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Abstract— A growing number of studies have examined the
relationship between environmental factors and Alzheimer’s Disease
(AD) dementia prevalence. However, exploration into long-term
exposure to air pollutants at the county level across the United States
using spatial machine learning has been insufficiently studied. We
compiled long-term data for six air pollutants (PMzs, PM19, NO:,
CO, 03, and SO3) from 1999 to 2020 to evaluate their relationship
with AD dementia prevalence using global Random Forest, global
XGBoost, geographically weighted random forest (GWRF), and
local XGBoost models. These models were evaluated with several
metrics (i.e. R’°, RMSE, and AIC). Moreover, Gini feature
importance and SHAP values were used to assess the relative
contribution of each pollutant and interpret model outputs. The
GWRF model outperformed other local and global models, with an
R? value of 54.38%, with the best fit observed in the Northeast and
West Coast regions. Findings from Gini feature importance showed
PMio as the most influential predictor, followed by NO:, O3, and
PM:.5. In addition, PM 19 emerged as the primary variable in 25.31%
of counties (n=786), while SO: and CO had a smaller role. Our
results suggest that, among air pollutants, PM10 may play a more
significant role in AD dementia prevalence than previously
recognized, especially in urban areas.
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I. INTRODUCTION

Most research on Alzheimer’s disease (AD) dementia has
traditionally focused on individual-level factors, but growing
evidence shows that broader social and environmental
determinants also play a significant role in developing AD
dementia risk [1]. The socio-economic burden of environmental
exposures on AD dementia is substantial. In the US, air pollution
is linked to a loss of independence in approximately 730,000
older adults each year, with related costs nearing $11.7 billion
[2]. Exposures to noise, air pollution, and urban heat have been
shown to contribute to cognitive decline over time. For example,
long-term exposure to traffic-related noise is associated with
lower cognitive performance in older adults [3], while
neighborhood stressors and environmental degradation have
been related with more severe neuropsychiatric symptoms
among people living with dementia [4]. Moreover, limited
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access to green space has been associated with cognitive decline
[5].

Recognizing the impacts of environmental determinants,
researchers have increasingly focused on air pollution as a
widespread and modifiable risk factor for AD dementia. A
systematic review and meta-analysis by Tsai et al. (2019) found
that fine particulate matter (PM.s) was significantly and
positively associated with dementia, with a pooled hazard ratio
of 3.26, indicating more than triple the risk among those exposed
to higher levels of PM s levels [6]. More recently, Tang et al.
(2023) conducted a meta-analysis and demonstrated a
significant increase in dementia risk with higher levels of air
pollution [7]. Their analysis found that dementia risk increased
with exposures to PMa,s, nitrogen dioxide, and carbon
monoxide, among others [8]. Experimental studies also support
these findings. Rahman et al. (2020) found that airborne
pollutants increase amyloid B peptide and tau phosphorylation
which can contribute to the development of amyloid plaques, a
key feature of AD dementia [9].

Among commonly used machine learning (ML) models,
Random Forest (RF) and Extreme Gradient Boosting
(XGBoost) are particularly effective for environmental health
research due to their ability to model complex interactions and
rank feature importance [11,12]. While these models can capture
complex relationships, they generally assume spatial
stationarity. However, environmental exposures and their health
impacts often vary geographically due to differences in pollution
sources, infrastructure, and sociodemographic characteristics.
To address this limitation, researchers have increasingly adopted
local models—such as Geographically Weighted Random
Forest (GWRF) or local XGBoost—which allow the
relationship between predictors and outcomes to vary across
geographic areas [11, 12]. For instance, a study by Mollalo et al.
(2025) used a GWRF model to examine county-level AD
dementia prevalence across the US. Their findings revealed
substantial regional variations in the influence of environmental
and social risk factors on AD dementia prevalence [10].

In this study, we hypothesize that long-term exposure to air
pollution significantly contributes to AD dementia prevalence



across the US and the relationship varies by geographic region.
Specifically, this study aims to address the following questions:

(1) How do global vs. local ML models perform in
predicting county-level AD dementia prevalence?

(2) How does the air pollution—AD dementia relationship
vary spatially at the county level across the contiguous US?

(3) What is the relative importance of air pollutants in
predicting AD dementia prevalence across the contiguous US?

The findings from this study aim to offer place-based
insights into the role of air pollutants in the burden of AD
dementia across the contiguous US, helping to inform more
targeted and refined public health policies.

II. METHODS

A. Data Collection and Preparation

County-level estimates of AD dementia prevalence (n=3,142
counties) were obtained from Dhana et al. (2023) [14]. This
study used data from the Chicago Health and Aging Project
(CHAP), a large, population-based cohort of more than 10,000
adults aged 65 and older residing in Chicago, which included
extensive neuropsychological testing and demographic
information. To estimate the probability of AD dementia, Dhana
et al. applied a generalized additive quasibinomial regression
model adjusted for age, sex, race/ethnicity, and education. This
model was then applied to 2020 bridged-race postcensal
population estimates from the National Center for Health
Statistics, stratified by demographic group, to produce
demographically adjusted prevalence estimates for every US
county. These spatially comprehensive estimates served as the
foundation for our analyses.

