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Abstract—The calibration of driving waveform parameters is
essential for achieving accurate color performance in electronic
paper (E-paper) manufacturing. However, this process constitutes
a high-dimensional black-box optimization problem, severely con-
strained by the fact that each real-hardware evaluation requires
several minutes. This stringent evaluation budget renders manual
tuning inefficient and limits the direct application of intelligent
optimization algorithms. While Genetic Algorithms (GA) and
Reinforcement Learning (RL) are principled approaches for such
black-box optimization, GA can suffer from premature conver-
gence and RL from sparse feedback under extremely limited
evaluations. To address these challenges, we propose a novel
GA-RL hybrid optimization framework. Our method embeds an
RL-based local fine-tuning process, guided by a predictive LAB
simulation model, within the global evolutionary cycle of GA.
This cooperative integration enables efficient use of the limited
evaluation budget. Experimental results demonstrate that the
proposed framework significantly outperforms standalone GA or
RL, achieving superior optimization efficiency and success rates
in practical E-paper production.

Index Terms—genetic algorithm, reinforcement learning, deep
learning, electronic paper

I. INTRODUCTION

Recent advances in artificial intelligence have facilitated the
widespread integration of machine learning across various in-
dustries, promoting the transition of traditional production pro-
cesses toward intelligent automation. Among various machine
learning paradigms, reinforcement learning (RL) has garnered
significant attention due to its unique trial-and-error interaction
mechanism [1]. This approach enables agents to gradually ac-
cumulate experience and optimize strategies through a closed-
loop process of “action-feedback-improvement,” achieving re-
markable success in domains such as game-playing agents,
autonomous driving, and robotic control [2].

Electronic paper (E-paper), as a low-power display technol-
ogy, has been widely adopted in applications such as electronic
shelf labels, e-readers, and wearable devices, owing to its
paper-like visual experience [3] and extremely low energy
consumption [4]. Its color rendering principle, as illustrated
in Figure 1, relies on driving waveform parameters [5],
which include timing parameters (TP, SR, RP) that control
the temporal structure of the waveform, and voltage-level
parameters (LUT) that define the electric signal polarity, as
shown in Figure 2. Each set of these parameters is parsed
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into three distinct waveform data segments corresponding to
the black, white, and red color channels. These parameters
are programmed into the driver chip to generate electric
signals applied through upper and lower electrodes, precisely
manipulating the movement of charged black, white, and red
particles within microcapsules to produce the desired colors
[6]. In the manufacturing process, achieving the target color
performance requires careful adjustment of these parameters.
The objective is to ensure the displayed color matches the
standard LAB color values—an internationally recognized
color space where L represents perceptual lightness, and a
and b denote the color-opponent dimensions, enabling precise
quantification of human perceptual differences.
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Fig. 1. Electronic paper working principle diagram.
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Fig. 2. Waveform parameters diagram.

Currently, the parameter adjustment process remains highly
dependent on engineers’ expertise. Training a proficient engi-
neer typically requires several months, and calibrating parame-
ters for each product batch can take nearly a full workday. This
not only incurs high labor costs but also severely constrains
production efficiency. Due to the high dimensionality, strong
coupling, and nonlinearity among parameters, as well as the
absence of an explicit mathematical model, the task can be
essentially formulated as a high-dimensional, nonlinear black-
box optimization problem.



To address this challenge, this study investigates the ap-
plication of two intelligent optimization methods—Genetic
Algorithm (GA) [7] and Reinforcement Learning (RL). GA
mimics mechanisms of biological evolution through selection,
crossover, and mutation to effectively explore the parameter
space [8]. RL, in contrast, employs an agent that learns optimal
adjustment strategies through iterative interaction with the E-
paper system, using color difference as a reward signal [9].
Both methods are well-suited for engineering optimization
problems where accurate mathematical models are difficult to
establish.

However, a major practical constraint is the time required
for real-world evaluations: programming each parameter set
into the hardware and measuring the resulting LAB values
takes several minutes. This limits the total number of evalu-
ations to several tens or hundreds within a production cycle,
posing significant challenges for both GA and RL. GA may
suffer from premature convergence or insufficient exploration
under limited population or generation sizes. RL, on the
other hand, struggles with sparse feedback and inadequate
policy learning when environmental interactions are severely
restricted.

