Feature Decoupling . 9

5.2 Robustness Improvement From Fine-Grained Supervision Information 10

6 Conclusion 10

A Connections of Our Results with Other Explanations of Adversarial Examples 18

B Additional Synthetic Experiments 19

B.1 Ablation Study on Synthetic Datasets . 19

B.2 Adversarial Training on Synthetic Datasets . 19

C Analysis of Training Dynamics for Feature-Averaging Regime 23

C.1 Deriving Dynamics of Coefficients From Gradient Descent 23

C.2 Two Key Techniques about Loss Derivative and Activation Region 24

C.3 Proof Sketch of Theorem C.2 . 25

D Preliminary Properties 27

D.1 Detailed Data Model and Assumptions . 27

D.2 Useful Properties of the Training Dataset . 28

D.3 Useful Properties of the Network Initialization . 30

E Proof for Section 4: Feature-Averaging Regime 35

E.1 Analysis of Training Dynamics . 35

E.2 Proof of Theorem 4.5 . 50

E.3 Proof of Theorem 4.6 . 54

F Proof for Section 4: Feature-Decoupling Regime 56

F.1 Propositions of Network Initialization . 56

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

F.2 Analysis of Training Dynamics . 57

F.3 Proof of Theorem 4.7 . 64

G Two Feature Learning Regimes: Feature Averaging and Feature Decoupling 68

G.1 Feature-Averaging Two-Layer Neural Network 68

G.2 Robust Two-Layer Neural Network Exists . 69

G.3 Non-Robust Multi-Class Network Exists . 69

H Additional Real-World Experiments 71

H.1 Empirical Verification of Feature Learning Process 71

H.2 Infinity-Norm Case . 71

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

A CONNECTIONS OF OUR RESULTS WITH OTHER EXPLANATIONS OF
ADVERSARIAL EXAMPLES

(1) Approximate Linearity of the Model: Earlier hypothesis about the origin of adversarial examples
(e.g., Goodfellow et al. (2014)) had proposed the idea that the existence of adversarial examples is
related to the fact the model fθ(x) is approximately linear. Subsequently, there is a sequence of
theoretical studies showing that adversarial examples exists abundantly in the input space for neural
networks with random weights (without training) and a main insight is that such random networks
is approximately linear and with high probability an input point is close to the decision boundary
(by isoperimetry argument) (see e.g., (Gilmer et al., 2018; Bubeck et al., 2021a; Bartlett et al., 2021;
Montanari & Wu, 2023) . Our Theorem 4.5 proves similar approximate linearity (see details in
the proof intuition of Theorem G.2) 1 and show it leads to adversarial examples for trained neural
network (albeit with different data distribution from the aforementioned work). Our result is also
related to the dimpled manifold hypothesis (Shamir et al., 2021), which proposed that during training
neural network first finds a simple decision boundary that is close to most training points.

(2) Non-robust Features: Another appealing point of view was developed in Ilyas et al. (2019), which
proposed that adversarial examples are related to the presence of non-robust features. They showed
empirically that neural networks learn both robust and non-robust features that are useful to classify
clean images. In image classification tasks, Ilyas et al. (2019), Engstrom et al. (2019) and Tsilivis
& Kempe (2022) visualized both robust and nonrobust features. While robust features are more
perceptually meaningful for human, nonrobust features resemble noise and artifacts. Interestingly,
they showed that nonrobust feature can be leveraged to construct adverserial examples for DNN. Our
paper presents a theoretical setting in which neural networks provably learn non-robust features (due
to feature averaging), despite the existence of more robust features. Moreover, we prove that the
learnt non-robust feature (µ+ or µ−) can be utilized to attack the feature-averaging network.

(3) Relation to the Lower Bound Examples in Li et al. (2022a): From the perspective of expressivity,
Li et al. (2022a) constructed a lower bound example (see an illustration in Figure 4), for which there
is non-robust linear classifier, but the set of robust solutions requires a hypothesis class of a much
larger (in fact exponentially large) VC-dimension. This partially explains why neural networks are
non-robust (unless they are exponentially large). The construction of our data distribution (as well as
that in (Vardi et al., 2022; Frei et al., 2024)) echoes the essence of this lower bound example in spirit,
and our results can be seen as an explanation from the perspective of optimization.

(4) Relation to Frequency Bias in Xu et al. (2019) and Xu et al. (2024): These works refer to the
phenomena that deep neural networks generally learn lower-frequency features first, and then the
higher-frequency ones. This can be seen as a particular form of simplicity bias. The feature averaging
bias studied is also a form of simplicity bias: under our theoretical setup, the simplicity refers to the
linear combination of cluster features, and it is closely related to the approximate linearity of the
decision boundary, as discussed in (1). Hence, both studies assert that neural networks tend to favor
simplicity during the initial stages of training, sharing a similar underlying spirit.

(5) Relation to Superposition in Gandelsman et al. (2024): We would like to mention that similar
“averaging” or “superposition” effects also observed in the work of Gandelsman et al. (2024). In
particular, the authors observe that in CLIP models each neuron may encode several distinct and
unrelated concepts, and they leveraged such effect to construct ”semantic” adversarial examples. See
Figure 1 in Gandelsman et al. (2024) for details.

1Think of the special case that the weight vector corresponding to each neuron is exactly the average of
the cluster means (µ+ := 1

|J+|
∑

j∈J+
µj or µ− := 1

|J−|
∑

j∈J−
µj) and

∑k
j=1 µj = 0. In this case, the

two-layer network reduces to a simple linear model w.r.t. the perturbation.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Figure 4: A schematic illustration of the construction in Li et al. (2022a): The positive class
consists of blue points and the negative class the red points. In their lower bound, there are in fact
exponentially blue points slightly above the hyperplane and exponentially many red ones slightly
below it. The hyperplane has perfect clean accuracy but is non-robust, while a more robust classifier
exists (by classifying the blue balls from the red balls). One can observe the conceptual similarity
with Figure 1.

B ADDITIONAL SYNTHETIC EXPERIMENTS

B.1 ABLATION STUDY ON SYNTHETIC DATASETS

We conducted several additional experiments on synthetic datasets, as an ablation study for choices
of hyper-parameters. The goal is to show that feature averaging happens in different settings.

Baseline Setting. We choose the hyper-parameters as k = 10, d = 3072,m = 5, n = 1000, α =
σ = 1, η = 0.001, σw = σb = 0.00001, T = 100. We denote the weights of the two-layer network
as w1,w2, . . . ,w10 (where the first five weights correspond positive neurons and the other five
weights correspond negative neurons). We also set that the first five clusters are positive and the
others are negative. Each element in the matrix, located at position (i, j), represents the average
cosine value of the angle between the feature vector µi and the weight vector wj . The experiment
result under baseline setting is presented as Figure 5 (a), Figure 6 (b), Figure 7 (c) and Figure 8 (b).

Effect of the number of samples. We vary the number of samples as n = 1000, 10000, 50000. See
results in Figure 5. It shows that feature-averaging can not be mitigated via more training data.

Effect of the learning rate. We vary the learning rate as η = 0.01, 0.001, 0.0001. See results in
Figure 6. It shows that the assumption about small learning rate is necessary for feature averaging.

Effect of the initialization magnitude. We vary the initialization magnitude as σw = σb =
0.001, 0.0001, 0.00001. See results in Figure 7. It shows that the assumption about small initialization
is necessary for feature averaging.

Effect of the signal-to-noise ratio. We vary the signal-to-noise ratio as SNR := α/σ = 0.5, 1, 2.
See results in Figure 8. It shows that our results can also apply to SNR = Θ(1) case.

Effect of the orthogonal condition. We vary the cosine value of the angle between different cluster
center features as cos(µi,µj) = 0.00001, 0.001, 0.09,∀i ̸= j. See results in Figure 9. It shows that
the exact orthogonal condition can be relaxed to a nearly orthogonal setting, under which feature
averaging still happens.

Effect of the equinorm condition. We vary the minimal and maximal norms of cluster centers
as mini ∥µi∥/maxi ∥µ∥ = 1.0/1.0, 0.8/1.2, 0.6/1.4 (from the smallest norm to the largest norm,
an arithmetic progression is formed). See results in Figure 10. It shows that the exact equinorm
condition can be relaxed to general non-equinorm setting, where feature averaging still occurs.

B.2 ADVERSARIAL TRAINING ON SYNTHETIC DATASETS

To investigate the relationship between our theoretical results and adversarial training, we conducted
the following experiments on synthetic data.

Experiment Settings. We employ hyper-parameters that are largely consistent with the baseline
settings: k = 10, d = 3072, m = 50, n = 1000, α = σ = 1, η = 0.001, σw = σb = 0.00001,
and T = 100. The only modification is increasing the network width m, as adversarial training
requires a wider network for optimal performance. We utilize PGD-based adversarial training. During
adversarial training, we need to select the ℓ2 radius for adversarial attacks. Through experiment, we

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

find that training with an attack radius of 40 achieved the best robustness. We visualize the weights
and feature correlations of the network trained with this radius using the same methods.

Additionally, we compare the robustness of the network obtained via adversarial training with that of
networks trained using binary and 10-class labels. To illustrate the effect of different attack radii on
the robustness of networks trained with adversarial Training, we include results for a network trained
with an attack radius of 20 in the robustness experiments.

Experiment Results. See experiment results in Figure 11. The results indicate that networks trained
with adversarial training do exhibit a tendency to learn feature decoupling solutions. However, the
degree of decoupling is less pronounced compared to networks trained with fine-grained supervision.
In terms of robustness, adversarial training does provide significant improvements, but it remains
slightly inferior to the robustness achieved through fine-grained supervision.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

w1 w2 w3 w4 w5 w6 w7 w8 w9 w10

1

2

3

4

5

6

7

8

9

10

n=1000

0.0

0.1

0.2

0.3

0.4

(a) n = 1000

w1 w2 w3 w4 w5 w6 w7 w8 w9 w10

1

2

3

4

5

6

7

8

9

10

n=10000

0.0

0.1

0.2

0.3

0.4

(b) n = 10000

w1 w2 w3 w4 w5 w6 w7 w8 w9 w10

1

2

3

4

5

6

7

8

9

10

n=50000

0.0

0.1

0.2

0.3

0.4

(c) n = 50000

Figure 5: Illustration of feature averaging on synthetic dataset, when varying the number of samples
n.

w1 w2 w3 w4 w5 w6 w7 w8 w9 w10

1

2

3

4

5

6

7

8

9

10

= 0.01

0.2

0.0

0.2

0.4

(a) η = 0.01

w1 w2 w3 w4 w5 w6 w7 w8 w9 w10

1

2

3

4

5

6

7

8

9

10

= 0.001

0.0

0.1

0.2

0.3

0.4

(b) η = 0.001

w1 w2 w3 w4 w5 w6 w7 w8 w9 w10

1

2

3

4

5

6

7

8

9

10

= 0.0001

0.0

0.1

0.2

0.3

0.4

(c) η = 0.0001

Figure 6: Illustration of feature averaging on synthetic dataset, when varying learning rate η.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

w1 w2 w3 w4 w5 w6 w7 w8 w9 w10

1

2

3

4

5

6

7

8

9

10

init=0.001

0.00

0.05

0.10

0.15

0.20

0.25

0.30

(a) σw = σb = 0.001

w1 w2 w3 w4 w5 w6 w7 w8 w9 w10

1

2

3

4

5

6

7

8

9

10

init=0.0001

0.0

0.1

0.2

0.3

0.4

(b) σw = σb = 0.0001

w1 w2 w3 w4 w5 w6 w7 w8 w9 w10

1

2

3

4

5

6

7

8

9

10

init=0.00001

0.0

0.1

0.2

0.3

0.4

(c) σw = σb = 0.00001

Figure 7: Illustration of feature averaging on synthetic dataset, when varying the initialization
magnitude (σ2

b , σ
2
w).

w1 w2 w3 w4 w5 w6 w7 w8 w9 w10

1

2

3

4

5

6

7

8

9

10

SNR = 0.5

0.0

0.1

0.2

0.3

0.4

0.5

(a) SNR = 0.5

w1 w2 w3 w4 w5 w6 w7 w8 w9 w10

1

2

3

4

5

6

7

8

9

10

SNR = 1

0.0

0.1

0.2

0.3

0.4

(b) SNR = 1

w1 w2 w3 w4 w5 w6 w7 w8 w9 w10

1

2

3

4

5

6

7

8

9

10

SNR = 2

0.0

0.1

0.2

0.3

0.4

(c) SNR = 2

Figure 8: Illustration of feature averaging on synthetic dataset, when varying the signal-to-noise ratio
(SNR).

w1 w2 w3 w4 w5 w6 w7 w8 w9 w10

1

2

3

4

5

6

7

8

9

10

nearly orthogonal

0.0

0.1

0.2

0.3

0.4

(a) cos(µi,µj) = 0.0001

w1 w2 w3 w4 w5 w6 w7 w8 w9 w10

1

2

3

4

5

6

7

8

9

10

nearly orthogonal

0.0

0.1

0.2

0.3

0.4

(b) cos(µi,µj) = 0.01

w1 w2 w3 w4 w5 w6 w7 w8 w9 w10

1

2

3

4

5

6

7

8

9

10

nearly orthogonal

0.0

0.1

0.2

0.3

0.4

0.5

(c) cos(µi,µj) = 0.09

Figure 9: Illustration of feature averaging on synthetic dataset, when varying the orthogonal condition.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

w1w2w3w4w5w6w7w8w9w10

1
2
3
4
5
6
7
8
9

10

min norm/max norm=1/1

0.0

0.1

0.2

0.3

0.4

(a) min/max norm = 1.0/1.0

w1w2w3w4w5w6w7w8w9w10

1
2
3
4
5
6
7
8
9

10

min norm/max norm=0.8/1.2

0.0

0.1

0.2

0.3

0.4

0.5

(b) min/max norm = 0.8/1.2

w1w2w3w4w5w6w7w8w9w10

1
2
3
4
5
6
7
8
9

10

min norm/max norm=0.6/1.4

0.0

0.1

0.2

0.3

0.4

0.5

(c) min/max norm = 0.6/1.4

Figure 10: Illustration of feature averaging on synthetic dataset, when varying the equinorm condition.

0 20 40 60 80 100
Perturbation Radius (L2)

0

20

40

60

80

100

Ro
bu

st
 Te

st
 A

cc
ur

ac
y

Synthetic Data
10
2
adv40
adv20

w1 w11 w21 w31 w41 w51 w61 w71 w81 w91

1

2

3

4

5

6

7

8

9

10

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

Figure 11: Adversarial Training on Synthetic Datasets. The left: we compare adversarial robust-
ness among model trained by 2-class labels (red line), models trained by adversarial training with
perturbation radius = 20 (purple) and = 40 (green) and model trained by 10-class labels (blue line)
on synthetic data. The right: each element in the matrix, located at position (i, j), represents the
average cosine value of the angle between the feature vector µi of the i-th feature and the equivalent
weight vector wj of the fj(·).

C ANALYSIS OF TRAINING DYNAMICS FOR FEATURE-AVERAGING REGIME

In this section, we present a proof sketch of Theorem 4.5, where we provide a detailed analysis of
training dynamics in feature-averaging regime.

C.1 DERIVING DYNAMICS OF COEFFICIENTS FROM GRADIENT DESCENT

By rigorously analyzing the gradient descent iterations, we know that each neuron is situated within a
span that encompasses the collective cluster features and the intrinsic noise of the training data points.
This span is explicitly characterized by the weight-feature correlations, which is shown as:
Lemma C.1 (Weight Decomposition). During the training dynamics, there exists the following
normalized coefficient sequences λ(t)

s,r,j and σ
(t)
s,r,i for each pair s ∈ {−1,+1}, r ∈ [m], j ∈ [k], i ∈

[n] such that
w(t)

s,r = w(0)
s,r +

∑
j∈[k]

λ
(t)
s,r,j∥µj∥−2µj +

∑
i∈[n]

σ
(t)
s,r,i∥ξi∥

−2ξi.

Then, we give the restatement of Theorem 4.5 as follows.
Theorem C.2 (Restatement of Theorem 4.5). In the setting of training a two-layer ReLU network on
the binary classification problem D({µj}kj=1, J±) as described in Section 3, under Assumptions 3.2,
3.3 and 4.3, for some γ = o(1), after Ω(η−1) ≤ T ≤ exp(Õ(k1/2)) iterations, with probability at
least 1− γ, the neural network satisfies the following properties:

1. The clean accuracy is nearly perfect: AccDclean(fθ(T)) ≥ 1− exp(−Ω(log2 d)).

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

2. Gradient descent leads the network to the feature-averaging regime: there exists a time-
variant coefficient λ(T) ∈ [Ω(1),+∞) such that for all s ∈ {±1}, r ∈ [m], the weight
vector w(T)

s,r can be approximated as∥∥∥∥w(T)
s,r − λ(T)

∑
j∈Js

∥µj∥−2µj

∥∥∥∥ ≤ o(d−1/2)

and the bias terms are sufficiently small, i.e.,
∣∣∣b(T)

s,r

∣∣∣ ≤ o(1).

3. Consequently, the network is non-robust: for perturbation radius δ = Ω(
√

d/k), the
δ-robust accuracy is nearly zero, i.e., AccDrobust(fθ(T) ; δ) ≤ exp(−Ω(log2 d)).

In light of Lemma C.1 and the second item of the above theorem indicates that w(t)
s,r is approximately

proportional to the average of features in Js (the coefficients from the same class are large and
approximately the same, and those from the opposite class are small).

In order to deal with the behavior of ReLU activation, we define S
(t)
s,i := {j ∈ [m] : ⟨w(t)

s,j ,xi⟩ +
b
(t)
s,j > 0}, for s ∈ {−1,+1} and i ∈ [n], denoting the set of indices of neurons in positive or negative

class (determined by s) which is activated by training data point xi at time step t. Then, we apply
Lemma C.1 to the gradient descent iteration (1), deriving the following result.

Lemma C.3 (Updates of Coefficients λ
(t)
s,r,j , σ

(t)
s,r,i). For each pair s ∈ {−1,+1}, r ∈ [m], j ∈

[k], i ∈ [N] and time t ≥ 0, we have the following update equations:

λ
(t+1)
s,r,j = λ

(t)
s,r,j −

sη

nm
·
∑
i∈Ij

ℓ
′(t)
i ∥µj∥21

(
r ∈ S

(t)
s,i

)
, (2)

σ
(t+1)
s,r,i = σ

(t)
s,r,i −

sη

nm
· ℓ′(t)i ∥ξi∥21

(
r ∈ S

(t)
s,i

)
, (3)

where ℓ
′(t)
i := ℓ′(yifθ(t)(xi)) denotes the point-wise loss derivative at point xi, and Ij := {i ∈ [n] :

xi in cluster j} denotes the set of the training points in the j-th cluster.

According to equations (2) and (3) from Lemma C.3, we know

λ
(t)
s,r,j =

∑
i∈Ij

∥ξi∥2

∥µj∥2
σ
(t)
s,r,i ≈

∑
i∈Ij

σ
(t)
s,r,i, (4)

where we also use λ
(0)
s,r,j = σ

(0)
s,r,i = 0 and the fact that, w.h.p., we have ∥ξi∥ ≈

√
d = ∥µj∥. It

suggests that we only need to focus on the dynamics of the noise coefficients σ(t)
s,r,i (i.e., equation

(3)).

C.2 TWO KEY TECHNIQUES ABOUT LOSS DERIVATIVE AND ACTIVATION REGION

It seems that the main difficulty in analyzing the iteration (3) is addressing the time-variant loss
derivative ℓ

′(t)
i and ReLU activation region S

(t)
s,i . To overcome these two challenges, we provide two

corresponding key techniques (Lemma C.4 and Lemma C.6) as follows, which can usefully simplify
the analysis of noise coefficients’ dynamics.

Key Technique 1: Bounding Loss Derivative Ratio. We will establish the connection between loss
derivative ratio yiℓ

′(t)
i /yjℓ

′(t)
j and the training data margin gap ∆

(t)
q (i, j) := q

(t)
i − q

(t)
j , where q

(t)
i

denotes the margin of the i-th training data at iteration t defined as q(t)i := yifθ(t) (xi). Then, we
have:
Lemma C.4 (Training data margins are balanced during training dynamics). There exists a time
threshold T0 such that, for any time 1 ≤ t ≤ T0 and distinct data points (xi,xj), it holds that

∆(t)
q (i, j) ≤ ϵ(k), (5)

where we use ϵ(k) to denote a time-independent error term satisfying ϵ(k) → 0 as k → ∞.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

According to Lemma C.4, for any distinct training data points xi and xj with the same label, the loss
derivative ratio can be bounded as:

yiℓ
′(t)
i /yjℓ

′(t)
j ≈ exp(∆(t)

q (j, i)) ≈ 1 + ∆(t)
q (j, i)

(5)
= 1± o(1), (6)

where the first approximation holds due to ℓ′(z) = 1/(1 + exp(z)) and we use the fact ez ≈ 1 + z
for small z in the second approximation.
Remark C.5. This method was initially proposed by Chatterji & Long (2021) in the context of
benign overfitting for linear classification and was subsequently extended to networks with non-linear
activation (Frei et al., 2022; Kou et al., 2023a). In this paper, we extend the auto-balance technique
of Kou et al. (2023a) from the single-feature case to our multi-cluster scenario to prove Lemma C.4.

Key Technique 2: Analyzing ReLU Activation Regions. Then, we turn to the analysis of the
activation regions S(t)

s,i . In fact, after the first gradient descent update, the set of activated neurons can
be described in the following lemma.
Lemma C.6 (Each training data can activate all its corresponding neurons). For the same time
threshold T0 as that in Lemma C.4 and all time 1 ≤ t ≤ T0, it holds that S(t)

1,i = [m] for all i ∈ I+

and S
(t)
−1,i = [m] for all i ∈ I−, where I+ := {i : i ∈ I, yi = 1} and I− := {i : i ∈ I, yi = −1}.