Estimates for air pollution levels were obtained from the
Center for Air, Climate, and Energy Solutions, which provides
high-resolution exposure data at various spatial resolutions
across the contiguous US based on a national land use regression
model [15]. Air pollutant estimates are derived by integrating
satellite remote sensing, ground-based monitoring data from the
US Environmental Protection Agency, land use characteristics,
and meteorological information [15, 16]. In this study, we used
annual county-level estimates for six pollutants: PM> 5 (ug/m?),
coarse particulate matter (PM o, in pg/m?), NO: (parts per billion
[ppb]), CO (ppb), ozone (O3, in ppb), and sulfur dioxide (SO,
in ppb). To capture long-term exposure, the median
concentration for each pollutant was calculated across the years
1999 to 2020.

B. Global Models

After preparing the data, two global ML models were
implemented—RF and XGBoost—to examine the relationship
between AD dementia prevalence and the selected air pollutants.

C. Local Models

While global models provide wuseful insights in
understanding broad patterns, they overlook spatial non-
stationarity. Local models are better suited to address spatial
heterogeneity driven by regional variations in pollution sources,
population  characteristics,  infrastructure, and social
determinants of health [20]. Accordingly, this study employed

two local ML models—GWRF and Local XGBoost—to allow
the relationships to vary geographically and capture localized
effects. Details on each local modeling approach are provided
below.

1) Geographically Weighted Random Forest: GWRF models
combine the strengths of RF with the spatial adaptability of
Geographically Weighted Regression [21]. By training the
decision trees locally, GWRF can capture location-specific
relationships between air pollutants and AD dementia
prevalence [21]. This is particularly important as environmental
exposures and their health impacts are not uniform across space.
GWREF, like RF models, can handle complex datasets, identify
non-linear relationships, and is inherently robust to overfitting
due to the use of a random sample of the data and a random
selection of the input features for each tree [10]. The ability to
obtain feature importance scores is also a benefit of GWRF
models that may be masked in global models.

2) Local XGBoost: Another local model used in this study
was the local XGBoost, which builds separate models for
different geographic areas. The main benefit of using local
XGBoost is that it combines the strengths of gradient boosting—
such as strong predictive performance and the ability to model
complex relationships—with the flexibility to adapt to local
spatial contexts, improving accuracy across regions [22]. This
approach helps capture region-specific patterns and may better
reflect how environmental factors vary across communities,
particularly where pollution sources and population
vulnerabilities differ [22]. The model can improve prediction
accuracy by sequentially learning from past errors and includes
techniques such as regularization and tree pruning to reduce
overfitting—ensuring the model generalizes well to new data
[18, 22].

D. Model Settings

To train, tune and evaluate the ML models, the full dataset
was randomly partitioned into three subsets: 70% for training,
15% for validation, and 15% for testing. Model building was
conducted on training dataset, while hyperparameter tuning was
carried out on the validation set to reduce overfitting and
improve generalizability. The final test set was used to evaluate
out-of-sample performance, providing an unbiased estimate of
how well each model generalized to unseen data. Out-of-bag
(OOB) error estimates were generated for RF and GWRF
models to provide an internal measure of accuracy without
requiring a separate validation set. For the global XGBoost
model, which lacks native OOB estimates, an OOB estimate was
generated using 5-fold cross-validation on the training dataset.
Leave-one-out cross-validation was implemented for the local
XGBoost model. For each training observation, a local XGBoost
model was trained using neighboring observations, excluding
the observation itself. Then, the model predicted the excluded
point, repeated for all training locations. These predictions were
compared to actual values to compute R? and RMSE scores as
OOB error estimates [17].

A grid search approach was used for hyperparameter
selection, optimized through five-fold cross-validation using R?
as the primary performance metric [23]. For RF, the
hyperparameter search included the number of decision trees,
maximum tree depth, number of features considered at each



split, and minimum sample thresholds for both leaf nodes and
splits [24]. In the case of GWREF, tuning focused on the number
of trees and tree depth, consistent with its adaptation for local
modeling [24]. The XGBoost models—both global and local—
were tuned across parameters including number of trees,
maximum depth, learning rate, subsample ratio (i.e., fraction of
observations used per tree), and column sampling ratio
(colsample bytree) [25]. Sensitivity analyses were conducted to
assess the impact of different neighborhood sizes (k=5 to 150)
and kernel types (fixed vs. adaptive). The number of neighbors
(k=92) used for local model fitting was determined through
these analyses and using Golden Search optimization, with a
fixed kernel providing the best balance of accuracy and spatial
stability. These sensitivity analyses confirmed that the identified
pollutant importance rankings and spatial patterns remained
stable (TABLE I).

