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Abstract— A growing number of studies have examined the 

relationship between environmental factors and Alzheimer’s Disease 

(AD) dementia prevalence. However, exploration into long-term 

exposure to air pollutants at the county level across the United States 

using spatial machine learning has been insufficiently studied. We 

compiled long-term data for six air pollutants (PM2.5, PM10, NO2, 

CO, O3, and SO2) from 1999 to 2020 to evaluate their relationship 

with AD dementia prevalence using global Random Forest, global 

XGBoost, geographically weighted random forest (GWRF), and 

local XGBoost models. These models were evaluated with several 

metrics (i.e. R2, RMSE, and AIC). Moreover, Gini feature 

importance and SHAP values were used to assess the relative 

contribution of each pollutant and interpret model outputs. The 

GWRF model outperformed other local and global models, with an 

R2 value of 54.38%, with the best fit observed in the Northeast and 

West Coast regions. Findings from Gini feature importance showed 

PM10 as the most influential predictor, followed by NO2, O3, and 

PM2.5. In addition, PM10 emerged as the primary variable in 25.31% 

of counties (n=786), while SO2 and CO had a smaller role. Our 

results suggest that, among air pollutants, PM10 may play a more 

significant role in AD dementia prevalence than previously 

recognized, especially in urban areas. 
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I. INTRODUCTION 

Most research on Alzheimer’s disease (AD) dementia has 
traditionally focused on individual-level factors, but growing 
evidence shows that broader social and environmental 
determinants also play a significant role in developing AD 
dementia risk [1]. The socio-economic burden of environmental 
exposures on AD dementia is substantial. In the US, air pollution 
is linked to a loss of independence in approximately 730,000 
older adults each year, with related costs nearing $11.7 billion 
[2]. Exposures to noise, air pollution, and urban heat have been 
shown to contribute to cognitive decline over time. For example, 
long-term exposure to traffic-related noise is associated with 
lower cognitive performance in older adults [3], while 
neighborhood stressors and environmental degradation have 
been related with more severe neuropsychiatric symptoms 
among people living with dementia [4]. Moreover, limited 

access to green space has been associated with cognitive decline 
[5]. 

Recognizing the impacts of environmental determinants, 
researchers have increasingly focused on air pollution as a 
widespread and modifiable risk factor for AD dementia. A 
systematic review and meta-analysis by Tsai et al. (2019) found 
that fine particulate matter (PM2.5) was significantly and 
positively associated with dementia, with a pooled hazard ratio 
of 3.26, indicating more than triple the risk among those exposed 
to higher levels of PM2.5 levels [6]. More recently, Tang et al. 
(2023) conducted a meta-analysis and demonstrated a 
significant increase in dementia risk with higher levels of air 
pollution [7]. Their analysis found that dementia risk increased 
with exposures to PM2.5, nitrogen dioxide, and carbon 
monoxide, among others [8]. Experimental studies also support 
these findings. Rahman et al. (2020) found that airborne 
pollutants increase amyloid β peptide and tau phosphorylation 
which can contribute to the development of amyloid plaques, a 
key feature of AD dementia [9]. 

Among commonly used machine learning (ML) models, 
Random Forest (RF) and Extreme Gradient Boosting 
(XGBoost) are particularly effective for environmental health 
research due to their ability to model complex interactions and 
rank feature importance [11,12]. While these models can capture 
complex relationships, they generally assume spatial 
stationarity. However, environmental exposures and their health 
impacts often vary geographically due to differences in pollution 
sources, infrastructure, and sociodemographic characteristics. 
To address this limitation, researchers have increasingly adopted 
local models—such as Geographically Weighted Random 
Forest (GWRF) or local XGBoost—which allow the 
relationship between predictors and outcomes to vary across 
geographic areas [11, 12]. For instance, a study by Mollalo et al. 
(2025) used a GWRF model to examine county-level AD 
dementia prevalence across the US. Their findings revealed 
substantial regional variations in the influence of environmental 
and social risk factors on AD dementia prevalence [10]. 

In this study, we hypothesize that long-term exposure to air 
pollution significantly contributes to AD dementia prevalence 



across the US and the relationship varies by geographic region. 
Specifically, this study aims to address the following questions: 

(1) How do global vs. local ML models perform in 
predicting county-level AD dementia prevalence? 

(2) How does the air pollution–AD dementia relationship 
vary spatially at the county level across the contiguous US? 