To overcome these limitations, this paper proposes a
GA-RL hybrid optimization framework. The core idea is
to embed an RL-based local refinement process within the
multi-generational evolutionary cycle of GA. Each generation
consists of three stages: First, standard GA operations (selec-
tion, crossover, mutation) are performed to generate a new
population. Then, each individual in the population undergoes
local optimization via RL within a simulation environment
constructed by a LAB prediction model. Finally, elite selection
is conducted between the original individuals and their RL-
optimized counterparts based on real hardware measurements,
with the winners serving as seed individuals for the next
generation of genetic evolution.

This approach innovatively combines the global exploration
capability of GA with the local optimization efficiency of RL,
leveraging the low-cost simulation environment to overcome
the constraint of limited real evaluations. Through iterative
generations, the population quality is progressively improved,
accelerating convergence toward the global optimum. The
main contribution of this work lies in the novel integration of
GA and RL in a cooperative manner to address the problem
of E-paper driving waveform optimization—a challenge not
previously explored in the literature. This framework provides
an effective technical pathway for automated and intelligent
parameter tuning under strict evaluation budgets.

II. RELATED WORK

Optimization Methods. Intelligent optimization algorithms
[10] and deep reinforcement learning [11] have been widely
applied in complex system optimization, offering effective
tools for black-box problems. For instance, the Genetic Algo-
rithm (GA) mimics natural evolution by employing selection,
crossover, and mutation to explore the global search space [8].
It is particularly suitable for gradient-free optimization and has

achieved significant results in engineering tasks such as param-
eter tuning and scheduling. Deep reinforcement learning algo-
rithms, such as Deep Q-Network (DQN) [12], [13], integrate
deep learning with reinforcement learning, enabling agents
to learn optimal policies through environmental interactions
[9]. These methods have shown remarkable performance in
sequential decision-making tasks including game playing and
robotic control. Since they do not rely on precise mathematical
models, they are well-suited for high-dimensional nonlinear
problems like e-paper driving waveform optimization. How-
ever, existing studies have primarily focused on simulated
environments or scenarios with ample evaluation budgets,
leaving the challenges under extremely limited evaluations
largely unexplored [14].

Temporal Modeling. Time series analysis models, such
as LSTM, Transformer, and TimesNet, provide powerful ca-
pabilities for sequence modeling and play a significant role
in industrial parameter prediction. Long Short-Term Memory
(LSTM) networks capture long-range dependencies through
gating structures and are widely used in tasks such as time-
series forecasting and anomaly detection [15]. The Trans-
former model, based on self-attention mechanisms, enables
parallel processing of sequential data and has achieved break-
throughs in natural language processing and temporal analysis
[16]. TimesNet, as a recently proposed temporal modeling
framework, transforms time series into 2D tensors based on
periods and captures multi-periodicity and complex temporal
patterns through 2D convolutional neural networks, demon-
strating strong performance in various time series analysis
tasks [17]. These models can be employed to build predictive
surrogates for e-paper color display—for example, by map-
ping driving waveform parameters to LAB color values—thus
replacing time-consuming physical measurements.

E-paper Parameter Tuning. Current tuning of e-paper
driving waveforms heavily relies on manual expertise, and
research on automation remains at an early stage. In e-paper
production, parameters such as timing parameters (TP, SR,
RP) and voltage-level parameters (LUT) must be adjusted to
approximate standard LAB color values [18]. However, due
to strong parameter coupling and the absence of an explicit
model, the tuning process is time-consuming and susceptible
to subjective influence. In industrial practice, manual trial-
and-error by engineers remains the dominant approach, high-
lighting an urgent need for low-cost and efficient automated
solutions [19]. Hybrid frameworks that integrate intelligent
optimization with simulation surrogates have thus emerged as
a promising direction.