TABLE L TUNED HYPERPARAMETER VALUES FOR MODELS
No. | Hyperparameter RF GWRF Global Local
XGBoost XGBoost

1 n_estimators 300 300 300 300

2 max_depth 30 30 - -

3 min_samples_leaf 1 1 - -

4 min_samples_split 2 - -

5 learning_rate - - 0.05 0.05

6 subsample ratio - - 0.8 0.8

7 colsample bytree - - 0.8 0.8

E. Model Evaluation and Interpretability

Model performance was assessed using several evaluation
metrics on the test set. These included the coefficient of
determination (R?), root mean squared error (RMSE), and
Akaike Information Criterion (AIC). AIC was computed using
the residual sum of squares, an estimate of residual variance
(approximated via RMSE), and the number of predictors,
offering a measure of model fit that also penalizes complexity
[26].

To enhance model interpretability, feature importance
measures were used to quantify the role of each predictor on AD
dementia prevalence. Gini importance was calculated for both
RF and GWRF models [17], and gain-based importance was
applied to XGBoost models [19]. To further interpret and
visualize these relationships, SHAP values were used to
illustrate the direction and magnitude of each feature’s impact
on model predictions.

In addition to global performance metrics, spatial
diagnostics were used to evaluate regional variation in model fit.
For GWREF, local R? values were computed to assess the strength
of model fit across counties [9]. To assess spatial clustering of
residuals at the local level, Local Moran’s I was calculated and
mapped to visualize areas with high or low residual similarity
and identify potential spatial clustering in model residuals.

All model development was performed in Python using
libraries such as GeoPandas, NumPy, Pandas, scikit-learn,
statsmodels, SHAP, esda.moran, libpysal, XGBoost, and
PySAL. Spatial visualization and mapping of AD dementia
prevalence and top-ranked predictors were performed using
Matplotlib and Geopandas.

III. RESULTS

A. Descriptive Statistics

Preliminary statistics showed that the AD dementia
prevalence across the contiguous US ranged from 5.6% in
Loving, Texas to 18.4% in Presidio, Texas. The mean
prevalence was 11.2%, with a median of 10.9% and a standard
deviation of 1.4. Descriptive statistics for air pollutant
concentrations are summarized in TABLE II. Each pollutant
exhibited distinct spatial patterns and concentration extremes.
PM: 5 concentrations were highest in central California and the
Southeast part of the US, while the lowest concentrations were
observed in the Midwest and Southwest. PM o concentrations
were highest in southern California and the Midwest, with
lowest levels in the Northeast. NO; had a higher concentration
in southern California and near New Y ork City, while it showed
the lowest concentrations in Mountain West and Great Plains.
SO, concentrations peaked in the Ohio River Valley region,
while lowest concentrations were towards the Western US. O3
concentrations were highest in the southwest, while the lowest
concentrations were observed in the Northeast and Southeast.
CO concentrations were elevated in the Southwest, while lower
concentrations were toward the East Coast. Fig. 1 depicts the
geospatial distribution of air pollutants.

PM25 PMI0

! ‘ ' PM2S (ug/m’) : ‘
NO2

Fig. 1. PM; 5, PM;9, NO,, SO,, O3, and CO concentrations across the contiguous
uUs.

TABLE II. DESCRIPTIVE STATISTICS FOR EXPLANITORY VARIABLES
No. | Pollutant Minimum  Maximum Mean Median  Standard
Deviation
1 PM; s 3.00 15.64 8.65 8.89 1.83
2 PM,o 7.74 37.99 17.58 17.31 3.75
3 NO; 1.50 23.78 4.90 4.51 2.07
4 SO, 0.58 5.77 1.56 1.39 0.54
5 (0 30.31 59.72 46.32 47.04 443
6 CO 0.16 0.47 0.26 0.26 0.03

B. Variable Selection

For the six initial features (PMas, PM o, NO2, SO,, CO, and
03), the correlation coefficients ranged from 0.03 (between
PMjo and SO,) to 0.64 (between CO and NO,). Overall, there
were weak to moderate correlations between the air pollutants,
but no extreme correlations (|r|<0.7) that would necessitate the
removal of an air pollutant. The variance inflation factors
(VIFs) ranged from 1.21 (O3) to 2.22 (NOy), supporting the



inclusion of these variables in the modeling process. Pollution
interaction terms (PM2.5x PMjo, SO2 x NOo, etc.) were initially
considered as additional features. However, the resulting VIFs
were extremely large, indicating a high degree of
multicollinearity, and thus were excluded from further analysis.