(3) What is the relative importance of air pollutants in 
predicting AD dementia prevalence across the contiguous US? 

The findings from this study aim to offer place-based 
insights into the role of air pollutants in the burden of AD 
dementia across the contiguous US, helping to inform more 
targeted and refined public health policies. 

II. METHODS 

A. Data Collection and Preparation 

County-level estimates of AD dementia prevalence (n=3,142 
counties) were obtained from Dhana et al. (2023) [14]. This 
study used data from the Chicago Health and Aging Project 
(CHAP), a large, population-based cohort of more than 10,000 
adults aged 65 and older residing in Chicago, which included 
extensive neuropsychological testing and demographic 
information. To estimate the probability of AD dementia, Dhana 
et al. applied a generalized additive quasibinomial regression 
model adjusted for age, sex, race/ethnicity, and education. This 
model was then applied to 2020 bridged-race postcensal 
population estimates from the National Center for Health 
Statistics, stratified by demographic group, to produce 
demographically adjusted prevalence estimates for every US 
county. These spatially comprehensive estimates served as the 
foundation for our analyses. 

Estimates for air pollution levels were obtained from the 
Center for Air, Climate, and Energy Solutions, which provides 
high-resolution exposure data at various spatial resolutions 
across the contiguous US based on a national land use regression 
model [15]. Air pollutant estimates are derived by integrating 
satellite remote sensing, ground-based monitoring data from the 
US Environmental Protection Agency, land use characteristics, 
and meteorological information [15, 16]. In this study, we used 
annual county-level estimates for six pollutants: PM2.5 (μg/m³), 
coarse particulate matter (PM10, in μg/m³), NO₂ (parts per billion 
[ppb]), CO (ppb), ozone (O3, in ppb), and sulfur dioxide (SO₂, 
in ppb). To capture long-term exposure, the median 
concentration for each pollutant was calculated across the years 
1999 to 2020. 

B. Global Models 

After preparing the data, two global ML models were 
implemented—RF and XGBoost—to examine the relationship 
between AD dementia prevalence and the selected air pollutants.  

C. Local Models 

While global models provide useful insights in 
understanding broad patterns, they overlook spatial non-
stationarity. Local models are better suited to address spatial 
heterogeneity driven by regional variations in pollution sources, 
population characteristics, infrastructure, and social 
determinants of health [20]. Accordingly, this study employed 

two local ML models—GWRF and Local XGBoost—to allow 
the relationships to vary geographically and capture localized 
effects. Details on each local modeling approach are provided 
below. 

1) Geographically Weighted Random Forest: GWRF models 
combine the strengths of RF with the spatial adaptability of 
Geographically Weighted Regression [21]. By training the 
decision trees locally, GWRF can capture location-specific 
relationships between air pollutants and AD dementia 
prevalence [21]. This is particularly important as environmental 
exposures and their health impacts are not uniform across space. 
GWRF, like RF models, can handle complex datasets, identify 
non-linear relationships, and is inherently robust to overfitting 
due to the use of a random sample of the data and a random 
selection of the input features for each tree [10]. The ability to 
obtain feature importance scores is also a benefit of GWRF 
models that may be masked in global models. 

2) Local XGBoost: Another local model used in this study 
was the local XGBoost, which builds separate models for 
different geographic areas. The main benefit of using local 
XGBoost is that it combines the strengths of gradient boosting—
such as strong predictive performance and the ability to model 
complex relationships—with the flexibility to adapt to local 
spatial contexts, improving accuracy across regions [22]. This 
approach helps capture region-specific patterns and may better 
reflect how environmental factors vary across communities, 
particularly where pollution sources and population 
vulnerabilities differ [22]. The model can improve prediction 
accuracy by sequentially learning from past errors and includes 
techniques such as regularization and tree pruning to reduce 
overfitting—ensuring the model generalizes well to new data 
[18, 22]. 