III. METHODOLOGY
A. Framework Overview

Objective: This paper aims to address the core challenges
in e-paper driving waveform parameter optimization—namely,
the heavy reliance on manual expertise and the extremely lim-
ited budget for physical evaluations. Our goal is to provide a
reliable solution for achieving efficient and automated parame-
ter tuning. Specifically, this research focuses on a black, white,



and red (BWR) tricolor electronic paper. Consequently, for
any given set of driving waveform parameters, programming
them into the hardware and performing measurement yields
three LAB color values, corresponding to the display effects
of the black, white, and red colors, respectively. Since the
production objectives primarily concern luminance and red-
green hue, with no specific constraints on the B (blue-yellow)
dimension, the optimization target effectively has a 3 (colors)
x 2 (L and a dimensions) structure. The ultimate objective
of parameter optimization is to identify an optimal parameter
set such that the actual measured LAB values of the e-paper
closely approximate the target values in the L and a dimensions
after programming and measurement.

Overview: To this end, we propose a novel Genetic Algo-
rithm and Reinforcement Learning hybrid optimization (GA-
RL) framework. Our research first successfully applied the
Genetic Algorithm (GA) and Reinforcement Learning (RL)
individually to this problem, confirming the feasibility of both
methods for such a complex black-box optimization task.
However, the performance improvement of either standalone
algorithm reached a bottleneck under strict evaluation con-
straints. To overcome this limitation, we introduced a neural
network-based LAB color prediction model to construct a low-
cost, high-efficiency simulation environment. Building on this,
the proposed GA-RL hybrid framework effectively combines
the advantages of both algorithms: GA is used for global
exploration to identify promising parameter regions, and then
RL performs fine-tuning of elite solutions within the simu-
lation environment. This framework concentrates the limited
real evaluation resources on the most promising candidate
parameters. Through a closed-loop process of simulation-real
interaction and validation, the strategy and the prediction
model are continuously optimized, ultimately achieving sig-
nificant improvements in color rendering performance under
a stringent evaluation budget. Next, we elaborate on the main
components.

B. Genetic Algorithm

To address the optimization of driving waveform parameters
for electronic paper, this paper employs a Genetic Algorithm
(GA) as one of the core optimization methods. As a global op-
timization algorithm inspired by natural selection and genetic
mechanisms, GA is particularly suitable for complex, high-
dimensional, nonlinear problems lacking explicit mathematical
models [20]. As discussed in Section I, the driving waveform
parameters for electronic paper including timing parame-
ters (TP, SR, RP) and voltage-level parameters (LUT) — exhibit
strong coupling and reside in a high-dimensional space [8],
[21]. By maintaining a population of parameter sets (individ-
vals) and simulating an evolutionary process of “selection-
crossover-mutation,” GA facilitates an effective global search
even under a limited evaluation budget. The detailed design
and implementation of the GA in this study are described
below.

Encoding and Population Initialization: A complete set
of driving waveform parameters is encoded as an individual.

The initial population is generated directly from a baseline
waveform parameter set provided by the e-paper manufacturer
for the specific display model. This approach reflects the
practical industrial process where engineers typically optimize
starting from an existing baseline, and it enhances both prac-
tical relevance and convergence efficiency.

Fitness Function: This research focuses on optimizing the
driving waveforms for a black, white, and red (BWR) tri-
color electronic paper. Consequently, the display performance
of all three colors must be considered simultaneously. For
each parameter set, three LAB color values for the black,
white, and red states are obtained through physical hardware
measurement. Since the production specifications impose no
strict constraints on the B (blue-yellow) dimension, the opti-
mization primarily targets the L (lightness) and a (red-green)
dimensions. Thus, the objective function has a 3 (colors)
x2 (dimensions) structure. The fitness function is defined as
the negative of the aggregate Euclidean distance between the
measured and target LAB values, considering only the L and
A dimensions for each color:

fitness = —

Z \/(Lc - Lc,targel)2 + (Ac - Ac,targel)2

c&{black,white,red }
(1)

A higher fitness value indicates that the overall color perfor-
mance of the parameter set is closer to the target specifications.

Selection Operation: A roulette wheel selection strategy
is adopted to choose individuals for the crossover pool based
on a probability distribution derived from their fitness values.
Specifically, the softmax function is applied to the fitness
values of all individuals in the population to calculate the
selection probability for each individual:

exp(fitness;)
Z;V:l exp(fitness;)

Pi) = 2)

where N is the population size. Individuals with higher fitness
have a greater probability of being selected, thereby promoting
the inheritance of desirable traits.