C. Model Performance Comparisons

Among the global models, RF could explain 40% of
variations of AD dementia prevalence, compared to 36% in
XGBoost. RF also exhibited lower error rates and a slightly
lower AIC than global XGBoost, indicating that RF
outperformed XGBoost overall (TABLE II). However, local
Models outperformed global models. GWRF slightly
outperformed Local XGBoost in model fit, explaining 54% of
the variance in AD dementia prevalence compared to 52% by
Local XGBoost. Although Local XGBoost had the lowest AIC,
suggesting better generalization, GWRF demonstrated superior
predictive performance with a slightly higher R?> and
substantially lower RMSE. Given that R? = 0.54 is considered
a strong model fit in spatial epidemiological studies, where
values above 0.4 are often interpreted as good model fit [27],
GWRF was selected for further analysis based on its overall
performance. TABLE III summarizes the model performance
metrics.

TABLE III. MODEL PERFORMANCE METRICS FOR GLOBAL VS. LOCAL
MODELS IN AD DEMENTIA PREVALENCE

Model R? RMSE AIC

Global RF 0.40 1.21 1511.36
XGBoost 0.36 1.25 1534.21

Local GWRF 0.54 1.05 1389.95
Local 0.52 1.94 629.15
XGBoost

D. Geospatial Distribution of Primary Variables

Feature importance for the GWRF model was calculated
using Gini importance and found that PMjo had the highest
feature importance (0.181), followed by NO: (0.178), O3
(0.176), PMas (0.166), CO (0.157), and SO: (0.143). PMy
emerged as the primary variable in 25.31% of counties (n=786).
PM was the primary variable in most Northern states such as
Montana, North Dakota, Idaho, and Wyoming. O3 followed
closely, being the primary variable in 24.24% of counties
(n=753), primarily in Southern counties in Georgia, Alabama,
and Arkansas. NO: was the primary variable in 20.35% of
counties (n=632), predominantly in Northeast and New England
counties in states such as New York, Vermont, and Maine. PM; s
was the primary variable in 13.43% of counties (n=417),
predominantly in Western US counties in California, Nevada,
and Colorado. SO: was the primary variable in 9.14% of
counties (n=284), scattered throughout the US, with larger
clusters in Texas, North Carolina, and Virgina. CO was the
primary variable in 7.53% of counties (n=234), and was also
scattered throughout, with spatial clustering in Texas,
Minnesota, and Iowa. Fig. 2 depicts the geographic distribution
of the primary variables across the contiguous US.

In addition to Gini importance, SHAP values were used to
interpret contributions of individual air pollutants to AD dementia
prevalence predictions. Among the pollutants, PM;o had the
highest SHAP values, indicating it contributed the most to

variation in AD dementia prevalence predictions. O3, NO-, and
PM, 5 followed, displaying intermediate SHAP value distributions.
SO: and CO displayed lower SHAP values overall, suggesting a
smaller role in influencing GWRF model’s predictions. Also, the
range and density of SHAP values for PM o was broader than the
other air pollutants, showing more variability in its contribution.
Fig. 3 shows SHAP values for air pollutants from the GWRF
model highlighting the relative importance and the direction of
influence of key predictors on AD dementia prevalence.

Fig. 2. Primary variables associated with AD dementia prevalence determined
by GWREF across the contiguous US.
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Fig. 3. SHAP values for GWRF model.
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Fig. 4. Variations of (A) Local R? values and (B) Local Moran’s I residuals for
GWRF Model



E. Geographical Variations in Model Fit

The geospatial distribution of model fit varied substantially
by location. The GWRF model showed a better fit (R? = 0.7) in
the Northeast and along the West Coast, especially in
Pennsylvania, New York, New Jersey, and California. Moderate
model fit (R? = 0.3) was observed in the upper Midwest and
Great Lakes area, central Texas, and Northwestern portion of the
US. The worst model performance (R? < 0.1) was observed
across the Central US, with spatial clustering especially in Utah,
Arkansas, and Minnesota. Fig. 4A shows the spatial distribution
of local R? values, binned in 10% increments. Moreover, local
Moran’s I showed that the residuals of the GWRF exhibit mainly
random patterns with a few hotspots or cold spots indicating
areas of overprediction or underprediction (Fig. 4B).

IV. DISCUSSION

This study explored the relationship between long-term
exposure to air pollution and AD dementia prevalence across the
contiguous US. RF and XGBoost were applied at global and
local levels to assess the model performance and key predictors.
GWREF showed the best fit and lowest error and was used for
further analysis. Model fit was highest in urban areas, likely due
to elevated pollutant levels enhancing predictive power. The
GWRF model revealed that PM, had the highest overall feature
importance followed by NO:, O3, and PM; 5. PM; was the most
common primary variable in over 25% of counties, with O3 and
NO: following. This suggest that higher concentrations of
particulate matter—particularly PMo—are associated with higher
AD dementia prevalence, underscoring the potential
effectiveness of localized air quality interventions aimed at
reducing PMo concentrations to mitigate AD dementia burden.