D. Model Settings 

To train, tune and evaluate the ML models, the full dataset 
was randomly partitioned into three subsets: 70% for training, 
15% for validation, and 15% for testing. Model building was 
conducted on training dataset, while hyperparameter tuning was 
carried out on the validation set to reduce overfitting and 
improve generalizability. The final test set was used to evaluate 
out-of-sample performance, providing an unbiased estimate of 
how well each model generalized to unseen data. Out-of-bag 
(OOB) error estimates were generated for RF and GWRF 
models to provide an internal measure of accuracy without 
requiring a separate validation set. For the global XGBoost 
model, which lacks native OOB estimates, an OOB estimate was 
generated using 5-fold cross-validation on the training dataset. 
Leave-one-out cross-validation was implemented for the local 
XGBoost model. For each training observation, a local XGBoost 
model was trained using neighboring observations, excluding 
the observation itself. Then, the model predicted the excluded 
point, repeated for all training locations. These predictions were 
compared to actual values to compute R² and RMSE scores as 
OOB error estimates [17]. 

A grid search approach was used for hyperparameter 
selection, optimized through five-fold cross-validation using R² 
as the primary performance metric [23]. For RF, the 
hyperparameter search included the number of decision trees, 
maximum tree depth, number of features considered at each 



split, and minimum sample thresholds for both leaf nodes and 
splits [24]. In the case of GWRF, tuning focused on the number 
of trees and tree depth, consistent with its adaptation for local 
modeling [24]. The XGBoost models—both global and local—
were tuned across parameters including number of trees, 
maximum depth, learning rate, subsample ratio (i.e., fraction of 
observations used per tree), and column sampling ratio 
(colsample_bytree) [25]. Sensitivity analyses were conducted to 
assess the impact of different neighborhood sizes (k= 5 to 150) 
and kernel types (fixed vs. adaptive). The number of neighbors 
(k=92) used for local model fitting was determined through 
these analyses and using Golden Search optimization, with a 
fixed kernel providing the best balance of accuracy and spatial 
stability. These sensitivity analyses confirmed that the identified 
pollutant importance rankings and spatial patterns remained 
stable (TABLE I).  

TABLE I.  TUNED HYPERPARAMETER VALUES FOR MODELS 

No. Hyperparameter RF GWRF Global 

XGBoost 

Local 

XGBoost 

1 n_estimators 300 300 300 300 

2 max_depth 30 30 - - 

3 min_samples_leaf 1 1 - - 

4 min_samples_split 2 2 - - 

5 learning_rate - - 0.05 0.05 

6 subsample ratio - - 0.8 0.8 

7 colsample_bytree - - 0.8 0.8 
 

E. Model Evaluation and Interpretability 

Model performance was assessed using several evaluation 
metrics on the test set. These included the coefficient of 
determination (R²), root mean squared error (RMSE), and 
Akaike Information Criterion (AIC). AIC was computed using 
the residual sum of squares, an estimate of residual variance 
(approximated via RMSE), and the number of predictors, 
offering a measure of model fit that also penalizes complexity 
[26]. 

To enhance model interpretability, feature importance 
measures were used to quantify the role of each predictor on AD 
dementia prevalence. Gini importance was calculated for both 
RF and GWRF models [17], and gain-based importance was 
applied to XGBoost models [19]. To further interpret and 
visualize these relationships, SHAP values were used to 
illustrate the direction and magnitude of each feature’s impact 
on model predictions. 

In addition to global performance metrics, spatial 
diagnostics were used to evaluate regional variation in model fit. 
For GWRF, local R² values were computed to assess the strength 
of model fit across counties [9]. To assess spatial clustering of 
residuals at the local level, Local Moran’s I was calculated and 
mapped to visualize areas with high or low  residual similarity 
and identify potential spatial clustering in model residuals. 

All model development was performed in Python using 
libraries such as GeoPandas, NumPy, Pandas, scikit-learn, 
statsmodels, SHAP, esda.moran, libpysal, XGBoost, and 
PySAL. Spatial visualization and mapping of AD dementia 
prevalence and top-ranked predictors were performed using 
Matplotlib and Geopandas. 

III. RESULTS 

A. Descriptive Statistics   

Preliminary statistics showed that the AD dementia 
prevalence across the contiguous US ranged from 5.6% in 
Loving, Texas to 18.4% in Presidio, Texas. The mean 
prevalence was 11.2%, with a median of 10.9% and a standard 
deviation of 1.4. Descriptive statistics for air pollutant 
concentrations are summarized in TABLE II. Each pollutant 
exhibited distinct spatial patterns and concentration extremes. 
PM2.5 concentrations were highest in central California and the 
Southeast part of the US, while the lowest concentrations were 
observed in the Midwest and Southwest. PM10 concentrations 
were highest in southern California and the Midwest, with 
lowest levels in the Northeast. NO2 had a higher concentration 
in southern California and near New York City, while it showed 
the lowest concentrations in Mountain West and Great Plains. 
SO2 concentrations peaked in the Ohio River Valley region, 
while lowest concentrations were towards the Western US. O3 
concentrations were highest in the southwest, while the lowest 
concentrations were observed in the Northeast and Southeast. 
CO concentrations were elevated in the Southwest, while lower 
concentrations were toward the East Coast. Fig. 1 depicts the 
geospatial distribution of air pollutants. 