Crossover Operation: To generate new individuals in the
parameter space, a group-based crossover strategy is em-
ployed. Parent individuals, selected from the previous step, are
randomly paired. For each pair, every parameter group (Group)
is swapped with a predefined probability p.. It is important to
note that parameter groups containing M and N voltage levels
in the LUT are defined as color-pushing groups. These groups,
typically located at the end of the waveform sequence, signifi-
cantly influence the final LAB color output. This group-based
strategy helps explore new combinations while preserving the
structure of potentially beneficial parameter groups.

Mutation Operation: Mutation is crucial for maintaining
population diversity and preventing premature convergence.
Three mutation operations are designed specifically for the
color-pushing groups (i.e., groups containing M and N levels),
each applied independently with a probability p;,:



1) Adjust the ratio of red M and N levels: Randomly
modify the RP parameter within the group to alter the
proportion of red particles in the driving waveform.

2) Randomly increase or decrease the group’s duration:
Randomly adjust the SR or RP parameter values to
change the duration of the specific color-pushing phase.

3) Randomly increase or decrease a specific TP column:
Randomly select a column within the group’s TP param-
eter sequence and increment or decrement its value.

As the color-pushing groups substantially impact the LAB
output, these targeted mutations effectively guide the search
process. Through iterative selection, crossover, and mutation
operations, the population evolves over generations, progres-
sively improving its average fitness. Under a constrained bud-
get of real-world evaluations, the designed Genetic Algorithm
provides an effective pathway for automating the optimization
of driving waveform parameters for tricolor electronic paper.

C. Reinforcement Learning

This paper formulates e-paper driving waveform optimiza-
tion as a Markov Decision Process (MDP) [22] and employs
Deep Q-Network (DQN) [12], [13] for the solution. The key to
applying DQN to this problem lies in the customized definition
of the core MDP components, including state representation,
action space, reward function, and environment. This section
elaborates on the design of these components, while the stan-
dard algorithmic procedures of DQN (e.g., Q-network update,
target network) are well-established and thus not reiterated
here.

State Representation: The state vector s, is constructed by
concatenating temporal parameters (flattened to group_num x
7 dimensions) with measured LAB values (L and a channels
for black, white, and red), resulting in a final dimension of
group_numXx7+3x 2. Voltage-level parameters (LUT) remain
fixed during optimization.

Action Space: Discrete actions are employed to enable fine-
grained parameter adjustments. For each of the seven temporal
parameters per group, three operations are defined: multiply by
2.0 (amplify), multiply by 0.5 (reduce), or add 3 (increment),
yielding a total of group_num x 7 x 3 possible actions.

Reward Function: The reward function guides the agent
to optimize color fidelity. The agent receives a bonus reward
Ryonus only when the measured LAB values for all three
calibration colors (black, white, and red) are within their preset
acceptable ranges (i.e., satisfy the LAB constraints). These
constraints require the L and a values for each color to be
qualified.

If the LAB constraints are not fully satisfied, the reward is
a penalty based on the total color difference:

>

ce{B,WR}

\/(Lc - Lc,larget)2 + (ac - ac,ta.rget)2 3)

Otherwise, the agent receives a positive constant bonus:

Tt = Rbonus (€]

Note the Rponys 1S a tunable hyperparameter; in our ex-
periments, it is typically set to 10. Furthermore, the LAB
constraints used during training are intentionally set to be more
stringent than those required in the production environment to
encourage a more robust and precise calibration.

Environment and Implementation: The agent interacts
with a simulation environment based on the LAB prediction
model (or physical hardware). Training is initialized with
manufacturer-provided baseline parameters, and exploration
is conducted via an e-greedy policy. The DQN architecture
utilizes fully-connected layers to map states to action values,
with experience replay employed to stabilize training. This
approach facilitates efficient policy learning under limited
evaluation budgets by focusing on parameter adjustments that
enhance color performance.

D. LAB Simulation Function

To overcome the bottleneck of high-cost physical evalu-
ations, this paper constructs a neural network-based LAB
color prediction model that serves as an efficient simulation
environment. The core objective of this model is to learn
the complex nonlinear mapping from waveform parameter
encodings to displayed colors, enabling low-cost and rapid
evaluation of color performance for different parameter combi-
nations within the simulation environment. The computational
flow of the LAB simulation function adopts an innovative
differential prediction architecture, with its mathematical data
flow described below.