Although air pollution levels have improved in many regions
since the 1990s, our exposure estimates were calculated using
long-term average pollutant concentrations from 1999 to 2020.
This 22-year window reflects chronic exposure, which is more
biologically relevant for neurodegenerative diseases with long
latency periods, such as AD dementia. Prior studies have also
used long-term historical exposure windows to examine
associations with cognitive outcomes [46, 47]. Growing
evidence suggests that early- or mid-life exposure to air
pollution can trigger long-term neuroinflammatory processes
linked to AD, making chronic exposure relevant even as
pollution levels decline [48]. The spatial patterns of the observed
primary variables align with notable sources of pollution and
environmental characteristics. PM;o and PM; s had the largest
impacts in the Northwest and West Coast, potentially due to the
presence of wildfires in the area. Wildfires are a growing source
of both PM» 5 and PM, and since with wildfires they cannot
always be fully contained, the increase in particulate matter has
likely led to higher impact in these regions [28]. Higher impact
of NO: in the Northeast could be due to elevated traffic
emissions from higher traffic density. NO: is a key pollutant
produced by vehicle emissions, and its high concentration in
densely populated urban areas like New York City have been
detailed in a previous study [29]. O3 had the greatest impact in
Southern counties, which can be attributed to warmer climate,
abundant sunlight, and high industrial activities with the burning
of fossil fuels. Oz concentrations in this region have been
recorded as increasing, reaching unusually high levels [30].

Additionally, SO: and CO’s importance had spatial clustering
throughout the South and Midwest. In these areas, the
combustion of fossil fuels is a major source of SO: and CO.
Power plants and industrial facilities are key contributors to SO-
emissions, while CO is produced from inefficient combustion
[31, 32].

We found noticeable regional differences in model fit, with
the best model fit concentrated in the Northeast, upper Midwest,
and parts of the West Coast. Contrastingly, spatial clusters of
lower R? values were found, especially in the Great Plains and
Central US, indicating the lower role of air pollutants in these
areas. These patterns suggest that other region-specific factors
may be missing from the model, or likely reflect regional
differences in data quality, population density, reporting
practices, and pollutant variability. In areas with poor
performance, results should be interpreted cautiously, but
overall, the GWRF model captures meaningful spatial patterns
in the pollutant-AD dementia relationship. While the primary
aim of this study was to focus exclusively on air pollutants,
future modeling may benefit from including other locally
relevant covariates, such as social determinants of health or
healthcare access, or using other alternative local modeling such
as spatial Bayesian approach to better capture the complexity of
spatial variation in AD dementia prevalence.

The superior performance of the GWRF model underscores
the value of incorporating spatial dependencies into ML to
capture local relationships between air pollutants and AD
dementia prevalence. Unlike global models that assume
uniformity, GWRF reflects local variations, offering a more
nuanced view at the county level. This aligns with prior work:
Lotfata et al. (2023) reported that GWRF outperformed RF in
modeling asthma prevalence [33], and Grekousis et al. (2022)
showed similar results for COVID-19 mortality based on
demographics [21]. While associations between air pollutants
and AD dementia have been explored, few studies apply spatial
ML approaches.

A key contribution of this study is the identification of PM;o
as the air pollutant most strongly associated with AD dementia
prevalence. While PM,s has been extensively detailed in
existing literature due to its ability to penetrate deeper into the
respiratory system, PM;o may have more spatially variable
effects from sources like roads, transportation, and construction
sites [34]. PM o emerged as the top predictor probably due to its
greater spatial variability at the county level and stronger
localized signals from the previously listed sources. In contrast,
PM; s may have shown more spatially uniform effects across
regions, lowering its relative importance in the GWRF model.
Although PM has been included in some previous systematic
reviews, such as that by Meo et al. (2024), its importance has
often been underemphasized relative to PM,5[35]. As our study
was conducted at the county level, discrepancies with
individual-level studies may reflect differences in spatial scale
and exposure assessment. However, emerging evidence,
including findings by Ning et al. (2023), imply that PMjo
exposure may contribute to an elevated risk of AD dementia
[36]. Our findings suggest the need for further investigation into
the potential neurological effects of PM; exposure. To do so,
we plan to (1) conduct multilevel analyses combining individual
and contextual level data, (2) use finer-resolution estimates, and



(3) assess effect modification by rural-urban status and social
vulnerability. We propose several public health interventions
that may mitigate AD dementia related to PM;o exposure: (1)
strengthen air quality regulations targeting PM10 sources (e.g.,
traffic, construction, industry); (2) promote urban greening to
reduce pollutants; (3) expand clean public transit to lower
emissions; and (4) increase awareness and cognitive screening
in high-exposure communities.