 
Fig. 1. PM2.5, PM10, NO2, SO2, O3, and CO concentrations across the contiguous 
US. 

TABLE II.  DESCRIPTIVE STATISTICS FOR EXPLANITORY VARIABLES 

No. Pollutant Minimum Maximum Mean Median Standard 

Deviation 

1 PM2.5 3.00 15.64 8.65 8.89 1.83 
2 PM10 7.74 37.99 17.58 17.31 3.75 
3 NO2 1.50 23.78 4.90 4.51 2.07 
4 SO2 0.58 5.77 1.56 1.39 0.54 
5 O3 30.31 59.72 46.32 47.04 4.43 
6 CO 0.16 0.47 0.26 0.26 0.03 

B. Variable Selection 

For the six initial features (PM2.5, PM10, NO2, SO2, CO, and 
O3), the correlation coefficients ranged from 0.03 (between 
PM10 and SO2) to 0.64 (between CO and NO2). Overall, there 
were weak to moderate correlations between the air pollutants, 
but no extreme correlations (|r|<0.7) that would necessitate the 
removal of an air pollutant. The variance inflation factors 
(VIFs) ranged from 1.21 (O3) to 2.22 (NO2), supporting the 



inclusion of these variables in the modeling process. Pollution 
interaction terms (PM2.5 x PM10, SO2 x NO2, etc.) were initially 
considered as additional features. However, the resulting VIFs 
were extremely large, indicating a high degree of 
multicollinearity, and thus were excluded from further analysis. 

C. Model Performance Comparisons 

Among the global models, RF could explain 40% of 
variations of AD dementia prevalence, compared to 36% in 
XGBoost. RF also exhibited lower error rates and a slightly 
lower AIC than global XGBoost, indicating that RF 
outperformed XGBoost overall (TABLE II). However, local 
Models outperformed global models. GWRF slightly 
outperformed Local XGBoost in model fit, explaining 54% of 
the variance in AD dementia prevalence compared to 52% by 
Local XGBoost. Although Local XGBoost had the lowest AIC, 
suggesting better generalization, GWRF demonstrated superior 
predictive performance with a slightly higher R² and 
substantially lower RMSE. Given that R2 = 0.54 is considered 
a strong model fit in spatial epidemiological studies, where 
values above 0.4 are often interpreted as good model fit [27], 
GWRF was selected for further analysis based on its overall 
performance. TABLE III summarizes the model performance 
metrics. 

TABLE III.  MODEL PERFORMANCE METRICS FOR GLOBAL VS. LOCAL 

MODELS IN AD DEMENTIA PREVALENCE 

 Model R2 RMSE AIC 

Global  RF 0.40 1.21 1511.36 

XGBoost 0.36 1.25 1534.21 

Local  GWRF 0.54 1.05 1389.95 

Local 

XGBoost 

0.52 1.94 629.15 

 

D. Geospatial Distribution of Primary Variables 

Feature importance for the GWRF model was calculated 
using Gini importance and found that PM10 had the highest 
feature importance (0.181), followed by NO₂ (0.178), O3 
(0.176), PM2.5 (0.166), CO (0.157), and SO₂ (0.143). PM10 
emerged as the primary variable in 25.31% of counties (n=786). 
PM10 was the primary variable in most Northern states such as 
Montana, North Dakota, Idaho, and Wyoming. O3 followed 
closely, being the primary variable in 24.24% of counties 
(n=753), primarily in Southern counties in Georgia, Alabama, 
and Arkansas. NO₂ was the primary variable in 20.35% of 
counties (n=632), predominantly in Northeast and New England 
counties in states such as New York, Vermont, and Maine. PM2.5 
was the primary variable in 13.43% of counties (n=417), 
predominantly in Western US counties in California, Nevada, 
and Colorado. SO₂ was the primary variable in 9.14% of 
counties (n=284), scattered throughout the US, with larger 
clusters in Texas, North Carolina, and Virgina. CO was the 
primary variable in 7.53% of counties (n=234), and was also 
scattered throughout, with spatial clustering in Texas, 
Minnesota, and Iowa. Fig. 2 depicts the geographic distribution 
of the primary variables across the contiguous US.  