The model takes three inputs: a reference waveform parame-
ter encoding C, (for which the actual LAB values are known
from physical measurement), the corresponding actual mea-
sured LAB values LAB,, and a target waveform parameter
encoding C} for which the LAB values are to be predicted.

Each waveform parameter encoding (represented as tabular
encodings shown in figure 2) is parsed into three waveform
data sequences (temporal signals) corresponding to black (B),
white (W), and red (R) colors respectively:

Xa:[Xf,XZV,Xf], Xb:[XbBaX;/VaXI?]

where each waveform data is a multidimensional time series.
Since the optimization objective primarily focuses on lumi-
nance (L) and red-green chroma (a) dimensions, the actual
measured input from C, is represented as the matrix:

LB 4B
LAB, = LZV aZV
L o

The model first processes the three-color waveform data
parsed from parameter encodings C,, and Cj, through a weight-
sharing encoder to obtain their hidden representations. The
encoding process can be expressed as:

h, = Encoder(X?, X}V, X), h;, = Encoder(X/, X}V, X}

The encoder can employ various temporal modeling architec-
tures such as Multi-Layer Perceptron (MLP) [23], Long Short-
Term Memory (LSTM) [15], Transformer [16], or TimesNet



[17] to effectively capture temporal dependencies and complex
patterns in the waveform data. The predictive capabilities
of different encoder architectures will be compared in the
subsequent experimental section.

The model then computes the difference between the two
hidden representations:

Ah =h; — h,

This difference vector Ah encodes the variation information
from parameter encoding C, to Cj. Subsequently, Ah is con-
catenated with the actual measured LAB matrix of parameter
encoding C, and fed into a Multi-Layer Perceptron (MLP) for
regression prediction:

ALAB,q = MLP ([Ah, LAB,])

where the MLP output is the predicted LAB value variation:

ALE  AdB
ALABq = ALY AaV
ALE  Ad®

pred
Finally, the predicted LAB matrix for waveform parameter

encoding Cj, is obtained by adding the predicted variation to
the actual measured values of parameter encoding C,:

LB+ ALB  aB 4+ AdP
LABy et = LAB, + ALABye = | LV + ALY oV + Aa"
LE+ ALE  aff + Aol

pred

This differential prediction architecture offers significant
advantages. It essentially learns relative changes in the color
space rather than absolute values, enabling the model to focus
on color effects induced by parameter encoding variations,
which potentially improves generalization and prediction accu-
racy for fine-grained parameter adjustments. Furthermore, this
architecture naturally incorporates known baseline information
(actual measurements of parameter encoding C,), anchoring
predictions around a reliable reference point.

The model is trained to minimize the error between the
predicted value LABypeq and the actual measured LAB
matrix LAB,, corresponding to waveform parameter encoding
Cy, using an appropriate loss function such as Mean Squared
Error (MSE):

L = |[LAB} prea — LAB,||?

The model is trained on a dataset containing historical wave-
form parameter encodings and their corresponding three-color
LAB measurements, enabling it to accurately simulate the
physical color rendering process of the electronic paper.
Within the proposed GA-RL hybrid framework, the trained
LAB simulation function primarily serves to construct a
high-fidelity simulation environment for training the Rein-
forcement Learning (RL) agent. This environment allows
the RL agent to conduct extensive, low-cost trial-and-error
learning—exploring parameter adjustment strategies and itera-
tively refining its policy—without requiring expensive physical
measurements at each step. The elite parameter candidates
identified by the Genetic Algorithm (GA) through global
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Fig. 3. GA-RL hybrid algorithm workflow.

exploration serve as high-quality starting points for the RL
agent’s fine-tuning process within this simulation. Ultimately,
only the parameters optimized by the RL agent in the simu-
lation environment are selected for final validation using the
limited physical evaluation resources. By offering a reliable
and efficient training platform for RL, the LAB simulation
function effectively decouples the learning process from phys-
ical hardware constraints, thereby significantly expanding the
effective “exploration budget” and enhancing overall optimiza-
tion efficiency under strict evaluation limitations.

E. GA-RL Hybrid Framework

The GA-RL hybrid framework integrates Reinforcement
Learning (RL) as a local refinement mechanism within the
generational cycle of a Genetic Algorithm (GA), aiming to
enhance population quality while operating under stringent
real hardware evaluation budgets. A key enabler is the LAB
simulation function, which provides a low-cost environment
for extensive RL training. As illustrated in Figure 3, the
process iterates through generations, each comprising a "GA
Evolution — RL Enhancement” cycle.