We rewrite our model as fθ(t) = f
(t)
1 + f

(t)
−1, where f (t)

s := s
m

∑
r∈[m] ReLU(⟨w(t)

s,r,x⟩+ b
(t)
s,r), s ∈

{−1, 1}. Then, Lemma C.6 manifests that f (t)
s is linear in the training data point (xi, yi) with

label yi = s. If we show f
(t)
−yi

keeps small, we will have the linearization fθ(t) ≈ f
(t)
yi =

yi

m

∑
r∈[m](⟨w

(t)
yi,r,xi⟩ + b

(t)
yi,r), which allows us to approximate the data margin by noise coef-

ficients (applying Lemma C.1 and (4)).
Remark C.7. Indeed, we use induction to prove Lemma C.4 and Lemma C.6 together (see Lemma
E.7 in the appendix), where we show the case when t = 1 by our small initialization assumption and
use the auto-balance technique to complete the inductive step (see the full proof in Appendix E.1).

C.3 PROOF SKETCH OF THEOREM C.2

Now, based on the two key techniques above, we provide a proof sketch of Theorem C.2, which
consists of five steps.

Step 1: Proving that feature coefficient ratio λ
(T)
s1,r1,j1

/λ
(T)
s2,r2,j2

(j1 ∈ Js1 , j2 ∈ Js2) is close to 1.

By Lemma C.6, for all s ∈ {−1, 1}, i ∈ Is, we know

σ
(t+1)
s,r,i = σ

(t)
s,r,i −

sη

nm
ℓ
′(t)
i ∥ξi∥2. (7)

Combined with the loss derivative ratio bound (6), it furthermore implies that the noise coefficient
ratio is close to 1, i.e., for any r1, r2 ∈ [m], i1, i2 ∈ I , we have

σ
(t)
yi1

,r1,i1
/σ

(t)
yi2

,r2,i2

(7)
≈

t∑
t′=0

ℓ
′(t′)
i1

/

t∑
t′=0

ℓ
′(t′)
i2

(6)
≈ 1± o(1). (8)

Thus, for any s1, s2 ∈ {−1, 1}, j1 ∈ Js1 , j2 ∈ Js2 and time t ≤ T , we can derive

λ
(t)
s1,r1,j1

/λ
(t)
s2,r2,j2

(4)
≈

∑
i1∈Ij1

σ
(t)
s1,r1,i1

/
∑

i2∈Ij2

σ
(t)
s2,r2,i2

(8)
≈ |Ij1 |/|Ij2 | = 1± o(1).

Step 2: Proving that λ(T)
s,r,j attains Ω(1) for j ∈ Js, and keeps o(1) for j ∈ J−s.

By induction, we can show that both bias terms b
(t)
s,r and λ

(t)
s,r,j(j ∈ J−s) keep o(1)-order dur-

ing the learning process (Lemma E.10 and Corollary E.16), which thereby implies the following
approximation, i.e., for any s ∈ {−1, 1}, r ∈ [m], i ∈ Ij , we have

⟨w(t)
s,r,xi⟩+ b(t)s,r ≈ λ

(t)
s,r,j + σ

(t)
s,r,i, (9)

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

where we also need time t satisfying t = exp(Õ(k0.5)) (see details in Lemma E.13).

Then, for any s ∈ {−1, 1}, i ∈ Ij and data point (xi, yi) satisfying yi = −s, we know

ReLU(⟨w(t)
s,r,xi⟩+ b(t)s,r)

(9)
= ReLU(λ

(t)
s,r,j + σ

(t)
s,r,i + o(1)) ≤ o(1), (10)

where the last inequality holds due to λ
(t)
s,r,j , σ

(t)
s,r,i ≤ 0 (Lemma E.5).

Next, we approximate the model output for training data point (xi, yi) belonging to the j-th cluster as

fθ(t)(xi) =
∑

s∈{−1,1}

∑
r∈[m]

s

m
ReLU(⟨w(t)

s,r,xi⟩+ b(t)s,r)
(10)
≈ yi

m

∑
r∈[m]

(⟨w(t)
yi,r,xi⟩+ b(t)yi,r)

(9)
≈ yi

m

∑
r∈[m]

(λ
(t)
yi,r,j

+ σ
(t)
yi,r,i

)
(4)
≈ yi

m

∑
r∈[m]

(∑
i′∈Ij

σ
(t)
yi,r,i′

+ σ
(t)
yi,r,i

)
(8)
≈ yi(|Ij |+ 1)σ

(t)
yi,1,i

.

(11)

Therefore, we derive the following approximate update w.r.t. σ
(t)
yi,1,i

, i.e., for any iteration

t ∈ [0, exp(Õ(k1/2))], we have σ
(t+1)
yi,1,i

(7)(11)
≈ σ

(t)
yi,1,i

+ ηd
nm exp

(
−n

kσ
(t)
yi,1,i

)
(Lemma E.21). By

leveraging log(z + 1) − log(z) ≈ 1
z , we inductively prove σ

(t)
yi,1,i

≈ k
n log(ηt) (Lemma E.7) and

λ
(t)
s,r,j ≈ log(ηt), j ∈ Js (Lemma E.23). When the assumption T = Ω(η−1) holds, we have

λ
(T)
s,r,j = Ω(1), j ∈ Js.

Step 3: Gradient descent leads the network to the feature-averaging regime.

We can choose λ(T) = λ
(T)
1,1,j0

for some j0 ∈ J+ as the representative of Λ(T) = {λ(T)
s,r,j : s ∈

{−1,+1}, r ∈ [m], j ∈ Js}.

Combining the result in Step 1 and Step 2, we know that for any λ
(T)
s,r,j ∈ Λ(T),

λ(T) ≈ λ
(T)
s,r,j ≈ log(ηT).

We can also prove that the w(T)
s,r is minimally affected by the coefficient σ(T)

s,r,i in weight decomposition.
Thus, we have (Lemma E.25)∥∥∥∥w(T)

s,r − λ(T)
∑
j∈Js

∥µj∥−2µj

∥∥∥∥ ≤ o(d−1/2)

.

Step 4: Proving that the clean accuracy is perfect.

For a randomly-sampled test data point (x = µj + ξ, y) ∼ D within cluster j ∈ Jy, we can
prove that, with probability at least 1 − exp(Ω(log2 d)), it holds that |⟨w(T)

s,r , ξ⟩| = o(1) for all
s ∈ {±1}, r ∈ [m] (Lemma E.26). Then, for data satisfying the above condition, we can calculate the
data margin as yfθ(T)(x) ≈ 1

m

∑
r∈[m] λ

(T)
s,r,j = Ω(1) > 0, which implies that AccDclean(fθ(T)) ≥

1− exp(−Ω(log2 d)).

Step 5: Proving that the robust accuracy is poor.

We consider the perturbation ρ = −2(1 + c)

k

(∑
j∈J+

µj −
∑

j∈J−
µj

)
. By applying Lemma E.26

again, we can derive that sgn(fθ(T)(x+ ρ)) ̸= sgn(fθ(T)(x)), which means AccDrobust(fθ(T) ; 2(1 +

c)
√
d/k) ≤ exp(−Ω(log2 d)) and finishes the proof of Theorem C.2.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

D PRELIMINARY PROPERTIES

In this section, we provide some useful properties of our training dataset and neural network learner at
the initialization. These properties hold with high probability under our assumptions. Our subsequent
proofs will be based on the validity of these properties. The proofs of the inlined claims are concluded
with the ■ symbol, while the proofs of the overarching results are concluded with the □ symbol.

D.1 DETAILED DATA MODEL AND ASSUMPTIONS

First, we recall the definition of multi-class feature data distribution that we defined in Section 3.
Definition D.1 (Multi-Cluster Data Distribution). Given k vectors µ1, . . . ,µk ∈ Rd, called the clus-
ter features, and a partition of [k] into two disjoint sets J± = (J+, J−), we define D({µj}kj=1, J±)

as a data distribution on Rd × {−1, 1}, where each data point (x, y) is generated as follows:

1. Draw a cluster index as j ∼ Unif([k]);

2. Set y = +1 if j ∈ J+; otherwise j ∈ J− and set y = −1;

3. Draw x := µj + ξ, where ξ ∼ N (0, Id).

For convenience, we write D instead of D({µj}kj=1, J±) if {µj}kj=1 and J± are clear from the
context. For s ∈ {±1}, we write Js to denote J+ if s = +1 and J− if s = −1.

To ease the analysis, we make the following simplifying assumptions on the distribution.
Assumption D.2 (Orthogonal Equinorm Cluster Features). The cluster features {µj}kj=1 satisfy the
properties that (1) ∥µj∥ =

√
d for all j ∈ [k]; and (2) µi ⊥ µj for all 1 ≤ i < j ≤ k.

Assumption D.3 (Nearly Balanced Classification). The partition J± satisfies c−1 ≤ |J+|
|J−| ≤ c for

some absolute constant c ≥ 1.

Next, we summarize the assumptions of these hyper-parameters that we mentioned in the main text,
as listed below.
Assumption D.4 (Choices of Hyper-Parameters). We state the range of parameters for our proofs in
the appendix to hold.

• d = Ω(k10) (recall d is the data dimension)

• c = Θ(1) (recall c is the balance ratio)

• n ∈ [Ω(k7), exp(O(log2(d)))] (recall n is the number of samples)

• m = Θ(k) (recall 2m is the width of network learner)

• η ≤ O(d−2) (recall η is the learning rate)

• σ2
b = σ2

w ≤ ηk−5, (recall w(0)
s,r ∼ N (0, σ2

wId), b
(0)
s,r ∼ N (0, σ2

b) give the initialization)
Remark D.5 (Discussion of Hyper-Parameter Choices). In this paper, we make specific choices of
hyper-parameters for the sake of calculations (and we emphasize that these may not be the tightest
possible choices), which is a widely-applied simplicity in the literature of feature learning works (Wen
& Li, 2021; Chen et al., 2022; Allen-Zhu & Li, 2022; 2023; Chidambaram et al., 2023). Namely, we
need the data dimension d to be a significantly larger polynomial in the number of clusters k to ensure
all k cluster features µ1,µ2, . . . ,µk can be orthogonal within the space Rd. The balance ratio c is
an absolute constant that is independent with d and k. Our results can be extended to x := αµj +σξ
for some parameters α = Θ(1) and σ = Θ(1), but here we set α = σ = 1 for simplicity. And
we further require that n is a large polynomial in k due to our choice of large signal-noise-ratio
(recall that we have α/σ = Θ(1), which implies that ∥µj∥ =

√
d ≈ ∥ξ∥ with high probability). We

need m ∈ [max{|J+|, |J−|}, k] for the existence of robust solution (Theorem G.3). We assume the
learning rate η and the initialization magnitude σw, σb are sufficiently small, which helps the network
to be trained in the feature learning regime (Lyu et al., 2021; Cao et al., 2022; Allen-Zhu & Li, 2023;
Kou et al., 2023a).

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

D.2 USEFUL PROPERTIES OF THE TRAINING DATASET

Now, we introduce some useful notations, for simplifying our proof.

• Denote I = {i : i = 1, 2, · · · , n} as the set of indices of all training data points.
• Define c(·) as the map I → J where c(i) represents the index of the cluster to which point
xi belongs.

• Ij = {i : i ∈ I, c(i) = j} denotes the set of the training points in the j-th cluster.
• I+ = {i : i ∈ I, c(i) ∈ J+} and I− = {i : i ∈ I, c(i) ∈ J−} denote the index sets of all

positive class data points and negative class data points respectively.

Then, under Assumption D.2,D.3,D.4, we show that Proposition D.6 of the training dataset hold
with high probability. It is worth noting that most of the proofs of Proposition D.6 follow standard
methodologies and closely resemble those presented in Frei et al. (2024), as our data distribution is
similar to theirs.

Recall the cumulative distribution function (CDF) of the standard normal distribution, usually denoted
as Φ(x), which is defined as the integral

Φ(x) :=
1√
2π

∫ x

−∞
e−t2/2dt =

1√
2π

∫ ∞

−x

e−t2/2dt.

Additionally, we have the following commonly used bounds on the tail probabilities of the standard
normal distribution.(

x2 − 1√
2πx3

)
exp(−x2/2) ≤ 1− Φ(x) ≤ 1√

2πx
exp(−x2/2) (12)

Proposition D.6. Let ∆ = 4
√
d ln(d) and δ = 8n2d−

ln(d)
2 + 2k (n/k)

− ln(n/k). With probability at
least 1− δ over sampled training dataset S ∼ Dn, we have the following properties:

1. For every i ∈ I we have
√
d− 2 ln(d) ≤ ∥ξi∥ ≤

√
d+ 2 ln(d).

2. For every i ∈ I we have ∥xi∥ ≤ 3
√
d.

3. For every i, j ∈ I, i ̸= j we have |⟨ξi, ξj⟩| ≤ ∆.

4. For every i ∈ I and j ∈ J we have |⟨µj , ξi⟩| ≤ ∆.

5. For every i, j ∈ I with c(i) ̸= c(j) we have |⟨xi,xj⟩| ≤ ∆.

6. For every i, j ∈ I with c(i) = c(j) we have
1

2
d ≤ ⟨xi,xj⟩ ≤ 2d.

7. For every j ∈ J we have
n

k
−
√

2n

k
ln(

n

k
) ≤ |Ij | ≤

n

k
+

√
2n

k
ln(

n

k
).

Remark D.7. Property 1 and Property 2 show that the data-wise noise and training data point are
bounded, i.e., ∥ξi∥ ≈

√
d and ∥xi∥ = O(

√
d). Property 3 and Property 4 show that the correlation

between different noises (or between cluster center feature and random noise) is very small. Property
5 and Property 6 suggest that the correlation between training data points of different clusters is
very small, but the correlation between training data points within the same cluster is very large.
Property 7 manifests that the training dataset S approximately includes n

k (= Ω(k6)) examples from
each cluster.

Proof of Proposition D.6. Now, we prove Property 1-7 one by one.

Property 1: We notice that ∥ξ∥2 follows the Chi-squared distribution.

The concentration bound in Lemma 1 by Laurent & Massart (2000) implies that for all t ≥ 0, we
have

Pr
[
∥ξ∥2 − d ≥ 2

√
dt+ 2t

]
≤ e−t,

Pr
[
∥ξ∥2 − d ≤ −2

√
dt
]
≤ e−t.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Plugging in t = ln2(d), we can see that

Pr
[
∥ξ∥2 ≥ (

√
d+ 2 ln(d))2

]
≤ Pr

[
∥ξ∥2 − d ≥ 2

√
d ln(d) + 2 ln2(d)

]
≤ d− ln(d),

Pr
[
∥ξ∥2 ≤ (

√
d− 2 ln(d))2

]
≤ Pr

[
∥ξ∥2 − d ≤ −2

√
d ln(d)

]
≤ d− ln(d).

Thus, we have
Pr
[√

d− 2 ln(d) ≤ ∥ξi∥ ≤
√
d+ 2 ln(d)

]
≤ 2d− ln(d). (13)

Then by union bound, we have Property 1 holds for every i ∈ I with probability at least 1−2nd− ln(d).

Property 2: When Property 1 holds, by triangle inequality, we know Property 2 holds:

∥xi∥ ≤ ∥µc(i)∥+ ∥ξi∥ ≤
√
d+

√
d+ ln(d) ≤ 3

√
d.

The proofs for other properties require calculations pertaining to Gaussian distribution. We first
introduce a useful lemma below.

Lemma D.8. Let ξ ∼ N(0, Id). For any x ∈ Rd we have

Pr [|⟨x, ξ⟩| ≥ ∥x∥ ln(d)] ≤ 2d−
ln(d)

2 .

Proof of Lemma D.8. Note that
〈

x

∥x∥
, ξ

〉
has the distribution N (0, 1).

By standard Gaussian tail bound, we have for every t ≥ 0 that Pr
[∣∣∣〈 x

∥x∥ , ξ
〉∣∣∣ ≥ t

]
≤ 2 exp

(
− t2

2

)
.

Plugging in t = ln(d), we can see that

Pr

[∣∣∣∣〈 x

∥x∥
, ξ

〉∣∣∣∣ ≥ ln(d)

]
≤ 2 exp

(
− ln2(d)

2

)
= 2d−

ln(d)
2 .

■

Property 3: Next, we prove Property 3 using the result in Lemma D.8.

Noting that if |⟨ξi, ξj⟩| ≥
√
2d ln(d), we have that at least one of the following holds:

1. ∥ξi∥ ≥
√
2d;

2.
∣∣∣〈 ξi

∥ξi∥ , ξj

〉∣∣∣ ≥ ln(d).

Now we bound the probabilities of these two events separately. By Property 1, we have

Pr[∥ξi∥ ≥
√
2d] ≤ 2d− ln(d).

Next, by Lemma D.8, we have

Pr

[∣∣∣∣〈 ξi
∥ξi∥

, ξj

〉∣∣∣∣ ≥ ln(d)

]
≤ 2d−

ln(d)
2 .

Then, by union bound, we know that,

Pr
[
|⟨ξi, ξj⟩| ≥

√
2d ln(d)

]
≤ 2d−

ln(d)
2 + 2d− ln(d) ≤ 4d−

ln(d)
2

Then, applying the union bound for all pairs i, j ∈ I, i ̸= j, we have |⟨ξi, ξj⟩| ≤
√
2d ln(d)2 holds

with probability at least 1− 4n2d−
ln(d)

2 .

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Property 4: Applying Lemma D.8, we have

Pr
[
|⟨µj , ξ⟩| ≥

√
d ln(d)

]
≤ 2d−

ln(d)
2 .

Then for all pairs i ∈ I, j ∈ J , applying union bound we have that |⟨µj , ξi⟩| ≤
√
d ln(d) for all

i ∈ I, j ∈ J holds with probability at least 1− 2n2d−
ln(d)

2 .

Property 5: By using the results above, we have

|⟨xi,xj⟩| ≤
∣∣⟨µc(i),µc(j)⟩

∣∣+ ∣∣⟨µc(i), ξj⟩
∣∣+ ∣∣⟨µc(j), ξi⟩

∣∣+ |⟨ξi, ξj⟩|
=
∣∣⟨µc(i), ξj⟩

∣∣+ ∣∣⟨µc(j), ξi⟩
∣∣+ |⟨ξi, ξj⟩|

≤ 4
√
d ln(d) = ∆.

Property 6: By using the results above and noting that ⟨µc(i), µc(j)⟩ = d for i, j with c(i) = c(j),
we have

|⟨xi,xj⟩ − d| ≤
∣∣⟨µc(i), ξj⟩

∣∣+ ∣∣⟨µc(j), ξi⟩
∣∣+ |⟨ξi, ξj⟩|

≤ 4
√
d ln(d) = ∆.

Thus, we have
1

2
d ≤ ⟨xi,xj⟩ ≤ 2d.

Property 7: We define Xi for i ∈ I as the indicator random variable that the i-th point is in the j-th
cluster. It takes value 1 with probability 1

k , and 0 with probability 1− 1
k .

Then we know that |Ij | =
∑
i∈I

Xi. Applying Chernoff bound, we have that

Pr

[
n

k
−
√

2n

k
ln(

n

k
) ≤ |Ij | ≤

n

k
+

√
2n

k
ln(

n

k
)

]
≥ 1− 2 exp(− ln2(n/k)) = 1− 2(n/k)− ln(n/k).

Then for all j ∈ J , applying union bound, we have Property 7 holds with probability at least
1− 2k(n/k)− ln(n/k).

Combining all of the above together, we have Proposition D.6 holds with probability at least 1 −
8n2d−

ln(d)
2 − 2k(n/k)− ln(n/k). □

D.3 USEFUL PROPERTIES OF THE NETWORK INITIALIZATION

The proofs for properties of the network initialization require the range of the maximum value
obtained from multiple independent samples drawn from a Gaussian distribution. We first present the
following useful lemma.

Lemma D.9 (Concentration of Maximum of Gaussians). Let Xi ∼ N (0, 1), 1 ≤ i ≤ l be i.i.d.
random variables. Denote Xmax = max1≤i≤l{Xi}, Xmin = min1≤i≤l{Xi}. For any t ≥ 0, we have

• Pr
[
Xmin ≤ −

√
2 log(l)− t

]
≤ 1

2 exp
(
−t2/2

)
,

• Pr
[
Xmax ≤

√
2 log(l)− t

]
≤ exp

(
− et/2√

2π(
√

2 log(l)+1)

)
.

Proof of Lemma D.9. The proof is standard and similar to Proposition A.1 and A.2 from Chi-
dambaram et al. (2023). We include it for convenience of the readers.

For any a ≥ 0, we have

Pr [Xmin ≥ −a] = (Φ(a))l = (1−Q(a))l,

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

where Q(x) = 1− Φ(x). By using (1− x)n ≥ 1− nx for any x ∈ [0, 1] and n ∈ N, we then get

Pr [Xmin ≥ −a] ≥ 1− lQ(a).

Now we use the elementary inequality for the tail of the normal distribution:

Q(a) ≤ 1

2
e−

a2

2 ,

so that
Pr [Xmin ≥ −a] ≥ 1− 1

2
le−

a2

2 .

Plugging a =
√

2 log(l) + t, we get

Pr
[
Xmin ≥ −

√
2 log(l)− t

]
≥ 1− l exp

(
−
(
√
2 log(l) + t)2

2

)

= 1− 1

2
l exp

(
−2 log(2l) + t2

2

)
= 1− 1

2
e−

t2

2 .

Similar to the previous proof, we know that

Pr [Xmax ≤ a] = (Φ (a))
l ≤

(
1− a√

2π (a2 + 1)
exp

(
−a2

2

))l

.