In addition to Gini importance, SHAP values were used to 
interpret contributions of individual air pollutants to AD dementia 
prevalence predictions. Among the pollutants, PM10 had the 
highest SHAP values, indicating it contributed the most to 

variation in AD dementia prevalence predictions. O3, NO₂, and 
PM2.5 followed, displaying intermediate SHAP value distributions. 
SO₂ and CO displayed lower SHAP values overall, suggesting a 
smaller role in influencing GWRF model’s predictions. Also, the 
range and density of SHAP values for PM10 was broader than the 
other air pollutants, showing more variability in its contribution. 
Fig. 3 shows SHAP values for air pollutants from the GWRF 
model highlighting the relative importance and the direction of 
influence of key predictors on AD dementia prevalence. 

 
Fig. 2. Primary variables associated with AD dementia prevalence determined 

by GWRF across the contiguous US. 
 

 

Fig. 3. SHAP values for GWRF model. 
 

 

 
Fig. 4. Variations of (A) Local R2 values and (B) Local Moran’s I residuals for 

GWRF Model  



E. Geographical Variations in Model Fit 

The geospatial distribution of model fit varied substantially 
by location. The GWRF model showed a better fit (R2 ≈ 0.7) in 
the Northeast and along the West Coast, especially in 
Pennsylvania, New York, New Jersey, and California. Moderate 
model fit (R2 ≈ 0.3) was observed in the upper Midwest and 
Great Lakes area, central Texas, and Northwestern portion of the 
US. The worst model performance (R2 < 0.1) was observed 
across the Central US, with spatial clustering especially in Utah, 
Arkansas, and Minnesota. Fig. 4A shows the spatial distribution 
of local R2 values, binned in 10% increments. Moreover, local 
Moran’s I showed that the residuals of the GWRF exhibit mainly 
random patterns with a few hotspots or cold spots indicating 
areas of overprediction or underprediction (Fig. 4B). 

IV. DISCUSSION 

This study explored the relationship between long-term 
exposure to air pollution and AD dementia prevalence across the 
contiguous US. RF and XGBoost were applied at global and 
local levels to assess the model performance and key predictors. 
GWRF showed the best fit and lowest error and was used for 
further analysis. Model fit was highest in urban areas, likely due 
to elevated pollutant levels enhancing predictive power. The 
GWRF model revealed that PM10 had the highest overall feature 
importance followed by NO₂, O3, and PM2.5. PM10 was the most 
common primary variable in over 25% of counties, with O3 and 
NO₂ following. This suggest that higher concentrations of 
particulate matter–particularly PM10–are associated with higher 
AD dementia prevalence, underscoring the potential 
effectiveness of localized air quality interventions aimed at 
reducing PM10 concentrations to mitigate AD dementia burden. 

Although air pollution levels have improved in many regions 
since the 1990s, our exposure estimates were calculated using 
long-term average pollutant concentrations from 1999 to 2020. 
This 22-year window reflects chronic exposure, which is more 
biologically relevant for neurodegenerative diseases with long 
latency periods, such as AD dementia. Prior studies have also 
used long-term historical exposure windows to examine 
associations with cognitive outcomes [46, 47]. Growing 
evidence suggests that early- or mid-life exposure to air 
pollution can trigger long-term neuroinflammatory processes 
linked to AD, making chronic exposure relevant even as 
pollution levels decline [48]. The spatial patterns of the observed 
primary variables align with notable sources of pollution and 
environmental characteristics. PM10 and PM2.5 had the largest 
impacts in the Northwest and West Coast, potentially due to the 
presence of wildfires in the area. Wildfires are a growing source 
of both PM2.5 and PM10, and since with wildfires they cannot 
always be fully contained, the increase in particulate matter has 
likely led to higher impact in these regions [28]. Higher impact 
of NO₂ in the Northeast could be due to elevated traffic 
emissions from higher traffic density. NO₂ is a key pollutant 
produced by vehicle emissions, and its high concentration in 
densely populated urban areas like New York City have been 
detailed in a previous study [29]. O3 had the greatest impact in 
Southern counties, which can be attributed to warmer climate, 
abundant sunlight, and high industrial activities with the burning 
of fossil fuels. O3 concentrations in this region have been 
recorded as increasing, reaching unusually high levels [30]. 