Genetic Algorithm Evolution. Each generation begins with
the elite population from the previous cycle. A standard GA
iteration is executed: selection based on real-evaluated fit-
ness, crossover to recombine parameters, and mutation—with
emphasis on critical “color-pushing parameter groups”—to
maintain diversity. This produces a new candidate population,
consistent with the method outlined in Section III-B.

Reinforcement Learning Local Optimization. This is the
core innovation. Before progressing to the next generation,
every individual in the new GA population undergoes local
optimization via RL within the LAB simulation environment
(Section III-D). Each individual serves as the initial state for a
DQN-based agent (Section III-C), which performs a sequence
of parameter adjustments. After each action, the simulation
predicts the resulting LAB values and computes a reward. The
agent’s objective is to find a trajectory of adjustments that im-
proves color performance locally, all without consuming real
evaluation resources. This process yields a refined counterpart
for each original GA individual.



Algorithm 1 GA-RL Hybrid Optimization Framework
Require:
- Initial parameter set Py (manufacturer-provided)
- LAB constraints Cpap (for black, white, and red colors)
- Maximum runtime 7}«
Ensure:
- Optimized parameters Tpeg
- Flag found(indicating whether constraints are satisfied)

1:

22 P+ P > Initialize population
3: Compute fitness for all x € P

4: Tpest <— arg max,¢ p fitness(z)

5: tgan ¢ current time()

6: found < False

7: while current time() — tgan < Tmax A —found do
8: Step 1: GA Evolution

9: Psa < GA_Evolve(P)

10: Compute fitness for all x € Pga

11: Step 2: RL Local Optimization (Simulation)
12: Pre < {}

13: for z; € Pga do

14: x} + RL_LocalOptimize(x;)

15: PRLadd(ac;)

16: end for

17: Compute fitness for all x € Pr

18: Step 3: Elite Selection & Termination Check
19: Prext < {}
20: for i = 1 to |Psa| do

21: if fitness(Pry[7]) > fitness(Psali]) then
22: ZTcandidate < PRL [Z]

23: else

24: Zcandidate PGA M

25: end if

26: Pnext~add(mcandidate)

27: if LAB(Zcandidate) satisfies Cpap then
28: found < True

29: Tpest € Lcandidate

30: break

31: end if

32: if fitness(Zcandidate) > fitness(zpes:) then
33: Tpest € Lcandidate

34: end if

35: end for

36: P < Pext
37: end while
38: return (Zpeg, found)

Elite Selection and Population Update. Following the RL
enhancement, both the original GA-generated individuals and
their RL-optimized counterparts are programmed and mea-
sured on real hardware to obtain their actual LAB values and
fitness scores. A pairwise elite selection is then performed: for
each corresponding pair, the individual demonstrating superior
real-world performance is retained. This selected elite becomes

TABLE I
TARGET LAB VALUE CONSTRAINTS
Color | L Constraint | A Constraint
Black L <14 A<4
White L > 65 A<O
Red L >27 11 < A<45

a seed individual for the next generation of the genetic algo-
rithm. Crucially, during this evaluation phase, if any candidate
solution is found to satisfy all predefined LAB constraints,
the optimization loop terminates immediately, returning this
feasible solution. This early termination mechanism enhances
optimization efficiency upon finding a satisfactory result. Oth-
erwise, the algorithm proceeds by forming the next generation
entirely from the selected elites. This update strategy ensures
that the population evolves based on individuals that have
been both locally refined through simulation and rigorously
validated in reality, effectively concentrating real evaluations
on the most promising regions of the parameter space.

IV. EXPERIMENT

In this section, we conduct a comprehensive evaluation
of the proposed methods. First, we present the performance
comparison of the standalone Reinforcement Learning (RL)
algorithm, the Genetic Algorithm (GA), and the GA-RL
hybrid framework under actual production constraints. We
then provide a detailed comparative analysis of different
neural network architectures for the LAB simulation function,
which serves as a core component of the hybrid framework’s
simulation environment.