Plugging a =
√

2 log(l)− t,

Pr
[
Xmax ≤

√
2 log(l)− t

]
≤

(
1−

√
2 log(l)− t√

2πl(2 log(l)− t+ 1)
exp

(
t

2

))l

≤

(
1− exp (t/2)√

2πl(
√
2 log(2l) + 1)

)l

≤ exp

(
− exp (t/2)√

2π(
√

2 log(2l) + 1)

)

□

By applying Proposition D.6, we can derive the following result, which gives the range of network
parameters at the initialization.

Proposition D.10. With probability at least 1−4md− ln(d)−2m−3 , we have the following properties
for our network initialization:

• For any s ∈ {−1,+1}, r ∈ [m], we have σw

(√
d− 2 ln(d)

)
≤ ∥w(0)

s,r∥ ≤

σw

(√
d+ 2 ln(d)

)
.

• For any s ∈ {−1,+1}, r ∈ [m], we have |b(0)s,r | ≤ 2σb

√
2 ln(m).

Proof of Proposition D.10. For w(0)
s,r , reusing the same argument as the proof of Property (1) in

Proposition D.6, we know that

σw

(√
d− 2 ln(d)

)
≤ ∥w(0)

s,r∥ ≤ σw

(√
d+ 2 ln(d)

)
holds for all s ∈ {−1,+1}, r ∈ [m] with probability at least 1− 4md− ln(d).

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

For b(0)s,r , by standard Gaussian tail bound, we know that

Pr
[
|b(0)s,r | ≥ 2σb

√
2 ln(m)

]
≤ exp (−4 ln(m)) = m−4.

Then using union bound, we know that |b(0)s,r | ≥ 2σb

√
2 ln(m) holds for all s ∈ {−1,+1}, r ∈ [m]

with probability at least 1− 2m−3.

In conclusion, we know that these properties hold with probability at least 1−2md− ln(d)−2m−3. □

We then show that each neuron is activated by at least one training data point in each cluster upon
initialization with high probability. We first formally define the notion of activation region as follows.

Definition D.11 (Activation Region over Data Input). Let Ts,r,j := {i ∈ Ij : ⟨w(0)
s,r ,xi⟩+ b

(0)
s,r ≥ 0}

be the set of indices of training data points in the j-th cluster which can activate the r-th neuron with
weight ws,r at time step 0.

Then, we give the following result about the activation region Ts,r,j .
Proposition D.12. Assuming Proposition D.6 and Proposition D.10 holds. Then with probability at
least 1−m−0.01 − 2mk exp

(
− n

9km2

)
, for all s ∈ {−1,+1}, r ∈ [m], j ∈ J , we have

|Ts,r,j | ≥
n

3km2
.

Proof of Proposition D.12. Given µj for j ∈ J , we have ⟨w(0)
s,r ,µj⟩ ∼ N (0, σw

√
d).

Using the conclusion in Lemma D.9, with probability at least 1−m0.01, we have

mins∈{−1,+1},r∈J⟨w(0)
s,r ,µj⟩ ≥ −1.1σw

√
d
√
2 ln(2m).

In the following proof, we assume that the above conclusion holds.

Given w
(0)
s,r , we have ⟨w(0)

s,r , ξi⟩ ∼ N (0, ∥w(0)
s,r∥).

Then by Gaussian tail bound (12), we have

Pr
[
⟨w(0)

s,r , ξi⟩ ≥ 1.2σw

√
d
√
2 ln(2m)

]
= 1− Φ

(
1.2σw

√
d
√

2 ln(2m)

∥w(0)
s,r∥

)
≥ 1− Φ(

√
3 ln(2m))

≥ 1

2
√

3 ln(2m)
exp

(
−3 ln(2m)

2

)
≥ m−2.

We denote Xs,r,i = 1

(
⟨w(0)

s,r , ξi⟩ ≥ 1.2σw

√
d
√

2 ln(2m)
)
, T ′

s,r,j =
∑
i∈Ij

Xs,r,i,

Ys,r,i = 1

(
⟨w(0)

s,r ,xi⟩+ b
(0)
s,r ≥ 0

)
and we know that |Ts,r,j | =

∑
i∈Ij

Ys,r,i.

If ⟨w(0)
s,r , ξi⟩ ≥ 1.2σw

√
d
√

2 ln(2m), then

⟨w(0)
s,r ,xi⟩+ b(0)s,r ≥ mins∈{−1,+1},r∈J⟨w(0)

s,r ,µp⟩+ ⟨w(0)
s,r , ξi⟩ − 2σb

√
2 ln(m)

≥ 0.1σw

√
d
√
2 ln(2m)− 2σb

√
2 ln(m) ≥ 0.

That is to say Ys,r,i = 1 if Xs,r,i = 1. Thus

Pr
[
|Ts,r,j | ≥

n

2m2k

]
≥ Pr

[
T ′
s,r,j ≥

n

2m2k

]

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

For any given s ∈ {−1,+1}, r ∈ [m] and i ∈ Ij , we know that Xs,r,i are i.i.d. and E[Xs,r,i] ≥ m−2.

Then by Chernoff bound, we have

Pr
[
T ′
s,r,j ≥

|Ij |
2m2

]
≥ 1− exp

(
|Ij |
8m2

)
≥ 1− exp

(n

9km2

)
Then

Pr
[
|Ts,r,j | ≥

n

3km2

]
≥ Pr

[
T ′
s,r,j ≥

n

3km2

]
≥ Pr

[
T ′
s,r,j ≥

|Ij |
2m2

]
≥ 1− exp

(n

9km2

)
.

Then by union bound, we know that |Ts,r,j | ≥
n

3km2
holds for all s ∈ {−1,+1}, r ∈ [m], p ∈ J

with probability at least 1− 2mk exp
(n

9km2

)
.

Combing the above together, with probability at least 1 −m−0.01 − 2mk exp
(n

9km2

)
, we have

|Ts,r,j | ≥
n

3km2
. □

Next, we show that the pre-activation output of the network is very small, at the initialization.

Lemma D.13. For any i ∈ I, r ∈ [m], s ∈ {−1,+1}, we have |⟨w(0)
s,r ,xi⟩+ b

(0)
s,r | ≤

η
√
d

nm
.

Proof of Lemma D.13. By Property (2) in Proposition D.6 and Lemma D.8, we have

∥xi∥ ≤ 3
√
d, ∥w(0)

s,r∥ ≤ σw

(√
d+ 2 ln(d)

)
, ∥b(0)s,r∥ ≤ 2σb

√
2 ln(2m).

Therefore, by triangle inequality, we know that

|⟨w(0)
s,r ,xi⟩+ b(0)s,r | ≤ ∥xi∥∥w(0)

s,r∥+ ∥b(0)s,r∥ ≤ 3
√
d · 2σw

√
d+ 2σb

√
2 ln(2m) ≤ η

√
d

nm

□

Finally, we present the following two lemmas about the range of the loss derivative.

Denote ℓ
′(t)
i := ∇f

θ(t) (xi)ℓ(yifθ(t)(x)) = − yi exp (−yifθ(t)(xi))

1 + exp (−yifθ(t)(xi))
= − yi

1 + exp (yifθ(t)(xi))
.

Lemma D.14. For each i ∈ I , we have−2

3
≤ yiℓ

′(0)
i ≤ −1

3
.

Proof of Lemma D.14. By applying Lemma D.13, we know

|fθ(0)(xi)| ≤
1

m

 ∑
s∈{−1,+1}

∑
r∈[m]

|⟨w(0)
s,r ,xi⟩+ b(0)s,r |

 ≤ 2η
√
d

nm
≤ ln 2

Then, we have 1/2 ≤ exp (yifθ(0)(xi)) ≤ 2, and we can derive that

−2

3
≤ yiℓ

′(0)
i = − 1

1 + exp (yifθ(0)(xi))
≤ −1

3
.

□

Lemma D.15. For each i ∈ I and any time step t, we have −1 ≤ yiℓ
′(t)
i ≤ 0.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

Proof of Lemma D.15. It can be easily checked as follows.

−1 ≤ yiℓ
′(t)
i = − 1

1 + exp (yifθ(t)(xi))
≤ 0.

□

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

E PROOF FOR SECTION 4: FEATURE-AVERAGING REGIME

In this section, we provide the proof of Theorem 4.5. We analyze the training dynamics of gradient
descent, which constitutes the main part of our proof.

E.1 ANALYSIS OF TRAINING DYNAMICS

We first assume that all the properties and lemmas mentioned in Appendix D hold with high probability
over the sampled training dataset and the network initialization.

Now, we introduce some useful notations. Denote S
(t)
s,i as the set of indices of neurons in positive or

negative class (determined by s) which has been activated by training data point xi at time step t.
Formally, we define it as S(t)

s,i = {r ∈ [m] : ⟨w(t)
s,r,xi⟩+ b

(t)
s,r ≥ 0} for s ∈ {−1,+1} and i ∈ I . The

following lemma describes the set of activated neurons after the first gradient descent update.

Lemma E.1. S
(1)
1,i = [m] for all i ∈ I+ and S

(1)
−1,i = [m] for all i ∈ I−.

Proof of Lemma E.1. Without loss of generality, we consider the case when xi belongs to the positive
class. We show that ⟨w(1)

1,r ,xi⟩+ b
(1)
1,r ≥ 0 for all r ∈ [m]. By applying the gradient descent update

and Lemma D.13, we have

⟨w(1)
1,r ,xi⟩+ b

(1)
1,r =⟨w(0)

1,r ,xi⟩+ b
(0)
1,r − η

(
⟨∇w1,r

L(θ(0)),xi⟩+∇b1,rL(θ(0))
)

≥ η

nm

(
−d1/2 −mn

(〈
∇w1,r

L(θ(0)),xi

〉
+∇b1,rL(θ(0))

))
First, we examine the update of linear terms as follows:

−mn⟨∇w1,r
L(θ(0)),xi⟩

=− ⟨
∑
p∈I+

ℓ′(0)p 1

(
⟨w(0)

1,r ,xp⟩+ b
(0)
1,r ≥ 0⟩

)
xp −

∑
p∈I−

ℓ′(0)p 1

(
⟨w(0)

1,r ,xi⟩+ b
(0)
1,r ≥ 0⟩

)
xp,xi⟩

≥ −
∑

p∈Ic(i)

ℓ′(0)p 1

(
⟨w(0)

1,r ,xp⟩+ b
(0)
1,r ≥ 0⟩

)
⟨xp,xi⟩+

∑
p/∈Ic(i)

ℓ′(0)p 1

(
⟨w(0)

1,r ,xp⟩+ b
(0)
1,r ≥ 0⟩

)
|⟨xp,xi⟩|

≥ 1

3

∑
p∈Ic(i)

1

(
⟨w(0)

1,r ,xp⟩+ b
(0)
1,r ≥ 0⟩

)
⟨xp,xi⟩ −

2

3

∑
p/∈Ic(i)

1

(
⟨w(0)

1,r ,xi⟩+ b
(0)
1,r ≥ 0⟩

)
|⟨xp,xi⟩|

≥ d

6

∑
p∈Ic(i)

1

(
⟨w(0)

1,r ,xp⟩+ b
(0)
1,r ≥ 0⟩

)
− 2∆

3

∑
p/∈Ic(i)

1

(
⟨w(0)

1,r ,xp⟩+ b
(0)
1,r ≥ 0⟩

) (
Recall ∆ = 4

√
d ln(d)

)
=

1

6
d|T1,r,c(i)| −

2∆

3

∑
l∈r/{c(i)}

|T1,r,l|

≥ nd

18km2
− 2n∆

3
(By Proposition D.12)

≥ n∆ (14)

Next, we examine the update of the bias term as follows:

−mn∇b1,rL(θ(0)) =−
∑
p∈I+

ℓ′(0)p 1

(
⟨w(0)

1,r ,xp⟩+ b
(0)
1,r ≥ 0⟩

)
+
∑
p∈I−

ℓ′(0)p 1

(
⟨w(0)

1,r ,xp⟩+ b
(0)
1,r ≥ 0⟩

)
≥− 2

3

∑
p∈I

1

(
⟨w(0)

1,r ,xp⟩+ b
(0)
1,r ≥ 0⟩

)
≥− 2n

3
(15)

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

Combining (14) and (15) together, we know

⟨w(1)
1,r ,xi⟩+ b

(1)
1,r ≥ η

nm

(
−d1/2 −mn

(〈
∇w1,r

L(θ(0)),xi

〉
+∇b1,rL(θ(0))

))
≥ η

nm
(−d1/2 + n∆− 2n

3
)

≥0

Since this inequality holds for all r ∈ [m], we have that S(1)
1,i = [m]. For the case when xi belongs to

the negative class, we have S
(1)
−1,i = [m] using the same argument. □

Now, we analyze the dynamics of the coefficients in the training process, where we first give the
following weight-decomposition lemma.

Lemma E.2 (Weight Decomposition). During the training dynamics, there exists the following
coefficient sequences λ(t)

s,r,j and σ
(t)
s,r,i for each s ∈ {−1,+1}, r ∈ [m], j ∈ J, i ∈ I such that

w(t)
s,r = w(0)

s,r +
∑
j∈J

λ
(t)
s,r,jµj∥µj∥−2 +

∑
i∈I

σ
(t)
s,r,iξi∥ξi∥

−2

Proof of Lemma E.2. First, we construct a set of {λ̂(t)
s,r,j} and {σ̂(t)

s,r,i} according to the following
recursive formulas:

λ̂
(t+1)
s,r,j = λ̂

(t)
s,r,j −

sη

nm
·
∑
i∈Ij

ℓ
′(t)
i ∥µj∥21

(
⟨w(t)

s,r,xi⟩+ b(t)s,r ≥ 0
)
.

σ̂
(t+1)
s,r,i = σ̂

(t)
s,r,i −

sη

nm
· ℓ′(t)i ∥ξi∥21

(
⟨w(t)

s,r,xi⟩+ b(t)s,r ≥ 0
)
.

λ̂
(0)
s,r,j = 0, σ̂

(0)
s,r,i = 0.

Now, we prove by induction on t that {λ̂(t)
s,r,j} and {σ̂(t)

s,r,i} constructed as above satisfy that

w(t)
s,r = w(0)

s,r +
∑
j∈J

λ̂
(t)
s,r,jµj∥µj∥−2 +

∑
i∈I

σ̂
(t)
s,r,iξi∥ξi∥

−2

The base case when t = 0 the conclusion holds trivially. Assuming the inductive hypothesis holds at
time step t, we now consider the case at time step t+ 1. By the update equation in gradient descent,
we know that

w(t+1)
s,r = w(t)

s,r −
sη

nm

∑
i∈I

ℓ
′(t)
i xi1

(
⟨w(t)

s,r,xi⟩+ b(t)s,r ≥ 0
)

= w(t)
s,r −

sη

nm

∑
i∈I

ℓ
′(t)
i

(
µc(i) + ξi

)
1

(
⟨w(t)

s,r,xi⟩+ b(t)s,r ≥ 0
)

= w(t)
s,r −

sη

nm

∑
j∈J

µj

∑
i∈Ij

ℓ
′(t)
i 1

(
⟨w(t)

s,r,xi⟩+ b(t)s,r ≥ 0
)
+
∑
i∈I

ξiℓ
′(t)
i 1

(
⟨w(t)

s,r,xi⟩+ b(t)s,r ≥ 0
)

= w(0)
s,r +

∑
j∈J

µj∥µj∥−2

λ̂
(t)
s,r,j −

sη

nm
·
∑
i∈Ij

ℓ
′(t)
i ∥µj∥21

(
⟨w(t)

s,r,xi⟩+ b(t)s,r ≥ 0
)

+
∑
i∈I

ξi∥ξi∥−2
(
σ̂
(t)
s,r,i −

sη

nm
· ℓ′(t)i ∥ξi∥21

(
⟨w(t)

s,r,xi⟩+ b(t)s,r ≥ 0
))

= w(0)
s,r +

∑
j∈J

λ̂
(t+1)
s,r,j µj∥µj∥−2 +

∑
i∈I

σ̂
(t+1)
s,r,i ξi∥ξi∥−2

This concludes the inductive step and the proof of the lemma. □

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

Naturally, we have the following corollaries.

Corollary E.3. The coefficients λ
(t)
s,r,j , σ

(t)
s,r,i for s ∈ {−1,+1}, r ∈ [m], j ∈ J, i ∈ I defined in

Corollary (E.2) satisfy the following update equations:

λ
(t+1)
s,r,j = λ

(t)
s,r,j −

sη

nm
·
∑
i∈Ij

ℓ
′(t)
i ∥µj∥21

(
⟨w(t)

s,r,xi⟩+ b(t)s,r ≥ 0
)
,

σ
(t+1)
s,r,i = σ

(t)
s,r,i −

sη

nm
· ℓ′(t)i ∥ξi∥21

(
⟨w(t)

s,r,xi⟩+ b(t)s,r ≥ 0
)
,

λ
(0)
s,r,j = 0, σ

(0)
s,r,i = 0.

Indeed, we can only focus on the dynamics of noise coefficients due to the following lemma.

Corollary E.4. The coefficient sequences λ(t)
s,r,j and σ

(t)
s,r,i for each pair s ∈ {−1,+1}, r ∈ [m], j ∈

J, i ∈ I defined in Lemma F.6 satisfy:

λ
(t)
s,r,j∥µj∥−2 =

∑
i∈Ij

σ
(t)
s,r,i∥ξi∥

−2.

Proof of Corollary E.4. Using the result in Corollary E.3, we know that(
λ
(t′+1)
s,r,j − λ

(t′)
s,r,j

)
∥µj∥−2 =− sη

nm
·
∑
i∈Ij

ℓ
′(t′)
i 1

(
⟨w(t′)

s,r ,xi⟩+ b(t
′)

s,r ≥ 0
)

=
∑
i∈Ij

(
σ
(t′+1)
s,r,i − σ

(t′)
s,r,i

)
∥ξi∥−2.

Then summing up the above equations from t′ = 0 to t′ = t− 1, we have

λ
(t)
s,r,j∥µj∥−2 =

∑
i∈Ij

σ
(t)
s,r,i∥ξi∥

−2.

□

We show that the sign of each feature/noise coefficient remains unchanged during the full training
process as in the following lemma.

Corollary E.5. The coefficient sequences λ(t)
s,r,j and σ

(t)
s,r,i for each pair s ∈ {−1,+1}, r ∈ [m], j ∈

J, i ∈ I, t ≥ 0 defined in Lemma E.2 satisfy:

λ
(t)
s,r,j

{
≥ 0 if i ∈ Js,

< 0 if i /∈ Js.

σ
(t)
s,r,i

{
≥ 0 if i ∈ Is,

< 0 if i /∈ Is.

Proof of Corollary E.5. Using the results in Corollary E.3 and Lemma D.15, we know that

sgn
(
σ
(t+1)
s,r,i − σ

(t)
s,r,i

)
=sgn

(
− sη

nm
· ℓ′(t)i ∥ξi∥21

(
⟨w(t)

s,r,xi⟩+ b(t)s,r ≥ 0
))

=sgn
(
−sℓ

′(t)
i

)
=sgn (syi)

Noting that σ(0)
s,r,i = 0, we know that

sgn
(
σ
(t)
s,r,i

)
= sgn (syi)

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

That is to say

σ
(t)
s,r,i

{
≥ 0 if i ∈ Is,

< 0 if i /∈ Is.

Then using the result in Corollary E.4, we know

λ
(t)
s,r,j

{
≥ 0 if j ∈ Js,

< 0 if j /∈ Js.

□

In the following proof, we need the concept of margin. We denote the margin of training data point
xi at time step t as q(t)i = yifθ(t) (xi) and the margin gap between training data points xi and xj at
time step t as ∆(t)

q (i, j) = yifθ(t) (xi)− yjfθ(t) (xj).

First, we analyze the relationship between the margin gap and the loss derivatives’ ratio for the two
training data points in the following lemma.

Lemma E.6. For any time step t and two training data points xi,xj , if qi ≥ qj , we have

e∆
(t)
q (i,j)/2 ≤

yjℓ
′(t)
j

yiℓ
′(t)
i

≤ e∆
(t)
q (i,j).

Proof of Lemma E.6. Recall ℓ′(x) = − e−x

1 + e−x
=

1

1 + ex
. Then

ℓ
′(t)
j

ℓ
′(t)
i

· e−∆(t)
q (i,j) =

1 + eqi

e∆
(t)
q (i,j) + eqi

≤ 1.

Since the exponential function is convex, we know that

ℓ
′(t)
j

ℓ
′(t)
i

· e−∆(t)/2
q (i,j) =

1 + eqi

e(qi−qj)/2 + e(qi+qj)/2
≥ 1.

□

Next, we establish the relationship between the coefficient λ(t)
s,r,j’s and σ

(t)
s,r,i’s in Corollary E.2 and

margin q we defined before. We denote

q̂
(t)
i =

1

m

∑
r∈[m]

λ
(t)
yi,r,c(i)

+
∑
r∈[m]

σ
(t)
yi,r,i

 ,

∆̂(t)
q (i, j) = q̂i − q̂j =

1

m

∑
r∈[m]

(
λ
(t)
yi,r,c(i)

− λ
(t)
yj ,r,c(j)

)
+

1

m

∑
r∈[m]

(
σ
(t)
yi,r,i

− σ
(t)
yj ,r,j

)
.

Later, we will show that q̂(t)i is a good approximation for margin qi and ∆̂
(t)
q (i, j) is a good approxi-

mation for margin gap ∆
(t)
q (i, j) in Lemma E.14 and Corollary E.15.

Next, we arrive at the main part of the proof. Inspired by Kou et al. (2023a), we can prove that the
training data’s margin tends to balance automatically.

Denote ϵ = max

{
2 ln(nk)√
n
k − ln(nk)

,
k2∆

d
,
k2

n

}
. We know that ϵ = o(k−2.5) according to our hyper-

parameter Assumption D.4.