Additionally, SO₂ and CO’s importance had spatial clustering 
throughout the South and Midwest. In these areas, the 
combustion of fossil fuels is a major source of SO₂ and CO. 
Power plants and industrial facilities are key contributors to SO₂ 
emissions, while CO is produced from inefficient combustion 
[31, 32]. 

We found noticeable regional differences in model fit, with 
the best model fit concentrated in the Northeast, upper Midwest, 
and parts of the West Coast. Contrastingly, spatial clusters of 
lower R2 values were found, especially in the Great Plains and 
Central US, indicating the lower role of air pollutants in these 
areas. These patterns suggest that other region-specific factors 
may be missing from the model, or likely reflect regional 
differences in data quality, population density, reporting 
practices, and pollutant variability. In areas with poor 
performance, results should be interpreted cautiously, but 
overall, the GWRF model captures meaningful spatial patterns 
in the pollutant-AD dementia relationship. While the primary 
aim of this study was to focus exclusively on air pollutants, 
future modeling may benefit from including other locally 
relevant covariates, such as social determinants of health or 
healthcare access, or using other alternative local modeling such 
as spatial Bayesian approach to better capture the complexity of 
spatial variation in AD dementia prevalence. 

The superior performance of the GWRF model underscores 
the value of incorporating spatial dependencies into ML to 
capture local relationships between air pollutants and AD 
dementia prevalence. Unlike global models that assume 
uniformity, GWRF reflects local variations, offering a more 
nuanced view at the county level. This aligns with prior work: 
Lotfata et al. (2023) reported that GWRF outperformed RF in 
modeling asthma prevalence [33], and Grekousis et al. (2022) 
showed similar results for COVID-19 mortality based on 
demographics [21]. While associations between air pollutants 
and AD dementia have been explored, few studies apply spatial 
ML approaches. 

A key contribution of this study is the identification of PM10 
as the air pollutant most strongly associated with AD dementia 
prevalence. While PM2.5 has been extensively detailed in 
existing literature due to its ability to penetrate deeper into the 
respiratory system, PM10 may have more spatially variable 
effects from sources like roads, transportation, and construction 
sites [34]. PM10 emerged as the top predictor probably due to its 
greater spatial variability at the county level and stronger 
localized signals from the previously listed sources. In contrast, 
PM2.5 may have shown more spatially uniform effects across 
regions, lowering its relative importance in the GWRF model. 
Although PM10 has been included in some previous systematic 
reviews, such as that by Meo et al. (2024), its importance has 
often been underemphasized relative to PM2.5 [35]. As  our study 
was conducted at the county level, discrepancies with 
individual-level studies may reflect differences in spatial scale 
and exposure assessment. However, emerging evidence, 
including findings by Ning et al. (2023), imply that PM10 
exposure may contribute to an elevated risk of AD dementia 
[36]. Our findings suggest the need for further investigation into 
the potential neurological effects of PM10 exposure. To do so, 
we plan to (1) conduct multilevel analyses combining individual 
and contextual level data, (2) use finer-resolution estimates, and 



(3) assess effect modification by rural-urban status and social 
vulnerability. We propose several public health interventions 
that may mitigate AD dementia related to PM10 exposure: (1) 
strengthen air quality regulations targeting PM10 sources (e.g., 
traffic, construction, industry); (2) promote urban greening to 
reduce pollutants; (3) expand clean public transit to lower 
emissions; and (4) increase awareness and cognitive screening 
in high-exposure communities. 

NO₂ emerged as the second most important predictor in our 
GWRF model, somewhat aligning with existing literature. NO₂, 
a pollutant that primarily gets in the air from the burning of fuel, 
has been shown to trigger neuroinflammation, thus is connected 
to neurodegenerative diseases [36, 37]. Zhang et al. (2021) 
identified a strong positive association between NO₂ exposure 
and AD dementia emergency room visits in a nationwide study 
of over 7.5 million cases [38]. Our findings support this 
relationship, especially in densely populated counties with 
higher NO₂ concentrations. Similarly, Mork et al. (2023) found 
that long-term exposure to NO₂ was associated with accelerated 
risk of AD-related hospitalization [39]. Our results are 
consistent with these findings. However, unlike the previous 
studies that used national averages or non-spatial modeling, our 
approach uncovered regional differences in NO₂’s importance, 
suggesting local conditions may amplify its effects. 