A. Experiment Settings

The experiments were conducted using the P266010 E-
paper model within a temperature range of 25°C to 30°C.
The target LAB value constraints are specified in Table I.
A parameter set is considered valid—indicating successful
tuning—only if the measured L and a values for all three colors
(black, white, and red) simultaneously satisfy these constraints.
For all parameter tuning algorithms (RL, GA, and the hybrid
framework), the optimization process was initialized using the
same baseline waveform parameter set, which comprises four
distinct waveform parameter groups.

For the LAB simulation function, the training dataset was
constructed from historical tuning records of 20 previous
tuning tasks performed on the P266010 model. Each task
contained approximately 100 distinct waveform parameter sets
and their corresponding measured LAB values. Following the
differential prediction architecture described in Section III-D,
where the model takes waveform parameter encodings C, and
Cyp along with the measured LAB values of C, to predict the
LAB values of Cj, the dataset construction process specifically
leveraged this input-output relationship. For each tuning task,
every possible pair of distinct parameter sets (C,,Cp) was
used to create a training sample, resulting in approximately

("9%) = 19,900 samples per task. With 20 historical tuning



TABLE 11
SUCCESS RATE COMPARISON OF DIFFERENT ALGORITHMS (%)
Algorithm 30 minutes | 4 hours | 12 hours | 24 hours
GA 10 35 60 95
RL-Standard 15 20 30 40
RL-Simple 10 20 35 60
GA-RL Hybrid 45 75 90 100

tasks, this methodology yielded a comprehensive dataset of
approximately 199,000 samples, ensuring robust training of
the LAB simulation function. The model was trained following
the methodology detailed in Section III-D. In the evaluations
conducted in the actual production environment, the Trans-
former architecture was selected as the encoder for the LAB
simulation function based on its superior performance in our
comparative analysis.

B. Performance Evaluation in Production Environment

To comprehensively assess the effectiveness of the proposed
methods under practical constraints, we conducted extensive
experiments in the actual production environment. The primary
evaluation metric was the success rate of completing the
parameter tuning task—defined as finding a valid parameter set
that satisfies all LAB constraints specified in Table I—within
different time intervals: 30 minutes, 4 hours, 12 hours, and
24 hours. These timeframes reflect realistic production cycle
requirements and the practical time constraints faced by engi-
neers during manual tuning processes.

Given the severe limitation on the number of real hardware
evaluations in production settings, we identified that the stan-
dard Reinforcement Learning approach described in Section
ITI-C, with its extensive action space of group_num X 7 x 3
actions, might face challenges in effective policy learning
within the limited interaction budget. To address this, we
developed a simplified RL variant (denoted as RL-Simple)
that focuses optimization efforts exclusively on the temporal
parameters of the final waveform group—a critical segment
identified through empirical knowledge as having substantial
influence on the final color performance. This reduction yields
a manageable action space of 7 x 3 = 21 discrete actions,
significantly improving learning efficiency under constrained
evaluations.

We compared four distinct approaches: the standard Ge-
netic Algorithm (GA), the full Reinforcement Learning (RL-
Standard) method, the simplified RL approach (RL-Simple),
and our proposed GA-RL hybrid framework. Each algorithm
was evaluated through 20 independent tuning trials to ensure
statistical significance, with all experiments conducted under
identical initial conditions and evaluation budgets.

The experimental results presented in Table II reveal signif-
icant performance variations among the four evaluated algo-
rithms. Our proposed GA-RL hybrid framework consistently
achieved the highest success rates across all time intervals,
reaching 45% at 30 minutes, 75% at 4 hours, 85% at 12
hours, and achieving perfect 100% success within 24 hours.

Particularly noteworthy is the framework’s performance in
the 30-minute interval, where it attained 45% success despite
being limited to only 1-2 complete "GA evolution-RL opti-
mization” cycles, given that each parameter programming and
measurement operation requires approximately 2 minutes.

The Genetic Algorithm (GA) demonstrated strong long-
term performance, reaching 95% success after 24 hours,
significantly outperforming both RL wvariants. This robust
performance confirms GA’s effectiveness in global exploration
of the high-dimensional parameter space. It should be noted
that the differences in 30-minute success rates between GA
and the RL variants (10% versus 15% and 10%) are not
statistically significant, indicating that all algorithms face
similar exploration challenges under severe time constraints.