NO: emerged as the second most important predictor in our
GWREF model, somewhat aligning with existing literature. NO-,
a pollutant that primarily gets in the air from the burning of fuel,
has been shown to trigger neuroinflammation, thus is connected
to neurodegenerative diseases [36, 37]. Zhang et al. (2021)
identified a strong positive association between NO: exposure
and AD dementia emergency room visits in a nationwide study
of over 7.5 million cases [38]. Our findings support this
relationship, especially in densely populated counties with
higher NO: concentrations. Similarly, Mork et al. (2023) found
that long-term exposure to NO: was associated with accelerated
risk of AD-related hospitalization [39]. Our results are
consistent with these findings. However, unlike the previous
studies that used national averages or non-spatial modeling, our
approach uncovered regional differences in NO:’s importance,
suggesting local conditions may amplify its effects.

Previous studies provide contrasting conclusions about O3’s
relationship with AD dementia. In our study, O3 emerged as an
influential predictor, diverging from some previous literature
that found either weak or no associations. For instance, Meo et
al (2024) found no relationship between ground-level ozone and
decreased global cognitive functions [35, 38]. A cohort study in
London by Carey et al. (2018) provided similar results,
specifying no positive exposure response between dementia and
O3 [40]. Contrastingly, a meta-analysis by Fu et al. (2020)
provided positive evidence for the influence of O3 on the
development of AD dementia [41]. In addition, a population-
based cohort study by Jung et al. (2015) reported an increased
risk of AD due to exposure to higher levels of O3 [42]. Given
that O3 levels tend to be higher in rural and suburban areas, this
could contribute to the spatial associations observed [30, 31].

PM: 5 has been established as a major contributing factor to
cognitive decline, and our findings support its relevance,
although it ranked slightly lower than PM;g, NO2, and Os. A
cohort-based study by Yang et al. (2022) found that increased
exposure to PM, s had a positive association as a risk factor for
AD in Zhejiang province, China [13]. Kioumourtzoglou et al.
(2015) found significant positive associations between long-
term PMo s city-wide exposure and first hospital admission for
AD among elderly populations in the Northeast US [43].
Additionally, a review by Shou et al. (2019) suggested that many
particulate components of PM,s can increase the risk of
neurodegenerative diseases such as AD [35]. Although our
results are generally consistent with previous studies, PM» s did
not rank as top predictor in the GWRF model, which highlights
a potential discrepancy. This may be because, in certain areas,
PMi or NO: are more closely linked to sources contributing to
higher AD dementia prevalence. Additionally, the presence of
multiple pollutants and spatial correlations may have reduced
the apparent impact of PM; 5 in our model.

CO and SO; emerged as the least impactful predictors of AD
dementia prevalence in our study, consistent with the findings
by Fu et al. (2020) [41]. A retrospective, population-based study
in Taiwan by Chang et al. (2014) found that exposure to CO was
associated with increased dementia risk [44]. Lin et al. (2021)
conducted a case-control and city-by-city study comparing the
progression of AD patients in cities with different pollutant
levels and found that higher levels of both CO and SO, were
associated with increased risk of AD cognitive deterioration
[45]. Additionally, Meo et al. (2024) found that SO, had an
association with a decrease in global cognitive functions, which
counters SO, as our predictor with the lowest importance [42].
The discrepancies in our findings compared to previous studies
may stem from differences in methodological approaches.

One limitation of the AD dementia prevalence data from
Dhana et al. [14] is that rates were adjusted for age, sex,
race/ethnicity, and education, but excluded smaller racial/ethnic
groups such as Asian Americans and American Indian or Alaska
Natives, potentially skewing estimates in affected regions. The
lack of external validation is another limitation. Due to the
absence of independent, nationally representative datasets, we
relied on internal validation using a 15% test split, along with
sensitivity analyses and model comparisons. County-level
analyses may also obscure within-county variability,
introducing ecological fallacy. The absence of sub-county
prevalence data further limits spatial resolution, however, our
study reflects the most granular analysis possible across the US.

Future research could benefit from incorporating higher-
resolution data, such as census tract or ZIP code-level
environmental and AD dementia data. This would allow for
more granular assessments of spatial heterogeneity in AD
dementia prevalence and air pollution exposure for more
targeted interventions. We also aim to explore environmental
toxins—pesticides, heavy metals (e.g., lead, mercury), and
industrial ~ chemicals—due to emerging links to
neurodegeneration. Though large-scale genetic data are limited,
proxies like family history and multi-level models may help
capture interactions with comorbidities, behaviors, and social
factors. Advanced ML techniques, especially ensemble
methods, may improve predictive performance beyond
individual models. Future studies should also explore spatial
Bayesian hierarchical models, which explicitly account for
spatial autocorrelation, provide more stable estimates, and
support prior knowledge and uncertainty quantification—
crucial for public health decisions.