Previous studies provide contrasting conclusions about O3’s 
relationship with AD dementia. In our study, O3 emerged as an 
influential predictor, diverging from some previous literature 
that found either weak or no associations. For instance, Meo et 
al (2024) found no relationship between ground-level ozone and 
decreased global cognitive functions [35, 38]. A cohort study in 
London by Carey et al. (2018) provided similar results, 
specifying no positive exposure response between dementia and 
O3 [40].  Contrastingly, a meta-analysis by Fu et al. (2020) 
provided positive evidence for the influence of O3 on the 
development of AD dementia [41]. In addition, a population-
based cohort study by Jung et al. (2015) reported an increased 
risk of AD due to exposure to higher levels of O3 [42]. Given 
that O3 levels tend to be higher in rural and suburban areas, this 
could contribute to the spatial associations observed [30, 31]. 

PM2.5 has been established as a major contributing factor to 
cognitive decline, and our findings support its relevance, 
although it ranked slightly lower than PM10, NO₂, and O3. A 
cohort-based study by Yang et al. (2022) found that increased 
exposure to PM2.5 had a positive association as a risk factor for 
AD in Zhejiang province, China [13]. Kioumourtzoglou et al. 
(2015) found significant positive associations between long-
term PM2.5 city-wide exposure and first hospital admission for 
AD among elderly populations in the Northeast US [43]. 
Additionally, a review by Shou et al. (2019) suggested that many 
particulate components of PM2.5 can increase the risk of 
neurodegenerative diseases such as AD [35]. Although our 
results are generally consistent with previous studies, PM2.5 did 
not rank as top predictor in the GWRF model, which highlights 
a potential discrepancy. This may be because, in certain areas, 
PM10 or NO₂ are more closely linked to sources contributing to 
higher AD dementia prevalence. Additionally, the presence of 
multiple pollutants and spatial correlations may have reduced 
the apparent impact of PM2.5 in our model. 

CO and SO2 emerged as the least impactful predictors of AD 
dementia prevalence in our study, consistent with the findings 
by Fu et al. (2020) [41]. A retrospective, population-based study 
in Taiwan by Chang et al. (2014) found that exposure to CO was 
associated with increased dementia risk [44]. Lin et al. (2021) 
conducted a case-control and city-by-city study comparing the 
progression of AD patients in cities with different pollutant 
levels and found that higher levels of both CO and SO2 were 
associated with increased risk of AD cognitive deterioration 
[45]. Additionally, Meo et al. (2024) found that SO2 had an 
association with a decrease in global cognitive functions, which 
counters SO2 as our predictor with the lowest importance [42]. 
The discrepancies in our findings compared to previous studies 
may stem from differences in methodological approaches. 

One limitation of the AD dementia prevalence data from 
Dhana et al. [14] is that rates were adjusted for age, sex, 
race/ethnicity, and education, but excluded smaller racial/ethnic 
groups such as Asian Americans and American Indian or Alaska 
Natives, potentially skewing estimates in affected regions. The 
lack of external validation is another limitation. Due to the 
absence of independent, nationally representative datasets, we 
relied on internal validation using a 15% test split, along with 
sensitivity analyses and model comparisons. County-level 
analyses may also obscure within-county variability, 
introducing ecological fallacy. The absence of sub-county 
prevalence data further limits spatial resolution, however, our 
study reflects the most granular analysis possible across the US. 

Future research could benefit from incorporating higher-
resolution data, such as census tract or ZIP code–level 
environmental and AD dementia data. This would allow for 
more granular assessments of spatial heterogeneity in AD 
dementia prevalence and air pollution exposure for more 
targeted interventions. We also aim to explore environmental 
toxins—pesticides, heavy metals (e.g., lead, mercury), and 
industrial chemicals—due to emerging links to 
neurodegeneration. Though large-scale genetic data are limited, 
proxies like family history and multi-level models may help 
capture interactions with comorbidities, behaviors, and social 
factors. Advanced ML techniques, especially ensemble 
methods, may improve predictive performance beyond 
individual models. Future studies should also explore spatial 
Bayesian hierarchical models, which explicitly account for 
spatial autocorrelation, provide more stable estimates, and 
support prior knowledge and uncertainty quantification—
crucial for public health decisions. 
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