Lemma E.7. For t ≤ T0 = exp(Õ(k0.5)), i, j ∈ I, s ∈ {−1, 1}, the following statements hold:

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2025

1.
k

2n
ln(tη) ≤ σ

(t)
yi,r,i

≤ 2k

n
ln(t+ 1),

2. ∆̂
(t)
q (i, j) ≤ 5ϵ when c(i) = c(j),

3. ∆̂
(t)
q (i, j) ≤ 63ϵ,

4. ∆
(t)
q (i, j) ≤ 65ϵ,

5. yiℓ
′(t)
i /yjℓ

′(t)
j ≤ 1 + 14ϵ when c(i) = c(j),

6. yiℓ
′(t)
i /yjℓ

′(t)
j ≤ 1 + 130ϵ,

7. S
(t)
s,i = [m] for i ∈ Is,

8. |λ(t)
−s,r,c(i)| ≤ ϵ, |σ(t)

−s,r,i| ≤ 2ϵ for i ∈ Is.

Remark E.8. Property 1 of Lemma E.7 shows that the growth rate of noise coefficient is the logarithm
of time, i.e., σ(t)

s,r,i ≈ log t. Property 2 and Property 3 show that the approximate margin gap is small,
and the gap between two training data points with the same cluster index is smaller. Property 4
suggests that the exact margin gap is also small. Property 5 and Property 6 provide upper bounds for
the loss derivative ratio. Property 7 manifests that the positive training data points can activate all
positive neurons and the negative training data points can activate all negative neurons, respectively.

Proof of Lemma E.7. Without loss of generality, we assume that i ∈ I+.

We use induction to prove this lemma.

Step 1: We first consider the base case when t = 1 for the induction.

Property 7: Property 7 is exactly the conclusion of Lemma E.1.

Indeed, other properties can be easily verified because we adopted a small initialization.

Property 1 and 8: By Lemma E.3, η ≤ d−2 and noting that σ(0)
s,r,i = 0, we have

|σ(1)
s,r,i| = |σ(0)

s,r,i −
η

nm
· ℓ′(0)i ∥ξi∥21

(
⟨w(0)

s,r ,xi⟩+ b(0)s,r ≥ 0
)
| ≤ 2ηd

nm
≤ 2k

n
ln 2 ≤ 2ϵ.

and by Corollary E.5, for i ∈ Is we have

σ
(1)
s,r,i ≥ 0 ≥ k

2n
ln(η).

Property 2, 3 and 8: By applying Lemma E.3, η ≤ d−2 and noting that λ(0)
s,r,j = 0, we have

|λ(1)
s,r,j | = |λ(0)

s,r,j −
sη

nm
·
∑
i∈Ij

ℓ
′(0)
i ∥µj∥21

(
⟨w(0)

s,r ,xi⟩+ b(0)s,r ≥ 0
)
| ≤ 2ηd

m
≤ ϵ

2m
(Property 8)

Then, by the definition of ∆̂(t)
q (i, j), we know that

∆̂(1)
q (i, j) =

∑
r∈[m]

(
λ
(1)
1,r,c(i) − λ

(1)
1,r,c(j)

)
+
∑
r∈[m]

(
σ
(1)
1,r,i − σ

(1)
1,r,j

)
≤ 2m

ϵ

2m
+ 2m

2ηd

nm
≤ 5ϵ (Property 2)
≤ 63ϵ (Property 3)

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2025

Property 4: By applying Lemma D.15, we know that∥∥∥w(1)
s,j

∥∥∥ =

∥∥∥∥∥w(0)
s,j −

η

nm

∑
i∈I

ℓ
′(0)
i 1

(
⟨w(t)

s,r,xi⟩+ b(t)s,r ≥ 0
)
xi

∥∥∥∥∥
≤
∥∥∥w(0)

s,j

∥∥∥+ η

nm

∑
i∈I

∥xi∥

≤
∥∥∥w(0)

s,j

∥∥∥+ 3
√
dη

m

≤ ϵ

4
√
d∥∥∥b(1)s,j

∥∥∥ =

∥∥∥∥∥b(0)s,j −
η

nm

∑
i∈I

ℓ
′(0)
i 1

(
⟨w(t)

s,r,xi⟩+ b(t)s,r ≥ 0
)∥∥∥∥∥

≤
∥∥∥b(0)s,j

∥∥∥+ η

m

≤ ϵ

10
(16)

Then, we have

|q(1)i | =|fθ(1)(xi)|

≤ 1

m

 ∑
s∈{−1,+1}

∑
r∈[m]

|⟨w(0)
s,j ,xi⟩+ b

(0)
s,j |


≤ 1

m

(
2m
(ϵ
4
+

ϵ

10

))
≤ϵ

By triangle inequality, we have

∆(1)
q (i, j) ≤ |q(1)i |+ |q(1)j | ≤ 2ϵ

Property 5 and 6: By using the inequality above, Lemma E.6 and noting that ex ≤ 1 + 2x for small
x, we have

ℓ
′(1)
j

ℓ
′(1)
i

≤ e∆
(1)
q (i,j) ≤ 1 + 2∆(1)

q (i, j) ≤ 1 + 14ϵ︸ ︷︷ ︸
Property 5

≤ 1 + 130ϵ︸ ︷︷ ︸
Property 6

.

Now we complete the proof of the base case when t = 1 for induction.

Step 2: Assuming that the inductive hypothesis at time step t holds, we consider time step t+ 1. We
first give some useful lemmas based on the inductive hypotheses, and then go on to inductive proofs
based on these lemmas.

Lemma E.9. Assuming the inductive hypotheses hold before time step t and i ∈ Is, the update
equations in Corollary E.3 can be simplified as follows:

λ
(t+1)
s,r,c(i) = λ

(t)
s,r,c(i) −

sη

nm
·
∑

p∈Ic(i)

ℓ′(t)p ∥µc(i)∥2.

σ
(t+1)
s,r,i = σ

(t)
s,r,i −

sη

nm
· ℓ′(t)i ∥ξi∥2.

Proof of Lemma E.9. By Property 7 in Lemma E.7 (inductive hypothesis) and Corollary E.3, the
conclusion is straightforward. ■

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2025

Then, we demonstrate that the bias term remains consistently small as the following lemma.

Lemma E.10. For every s ∈ {−1,+1}, r ∈ [m], i ∈ I , we have

|b(t)s,r| ≤
ϵ

6
.

Proof of Lemma E.10. Without loss of generality, we assume that s = 1. Then, for any t′ ≤ t, by
using Lemma E.9, we know that

σ
(t′+1)
1,r,i = σ

(t′)
1,r,i −

η

nm
· ℓ′(t)i ∥ξi∥2.

b
(t′+1)
1,r = b

(t′)
1,r − η

nm

∑
p∈I

ℓ′(t)p 1

(
⟨w(t)

1,r,xp⟩+ b
(t)
1,r ≥ 0

)
≤ b

(t′)
1,r − η

nm

∑
p∈I+

ℓ′(t)p

Thus, we derive

σ
(t′+1)
1,r,i − σ

(t′)
1,r,i ≥

ℓ
′(t)
i ∥ξi∥2∑
p∈I+

ℓ
′(t)
p

(
b
(t′+1)
1,r − b

(t′)
1,r

)
≥ d

2n

(
b
(t′+1)
1,r − b

(t′)
1,r

)
.

Summing up the above inequality from t′ = 1 to t′ = t− 1, we have

b
(t)
1,r − b

(1)
1,r ≤ 2n

d

(
σ
(t)
1,r,i − σ

(1)
1,r,i

)
.

Then by inequality (16) and Property (1) in the inductive hypotheses, we know that

b
(t)
1,r ≤ 2n

d
σ
(t)
1,r,i −

2n

d
σ
(1)
1,r,i + b

(1)
1,r ≤ 4k ln(t+ 1)

d
+

ϵ

10
≤ ϵ

6
.

Reusing the same argument as in the previous proof, we know that b(t)1,r ≥ − ϵ

6
. ■

Next, we prove that the true value of the margin q
(t)
i is close to its estimated value q̂

(t)
i . To estimate

the margin, we first estimate the value of each neuron in the following Lemma E.11, Lemma E.12
and Lemma E.13.

Lemma E.11. Assuming the inductive hypotheses hold before time step t, for all s ∈ {−1,+1}, r ∈
[m], j ∈ J , we have ∣∣∣⟨w(t)

s,r,µj⟩ − λ
(t)
s,r,j

∣∣∣ ≤ ϵ

6
.

Proof of Lemma E.11. We bound the gap between the inner product ⟨w(t)
s,r,µj⟩ and feature coefficient

λ
(t)
s,r,j as follows:∣∣∣⟨w(t)

s,r,µj⟩ − λ
(t)
s,r,j

∣∣∣
=

∣∣∣∣∣∣
〈
w(0)

s,r +
∑
p∈J

λ(t)
s,r,pµp∥µp∥−2 +

∑
q∈I

σ(t)
s,r,qξq∥ξq∥−2,µj

〉
− λ

(t)
s,r,j

∣∣∣∣∣∣
≤
∣∣∣⟨w(0)

s,r ,µj⟩
∣∣∣+ ∣∣∣⟨λ(t)

s,r,jµj∥µj∥−2,µj⟩ − λ
(t)
s,r,j

∣∣∣+∑
p̸=j

λ(t)
s,r,p∥µp∥−2 |⟨µp,µj⟩|+

∑
q∈I

σ(t)
s,r,q∥ξq∥−2 |⟨ξq,µj⟩|

≤
∣∣∣⟨w(0)

s,r ,µj⟩
∣∣∣+∑

p ̸=j

λ(t)
s,r,p

2∆

d
+
∑
q∈I

σ(t)
s,r,q

2∆

d

=
∣∣∣⟨w(0)

s,r ,µj⟩
∣∣∣+ 2∆

d

∑
p ̸=j

∑
q∈Ip

σ(t)
s,r,q

∥ξq∥2

∥µp∥2
+
∑
q∈I

σ(t)
s,r,q


≤
√
d∥w(0)

s,r∥+
12∆ ln(t+ 1)k

d
≤ ϵ

6
.

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2025

The first equation employs the weight decomposition in Lemma E.2; the second inequality expands
the inner product and applies the triangle inequality; the third inequality utilizes the properties from
Proposition D.6; the fourth equation utilizes Corollary E.4; the fifth inequality utilizes Property 1 and
Property 8 in the inductive hypotheses. ■

Lemma E.12. Assuming the inductive hypotheses hold before time step t, for all s ∈ {−1,+1}, r ∈
[m], i ∈ I , we have ∣∣∣⟨w(t)

s,r, ξi⟩ − σ
(t)
s,r,i

∣∣∣ ≤ ϵ

6
.

Proof of Lemma E.12. We bound the gap between the inner product ⟨w(t)
s,r, ξi⟩ and noise coefficient

σ
(t)
s,r,i as follows:∣∣∣⟨w(t)

s,r, ξi⟩ − σ
(t)
s,r,i

∣∣∣
=

∣∣∣∣∣∣
〈
w(0)

s,r +
∑
p∈J

λ(t)
s,r,pµp∥µp∥−2 +

∑
q∈I

σ(t)
s,r,qξq∥ξq∥−2, ξi

〉
− σ

(t)
s,r,i

∣∣∣∣∣∣
≤
∣∣∣⟨w(0)

s,r , ξi⟩
∣∣∣+ ∣∣∣⟨σ(t)

s,r,iξi∥ξi∥
−2, ξi⟩ − σ

(t)
s,r,i

∣∣∣+∑
p∈J

λ(t)
s,r,p∥µp∥−2 |⟨µp, ξi⟩|+

∑
q ̸=i

σ(t)
s,r,q∥ξq∥−2 |⟨ξq, ξi⟩|

≤
∣∣∣⟨w(0)

s,r , ξi⟩
∣∣∣+∑

p∈J

λ(t)
s,r,p

2∆

d
+
∑
q ̸=i

σ(t)
s,r,q

2∆

d

=
∣∣∣⟨w(0)

s,r ,µj⟩
∣∣∣+ 2∆

d

∑
p ̸=j

∑
q∈Ip

σ(t)
s,r,q

∥ξq∥2

∥µp∥2
+
∑
q∈I

σ(t)
s,r,q


≤
√
d∥w(0)

s,r∥+
12∆ ln(t+ 1)k

d
≤ ϵ

6
.

The first equation employs the weight decomposition in Lemma E.2; the second inequality expands
the inner product and applies the triangle inequality; the third inequality utilizes the properties from
Proposition D.6; the fourth equation utilizes Corollary E.4; the fifth inequality utilizes Property 1 and
Property 8 in the inductive hypotheses. ■

Lemma E.13. Assuming the inductive hypotheses hold before time step t, for all s ∈ {−1,+1}, r ∈
[m], i ∈ I , we have ∣∣∣⟨w(t)

s,r,xi⟩ − λ
(t)
s,r,c(i) − σ

(t)
s,r,i

∣∣∣ ≤ ϵ

3
.

Proof of Lemma E.13. Using the conclusion in Lemma E.11 and Lemma E.12 and triangle inequality,
we can directly obtain the conclusion in this lemma.∣∣∣⟨w(t)

s,r,xi⟩ − λ
(t)
s,r,c(i) − σ

(t)
s,r,i

∣∣∣ ≤ ∣∣∣⟨w(t)
s,r,µc(i)⟩ − λ

(t)
s,r,c(i)

∣∣∣+ ∣∣∣⟨w(t)
s,r, ξi⟩ − σ

(t)
s,r,i

∣∣∣ ≤ ϵ

3
.

■

Lemma E.14. Assuming the inductive hypotheses hold before time step t , for all i ∈ I , we have

|q(t)i − q̂
(t)
i | ≤ ϵ

Proof of Lemma E.14. Without loss of generality, we assume that i ∈ I+.

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2025

Using Property 7 in the inductive hypotheses, we know that

|qi − q̂i| =
1

m

∣∣∣∣∣∣yifθ(t) (xi)−

∑
r∈[m]

λ
(t)
1,r,c(i) +

∑
r∈[m]

σ
(t)
1,r,i

∣∣∣∣∣∣
≤ 1

m

∑
r∈[m]

∣∣∣⟨w(t)
1,r,xi⟩+ b

(t)
1,r − λ

(t)
1,r,c(i) − σ

(t)
1,r,i

∣∣∣+ 1

m

∑
r∈[m]

ReLU
(
⟨w(t)

−1,r,xi⟩+ b
(t)
−1,r

)
≤ 1

m

∑
r∈[m]

∣∣∣⟨w(t)
1,r,xi⟩ − λ

(t)
1,r,c(i) − σ

(t)
1,r,i

∣∣∣
︸ ︷︷ ︸

L1

+
1

m

∑
r∈[m]

ReLU
(
⟨w(t)

−1,r,xi⟩
)

︸ ︷︷ ︸
L2

+
1

m

∑
r∈[m]

(
|b(t)−1,r|+ |b(t)1,r|

)
︸ ︷︷ ︸

L3

.

For L1 term, using the conclusion in Lemma E.13, we know that L1 ≤ ϵ

3
.

For L2 term, we consider each term in the summation by distinguishing between two scenarios..

Case(I): ⟨w(t)
−1,r,xi⟩ ≤ 0.

Then we know that ReLU
(
⟨w(t)

−1,r,xi⟩
)
= 0 <

ϵ

3
.

Case(II): ⟨w(t)
−1,r,xi⟩ ≥ 0.

Using the conclusion in Lemma E.13 and Corollary E.5, we know that

ReLU
(〈

w
(t)
−1,r,xi

〉)
= ⟨w(t)

−1,r,xi⟩ ≤ ⟨w(t)
−1,r,xi⟩ − λ

(t)
−1,r,c(i) − σ

(t)
−1,r,i ≤

ϵ

3
.

Combining Case (I) and (II) together, we know that L2 ≤ ϵ

3
.

For L3 term, using the conclusion in Lemma E.10, we know that L3 ≤ ϵ

3
.

Combining the above together, we know that

|q(t)i − q̂
(t)
i | ≤ ϵ.

■

Then, we can estimate the margin gap between two training data points using a simple triangle
inequality.

Corollary E.15. Assuming the inductive hypotheses hold before time step t, for all i, j ∈ I , we have∣∣∣∆(t)
q (i, j)− ∆̂(t)

q (i, j)
∣∣∣ ≤ 2ϵ.

Proof of Corollary E.15. By Lemma E.14 and triangle inequality, we have∣∣∣∆(t)
q (i, j)− ∆̂(t)

q (i, j)
∣∣∣ ≤ |q(t)i − q̂

(t)
i |+ |q(t)j − q̂

(t)
j | ≤ 2ϵ.

■

Then we will analyze update equations for ∆̂(t)
q (i, j).

By Lemma E.9, we know that∑
r∈[m]

(
λ
(t+1)
yi,r,c(i)

− λ
(t+1)
yj ,r,c(j)

)
=
∑
r∈[m]

(
λ
(t)
yi,r,c(i)

− λ
(t)
yj ,r,c(j)

)
− η

2n

 ∑
p∈Ic(i)

ℓ′(t)p ∥µc(i)∥2 −
∑

p∈Ic(j)

ℓ′(t)p ∥µc(j)∥2


∑
r∈[m]

(
σ
(t+1)
yi,r,i

− σ
(t+1)
yj ,r,j

)
=
∑
r∈[m]

(
σ
(t)
yi,r,i

− σ
(t)
yj ,r,j

)
− η

2n

(
ℓ
′(t)
i ∥ξi∥2 − ℓ

′(t)
j ∥ξj∥2

)

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2025

Combining the above two equations together, we get the update equation for ∆̂(t)
q (i, j).

∆̂(t+1)
q (i, j) = ∆̂(t)

q (i, j)− η

2n

 ∑
p∈Ic(i)

ℓ′(t)p ∥µc(i)∥2 −
∑

p∈Ic(j)

ℓ′(t)p ∥µc(j)∥2 + ℓ
′(t)
i ∥ξi∥2 − ℓ

′(t)
j ∥ξj∥2


(17)

Lemma E.16 (Property 8). For s ∈ {−1,+1}, i ∈ Is, we have |λ(t)
−s,r,c(i)| ≤ ϵ, |σ−s,r,i| ≤ 2ϵ.

Proof of Lemma E.16. We prove that for j ∈ J+, |λ(t)
−1,r,j | ≤ ϵ for all r ∈ [m] and the proof of the

other part is similar.

We distinguish between two scenarios.

Case(I): For all i ∈ Ij , ⟨w(t)
−1,r,xi⟩+ b

(t)
−1,r < 0.

Then by Corollary E.3 and inductive hypothesis, we know that

|λ(t+1)
−1,r,j | = |λ(t)

−1,r,j | ≤ ϵ.

Case(II): There exists i ∈ Ij such that ⟨w(t)
−1,r,xi⟩+ b

(t)
−1,r ≥ 0.

By Lemma E.13, we know that

⟨w(t)
−1,r,xi⟩ − λ

(t)
−1,r,j − σ

(t)
−1,r,i ≤

ϵ

3
.

Then by Lemma E.10 and noting that ⟨w(t)
−1,r,xi⟩+ b

(t)
−1,r ≥ 0 and σ

(t)
−1,r,i ≤ 0, we have

λ
(t)
−1,r,j ≥ ⟨w(t)

−1,r,xi⟩ − σ
(t)
−1,r,i −

ϵ

3
≥ −b

(t)
−1,r −

ϵ

3
≥ −2ϵ

3
.

Then using the conclusion in Lemma E.3, we know that

|λ(t+1)
−1,r,j − λ

(t)
−1,r,j | ≤

ηd

nm

∑
i∈Ij

|ℓ′(t)i | ≤ ηd

m
≤ ϵ

3
.

Thus we have λ
(t+1)
−1,r,j ≥ −ϵ. Noting that λ(t+1)

−1,r,j ≤ 0, we have |λ(t+1)
−1,r,j | ≤ ϵ. Then by Corollary E.4,

we know that |σ(t)
s,r,i| ≤ 2|λ(t+1)

s,r,j | ≤ 2ϵ. ■

The lemmas we used for the inductive proof have all been proved, and now we can begin the main
part of our proof.

Property 2: We first prove that Property 2 as the following lemma.

Lemma E.17 (Property 2 of Lemma E.7). Assuming the inductive hypotheses hold before time step t
and c(i) = c(j), we have ∣∣∣∆̂(t+1)

q (i, j)
∣∣∣ ≤ 5ϵ.

Proof of Lemma E.17. Without loss of generality, we assume that q̂(t+1)
i ≥ q̂

(t+1)
j . We distinguish

between two scenarios., one is when
∣∣∣∆̂(t)

q (i, j)
∣∣∣ is relatively small and the other is when

∣∣∣∆̂(t)
q (i, j)

∣∣∣
is relatively large.

Case(I): ∆̂(t)
q (i, j) ≤ 4ϵ.

By equation (17), Lemma D.15 and η ≤ d−2, we know that∣∣∣∆̂(t+1)
q (i, j)− ∆̂(t)

q (i, j)
∣∣∣

=
η

2n

∣∣∣ℓ′(t)i ∥ξi∥2 − ℓ
′(t)
j ∥ξj∥2

∣∣∣ ≤ η

2n

(∣∣∣ℓ′(t)i ∥ξi∥2
∣∣∣+ ∣∣∣ℓ′(t)j ∥ξj∥2

∣∣∣) ≤ 2ηd

n
≤ ϵ

44

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2025

So we have
∆̂(t+1)

q (i, j) ≤ 5ϵ.

Case(II) : ∆̂(t)
q (i, j) ≥ 4ϵ.

By Corollary E.15, we know that

∆(t)
q (i, j) ≥ ∆̂(t)

q (i, j)− 2ϵ ≥ 2ϵ.