Both RL variants showed comparatively lower performance
than the population-based optimization methods. The standard
RL method achieved a maximum success rate of 40% after 24
hours, while the simplified RL-Simple variant reached 60%.
This performance gap suggests that despite improvements
through action space reduction in RL-Simple, RL algorithms
still face challenges in learning efficiency under limited inter-
action budgets.

The superior performance of the GA-RL hybrid framework
stems from its unique synergistic mechanism: GA handles
global exploration while RL performs local fine-tuning in the
simulation environment. The framework’s ability to achieve
45% success within 30 minutes - corresponding to only
approximately 15 hardware evaluations - demonstrates its ef-
fectiveness in rapidly identifying promising parameter regions.

These results conclusively show that under strict time con-
straints and limited hardware evaluation budgets, the hybrid
framework combining evolutionary algorithms with reinforce-
ment learning, supported by an accurate simulation environ-
ment, effectively addresses the high-dimensional black-box
optimization problem of E-paper waveform parameters. The
GA-RL hybrid framework not only achieves higher ultimate
success rates but, more importantly, demonstrates significant
advantages in time-critical production environments.

C. Evaluation of LAB Simulation Function

The accuracy of the LAB simulation function is critical
to the effectiveness of the proposed GA-RL hybrid frame-
work, as it forms the core of the simulation environment
in which reinforcement learning performs local optimiza-
tion. To systematically evaluate the predictive performance of
different encoder architectures, we conducted a comparative
study employing four distinct neural network models: Multi-
Layer Perceptron (MLP), Long Short-Term Memory (LSTM),
TimesNet, and Transformer.

The dataset described in Section IV-A, comprising approx-
imately 199,000 samples, was used for model training and
evaluation. The dataset was partitioned in an 80-10-10 ratio
for training, validation, and testing sets, respectively, with data
from the same tuning task kept within the same split to prevent
information leakage. Model performance was assessed using
Mean Squared Error (MSE) on the test set.



TABLE III
PREDICTION PERFORMANCE COMPARISON (MSE)
Black White Red
Encoder L a L a L a

MLP 234 1.87 | 2.12 192 | 225 245
LSTM 099 085|095 078 | 1.62 197
TimesNet 023 041 | 021 030 | 095 1.28
Transformer | 0.08 0.22 | 0.08 0.12 | 043 0.65

As shown in Table III, the Transformer-based encoder
achieved the lowest MSE values across all color channels
and both output dimensions, demonstrating a clear advantage,
especially for the more challenging red color parameters.
This superior performance is likely due to the self-attention
mechanism’s ability to capture long-range dependencies and
complex temporal patterns in the waveform data.

TimesNet ranked second overall, showing competitive re-
sults with MSE values slightly higher than those of the Trans-
former. LSTM exhibited moderate performance, surpassing
the MLP but falling short of the more advanced temporal
architectures. The MLP encoder, while computationally the
simplest, yielded the highest prediction errors across the board.

A consistent trend observed across all models is that pre-
diction accuracy is higher for black and white colors than
for red, suggesting that red color parameters are inherently
more difficult to predict in this E-paper waveform parameters
tuning context. The stability of the performance ranking across
different color channels underscores the generalizability of
these findings.

These results confirm the rationale behind selecting Trans-
former as the encoder architecture for the LAB simulation
function in our production environment evaluations. The su-
perior predictive accuracy of the Transformer-based model
ensures high-fidelity simulation, which in turn enhances the
effectiveness of the RL-based local optimization within the
GA-RL hybrid framework.

V. CONCLUSION

In this paper, we proposed a GA-RL hybrid optimization
framework to address the challenge of E-paper driving wave-
form optimization under extremely limited evaluation budgets.
By integrating genetic algorithms for global exploration with
reinforcement learning for local refinement through a LAB
color prediction model, our framework effectively overcomes
the constraints of traditional manual tuning approaches. Exper-
imental results demonstrate that the proposed method signifi-
cantly outperforms individual optimization methods (including
both GA and RL), achieving superior performance in practical
production environments. This work provides the first auto-
mated solution for E-paper parameter tuning, breaking away
from conventional manual approaches, and offers potential
applications in other domains facing similar high-dimensional
optimization challenges with restricted evaluations.
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