REFERENCES

[11  A. Mollalo et al., "Systematic review and meta-analysis of rural-urban
disparities in Alzheimer’s disease dementia prevalence," The Journal of
Prevention of Alzheimer's Disease, pp. 100305, 2025.

21 The Guardian, "Lower air pollution may help preserve older people’s
independence — study," Apr. 2025.

31 M. C. Power et al., "Traffic-Related Air Pollution and Cognitive
Function in a Cohort of Older Men," Environmental Health
Perspectives, vol. 119, (5), pp. 682-687, 2011.

4 M. Kramer et al., "Rural-urban disparities of Alzheimer's disease and
related dementias: A scoping review," Alzheimer's & Dementia:
Translational Research & Clinical Interventions, vol. 11, no. 1, pp.
€70047, 2025.



[3]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

M. P. Jimenez et al., "Residential Green Space and Cognitive Function
in a Large Cohort of Middle-Aged Women," JAMA Network Open,
vol. 5, (4), pp. €229306, 2022.

TL. Tsai et al., "Fine particulate matter is a potential determinant of
Alzheimer's disease: A systematic review and meta-analysis," Environ.
Res., vol. 177, p. 108638, 2019.

Y. Zhou, J. Liao, and Y. T. Wu, "Dementia risk reduction in China:
Country-specific estimates of modifiable risk factors and population
attributable fractions (PAFs)," Alzheimers Dement., vol. 21, no. 8, p.
€70542, 2025.

J. Tang et al., "Association of air pollution with dementia: a systematic
review with meta-analysis including new cohort data from China,"
Environmental Research, vol. 223, pp. 115048, 2023.

M. A. Rahman et al., "Emerging risk of environmental factors: Insight
mechanisms of Alzheimer's diseases," Environ. Sci. Pollut. Res., vol. 27,
no. 36, pp. 4465944672, 2020.

A. Mollalo et al., "Alzheimer’s Disease Dementia Prevalence in the
United States: A County-Level Spatial Machine Learning Analysis,"
American Journal of Alzheimer's Disease and Other Dementias, vol. 40,
pp. 15333175251335570, 2025.

L. Cheng, J. De Vos, P. Zhao, M. Yang, and F. Witlox, "Examining
non-linear built environment effects on elderly's walking: A random
forest approach," Transp. Res. D Transp. Environ., vol. 88, p. 102552,
2020.

"xgboost," [Online]. Available:
https://app.readthedocs.org/projects/xgboost/downloads/pdf/latest/.

L. Yang et al., "Associations between PM2.5 exposure and Alzheimer's
disease prevalence among elderly in eastern China," Environ. Health,
vol. 21, no. 1, p. 119, 2022.

K. Dhana et al., "Prevalence of Alzheimer's disease dementia in the 50
US states and 3142 counties: A population estimate using the 2020
bridged-race postcensal from the National Center for Health Statistics,"
Alzheimers Dement., vol. 19, no. 10, pp. 4388-4395, 2023.

Center for Air, Climate, and Energy Solutions, "CACES Data Download
and Documentation," vol. 2025, (March 1), Available:
https://www.caces.us/data.

NH. Tonekaboni et al. "Scouts: A smart community centric urban heat
monitoring framework." Proceedings of the 1st ACM SIGSPATIAL
Workshop on Advances on Resilient and Intelligent Cities. 2018..

L. Breiman, "Random forests," Mach. Learn., vol. 45, no. 1, pp. 5-32,
2001.

S. Ramraj et al., "Experimenting XGBoost algorithm for prediction and
classification of different datasets," Int. J. Control Theory Appl., vol. 9,
no. 40, pp. 651-662, 2016.

T. Chen and C. Guestrin, "XGBoost: A scalable tree boosting system,"
in Proc. 22nd ACM SIGKDD Int. Conf. Knowl. Discov. Data Min.,
Aug. 2016, pp. 785-794.

A. Mollalo and M. Tatar, "Spatial Modeling of COVID-19 Vaccine
Hesitancy in the United States," International Journal of Environmental
Research and Public Health, vol. 18, (18), pp. 9488, 2021.

G. Grekousis et al., "Ranking the importance of demographic,
socioeconomic, and underlying health factors on US COVID-19 deaths:
A geographical random forest approach," Health Place, vol. 74, p.
102744, 2022.

X. Cheng and J. Ma, "Global or local modeling for XGBoost in
geospatial studies upon simulated data and German COVID-19 infection
forecasting," Sci. Rep., vol. 15, no. 1, p. 8858, 2025.

P. Fabian, "Scikit-learn: Machine learning in Python," J. Mach. Learn.
Res., vol. 12, p. 2825, 2011.

P. Probst et al., "Hyperparameters and tuning strategies for random
forest," Wiley Interdiscip. Rev. Data Min. Knowl. Discov., vol. 9, no. 3,
p. el1301,2019.