By Lemma E.6, we know that

ℓ
′(t)
j

ℓ
′(t)
i

≥ e∆
(t)
q (i,j)/2 ≥ 1 + ∆(t)

q (i, j)/2 ≥ 1 + ϵ. (18)

By Equation (17) and c(i) = c(j), we know that

∆̂(t+1)
q (i, j)− ∆̂(t)

q (i, j)

=− η

2n

 ∑
p∈Ic(i)

ℓ′(t)p ∥µc(i)∥2 −
∑

p∈Ic(j)

ℓ′(t)p ∥µc(j)∥2 + ℓ
′(t)
i ∥ξi∥2 − ℓ

′(t)
j ∥ξj∥2


=− η

2n

(
ℓ
′(t)
i ∥ξi∥2 − ℓ

′(t)
j ∥ξj∥2

)

=− η

2n
∥ξj∥2ℓ′(t)i

 (1 + ϵ)−
ℓ
′(t)
j

ℓ
′(t)
i︸ ︷︷ ︸

<0, by inequality (18)

+
η

2n
ℓ
′(t)
i

(
(1 + ϵ)∥ξj∥2 − ∥ξi∥2

)

≤ 0 (19)

Furthermore, due to the inductive hypothesis,

∆̂(t+1)
q (i, j) ≤ ∆̂(t)

q (i, j) ≤ 5ϵ.

■

Property 5: Using the result in this lemma and Corollary E.15, we know that

∆(t+1)
q (i, j) ≤ 7ϵ.

Using the above inequality and Lemma E.6 and noting that ex ≤ 1 + 2x for small x we know that

ℓ
′(t+1)
j

ℓ
′(t+1)
i

≤ e∆
(t+1)
q (i,j) ≤ 1 + 2∆(t+1)

q (i, j) ≤ 1 + 14ϵ.

At this point, we have completed the inductive proofs for Property 2 and 5 in Lemma E.7.

Property 3, 4 and 6: Next, we consider the general case where the two training data points xi,xj

are not necessarily in the same cluster to prove Property 3 and 6 in Lemma E.7. This part of the proof
overlaps significantly with the previous one, with the main difference being the addition of an extra
term in the update equation of ∆̂(t)

q (i, j).

Lemma E.18 (Property 3). Assuming the inductive hypotheses hold before time step t, we have∣∣∣∆̂(t+1)
q (i, j)

∣∣∣ ≤ 63ϵ.

Proof of Lemma E.18. We distinguish between two scenarios, one is when
∣∣∣∆̂(t)

q (i, j)
∣∣∣ is relative

small and the other is when
∣∣∣∆̂(t)

q (i, j)
∣∣∣ is relative large.

Case(I): ∆̂(t)
q (i, j) ≤ 62ϵ.

45

2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2025

By equation (17), Lemma D.15 and η ≤ d−2, we know that∣∣∣∆̂(t+1)
q (i, j)− ∆̂(t)

q (i, j)
∣∣∣

=
η

2n

∣∣∣∣∣∣
∑

p∈Ic(i)

ℓ′(t)p ∥µc(i)∥2 −
∑

p∈Ic(j)

ℓ′(t)p ∥µc(j)∥2 + ℓ
′(t)
i ∥ξi∥2 − ℓ

′(t)
j ∥ξj∥2

∣∣∣∣∣∣
≤ η

2n

 ∑
p∈Ic(i)

ℓ′(t)p ∥µc(i)∥2 +
∑

p∈Ic(j)

ℓ′(t)p ∥µc(j)∥2 +
∣∣∣ℓ′(t)i ∥ξi∥2

∣∣∣+ ∣∣∣ℓ′(t)j ∥ξj∥2
∣∣∣


≤ η

2n

(
2nd

k
+

2nd

k
+ 2d+ 2d

)
≤ 5ηd

2k
≤ ϵ

So we have
∆̂(t+1)

q (i, j) ≤ 63ϵ.

Case(II): ∆̂(t)
q (i, j) ≥ 62ϵ.

By Lemma E.14, we know that

∆(t)
q (i, j) ≥ ∆̂(t)

q (i, j)− 2ϵ ≥ 60ϵ.

By Lemma E.6, we know that

ℓ
′(t)
j

ℓ
′(t)
i

≥ e∆
(t)
q (i,j)/2 ≥ 1 + ∆(t)

q (i, j)/2 ≥ 1 + 30ϵ. (20)

Furthermore, due to the inductive hypothesis, for any p ∈ Ic(i), q ∈ Ic(j), we know that

ℓ
′(t)
p

ℓ
′(t)
q

≤ (1 + 14ϵ)ℓ
′(t)
i

ℓ
′(t)
j /(1 + 14ϵ)

≤ (1 + 14ϵ)2

1 + 30ϵ
≤ 1

1 + ϵ
. (21)

By Equation 17 and c(i) = c(j), we know that

∆̂(t+1)
q (i, j)− ∆̂(t)

q (i, j)

=− η

2n

 ∑
p∈Ic(i)

ℓ′(t)p ∥µc(i)∥2 −
∑

p∈Ic(j)

ℓ′(t)p ∥µc(j)∥2 + ℓ
′(t)
i ∥ξi∥2 − ℓ

′(t)
j ∥ξj∥2


=− η

2n

(
ℓ
′(t)
i ∥ξi∥2 − ℓ

′(t)
j ∥ξj∥2

)
− η

2n

 ∑
p∈Ic(i)

ℓ′(t)p ∥µc(i)∥2 −
∑

p∈Ic(j)

ℓ′(t)p ∥µc(j)∥2


We analyze each of these two terms separately.

Similar to the proof of inequality (19),

− η

2n

(
ℓ
′(t)
i ∥ξi∥2 − ℓ

′(t)
j ∥ξj∥2

)

=− η

2n
∥ξj∥2ℓ′(t)i

(1 + 30ϵ)−
ℓ
′(t)
j

ℓ
′(t)
i︸ ︷︷ ︸

<0, by inequality (20)

+
η

2n
ℓ
′(t)
i

(
(1 + 30ϵ)∥ξj∥2 − ∥ξi∥2

)

≤ 0 (22)

By inequality (21) and Property 7 in Proposition D.6, we have∑
p∈Ic(i)

ℓ
′(t)
p ∥µc(i)∥2∑

q∈Ic(j)

ℓ
′(t)
q ∥µc(i)∥2

=

∑
p∈Ic(i)

ℓ
′(t)
p∑

q∈Ic(j)

ℓ
′(t)
q

≤ |Ii|
(1 + ϵ)|Ij |

≤ 1.

46

2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2025

Thus we know that

− η

2n

 ∑
p∈Ic(i)

ℓ′(t)p ∥µc(i)∥2 −
∑

p∈Ic(j)

ℓ′(t)p ∥µc(j)∥2
 ≤ 0. (23)

By combining (22) and (23) with the inductive hypothesis, we know that

∆̂(t+1)
q (i, j) ≤ ∆̂(t)

q (i, j) ≤ 63ϵ.

■

Using the result in this lemma and Corollary E.15, we know that

∆(t+1)
q (i, j) ≤ 65ϵ.

Using the above inequality and Lemma E.6 and noting that ex ≤ 1 + 2x for small x we know that

yjℓ
′(t+1)
j

yiℓ
′(t+1)
i

≤ e∆
(t+1)
q (i,j) ≤ 1 + 2∆(t+1)

q (i, j) ≤ 1 + 130ϵ.

Now, we have completed the inductive proofs for Property 2, 3, 4, 5 and 6 in Lemma E.7.

Property 1: To prove Property 1, we need to analyze the update equation for σ(t)
s,r,i. We first prove

that σ(t)
s,r,i’s are balanced as follows.

Lemma E.19. For all i1, i2 ∈ I, r1, r2 ∈ [m], we have

(1− 200ϵ)σ
(t)
yi2

,r2,i2
− 1

nd
≤ σ

(t)
yi1

,r1,i1
≤ (1 + 200ϵ)σ

(t)
yi2

,r2,i2
+

1

nd
.

Proof of Lemma E.19. We first prove the right-hand side of the inequality and the proof for the
left-hand side is similar. By Lemma E.9, for any t′ < t, we know that

σ
(t′+1)
yi1

,r1,i1
− σ

(t′)
yi1

,r1,i1

σ
(t′+1)
yi2

,r2,i2
− σ

(t′)
yi2

,r2,i2

=
yi1ℓ

′(t′)
i1

∥ξi1∥2

yi2ℓ
′(t′)
i2

∥ξi2∥2

≤ (1 + 130ϵ)

(√
d+ ln(d)√
d− ln(d)

)2

(Applying Property 1 in Proposition D.6)

≤ 1 + 200ϵ

That is to say
σ
(t′+1)
yi1

,r1,i1
− σ

(t′)
yi1

,r1,i1
≤ (1 + 200ϵ)

(
σ
(t′+1)
yi2

,r2,i2
− σ

(t′)
yi2

,r2,i2

)
.

Summing the above inequality from t′ = 1 to t′ = t− 1, we have

σ
(t)
yi1

,r1,i1
− σ

(1)
yi1

,r1,i1
≤ (1 + 200ϵ)

(
σ
(t)
yi2

,r2,i2
− σ

(1)
yi2

,r2,i2

)
.

Then, we can derive that

σ
(t)
yi1

,r1,i1
≤ (1 + 200ϵ)σ

(t)
yi2

,r2,i2
+ σ

(1)
yi1

,r1,i1

= (1 + 200ϵ)σ
(t)
yi2

,r2,i2
− η

nm
· ℓ′(t)i ∥ξi∥21

(
⟨w(t)

s,r,xi⟩+ b(t)s,r ≥ 0
)

≤ (1 + 200ϵ)σ
(t)
yi2

,r2,i2
+

2dη

nm

≤ (1 + 200ϵ)σ
(t)
yi2

,r2,i2
+

1

nd
.

Reusing the logic of the above proof, we know that

(1− 200ϵ)σ
(t)
yi2

,r2,i2
− 1

nd
≤ σ

(t)
yi1

,r1,i1
.

■

47

2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591

Under review as a conference paper at ICLR 2025

Then, we estimate the margin q
(t)
i only using σ

(t)
s,r,i, which is presented as the following lemma.

Lemma E.20. For every i ∈ I, r0 ∈ [m], we have
n

2k
σ
(t)
yi,r0,i

− 2ϵ ≤ q
(t)
i ≤ 2n

k
σ
(t)
yi,r0,i

+ 2ϵ.

Proof of Lemma E.20. Without loss of generality, we assume that i ∈ I+.

We first prove the right-hand side of the inequality.

mq̂
(t)
i =

∑
r∈[m]

λ
(t)
1,r,c(i) +

∑
r∈[m]

σ
(t)
1,r,i

=
∑
r∈[m]

∑
p∈Ic(i)

∥ξi∥−2

∥µc(i)∥−2
σ
(t)
1,r,p +

∑
r∈[m]

σ
(t)
1,r,i

≤
∑
r∈[m]

∑
p∈Ic(i)

∥ξi∥−2

∥µc(i)∥−2

(
(1 + 200ϵ)σ

(t)
1,r0,i

+
1

nd

)
+
∑
r∈[m]

(
(1 + 200ϵ)σ

(t)
1,r0,i

+
1

nd

)

≤ 2mn

k
σ
(t)
1,r0,i

+
2m

kd

≤ 2mn

k
σ
(t)
1,r0,i

+mϵ.

Then, by Lemma E.14, we know that

q
(t)
i ≤ q̂

(t)
i + ϵ ≤ 2n

k
σ
(t)
1,r0,i

+ 2ϵ.

Reusing the argument of the above proof, we prove the left-hand side of the inequality.

mq̂
(t)
i =

∑
r∈[m]

λ
(t)
1,r,c(i) +

∑
r∈[m]

σ
(t)
1,r,i

=
∑
r∈[m]

∑
p∈Ic(i)

∥ξi∥−2

∥µc(i)∥−2
σ
(t)
1,r,p +

∑
r∈[m]

σ
(t)
1,r,i

≥
∑
r∈[m]

∑
p∈Ic(i)

∥ξi∥−2

∥µc(i)∥−2

(
(1− 200ϵ)σ

(t)
1,r0,i

− 1

nd

)
+
∑
r∈[m]

(
(1− 200ϵ)σ

(t)
1,r0,i

− 1

nd

)
≥ mn

2k
σ
(t)
1,r0,i

− m

2kd

≥ mn

2k
σ
(t)
1,r0,i

−mϵ.

Then by Lemma E.14, we know that

q
(t)
i ≥ q̂

(t)
i − ϵ ≥ n

2k
σ
(t)
1,r0,i

− 2ϵ.

■

Furthermore, we also need to estimate ℓ
′(t)
i using σ

(t)
s,r,i as the following lemma.

Lemma E.21. For every i ∈ I, r ∈ [m], we have

1

3
exp

(
−2n

k
σ
(t)
yi,r,i

)
≤ −yiℓ

′(t)
i ≤ 2 exp

(
− n

2k
σ
(t)
yi,r,i

)
.

Proof of Lemma E.21. Without loss of generality, we assume that i ∈ I+.

By Lemma E.20, we know that

−yiℓ
′(t)
i =

1

1 + exp
(
q
(t)
i

) ≥ 1

2 exp
(
q
(t)
i

) ≥ 1

2
exp

(
−2n

k
σ
(t)
1,r,i − 2ϵ

)
≥ 1

3
exp

(
−2n

k
σ
(t)
1,r,i

)
.

48

2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645

Under review as a conference paper at ICLR 2025

−yiℓ
′(t)
i =

1

1 + exp
(
q
(t)
i

) ≤ 1

exp
(
q
(t)
i

) ≤ exp
(
− n

2k
σ
(t)
1,r,i + 2ϵ

)
≤ 2 exp

(
−2n

k
σ
(t)
1,r,i

)
.

■

Then, we can prove Property 1 based on the inductive hypothesis.

Without loss of generality, we assume that i ∈ I+.

We first prove the left-hand side of the inequality.

σ
(t+1)
1,r,i = σ

(t)
1,r,i −

η

nm
· ℓ′(t)i ∥ξi∥2

≤ σ
(t)
1,r,i +

2ηd

nm
exp

(
− n

2k
σ
(t)
1,r,i

)
(Applying Lemma E.21)

≤ 2k

n
ln(t+ 1) +

2ηd

nm

1

t+ 1
(Monotone with respect to σ

(t)
1,r,i)

≤ 2k

n
ln(t+ 2),

σ
(t+1)
−1,r,i ≤ 0 ≤ 2k

n
ln(t+ 2)(Corollary E.5).

Then we prove the right-hand side of the inequality.

σ
(t+1)
1,r,i = σ

(t)
1,r,i −

η

nm
· ℓ′(t)i ∥ξi∥2

≥ σ
(t)
1,r,i +

ηd

3nm
exp

(
−2n

k
σ
(t)
1,j,i

)
(Applying Lemma E.21)

≥ k

2n
(ln(t) + ln(η)) +

d

3nm

1

t
(Monotonic with respect to σ

(t)
1,r,i)

≥ k

2n
(ln ((t+ 1)) + ln(η))

=
k

2n
ln((t+ 1)η).

Finally, we prove Property 7. The proof is very similar to the proof of Lemma E.1. We show that
⟨w(t+1)

1,r ,xi⟩ + b
(t+1)
1,r ≥ 0 for all i ∈ I+. By the inductive hypothesis, we know that ⟨w(t)

1,r,xi⟩ +
b
(t)
1,r ≥ 0.

⟨w(t+1)
1,r ,xi⟩+ b

(t+1)
1,r =⟨w(t)

1,r,xi⟩+ b
(t)
1,r − η

(
⟨∇w1,r

L(θ(t)),xi⟩+∇b1,rL(θ(t))
)

≥− η
(〈

∇w1,r
L(θ(t)),xi

〉
+∇b1,rL(θ(t))

)
.

Denote ℓ′(t) := ℓ
′(t)
1 . By Property (6) in inductive hypotheses, we know that for all i ∈ I

1

1 + 130ϵ
ℓ
′(t)
i ≤ ℓ′(t) ≤ (1 + 130ϵ)ℓ

′(t)
i

We examine the update of linear term first.

−⟨∇w1,rL(θ(t)),xi⟩ =− ⟨
∑
p∈I+

ℓ′(t)p xp,xi⟩

≥ −
∑

p∈Ic(i)

ℓ′(t)p ⟨xp,xi⟩+
∑

p/∈Ic(i)

ℓ′(t)p |⟨xp,xi⟩|

≥ − d

2

∑
p∈Ic(i)

ℓ′(t)p +∆
∑

p/∈Ic(i)

ℓ′(t)p

≥− dnℓ′(t)

4k
+ 2n∆ℓ′(t)

≥− n∆ℓ′(t).

(24)

49

2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699

Under review as a conference paper at ICLR 2025

Then we examine the update of bias term.

−∇b1,rL(θ(t)) = −
∑
p∈I

ℓ′(t)p 1

(
⟨w(t)

1,r,xi⟩+ b
(t)
1,r ≥ 0

)
≥ nℓ′(t). (25)

Combining (24) and (25) together, we know that

⟨w(t+1)
1,r ,xi⟩+ b

(t+1)
1,r ≥ 0

Thus we know that S(t+1)
1,i = [m].

For the case when xi belongs to the negative class, we can obtain S
(t+1)
−1,i = [m] using the same

argument. Now, we have completed the proof of Lemma E.7. □

E.2 PROOF OF THEOREM 4.5

Now, we start to prove the main result Theorem 4.5.
Theorem E.22 (Restatement of Theorem 4.5). In the setting of training a two-layer ReLU network on
the binary classification problem D({µj}kj=1, J±) as described in Section 3, under Assumptions 3.2,
3.3 and 4.3, for some γ = o(1), after Ω(η−1) ≤ T ≤ exp(Õ(k1/2)) iterations, with probability at
least 1− γ, the neural network satisfies the following properties:

1. The clean accuracy is nearly perfect: AccDclean(fθ(T)) ≥ 1− exp(−Ω(log2 d)).

2. Gradient descent leads the network to the feature-averaging regime: there exists a time-
variant coefficient λ(T) ∈ [Ω(1),+∞) such that for all s ∈ {±1}, r ∈ [m], the weight
vector w(T)

s,r can be approximated as∥∥∥∥w(T)
s,r − λ(T)

∑
j∈Js

∥µj∥−2µj

∥∥∥∥ ≤ o(d−1/2),

and the bias term keeps sufficiently small, i.e.,
∣∣∣b(T)

s,r

∣∣∣ ≤ o(1).

3. Consequently, the network is non-robust: for perturbation radius δ = Ω(
√

d/k), the
δ-robust accuracy is nearly zero, i.e., AccDrobust(fθ(T) ; δ) ≤ exp(−Ω(log2 d)).

Proof of Theorem E.22. We first prove that gradient descent leads the network to the feature-
averaging regime (Property 2).

Lemma E.23. For all s ∈ {−1,+1}, j ∈ Js, r ∈ [m], we have
ln(Tη)

4
≤ λ

(T)
s,r,j ≤ 4 ln(T + 1).

Proof of Lemma E.23. Without loss of generality, we assume that s = 1.

Using Property 1 in Lemma E.7 and Corollary E.4, we know that

λ
(T)
1,r,j =

∑
p∈Ij

∥ξp∥2

∥µj∥2
σ
(T)
1,r,p ≥ n

2k
σ
(T)
1,r,1 ≥ ln(Tη)

4

λ
(T)
1,r,j =

∑
p∈Ij

∥ξp∥2

∥µj∥2
σ
(T)
1,r,p ≤ 2n

k
σ
(T)
1,r,1 ≤ 4 ln(T + 1)

■

Lemma E.24. For r1, r2 ∈ [m], s1, s2 ∈ {−1,+1}, j1 ∈ Js1 , j2 ∈ Js2 , we have

λ
(T)
s1,r1,j1

λ
(T)
s2,r2,j2

≤ 1 + 204ϵ.

50

2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753

Under review as a conference paper at ICLR 2025

Proof. By Lemma E.19, we know that for any i1, i2 ∈ I

σ
(t)
yi1

,r1,i1
≤ (1 + 200ϵ)σ

(t)
yi2

,r2,i2
+ (nd)−1 ≤ (1 + 201ϵ)σ

(t)
yi1

,r2,i2
.

λ
(T)
s1,r1,j1

λ
(T)
s2,r2,j2

=

∑
p∈Ij1

∥ξp∥2σ(t)
s1,r1,p∑

p∈Ij2

∥ξp∥2σ(t)
s2,r2,p

≤ (1 + 201ϵ)
∥
√
d+ ln(d)∥2

∥
√
d− ln(d)∥2

|Ij1 |
|Ij2 |

≤ (1 + 201ϵ)(1 + ϵ)(1 + ϵ)

≤ 1 + 204ϵ.

■

We denote λ(T) = λ
(T)
1,1,j0

for some j0 ∈ J+ as the representative of {λs,r,j : s ∈ {−1,+1}, r ∈
[m], j ∈ Js}.

By Lemma E.23 and Lemma E.24 ,for all s ∈ {−1,+1}, r ∈ [m], j ∈ Js, we have

|λ(T) − λ
(T)
s,r,j | ≤ 204ϵλ(T),

λ(T) ≤ 4 ln(T + 1),

λ(T) ≥ ln(Tη)

4
= Ω(1).

Lemma E.25. For all s ∈ {−1,+1}, r ∈ [m], We have

√
d

∥∥∥∥∥∥w(T)
s,r − λ(T)

∑
j∈Js

µj∥µj∥−2

∥∥∥∥∥∥ = o(1).

Proof of Lemma E.25. Recall the weight decomposition in Lemma E.2.

√
d

w(T)
s,r − λ(T)

∑
j∈Js

µj∥µj∥−2

 =
√
dw(0)

s,r︸ ︷︷ ︸
L1

+
√
d
∑
j∈Js

(
λ
(T)
s,r,j − λ(T)

)
µj∥µj∥−2

︸ ︷︷ ︸
L2

+
√
d
∑

j∈J−s

λ
(T)
s,r,jµj∥µj∥−2

︸ ︷︷ ︸
L3

+
√
d
∑
i∈I

σ
(T)
s,r,iξi∥ξi∥

−2

︸ ︷︷ ︸
L4

For L1 term, using the conclusion in Lemma D.10, we know that

∥
√
dw(0)

s,r∥ ≤ 2dσw ≤ ϵ = o(1)

For L2 term, using the conclusion in Lemma E.23, Lemma E.24 and noting that µj are pairwise
orthogonal, we know that∥∥∥∥∥∥√d

∑
j∈J

(
λ
(T)
s,r,j − λ(T)

)
µj∥µj∥−2

∥∥∥∥∥∥ =

√∑
j∈Js

(
λ
(T)
s,r,j − λ(T)

)2
≤
√∑

j∈Js

(204ϵ)2
(
λ(T)

)2
≤ 204ϵ

√
kλ(T)

≤ 816ϵ
√
k ln(T + 1)

≤ 900kϵ = o(1).

51

2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807

Under review as a conference paper at ICLR 2025

For L3 term, by Lemma E.16 and triangle inequality, we know that∥∥∥∥∥∥√d
∑

j∈J−s

λ
(T)
s,r,jµj∥µj∥−2

∥∥∥∥∥∥ ≤ kϵ = o(1).

For L4 term, by Property (1) in Lemma E.7, we have∥∥∥∥∥√d
∑
i∈I

σ
(T)
s,r,iξi∥ξi∥

−2

∥∥∥∥∥
2

= d
∑
i∈I

(
σ
(T)
s,r,i

)2
∥ξi∥−2 + d

∑
i1 ̸=i2

σ
(T)
s,r,i1

σ
(T)
s,r,i2

⟨ξi1 , ξi2⟩∥ξi∥−4

≤ 2
∑
i∈I

(
σ
(T)
s,r,i1

)2
+

2∆

d

∑
i1 ̸=i2

σ
(T)
s,r,i1

σ
(T)
s,r,i2

≤ 8k2 ln2(T + 1)

n
+

8k2 ln2(T + 1)∆

d

≤ 8k3

n
+

8k3∆

d
≤ 16kϵ = o(1).

Combining the above together, we know that

√
d

∥∥∥∥∥∥w(T)
s,r − λ(T)

∑
j∈Js

µj∥µj∥−2

∥∥∥∥∥∥ = o(1).

■

By Lemma E.10, we know that |b(T)
s,r | ≤ ϵ.

Then, we prove that the clean accuracy is nearly perfect (Property 1). We first need to prove the
following lemma, which shows that the correlation between network weight and random noise is
small.

Lemma E.26. Let ξ ∼ N (0, Id). Then, with probability at least 1 − 2nd− ln(d)/2, for all s ∈
{−1,+1}, r ∈ [m] we have

|⟨w(t)
s,r, ξ⟩| ≤

ϵ

6
.

Proof of Lemma E.26. Reusing the argument of proof of Property (3) and (4) in Proposition D.6. We
know that with probability at least 1− 2nd− ln(d)/2, for all i ∈ I, j ∈ J ,

|⟨µj , ξ⟩| ≤ ∆, |⟨ξi, ξ⟩| ≤ ∆.

The remaining part of the proof is similar to the proof of Lemma E.11 and Lemma E.12.

∣∣∣⟨w(t)
s,r, ξ⟩

∣∣∣ =
∣∣∣∣∣∣
〈
w(0)

s,r +
∑
p∈J

λ(t)
s,r,pµp∥µp∥−2 +

∑
q∈I

σ(t)
s,r,qξq∥ξq∥−2, ξ

〉∣∣∣∣∣∣
≤
∣∣∣⟨w(0)

s,r ,µj⟩
∣∣∣+∑

p∈J

λ(t)
s,r,p∥µp∥−2 |⟨µp,µj⟩|+

∑
q∈I

σ(t)
s,r,q∥ξq∥−2 |⟨ξq,µj⟩|

≤
∣∣∣⟨w(0)

s,r ,µj⟩
∣∣∣+ 2∆

d

∑
p∈J

λ(t)
s,r,p +

∑
q∈I

σ(t)
s,r,q

 ≤ ϵ

6
.

■

Assume (x, y) is randomly sampled from the data distribution D. Without loss of generality, we
assume that x = µj + ξ, y = 1. Using the conclusion in Lemma E.11, Lemma E.26 and Lemma

52

2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861

Under review as a conference paper at ICLR 2025

E.10, we know that

⟨w(T)
1,r ,x⟩+ b

(T)
1,r = ⟨w(T)

1,r ,µj⟩+ ⟨w(T)
1,r , ξ⟩+ b

(T)
1,r

≥ λ
(T)
1,r,j −

ϵ

6
− ϵ

6
− ϵ

3

≥ λ
(T)
1,r,j − ϵ.

⟨w(T)
−1,r,x⟩+ b

(T)
1,r = ⟨w(T)

−1,r,µj⟩+ ⟨w(T)
−1,r, ξ⟩+ b

(T)
−1,r

≤ λ
(T)
−1,r,j +

ϵ

6
+

ϵ

6
+

ϵ

3

≤ λ
(T)
−1,r,j + ϵ

≤ ϵ.

Then, we have

fθ(T)(x) =
1

m

∑
r∈[m]

ReLU
(
⟨w(T)

1,r ,x⟩+ b
(T)
1,r

)
− 1

m

∑
r∈[m]

ReLU
(
⟨w(T)

−1,r,x⟩+ b
(T)
−1,r

)
≥ 1

m

∑
r∈[m]

(
λ
(T)
1,r,j − ϵ

)
− 1

m

∑
r∈[m]

ϵ

=
1

m

∑
r∈[m]

λ
(T)
1,r,j − 2ϵ ≥ 0.

Thus fθ(T) has perfect standard accuracy.

Finally, we prove that the network is non-robust (Property 3).

We consider the following perturbation

ρ = −2(1 + c)

k

∑
j∈J+

µj −
∑
j∈J−

µj

 ,

where c is a constant such that c−1 ≤ |J+|/|J−| ≤ c. This is to say |J+|, |J−| ≥
k

1 + c
.

Then, we have

⟨w(T)
1,r ,x+ ρ⟩+ b

(T)
1,r

≤⟨w(T)
1,r ,µj0⟩+ ⟨w(T)

1,r , ξ⟩ −
2(1 + c)

k

∑
j∈J+

⟨w(T)
1,r ,µj⟩+

2(1 + c)

k

∑
j∈J−

⟨w(T)
1,r ,µj⟩+

ϵ

3

≤λ
(T)
1,r,j0

+
ϵ

6
+

ϵ

6
− 2(1 + c)

k

∑
j∈J+

(
λ
(T)
1,r,j −

ϵ

6

)
+

2(1 + c)

k

∑
j∈J−

(
λ
(T)
1,r,j +

ϵ

6

)
+

ϵ

3

≤λ
(T)
1,r,j0

− 2(1 + c)

k

∑
j∈J+

λ
(T)
1,r,j +

(3 + c)ϵ

3

≤λ
(T)
1,r,j0

− 2(1 + c)

k

∑
j∈J+

3

4
λ
(T)
1,r,j0

+
(3 + c)ϵ

3

≤λ
(T)
1,r,j0

(
1− 3(1 + c)|J+|

2k

)
+

(3 + c)ϵ

3

≤− 1

2
λ
(T)
1,r,j0

+
(3 + c)ϵ

3
< 0.

The first equation expands x and ρ and uses the conclusion in Lemma E.10; the second inequality
uses the conclusion in Lemma E.11 and Lemma E.26; the third inequality rearranges the terms and
uses the conclusion in Corollary E.5; the fourth inequality uses conclusion in Theorem 4.5.

53

2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915

Under review as a conference paper at ICLR 2025

Reusing the logic of the above inequality, we have

⟨w(T)
−1,r,x+ ρ⟩+ b

(T)
−1,r

≥⟨w(T)
−1,r,µj0⟩+ ⟨w(T)

−1,r, ξ⟩ −
2(1 + c)

k

∑
j∈J+

⟨w(T)
−1,r,µj⟩+

2(1 + c)

k

∑
j∈J−

⟨w(T)
−1,r,µj⟩ −

ϵ

3

≥λ
(T)
−1,r,j0

− ϵ

6
− ϵ

6
− 2(1 + c)

k

∑
j∈J+

(
λ
(T)
−1,r,j +

ϵ

6

)
+

2(1 + c)

k

∑
j∈J−

(
λ
(T)
−1,r,j −

ϵ

6

)
− ϵ

3

≥λ
(T)
−1,r,j0

+
2(1 + c)

k

∑
j∈J−

λ
(T)
−1,r,j −

(3 + c)ϵ

3

≥2(1 + c)

k

∑
j∈J−

λ
(T)
−1,r,j −

(6 + c)ϵ

3

≥2(1 + c)|J−|
k

− (6 + c)ϵ

3
≥ 0.

By combining the two inequalities above, we can obtain that

fθ(T)(x+ρ) =
1

m

∑
r∈[m]

ReLU
(
⟨w(T)

1,r ,x+ ρ⟩+ b
(T)
1,r

)
− 1

m

∑
r∈[m]

ReLU
(
⟨w(T)

−1,r,x+ ρ⟩+ b
(T)
−1,r

)
< 0.

This is to say sgn(fθ(T)(x+ρ)) ̸= sgn(fθ(T)(x)), which means AccDrobust(fθ(T) ; 2(1+c)
√

d/k) =
o(1). □

E.3 PROOF OF THEOREM 4.6

Theorem E.27 (Restatement of Theorem 4.6). In the setting of Theorem 4.5,

inf
C>0

sup
x∈Rd:∥x∥2=

√
d

|CfFA(x)− fθ(T)(x)| = o(1),

where fFA(x) is the feature-averaging network (Definition 4.1).

Proof of Theorem E.27. By Lemma E.25, we have

∣∣∣∣∣∣ReLU
(
⟨w(T)

s,r ,x⟩
)
− ReLU

〈λ(T)
∑
j∈Js

µj∥µj∥−2,x

〉∣∣∣∣∣∣
≤

∣∣∣∣∣∣⟨w(T)
s,r ,x⟩ − ⟨λ(T)

∑
j∈Js

µj∥µj∥−2,x⟩

∣∣∣∣∣∣
≤∥x∥

∥∥∥∥∥∥w(T)
s,r − λ(T)

∑
j∈Js

µj∥µj∥−2

∥∥∥∥∥∥ = o(1).

54

2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969

Under review as a conference paper at ICLR 2025

Thus we have∣∣∣∣∣∣ 1m
∑
r∈[m]

ReLU
(
⟨w(T)

1,r ,x⟩+ b
(T)
1,r

)
− ReLU

〈λ(T)
∑
j∈J+

µj∥µj∥−2,x

〉∣∣∣∣∣∣
=

∣∣∣∣∣∣ 1m
∑
r∈[m]

ReLU
(
⟨w(T)

1,r ,x⟩
)
− 1

m

∑
r∈[m]

ReLU

〈λ(T)
∑
j∈J+

µj∥µj∥−2,x

〉∣∣∣∣∣∣+ 1

m

∑
r∈[m]

|b(T)
1,r |

≤ 1

m

∑
r∈[m]

∣∣∣∣∣∣⟨w(T)
1,r ,x⟩ − ⟨λ(T)

∑
j∈J+

µj∥µj∥−2,x⟩

∣∣∣∣∣∣+ ϵ

≤ 1

m

∑
r∈[m]

∥x∥

∥∥∥∥∥∥w(T)
1,r − λ(T)

∑
j∈J+

µj∥µj∥−2

∥∥∥∥∥∥+ ϵ = o(1).

Similarly, we have∣∣∣∣∣∣ 1m
∑
r∈[m]

ReLU
(
⟨w(T)

−1,r,x⟩+ b
(T)
−1,r

)
− ReLU

〈λ(T)
∑
j∈J−

µj∥µj∥−2,x

〉∣∣∣∣∣∣ = o(1)

Combining these two inequalities together, we have

sup
x∈Rd:∥x∥2=

√
d

∣∣∣∣λ(T)

d
fFA(x)− fθ(T)(x)

∣∣∣∣ = o(1).

□

55

2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023

Under review as a conference paper at ICLR 2025

F PROOF FOR SECTION 4: FEATURE-DECOUPLING REGIME

First, we recall the fine-Grained supervision, multi-Class network classifier and training algorithm.

Fine-Grained Supervision. Following the setting in Section 3, we consider the binary classification
task with data distribution D({µj}kj=1, J±). But instead of training the model directly to predict the
binary labels, we assume that we are able to label each data point with the cluster ŷ ∈ [k] it belongs
to, and then we train a k-class classifier to predict the cluster labels. More specifically, we first sample
a training set S := {(xi, yi)}ni=1 ⊆ Rd × {±1} from D, along with the cluster labels {ỹi}ni=1 for all
data points. Then a k-class neural network classifier is trained on S̃ := {(xi, ỹi)}ni=1 ⊆ Rd × [k].

Multi-Class Network Classifier. We train the following two-layer neural network for the k-class
classification mentioned above: Fθ(x) := (f1(x), f2(x), . . . , fk(x)) ∈ Rk, where fj(x) :=
1
m

∑h
r=1 ReLU(⟨wj,r,x⟩), and θ := (w1,1,w1,2, . . . ,wk,h) ∈ Rkhd are trainable weights, and

h = Θ(1) is the width of each sub-network. The outputs Fθ(x) are then converted to probabilities
using the softmax function, namely pj(x) :=

exp(fj(x))∑k
i=1 exp(fi(x))

for j ∈ [k]. For predicting the binary
label for the original binary classification task on D, we take the difference of the probabilities of the
positive and negative classes, i.e., F binary

θ (x) :=
∑

j∈J+
pj(x)−

∑
j∈J−

pj(x). The clean accuracy

AccDclean(F
binary
θ) and δ-robust accuracy AccDrobust(F

binary
θ ; δ) are then defined similarly as before.

Training Objective and Gradient Descent. We train the multi-class network Fθ(x) to minimize the
cross-entropy loss LCE(θ) := − 1

n

∑n
i=1 log pỹi

(xi). Similar to Section 3, we use gradient descent
to minimize the loss function LCE(θ) with learning rate η, i.e., θ(t+1) = θ(t) − η∇θLCE(Fθ(t)). At
initialization, we set w(0)

j,r ∼ N (0, σ2
wId) for some σw > 0.

Denote ℓ
′(t)
i,j := ∇fj(xi)LCE(F

(t)) = −1(xi ∈ Ij) +
exp(f

(t)
j (xi))∑

p∈J

exp(f
(t)
p (xi))

.

Since many of the proofs in this section are very similar to those in Appendix E, we reuse the logic of
the proofs and present the key steps.

We also assume that the properties of the training dataset(Proposition D.6) in Appendix D hold.

F.1 PROPOSITIONS OF NETWORK INITIALIZATION

Proposition F.1. With probability at least 1 − 4hmd− ln(d) − 2h−3m−3 , we have the following
properties for our network initialization:

• For any r ∈ [m], we have σw

(√
d− 2 ln(d)

)
≤ ∥w(0)

s,r∥ ≤ σw

(√
d+ 2 ln(d)

)
.

The proof of Proposition F.1 is the same as the proof of D.10.

Definition F.2 (Activation Region over Data Input). Let Ts,r,j := {i ∈ Ij : ⟨w(0)
s,r ,xi⟩+ b

(0)
s,r ≥ 0}

be the set of indices of training data points in the j-th cluster which can activate the neuron with
weight ws,r at time step 0.

Then, we give the following result about the activation region Ts,r,j .
Proposition F.3. Assuming Proposition D.6 and Proposition D.10 holds. Then with probability at
least 1− (hk)−0.01 − 2hk2 exp

(
− n

9k3h2

)
, for all r ∈ [h], s, j ∈ J , we have

|Ts,r,j | ≥
n

3k3h2
.

The proof of this lemma is the same as the proof of Proposition D.12.
Lemma F.4. Assuming Proposition F.1 holds, for all i ∈ I, s ∈ J , we have

−1(xi ∈ Is) +
1

2k
≤ ℓ

′(0)
i,s ≤ −1(xi ∈ Is) +

2

k
.

56

3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077

Under review as a conference paper at ICLR 2025

Proof of Lemma F.4. By Proposition F.1 and Property 2 in D.6, for every s ∈ J , we have∣∣∣f (0)
s (xi)

∣∣∣ ≤ 1

h

∑
r∈[h]

∣∣∣⟨w(0)
s,r ,xi⟩

∣∣∣ ≤ 1

h

∑
r∈[h]

|w(0)
s,r | |xi| ≤ 4σwd ≤ ln(2).

Thus 1 ≤ exp(fs(xi)) ≤ 2. Then we have

1

2k
≤ exp(f

(0)
s (xi))∑

p∈J

exp(f
(0)
p (xi))

≤ 2

k
.

−1(xi ∈ Is) +
1

2k
≤ ℓ

′(0)
i,s = −1(xi ∈ Is) +

exp(f
(0)
s (xi))∑

p∈J

exp(f
(0)
p (xi))

≤ −1(xi ∈ Is) +
2

k
.

□

F.2 ANALYSIS OF TRAINING DYNAMICS

Denote S
(t)
i,s := {r ∈ [h] : ⟨w(t)

s,r,xi⟩ ≥ 0} for i ∈ I, s ∈ J .

Lemma F.5. For every i ∈ I , we have S
(1)
i,c(i) = [h].

Proof of Lemma F.5. This proof is similar to the proof of Lemma E.1.

For every i ∈ I, r ∈ [h], we have

⟨w(1)
c(i),r,xi⟩

=⟨w(0)
c(i),r,xi⟩ − η⟨∇wc(i),r

L(θ(0)),xi⟩

We examine the update term ⟨∇wc(i),r
L(θ(0)),xi⟩.

− hn⟨∇wc(i),r
L(θ(0)),xi⟩

=− hn⟨
∑

j∈Ic(i)

ℓ
′(0)
j,c(i)1

(
⟨w(0)

c(i),r,xj⟩ ≥ 0⟩
)
xj +

∑
j /∈Ic(i)

ℓ
′(0)
j,c(i)1

(
⟨w(0)

c(i),r,xj⟩ ≥ 0⟩
)
⟨xj ,xi⟩

≥ − hn
∑

j∈Ic(i)

ℓ
′(0)
j,c(i)1

(
⟨w(0)

c(i),r,xj⟩ ≥ 0⟩
)
⟨xj ,xi⟩ −

∑
j /∈Ic(i)

ℓ
′(0)
j,c(i)1

(
⟨w(0)

c(i),r,xj⟩ ≥ 0⟩
)
|⟨xj ,xi⟩|

By Lemma F.4 and Lemma F.3, we know that

−
∑

j∈Ic(i)

ℓ
′(0)
j,c(i)1

(
⟨w(0)

c(i),r,xj⟩ ≥ 0⟩
)
⟨xj ,xi⟩ ≥ (1− 2

k
)
d

2
|Tc(i),r,c(i)| ≥

dn

12k3h2
.

−
∑

j /∈Ic(i)

ℓ
′(0)
j,c(i)1

(
⟨w(0)

c(i),r,xj⟩ ≥ 0⟩
)
|⟨xj ,xi⟩| ≥ −2n∆

k
.

Combining the two inequalities above, we have

⟨w(1)
c(i),r,xi⟩ ≥ ⟨w(0)

c(i),r,xi⟩+
η

h

(
d

12k3h2
− 2∆

k

)
≥ −2σwd+

η∆

h
≥ 0.

Therefore, we have S
(1)
i,c(i) = [h] for every i ∈ I .

□

57

3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131

Under review as a conference paper at ICLR 2025

Recall the definition of weight decomposition we will use in multi-classification tasks.
Lemma F.6 (Weight Decomposition). During the training dynamics, there exists the following
coefficient sequences λ(t)

s,r,j and σ
(t)
s,r,i for each neuron s, j ∈ J, r ∈ [h] such that

w(t)
s,r = w(0)

s,r +
∑
j∈J

λ
(t)
s,r,jµj∥µj∥−2 +

∑
i∈I

σ
(t)
s,r,iξi∥ξi∥

−2.

Corollary F.7. The coefficient sequencesλ(t)
r,j and σ

(t)
i,j for each pair i ∈ I, r, j ∈ J defined in Lemma

F.6 satisfy:
λ
(t)
s,r,j∥µj∥−2 =

∑
i∈Ij

σ
(t)
s.r,i∥ξi∥

−2.

Corollary F.8. For all i ∈ I, r, j ∈ J , we have the following update equation for λs,r,j and σs,r,i.

λ
(t+1)
s,r,j = λ

(t)
s,r,j −

η

nh

∑
p∈Ij

ℓ′(t)p,s ∥µj∥21
(
⟨w(t)

s,r,xp⟩ ≥ 0
)
,

σ
(t+1)
s,r,i = σ

(t)
s,r,i −

η

nh
ℓ
′(t)
i,s ∥ξi∥

2
1

(
⟨w(t)

s,r,xi⟩ ≥ 0
)
,

λ
(0)
s,r,j = 0, σ

(0)
s,r,i = 0.

Corollary F.9. The coefficient sequences λ
(t)
s,r,j and σ

(t)
s,r,i for each pair s, j ∈ J, i ∈ I, r ∈ [h]

defined in Lemma F.6 satisfy:

λ
(t)
s,r,j ≥ 0 iff s = j,

σ
(t)
s,r,i ≥ 0 iff s = c(i).

Then we reuse the logic of the proof of Lemma E.7 to prove the main result in our multi-classification
setting.

Denote q
(t)
i = f

(t)
c(i)(xi), q̂

(t)
i =

1

h

∑
r∈[h]

(
λ
(t)
c(i),r,c(i) + σ

(t)
c(i),r,i

)
.