J. Sommer et al., "Learning to tune XGBoost with XGBoost," arXiv
preprint arXiv:1909.07218, 2019.

J. E. Cavanaugh et al., "The Akaike information criterion: Background,

derivation, properties, application, interpretation, and refinements,"
Wiley Interdiscip. Rev. Comput. Stat., vol. 11, no. 3, p. €1460, 2019.

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

A. C. Cameron et al., "An R-squared measure of goodness of fit for
some common nonlinear regression models," J. Econometrics, vol. 77,
no. 2, pp. 329-342, 1997.

J. C. Liu et al., "Particulate air pollution from wildfires in the Western
US under climate change," Clim. Change, vol. 138, no. 3, pp. 655-666,
2016.

M. M. Patel et al., "Traffic density and stationary sources of air pollution
associated with wheeze, asthma, and immunoglobulin E from birth to
age 5 years among New York City children," Environ. Res., vol. 111,
no. 8, pp. 1222-1229, 2011.

Y. Zhang et al., "Climate-driven ground-level ozone extreme in the fall
over the Southeast United States," Proc. Nat. Acad. Sci. USA, vol. 113,
no. 36, pp. 10025-10030, 2016.

D. K. Nicks Jr. et al., "Fossil-fueled power plants as a source of
atmospheric carbon monoxide," J. Environ. Monit., vol. 5, no. 1, pp. 35—
39, 2003.

Y. Hu et al., "CO2, NOx and SO2 emissions from the combustion of
coal with high oxygen concentration gases," Fuel, vol. 79, no. 15, pp.
1925-1932, 2000.

A. Lotfata et al., "Socioeconomic and environmental determinants of
asthma prevalence: A cross-sectional study at the US county level using
geographically weighted random forests," Int. J. Health Geogr., vol. 22,
no. 1, p. 18, 2023.

P. Lenschow et al., "Some ideas about the sources of PM10," Atmos.
Environ., vol. 35, pp. S23-S33, 2001.

S. A. Meo et al., "Effect of air pollutants particulate matter (PM2.5,
PM10), sulfur dioxide (SO2) and ozone (O3) on cognitive health," Sci.
Rep., vol. 14, no. 1, p. 19616, 2024.

P. Ning et al., "Exploring the association between air pollution and
Parkinson's disease or Alzheimer's disease: A Mendelian randomization
study," Environ. Sci. Pollut. Res., vol. 30, no. 59, pp. 123939-123947,
2023.

P. Anttila et al., "Primary NO2 emissions and their role in the
development of NO2 concentrations in a traffic environment," Atmos.
Environ., vol. 45, no. 4, pp. 986-992, 2011.

H. Zhang et al., "Short-term associations between ambient air pollution
and emergency department visits for Alzheimer's disease and related
dementias," Environ. Epidemiol., vol. 7, no. 1, p. €237, 2023.

D. Mork et al., "Time-lagged relationships between a decade of air
pollution exposure and first hospitalization with Alzheimer's disease and
related dementias," Environ. Int., vol. 171, p. 107694, 2023.

1. M. Carey et al., "Are noise and air pollution related to the incidence of
dementia? A cohort study in London, England," BMJ Open, vol. 8, no.
9, p. €022404, 2018.

P. Fu et al., "Air pollution and Alzheimer's disease: A systematic review
and meta-analysis," J. Alzheimers Dis., vol. 77, no. 2, pp. 701-714,
2020.

C. R. Jung et al., "Ozone, particulate matter, and newly diagnosed
Alzheimer's disease: A population-based cohort study in Taiwan," J.
Alzheimers Dis., vol. 44, no. 2, pp. 573-584, 2015.

M. A. Kioumourtzoglou et al., "Long-term PM2.5 exposure and
neurological hospital admissions in the northeastern United States,"
Environ. Health Perspect., vol. 124, no. 1, pp. 23-29, 2016.

K. H. Chang et al., "Increased risk of dementia in patients exposed to
nitrogen dioxide and carbon monoxide: A population-based
retrospective cohort study," PLoS One, vol. 9, no. 8, p. e103078, 2014.

F. C. Lin et al., "Air pollution is associated with cognitive deterioration
of Alzheimer's disease," Gerontology, vol. 68, no. 1, pp. 53-61, 2022.
M. Cacciottolo et al., "Particulate air pollutants, APOE alleles and their
contributions to cognitive impairment in older women and to
amyloidogenesis in experimental models," Transl. Psychiatry, vol. 7, no.
1, p.e1022,2017.

G. Grande et al., "Association of long-term exposure to air pollution and
dementia risk," Neurology, vol. 101, no. 12, pp. e1231-e1240, 2023.

M. L. Block et al., "Air pollution: Mechanisms of neuroinflammation
and CNS disease," Trends Neurosci., vol. 32, no. 9, pp. 506-516, 2009.