∆
(t)
q (i, j) = q

(t)
i − q

(t)
j ,

∆̂
(t)
q (i, j) = q̂

(t)
i − q̂

(t)
j =

1

h

∑
r∈[h]

(
λ
(t)
c(i),r,c(i) − λ

(t)
c(j),r,c(j) + σ

(t)
c(i),r,i − σ

(t)
c(j),r,j

)
.

Denote ϵ = max

{
2 ln(nk)√
n
k − ln(nk)

,
k2∆

d
,
k2

n

}
. We know that ϵ = o(k−2.5) according to our hyper-

parameter Assumption D.4.

Lemma F.10. For t ≤ T0 = exp(Õ(k0.5), i, j ∈ I, r ∈ [h], we have

1.
k

2n
ln(tη) ≤ σc(i),r,i ≤

2k

n
ln(t+ 1)

2. ∆̂
(t)
q (i, j) ≤ 5kϵ when c(i) = c(j),

3. ∆̂
(t)
q (i, j) ≤ 32k2ϵ,

4. ∆
(t)
q (i, j) ≤ 33k2ϵ,

5. ℓ
′(t)
i,c(i)/ℓ

′(t)
j,c(j) ≤ 1 + 14kϵ when c(i) = c(j),

6. ℓ
′(t)
i,c(i)/ℓ

′(t)
j,c(j) ≤ 1 + 67k2ϵ,

7. S
(1)
i,c(i) = [h],

58

3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185

Under review as a conference paper at ICLR 2025

8.
∣∣∣λ(t)

s,r,c(i)

∣∣∣ ≤ ϵ,
∣∣∣σ(t)

s,r,c(i)

∣∣∣ ≤ 2ϵ for s ∈ J, s ̸= c(i).

Proof of Lemma F.10. Since the proof of this lemma follows exactly the same logic as Lemma E.7,
we omit some details and only outlined the necessary lemmas and the key steps of the proof.

First, the base case of the induction is simple, so we only consider the inductive step.

Lemma F.11. Assuming the inductive hypotheses hold before time step t, for all r ∈ [h], s, j ∈ J ,
we have ∣∣∣⟨w(t)

s,r,µj⟩ − λ
(t)
s,r,j

∣∣∣ ≤ ϵ

6
.

Lemma F.12. Assuming the inductive hypotheses hold before time step t, for all r ∈ [h], s, j ∈ J ,
we have ∣∣∣⟨w(t)

s,r, ξi⟩ − σ
(t)
s,r,i

∣∣∣ ≤ ϵ

6
.

Lemma F.13. Assuming the inductive hypotheses hold before time step t, for all r ∈ [h], s, j ∈ J ,
we have ∣∣∣⟨w(t)

s,r,xi⟩ − λ
(t)
s,r,c(i) − σ

(t)
s,r,i

∣∣∣ ≤ ϵ

3
.

Lemma F.14. Assuming the inductive hypotheses hold before time step t, for all i ∈ I , we have

|q(t)i − q̂
(t)
i | ≤ ϵ

The proofs of these three lemmas are identical to the proofs of Lemma E.11, Lemma E.12,
Lemma E.13 and Lemma E.14 in Appendix Appendix E, except that in the previous proof, there was
an additional subscript s used to indicate 2-classification label, whereas here it is used to represent a
fine-grained k-classification label.

Corollary F.15. Assuming the inductive hypotheses hold before time step t, for all i, j ∈ I , we have∣∣∣∆(t)
q (i, j)− ∆̂(t)

q (i, j)
∣∣∣ ≤ 2ϵ.

Next, we present the key steps of the auto-balance process for ∆̂q(i, j).

Lemma F.16 (Property 8). Assuming the inductive hypotheses hold before time step t, for i ∈ I, s ∈
J, s ̸= c(i), r ∈ [m], we have |λ(t)

s,r,c(i)| ≤ ϵ, |σ(t)
s,r,i| ≤ 2ϵ.

Proof of Lemma F.16. We distinguish between two scenarios.

Case(I): For all i ∈ Ij , ⟨w(t)
s,r,xi⟩ < 0.

Then by Corollary F.8 and inductive hypothesis, we know that

|λ(t+1)
s,r,j | = |λ(t)

s,r,j | ≤ ϵ.

Case(II): There exists i ∈ Ij such that ⟨w(t)
s,r,xi⟩ ≥ 0.

By Lemma F.13, we know that

⟨w(t)
s,r,xi⟩ − λ

(t)
s,r,j − σ

(t)
s,r,i ≤

ϵ

3
.

Then noting that ⟨w(t)
s,r,xi⟩ ≥ 0 and σ

(t)
s,r,i ≤ 0, we have

λ
(t)
s,r,j ≥ ⟨w(t)

s,r,xi⟩ − σ
(t)
s,r,i −

ϵ

3
≥ − ϵ

3
.

59

3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239

Under review as a conference paper at ICLR 2025

Then using the conclusion in Corollary F.8, we know that

|λ(t+1)
s,r,j − λ

(t)
s,r,j | ≤

ηd

nm

∑
i∈Ij

−ℓ
′(t)
i,s ≤ ηd

m
≤ ϵ

3
.

Thus we have λ
(t+1)
r,j ≥ −ϵ. Noting that λ(t+1)

s,r,j ≤ 0, we have |λ(t+1)
s,r,j | ≤ ϵ. Then by Corollary F.7,

we know that |σ(t)
s,r,i| ≤ 2|λ(t+1)

s,r,j | ≤ 2ϵ. ■

Lemma F.17. Assuming the inductive hypotheses hold before time step t, for all s ∈ J, i ∈ I, s ̸= c(i),
we have

fs(xi) ≤ ϵ.

Proof. By Lemma F.13 and Corollary F.9, we know that

fs(xi) =
1

h

∑
r∈[h]

ReLU(⟨w(t)
s,r,xi⟩)

≤ 1

h

∑
r∈[h]

|⟨w(t)
s,r,xi⟩|

≤ 1

h

∑
r∈[h]

(
ϵ

3
+ λ

(t)
s,r,c(i) + σ

(t)
s,r,i)

≤ 1

h

∑
r∈[h]

ϵ

3

≤ ϵ.

■

Lemma F.18. Assuming the inductive hypotheses hold before time step t, for any two training data
points xi,xj , if qi ≥ qj , we have

1

1 + 2ϵ

e∆
(t)
q (i,j) + k − 1

k
≤

ℓ
′(t)
j,c(j)

ℓ
′(t)
i,c(i)

≤ e∆
(t)
q (i,j)(1 + 2ϵ).

Proof of Lemma F.18. By Lemma F.17 and noting that exp(ϵ) ≤ 1 + 2ϵ, we know that

k − 1

k − 1 + exp(q
(t)
i)

≤ −ℓ
′(t)
i,c(i) =

∑
p ̸=c(i)

exp(f
(t)
p (xi))∑

p∈J

exp(f
(t)
p (xi))

≤ (k − 1) exp(ϵ)

(k − 1) exp(ϵ) + exp(q
(t)
i)

≤ (k − 1)(1 + 2ϵ)

k − 1 + exp(q
(t)
i)

Thus we know that

1

(1 + 2ϵ)

k − 1 + exp(q
(t)
i)

k − 1 + exp(q
(t)
j)

≤
ℓ
′(t)
j,c(j)

ℓ
′(t)
i,c(i)

≤ (1 + 2ϵ)
k − 1 + exp(q

(t)
i)

k − 1 + exp(q
(t)
j)

k − 1 + exp(q
(t)
i)

k − 1 + exp(q
(t)
j)

= 1 +
exp(q

(t)
i)− exp(q

(t)
j)

k − 1 + exp(q
(t)
j)

= 1 +
exp(q

(t)
j)

k − 1 + exp(q
(t)
j)

(
exp

(
∆(t)

q (i, j)
)
− 1
)

60

3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293

Under review as a conference paper at ICLR 2025

For the second term,

exp
(
∆

(t)
q (i, j)

)
− 1

k
≤

exp(q
(t)
j)

k − 1 + exp(q
(t)
j)

(
exp

(
∆(t)

q (i, j)
)
− 1
)
≤ exp

(
∆(t)

q (i, j)
)
− 1.

Thus we know

1

1 + 2ϵ

e∆
(t)
q (i,j) + k − 1

k
≤

ℓ
′(t)
j,c(j)

ℓ
′(t)
i,c(i)

≤ e∆
(t)
q (i,j)(1 + 2ϵ).

■

We first consider the case when c(i) = c(j). We distinguish between two scenarios, one is when∣∣∣∆̂(t)
q (i, j)

∣∣∣ is relatively small and the other is when
∣∣∣∆̂(t)

q (i, j)
∣∣∣ is relatively large.

Case(I): ∆̂(t)
q (i, j) ≤ 4kϵ.

In this case, we have ∆̂
(t+1)
q (i, j) ≤ 5kϵ due to small learning rate η.

Case(II): ∆̂(t)
q (i, j) ≥ 4kϵ.

By Lemma F.14, we know that

∆(t)
q (i, j) ≥ ∆̂(t)

q (i, j)− 2ϵ ≥ 3kϵ.

By Lemma F.18, we know that

ℓ
′(t)
j,c(j)

ℓ
′(t)
i,c(i)

≥ 1

1 + 2ϵ

e∆
(t)
q (i,j) + k − 1

k
≥ 1

1 + 2ϵ
(1 + ∆(t)

q (i, j)/k) ≥ 1 + ϵ/2.

Noting that c(i) = c(j), we know that

∆̂(t+1)
q (i, j)− ∆̂(t)

q (i, j)

=− η

nh

(
ℓ
′(t)
i,c(i)∥ξi∥

2 − ℓ
′(t)
j,c(j)∥ξj∥

2
)

≤ 0

Then due to the inductive hypothesis,

∆̂(t+1)
q (i, j) ≤ ∆̂(t)

q (i, j) ≤ 5kϵ.

By Corollary F.15, we can get Property 4

∆(t)
q (i, j) ≤ ∆(t)

q (i, j) + 2ϵ ≤ 6kϵ.

By Lemma F.18 and noting that ex ≤ 1 + 2x for small x we know that

ℓ
′(t+1)
j,c(j)

ℓ
′(t+1)
i,c(i)

≤ (1 + 2ϵ)e∆
(t+1)
q (i,j) ≤ (1 + 2ϵ)(1 + 2∆(t+1)

q (i, j)) ≤ 1 + 14kϵ.

Next, we consider the case when c(i) ̸= c(j). We also distinguish between the two scenarios.

Case(I): ∆̂(t)
q (i, j) ≤ 31k2ϵ. In this case, we have ∆̂

(t+1)
q (i, j) ≤ 32k2ϵ due to small learning rate η.

Case(II): ∆̂(t)
q (i, j) ≥ 31k2ϵ.

By Lemma F.14, we know that

∆(t)
q (i, j) ≥ ∆̂(t)

q (i, j)− 2ϵ ≥ 30k2ϵ.

61

3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347

Under review as a conference paper at ICLR 2025

By Lemma F.18, we know that

ℓ
′(t)
j,c(j)

ℓ
′(t)
i,c(i)

≥ 1

1 + 2ϵ

e∆
(t)
q (i,j) + k − 1

k
≥ 1

1 + 2ϵ
(1 + ∆(t)

q (i, j)/k) ≥ 1 + 29kϵ.

Furthermore, due to the inductive hypothesis, for any p ∈ Ic(i), q ∈ Ic(j), we know that

ℓ
′(t)
p,c(p)

ℓ
′(t)
q,c(q)

≤
(1 + 14ϵ)ℓ

′(t)
i,c(i)

ℓ
′(t)
j,c(j)/(1 + 14kϵ)

≤ (1 + 14kϵ)2

1 + 29kϵ
≤ 1

1 + ϵ
.

We know that

∆̂(t+1)
q (i, j)− ∆̂(t)

q (i, j)

=− η

nh

 ∑
p∈Ic(i)

ℓ
′(t)
p,c(i)∥µc(i)∥2 −

∑
p∈Ic(j)

ℓ
′(t)
p,c(j)∥µc(j)∥2 + ℓ

′(t)
i,c(i)∥ξi∥

2 − ℓ
′(t)
j,c(j)∥ξj∥

2


=− η

nh

(
ℓ
′(t)
i,c(i)∥ξi∥

2 − ℓ
′(t)
j,c(j)∥ξj∥

2
)
− η

nh

 ∑
p∈Ic(i)

ℓ
′(t)
p,c(i)∥µc(i)∥2 −

∑
p∈Ic(j)

ℓ
′(t)
p,c(j)∥µc(j)∥2


≤0.

By inductive hypothesis, we know that

∆̂(t+1)
q (i, j) ≤ ∆̂(t)

q (i, j) ≤ 32k2ϵ.

Now, we have completed the main part of the proof, the inductive proofs of Properties 2 and 3.
Subsequently, Properties 4, 5, and 6 can be directly derived from Lemma F.18.

By Corollary F.15, we can get Property 4

∆(t)
q (i, j) ≤ ∆(t)

q (i, j) + 2ϵ ≤ 33k2ϵ

By Lemma F.18 and noting that ex ≤ 1 + 2x for small x we know that

ℓ
′(t+1)
j,c(j)

ℓ
′(t+1)
i,c(i)

≤ (1 + 2ϵ)e∆
(t+1)
q (i,j) ≤ (1 + 2ϵ)(1 + 2∆(t+1)

q (i, j)) ≤ 1 + 67k2ϵ.

Lemma F.19. For all i1, i2 ∈ I, r1, r2 ∈ [h], we have

(
1− 200k2ϵ

)
σ
(t)
c(i2),r2,i2

− 1

nd
≤ σ

(t)
c(i1),r1,i1

≤
(
1 + 200k2ϵ

)
σ
(t)
c(i2),r2,i2

+
1

nd
.

Lemma F.20. For every i ∈ I, r0 ∈ [h], we have
n

2k
σ
(t)
c(i),r0,i

− 2ϵ ≤ q
(t)
i ≤ 2n

k
σ
(t)
c(i),r0,i

+ 2ϵ.

The proof of these lemmas are the same as the proof of Lemma E.19 and Lemma E.20.

Lemma F.21. For every i ∈ I, r ∈ [h], we have

1

2
exp

(
−2n

k
σ
(t)
1,r,i

)
≤ −ℓ

′(t)
i,c(i) ≤ 2k exp

(
− n

2k
σ
(t)
1,r,i

)
.

62

3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401

Under review as a conference paper at ICLR 2025

Proof of Lemma F.21. By Lemma F.20, we know that

−ℓ
′(t)
i,c(i) ≥

k − 1

k − 1 + exp
(
q
(t)
i

)
≥ k − 1

k − 1 + exp

(
2n

k
σ
(t)
1,r,i + 2ϵ

)
≥ k − 1

k − 1 + 2 exp

(
2n

k
σ
(t)
1,r,i

)
≥ 1

2
exp

(
−2n

k
σ
(t)
1,r,i

)
.

By Lemma F.17 and Lemma F.20, we have

−ℓ
′(t)
i,c(i) ≤

(k − 1) exp(ϵ)

(k − 1) exp(ϵ) + exp
(
q
(t)
i

)
≤ (1 + 2ϵ)

k − 1

k − 1 + exp
(n

2k
σ
(t)
1,r,i − 2ϵ

)
≤ 2(k − 1)

k − 1 + exp
(n

2k
σ
(t)
1,r,i

)
≤ 2k exp

(
− n

2k
σ
(t)
1,r,i

)
■

Next, we prove Property 1.

σ
(t+1)
c(i),r,i = σ

(t)
c(i),r,i −

η

nh
· ℓ′(t)i,c(i)∥ξi∥

2

≤ σ
(t)
c(i),r,i +

2kηd

nh
exp(− n

2k
σ
(t)
c(i),r,i)

≤ 2k

n
ln(t+ 1) +

2k

n

1

2t

≤ 2k

n
ln(t+ 2)

σ
(t+1)
c(i),r,i = σ

(t)
c(i),r,i −

η

nh
· ℓ′(t)i,c(i)∥ξi∥

2

≥ σ
(t)
c(i),r,i +

ηd

2nh
exp(− k

2n
σ
(t)
c(i),r,i)

≥ k

2n
ln(tη) +

k

2n

2

t

≥ k

2n
ln((t+ 1)η)

Finally, we prove Property 7.

By Property 6 in the inductive hypotheses, we know that for all i ∈ I ,

− 1

1 + 67k2ϵ
ℓ
′(t)
1,c(1) ≤ |ℓ′(t)i,c(i)| ≤ −(1 + 67k2ϵ)ℓ

′(t)
1,c(1).

63

3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455

Under review as a conference paper at ICLR 2025

Then we know that

−⟨∇wpL(θ(t)),xi⟩ ≥ −
∑

p∈Ic(i)

ℓ
′(t)
p,c(i)⟨xp,xi⟩ −

∑
p/∈Ic(i)

|ℓ′(t)p,c(i)|⟨xp,xi⟩|

≥ −
∑

p∈Ic(i)

ℓ
′(t)
p,c(p)⟨xp,xi⟩ −

∑
p/∈Ic(i)

|ℓ′(t)p,c(p)|⟨xp,xi⟩|

≥ − ℓ
(t)
1,c(1)

 ∑
p∈Ic(i)

d

2(1 + 67k2ϵ)
−
∑

p/∈Ic(i)

(1 + 67k2ϵ)∆


≥− ℓ

(t)
1,c(1)

(
dn

4k(1 + 67k2ϵ)
− (1 + 67k2ϵ)n∆

)
≥ 0.

By Property 7 in the inductive hypotheses, we know that ⟨w(t+1)
c(i) ,xi⟩ ≥ ⟨w(t)

c(i),xi⟩ ≥ 0.

We complete the proof of Lemma F.10.

□

F.3 PROOF OF THEOREM 4.7

Theorem F.22 (Restatement of Theorem 4.7). In the setting of training a multi-class network on
the multiple classification problem S̃ := {(xi, ỹi)}ni=1 ⊆ Rd × [k] as described in the above,
under Assumptions 3.2, 3.3 and 4.3, for some γ = o(1), after Ω(η−1k8) ≤ T ≤ exp(Õ(k1/2))
iterations, with probability at least 1− γ, the neural network satisfies the following properties:

1. The clean accuracy is nearly perfect: AccDclean(F
binary
θ(T)) ≥ 1− exp(−Ω(log2 d)).

2. The network converges to the feature-decoupling regime: there exists a time-variant coeffi-
cient λ(T) ∈ [Ω(log k),+∞) such that for all j ∈ [k], r ∈ [h], the weight vector w(T)

j,r can
be approximated as ∥∥∥∥w(T)

j,r − λ(T)∥µj∥−2µj

∥∥∥∥ ≤ o(d−1/2).

3. Consequently, the corresponding binary classifier achieves optimal robustness: for
perturbation radius δ = O(

√
d), the δ-robust accuracy is also nearly perfect, i.e.,

AccDrobust(F
binary
θ(T) ; δ) ≥ 1− exp(−Ω(log2 d)).

Proof of Theorem Theorem F.22. We first prove that the network converges to the feature-decoupling
regime(Property 2).

Lemma F.23. For all j ∈ J, r ∈ [h], we have
ln(Tη)

4
≤ λ

(T)
j,r,j ≤ 4 ln(T + 1).

Proof of Lemma F.23. Using Property 1 in Lemma F.10 and Corollary F.7, we know that

λ
(T)
j,r,j =

∑
p∈Ij

∥ξp∥2

∥µj∥2
σ
(T)
j,r,p ≥ ln(Tη)

4

λ
(T)
j,r,j =

∑
p∈Ij

∥ξp∥2

∥µj∥2
σ
(T)
j,r,p ≤ 4 ln(T + 1)

■

Lemma F.24. For r1, r2 ∈ [h], j1, j2 ∈ J , we have

λ
(T)
j1,r1,j1

λ
(T)
j2,r2,j2

≤ 1 + 204k2ϵ.

64

3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509

Under review as a conference paper at ICLR 2025

Proof. By Lemma F.19, we know that for any i1 ∈ Ij1 , i2 ∈ Ij2

σ
(t)
j1,r1,i1

≤
(
1 + 200k2ϵ

)
σ
(t)
j2,r2,i2

+ (nd)−1 ≤ (1 + 201k2ϵ)σ
(t)
j1,r2,i2

.

λ
(T)
j1,r1,j1

λ
(T)
j2,r2,j2

=

∑
p∈Ij1

∥ξp∥2σ(t)
j1,r1,p∑

p∈Ij2

∥ξp∥2σ(t)
j2,r2,p

≤ (1 + 201k2ϵ)
∥
√
d+ ln(d)∥2

∥
√
d− ln(d)∥2

|Ij1 |
|Ij2 |

≤ (1 + 201k2ϵ)(1 + ϵ)(1 + ϵ)

≤ 1 + 204k2ϵ.

■

We denote λ(T) = λ
(T)
1,1,1 as the representative of {λj,r,j : r ∈ [m], j ∈ J}.

By Lemma F.23 and Lemma F.24 ,for all r ∈ [h], j ∈ J , we have

|λ(T) − λ
(T)
j,r,j | ≤ 204k2ϵλ(T),

λ(T) ≤ 4 ln(T + 1),

λ(T) ≥ ln(Tη)

4
≥ 2 ln(k) = Ω(log(k)).

Lemma F.25. For all s ∈ J, r ∈ [h], We have

√
d
∥∥∥w(T)

s,r − λ(T)µs∥µs∥−2
∥∥∥ = o(1).

Proof of Lemma E.25. Recall weight decomposition in Lemma E.2.
√
d
(
w(T)

s,r − λ(T)µs∥µs∥−2
)
=

√
dw(0)

s,r︸ ︷︷ ︸
L1

+
√
d
(
λ(T)
s,r,s − λ(T)

)
µj∥µj∥−2︸ ︷︷ ︸

L2

+
√
d
∑
j ̸=s

λ
(T)
s,r,jµj∥µj∥−2

︸ ︷︷ ︸
L3

+
√
d
∑
i∈I

σ
(T)
s,r,iξi∥ξi∥

−2

︸ ︷︷ ︸
L4

For L1 term, using the conclusion in Lemma D.10, we know that

∥
√
dw(0)

s,r∥ ≤ 2dσw ≤ ϵ = o(1).

For L2 term, using the conclusion in Lemma F.23, Lemma F.24, we know that∥∥∥√d
(
λ(T)
s,r,s − λ(T)

)
µs∥µs∥−2

∥∥∥ = |λ(T)
s,r,s − λ(T)| ≤ 204k2ϵλ(T) ≤ 816k2ϵ ln(T + 1) ≤ 900k2.5ϵ = o(1).

For L3 term, by Lemma F.16 and triangle inequality, we know that∥∥∥∥∥∥√d
∑
j ̸=s

λ
(T)
s,r,jµj∥µj∥−2

∥∥∥∥∥∥ ≤ kϵ = o(1).

65

3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563

Under review as a conference paper at ICLR 2025

For L4 term, by Property (1) in Lemma E.7, we have∥∥∥∥∥√d
∑
i∈I

σ
(T)
s,r,iξi∥ξi∥

−2

∥∥∥∥∥
2

= d
∑
i∈I

(
σ
(T)
s,r,i

)2
∥ξi∥−2 + d

∑
i1 ̸=i2

σ
(T)
s,r,i1

σ
(T)
s,r,i2

⟨ξi1 , ξi2⟩∥ξi∥−4

≤ 2
∑
i∈I

(
σ
(T)
s,r,i1

)2
+

2∆

d

∑
i1 ̸=i2

σ
(T)
s,r,i1

σ
(T)
s,r,i2

≤ 8k2 ln2(T + 1)

n
+

8k2 ln2(T + 1)∆

d

≤ 8k3

n
+

8k3∆

d
≤ 16kϵ = o(1).

Combining the above together, we know that
√
d
∥∥∥w(T)

s,r − λ(T)µs∥µs∥−2
∥∥∥ = o(1).

■

Then we prove that the the clean accuracy is nearly perfect(Property 1).

Assume (x, y) is randomly sampled from the data distribution D. Without loss of generality, we
assume that x = µj + ξ, y = j.

Lemma F.26. Let ξ ∼ N (0, Id). Then, with probability at least 1−2nd− ln(d)/2, for all s ∈ J, r ∈ [h]
we have

|⟨w(T)
s,r , ξ⟩| ≤

ϵ

6
.

The proof of this lemma is the same as the proof of Lemma E.26.

Using the conclusion in Lemma F.13 and Lemma F.26, we know that for s ∈ J, r ∈ [h], s ̸= j

⟨w(T)
s,r ,x⟩ = ⟨w(T)

s,r ,µj⟩+ ⟨w(T)
s,r , ξ⟩ ≤ λ

(T)
s,r,j +

ϵ

6
+

ϵ

6
≤ ϵ

3
,

⟨w(T)
j,r ,x⟩ = ⟨w(T)

j,r ,µj⟩+ ⟨w(T)
j,r , ξ⟩ ≥ λ

(T)
j,r,j −

ϵ

6
− ϵ

6
≥ λ

(T)
j,r,j −

ϵ

3
≥ ϵ

3
.

Thus we know that fj(x) = maxs∈J{fs(x)}. So Fθ(T) has standard perfect accuracy.

Finally, we prove that the corresponding binary classifier achieves optimal robustness(Property 3).

By Lemma F.25, we know that
√
d∥w(T)

s,r ∥ ≤ λ(T) + o(1) ≤ 2λ(T).

Then for any perturbation ρ with ρ ≤
√
d

10
.

We know that

⟨w(T)
j,r ,x+ ρ⟩ = ⟨w(T)

j,r ,µi⟩+ ⟨w(T)
j,r , ξ⟩+ ⟨w(T)

j,r ,ρ⟩

≥ λ
(T)
j,r,j −

ϵ

6
− ϵ

6
− ∥w(T)

j,r ∥∥ρ∥

≥ 3λ(T)

4
.

For s ∈ J, s ̸= j, we know that

⟨w(T)
s,r ,x+ ρ⟩ = ⟨w(T)

s,r ,µi⟩+ ⟨w(T)
s,r , ξ⟩+ ⟨w(T)

s,r ,ρ⟩

≤ λ
(T)
s,r,j +

ϵ

6
+

ϵ

6
+ ∥w(T)

s,r ∥∥ρ∥

≤ ϵ+
ϵ

3
+

λ(T)

5

≤ 3λ(T)

4
− ln(k).

66

3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617

Under review as a conference paper at ICLR 2025

Thus we know that fj(x+ ρ) ≥ 3λ(T)

4
and fs(x+ ρ) ≤ 3λ(T)

4
− ln(k).

let G(x) denote the numerator of F binary
θ(T) (x), where denominator is

∑
s∈J efs(x). We know

sgn(F binary
θ(T)) = sgn(G).

Thus we have

G(x+ ρ) =
∑
j∈J+

exp (fj(x+ ρ))−
∑
j∈J−

exp (fj(x+ ρ))

≥ exp
(
3λ(T)/4

)
−
∑
j∈J−

exp
(
3λ(T)/4− ln(k)

)
≥ 0.

That is to say sgn(G(x+ ρ)) = sgn(G(x)), which means F binary
θ(T) is robust under any perturbation

with radius smaller than

√
d

10
. □

67

3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671

Under review as a conference paper at ICLR 2025

G TWO FEATURE LEARNING REGIMES: FEATURE AVERAGING AND FEATURE
DECOUPLING

In this section, we present two distinct parameter regimes for our two-layer network learner: feature
averaging and feature decoupling. The former means the weights associated with each neuron is a
linear average of features, while the latter indicates that distinct features will be learned by separate
neurons. Our construction is similar to that in Frei et al. (2024) and Min & Vidal (2024). We illustrate
how a feature averaging solution leads to non-robustness, while a feature decoupling solution exists
and is more robust (w.r.t. to a much larger robust radius).

G.1 FEATURE-AVERAGING TWO-LAYER NEURAL NETWORK

Now, we begin by presenting the following example of a feature-averaging two-layer neural network,
which is a more general version (including a bias term) than the one we mentioned in Definition 4.1.

Feature-Averaging Two-Layer Neural Network. Consider the following two-layer neural network
with identical positive neurons and identical negative neurons, which can be simplified as (i.e., we
merge identical neurons as one neuron):

fθavg(x) := ReLU

(〈 ∑
j∈J+

µj ,x

〉
+ b+

)
︸ ︷︷ ︸

deals with all positive clusters

−ReLU

(〈 ∑
j∈J−

µj ,x

〉
+ b−

)
︸ ︷︷ ︸

deals with all negative clusters

,

where we choose weight ws,r =
∑

j∈Js
µj for s ∈ {−1,+1}, r ∈ [m] and bias bs,r = bs for

s ∈ {−1,+1}, r ∈ [m].

Indeed, the feature-averaging network uses the first neuron to process all data within positive clusters,
and it uses the second neuron to process all data within negative clusters. Thus, it can correctly
classify clean data, which is shown as the following proposition.
Theorem G.1. There exist values of b+ and b− such that the feature-averaging network fθavg achieves
1− o(1) standard accuracy over D.

Proof of Theorem G.1. Let b+ = b− = 0, and then we know, for data point (x = αµi + ξ, y) ∼ D
within cluster i (w.l.o.g. we assume cluster i is a positive cluster), with high probability, it holds that

fθavg(x) ≥ ⟨µi, αµi⟩+
∑

j∈J+\{i}

⟨µj , ξ⟩ −
∑
j∈J−

⟨µj , ξ⟩

≥ Θ(d)−O(k∆) = Θ(d)−O(kσ
√
d ln(d)) ≥ 0,

which implies that fθavg correctly classifies data (x, y) with high probability. □

However, it fails to robustly classify perturbed data no matter what the bias term is, shown in the
following theorem.
Theorem G.2. For any values of b+ and b− such that fθavg has 1 − o(1) standard accuracy, it
holds that the feature-averaging network fθavg has zero δ−robust accuracy for perturbation radius
δ = Ω(

√
d/k).

Proof of Theorem G.2. Indeed, we can choose the adversarial attack as ρ ∝ −
∑

j∈J+
µj +∑

l∈J−
µl and ∥ϵ∥ = δ. Then, for averaged features ws,r =

∑
j∈Js

µj , this perturbation can
activate almost all of ReLU neurons, which w.h.p. leads a linearization over the perturbation ρ

fθavg(x+ ρ) = fθavg(x) + ⟨∇xfθavg(x),ρ⟩.

Since fθavg has 1− o(1) standard accuracy, we know that the bias term satisfy that b+, b− = O(d),
which manifests that the classifier achieves a positive margin, i.e.

0 < yfθavg(x) ≤ O(d),

w.h.p. over (x, y) sampled from D.

68

3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725

Under review as a conference paper at ICLR 2025

Then, due to a large gradient norm over data input, i.e.

∥∇xfθavg(x)∥ = ∥
∑
j∈J+

µj −
∑
l∈J−

µl∥ = Ω(
√
kd),

we derive that the feature-averaging network fθavg has zero δ−robust accuracy for perturbation radius
δ = Ω(

√
d/k). □

G.2 ROBUST TWO-LAYER NEURAL NETWORK EXISTS

In this section, we show a robust two-layer network exists for D, using a similar construction in Frei
et al. (2024).

Theorem G.3. There exists a two-layer network fθdec that is
√
d
3 -robust for D.

Proof of Theorem G.3. The construction is similar to that in Frei et al. (2024). We define fθdec :
Rd → R is a network that represents a positive constant times the following function:

fθdec(x) ∝
∑
j∈J+

ReLU

(
⟨µj ,x⟩ −

d

2

)
−
∑
l∈J−

ReLU

(
⟨µl,x⟩ −

d

2

)
,

In particular, we set a two-layer width-k ReLU network with ws,j = 1 (j ∈ Js)µj , bs,j =

−1 (j ∈ Js)
d
2 for s ∈ {±1} and j ∈ [k].

In this network, each neuron ReLU(⟨µj ,x⟩ − d
2) (or ReLU(⟨µl,x⟩ − d

2)) deals with one certain
positive cluster j (or negative cluster l), and we also apply the bias term to filter out intra/inter cluster
noise. In this regime, for each data point (x, y) belonging to cluster i (we assume cluster i is a
positive cluster and y = 1) and any perturbation ρ (∥ρ∥ ≤

√
d
3), we have the following linearization,

w.h.p.

fθdec(x+ ρ) =
1

m
⟨µi,x+ ρ⟩.

Then, we know the network fθdec has 1− o(1) δ−robust accuracy for δ ≤
√
d
3 . □

Note that fθdec leverages individual decoupled features, which is a natural and robust solution to the
binary classification on D. In fact, one can easily verify that the robustness of fθdec is optimal up to a
constant factor, as the distance between distinct cluster centers is Θ(

√
d), i.e., ∥µi − µj∥ = Θ(

√
d),

for all i ̸= j. However, as we show in our main result that gradient descent does not learn this
feature-decoupled network directly from D, and instead converges to a different solution that is
Θ(

√
k) times less robust.

G.3 NON-ROBUST MULTI-CLASS NETWORK EXISTS

Similar to the feature-averaging binary-class network as that we mentioned in Definition 4.1, the
non-robust multi-class network also exists, which is shown as the following proposition.
Theorem G.4 (Restatement of Proposition 4.8). Consider the following multi-class network
Fθ̃: for all j ∈ [k], the sub-network fj has only single neuron (h = 1) and is defined as
fj(x) = ReLU

(〈
µj +

∑
l∈Js

µl,x
〉)

, where cluster j has binary label s ∈ {±1}. With prob-
ability at least 1 − exp(−Ω(log2 d)) over S̃, we have that LCE(θ̃) ≤ exp(−Ω(d)) = o(1),
where θ̃ denotes the weights of Fθ̃. Moreover, AccDclean(F

binary

θ̃
) ≥ 1 − exp(−Ω(log2 d)),

AccDrobust(F
binary

θ̃
; Ω(
√

d/k)) ≤ exp(−Ω(log2 d)).

Proof of Theorem G.4. Consider data point (x, y) that is randomly sampled from the data distribution
D. Without loss of generality, we assume that x = µj0 + ξ, j0 ∈ J+. Reusing the argument of proof
of Property (3) and (4) in Proposition D.6. We know that, with probability at least 1− 2kd− ln(d)/2,
for all j ∈ J , we have

|⟨µj , ξ⟩| ≤ ∆.

69

3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779

Under review as a conference paper at ICLR 2025

First, we prove the network has perfect clean accuracy when the above properties hold. Indeed, we
calculate the output value of each sub-network as follows.

fj0(x) = ReLU

〈µj0 +
∑
l∈J+

µl,x

〉 ≥ 2d− k∆.

For j ∈ Js, j ̸= j0,

fj(x) = ReLU

(〈
µj +

∑
l∈Js

µl,x

〉)
≤ d+ k∆ < 2d− k∆ = fj0(x).

Thus, we know that Fθ̃(x) = j0 with probability at least 1− 2kd− ln(d)/2.

Then, with probability at least 1− exp(−Ω(log2 d)) over S̃ sampled from D, for all i ∈ I , we have

− log pỹi(xi) = − log
exp(fỹi

(xi))∑
j∈[k] exp(fj(xi))

≤ − log(1− exp(−Ω(d)))

≤ exp(−Ω(d)),

where the last inequality holds due to log(1 − z) ≥ Ω(z) for sufficiently small z. Therefore, we
derive that

LCE(θθ̃) =
1

n

n∑
i=1

log pỹi(xi) ≤ exp(−Ω(d)) = o(1).

Finally, we prove that the network has at most 2kd− ln(d)/2 robust test accuracy against perturbation
radius δ = Ω(

√
d/k).

Consider perturbation ρ =
3(1 + c)

k

(∑
l∈J+

µl −
∑

l∈J−
µl

)
.

For any j ∈ J+, we know that〈
µj +

∑
l∈J+

µl,x− ρ

〉
=

〈
µj +

∑
l∈J+

µl,µj0 + ξ − ρ

〉

≤ 2d+ (k + 1)∆− k

1 + c

3(1 + c)d

k

< 0.

For any j ∈ J−, we know that〈
µj +

∑
l∈J−

µl,x− ρ

〉
=

〈
µj +

∑
l∈J+

µl,µj0 + ξ − ρ

〉

≥ d+ (k + 1)∆− k

1 + c
+

3(1 + c)d

k

> 0.

This is to say for any j ∈ J+,

fj(x− ρ) = ReLU

〈µj +
∑
l∈J+

µl,x− ρ

〉 = 0.

For any j ∈ J−,

fj(x− ρ) = ReLU

〈µj +
∑
l∈J−

µl,x− ρ

〉 > 0.

Thus, we obtain that AccDrobust(F
binary
FA ; δ) ≤ exp(−Ω(log2 d))

□

70

3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833

Under review as a conference paper at ICLR 2025

H ADDITIONAL REAL-WORLD EXPERIMENTS

H.1 EMPIRICAL VERIFICATION OF FEATURE LEARNING PROCESS

Beyond verifying the alignment between our theoretical findings and the results of numerical simu-
lation on the synthetic multi-cluster data setup, as described in Section 3, we also consider a more
realistic setting where the multi-cluster structure of data naturally occurs.

Transfer Learning Based on CLIP Model. Here, we focus on a transfer learning setting, under which
we utilize a pre-trained CLIP ViT-B-32 model (Radford et al., 2021) to obtain the image embedding
for the CIFAR-10 dataset. We found that the embeddings of CIFAR-10 images approximately satisfy
the multi-cluster structure, where the correlation between embeddings of images from the same
class is significantly higher than that between embeddings of images from different classes. See
experimental results in Figure 12, where we verify the orthogonality of the extracted features (i.e.,
image embeddings of CLIP model) by calculating the correlation between them.

Binary Classification on CIFAR. We create a 2-classification task from the CIFAR-10 dataset by
merging the first 5 classes into one class and the other 5 classes into the other class. We apply
two training strategies for training a two-layer neural network on this 2-classification task: one
is to train directly on the image embedding labeled for 2-classification, and the other is to first
train on the image embedding labeled for 10 classes and then convert it to 2-classification, where
the two-layer network is as described in our theory (we fixe second layer as diagonal form, i.e.,
fj(z) :=

1
h

∑h
r=1 ReLU(⟨wj,r, z⟩),∀j ∈ [2] or [10], and z denotes the image embedding). We set

the width of the first layer to be 1000 (h = 10) to ensure that the accuracy of the pre-trained model
was not compromised. For 10-classification, we use wj :=

1
h

∑h
r=1 wj,r as the equivalent weight of

fj . For the 500 positive weights and 500 negative weights in the binary classification network, we
equally divide them into 5 positive classes and 5 negative classes to ensure a fair comparison, between
the two figures which ensures that two models both have the same form F := (f1, f2, . . . , f10) ∈ R10

and each sub-network fj corresponds to a weight vectors wj .

Experiment Results. See experiment results in Figure 13. Indeed, deep neural networks can be
viewed as consisting of two parts: a feature extractor that is a mapping from the input space to the
latent space, and a shallow classifier that predicts the classification results based on the extracted
features (in the latent space). Feature averaging means that the shallow classifier mixes extracted
features corresponding to different classes in the latent space. And our empirical results verify this.

H.2 INFINITY-NORM CASE

Here, we aim to verify whether the model trained with fine-grained supervision information (i.e.,
10-class labels) is more ℓ∞-robust compared to the model trained with only binary (2-class) labels.

Experiment Settings. To ensure fairness in the comparison, we sum the logits corresponding to the
5 positive classes and subtracted the sum of the logits corresponding to the 5 negative classes from
the 10-class model’s output. This result is used as the binary classification output for the 10-class
model. The robust accuracy is measured by using the standard PGD attacks (Madry et al., 2018) with
different ℓ∞-pertubation radius. We run experiments in the following datasets:

Binary Classification on MNIST and CIFAR-10. To further verify our theory in deep neural
networks, on both MNIST and CIFAR-10 datasets, we train ResNet18 models from scratch with
normal 10-classification labels and 2-classification labels (MNIST: parity-classification; CIFAR-10:
binary-classification as that we mentioned in Section 5.1).

Experiment Results. The results are presented in Figure 14. With the perturbation radius increasing,
we can see that the models trained with 10-class labels have higher robust test accuracy than those
trained with 2-class labels in all datasets, which empirically shows that fine-grained supervision also
improves ℓ∞ robustness.

71

3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887

Under review as a conference paper at ICLR 2025

0 200 400 600 800

0

200

400

600

800

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Figure 12: Verifying Orthogonal Condition: We plot the extracted feature correlation as a colormap,
where each pixel represents some cos(zi, zj) between two extracted features zi, zj of two data xi,xj

from CIFAR-10 training dataset (here, we sample 100 instances for each class).

w1w2w3w4w5w6w7w8w9w10

1
2
3
4
5
6
7
8
9

10

0.1

0.0

0.1

(a) CIFAR-10: 2-class

w1w2w3w4w5w6w7w8w9w10

1
2
3
4
5
6
7
8
9

10 0.2

0.0

0.2

0.4

0.6

(b) CIFAR-10: 10-class

Figure 13: Illustration of feature averaging and feature decoupling on CIFAR-10 dataset. Figure
(a) corresponds to models trained using 2-class labels, and Figure (b) corresponds to models trained
using 10-class labels, respectively. Each element in the matrix, located at position (i, j), represents the
average cosine value of the angle between the feature vector µi of the i-th feature and the equivalent
weight vector wj of the fj(·).

0.00 0.04 0.08 0.12 0.16 0.20
Perturbation Radius (L∞)

20

40

60

80

100

Ro
bu

st
 Te

st
 A

cc
ur

ac
y

MNIST

10
2

0.000 0.005 0.010 0.015 0.020 0.025
Perturbation Radius(L∞)

30

40

50

60

70

80

90

100

Ro
bu

st
 Te

st
 A

cc
ur

ac
y

CIFAR-10

10
2

Figure 14: Verifying robustness improvement in ℓ∞ case: We compare ℓ∞ adversarial robustness
between model trained by 2-class labels (red line) and model trained by 10-class labels (blue line) on
MNIST (the left) and CIFAR-10 (the right).

72

	Introduction
	Related Work
	Problem Setup
	Data Distribution
	Neural Network Learner

	Main Results
	Network Learner Provably Learns Feature-Averaging Solution
	Fine-Grained Supervision Improves Robustness

	Experiments
	Feature Averaging and Feature Decoupling
	Robustness Improvement From Fine-Grained Supervision Information

	Conclusion
	Connections of Our Results with Other Explanations of Adversarial Examples
	Additional Synthetic Experiments
	Ablation Study on Synthetic Datasets
	Adversarial Training on Synthetic Datasets

	Analysis of Training Dynamics for Feature-Averaging Regime
	Deriving Dynamics of Coefficients From Gradient Descent
	Two Key Techniques about Loss Derivative and Activation Region
	Proof Sketch of Theorem C.2

	Preliminary Properties
	Detailed Data Model and Assumptions
	Useful Properties of the Training Dataset
	Useful Properties of the Network Initialization

	Proof for Section 4: Feature-Averaging Regime
	Analysis of Training Dynamics
	Proof of Theorem 4.5
	Proof of Theorem 4.6

	Proof for Section 4: Feature-Decoupling Regime
	Propositions of Network Initialization
	Analysis of Training Dynamics
	Proof of Theorem 4.7

	Two Feature Learning Regimes: Feature Averaging and Feature Decoupling
	Feature-Averaging Two-Layer Neural Network
	Robust Two-Layer Neural Network Exists
	Non-Robust Multi-Class Network Exists

	Additional Real-World Experiments
	Empirical Verification of Feature Learning Process
	Infinity-Norm Case

