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ABSTRACT

Previous works have extensively studied the transferability of adversarial samples
in untargeted black-box scenarios. However, it still remains challenging to craft
the targeted adversarial examples with higher transferability than non-targeted
ones. Recent studies reveal that the traditional Cross-Entropy (CE) loss function is
insufficient to learn transferable targeted perturbations due to the issue of vanishing
gradient. In this work, we provide a comprehensive investigation of the CE loss
function and find that the logit margin between the targeted and untargeted classes
will quickly obtain saturation in CE, which largely limits the transferability. There-
fore, in this paper, we devote to the goal of enlarging logit margin and propose two
simple and effective logit calibration methods, which are achieved by downscaling
the logits with a temperature factor and an adaptive margin, respectively. Both of
them can effectively encourage the optimization to produce larger logit margin and
lead to higher transferability. Besides, we show that minimizing the cosine distance
between the adversarial examples and the classifier weights of the target class can
further improve the transferability, which is benefited from downscaling logits
via L2-normalization. Experiments conducted on the ImageNet dataset validate
the effectiveness of the proposed methods, which outperform the state-of-the-art
methods in black-box targeted attacks. The source code is available at Link.

1 INTRODUCTION

In the past decade, deep neural networks (DNNs) have achieved remarkable success in various fields,
e.g., image classification (Simonyan and Zisserman, 2015), image segmentation (Long et al., 2015),
and object detection (Ren et al., 2015). However, Goodfellow et al. (2015) revealed that the DNNs
are vulnerable to adversarial attacks, in which adding imperceptible disturbances to the input can
lead the DNNs to make an incorrect prediction. Many following approaches (Dong et al., 2018;
2019; Cohen et al., 2019; Tramèr et al., 2018; Xie et al., 2019) have been proposed to construct more
destructive adversarial samples for investigating the vulnerability of the DNNs. Goodfellow et al.
(2015); Liu et al. (2016) also showed that the adversarial samples are transferable across different
networks, raising a more critical robustness threat under the black-box scenarios. Therefore, it is vital
to explore the vulnerability of the DNNs, which is very useful for designing robust DNNs.

Currently, most of the works (Dong et al., 2018; Xie et al., 2019; Lin et al., 2020; Huang et al.,
2019; Wu et al., 2020; Guo et al., 2020) have been devoted to the untargeted black-box attacks, in
which adversarial examples are crafted to fool unknown CNN models predicting unspecified incorrect
labels. For example, Dong et al. (2018); Xie et al. (2019) leveraged input-level transformation or
augmentation to improve the non-targeted transferability. Huang et al. (2019) proposed a powerful
intermediate feature-level attack. Wu et al. (2020); Guo et al. (2020) demonstrated that backpropagat-
ing more gradients through the skip-connections can increase the transferability. Despite the success
in non-targeted cases, the targeted transferability remains challenging, which requires eliciting the
black-box models into a pre-defined target category.

For learning the transferable adversarial samples in untargeted cases, most methods have leveraged
the Cross-Entropy (CE) as the loss function. However, Li et al. (2020); Zhao et al. (2021) recently
showed that the CE loss is insufficient for learning the adversarial perturbation in the targeted case
due to the issue of vanishing gradient. To deal with this issue, Li et al. (2020) adopted the Poincaré
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Figure 1: The average Top-3 logits and logit margin of 50 adversarial samples trained by the Cross-
Entropy, Po+Trip (Li et al., 2020) and Logit (Zhao et al., 2021) loss functions for crafting the
ResNet-50. (* Training and computation details of this figure are in Section 3.1)

distance to increase the gradient magnitude during the optimization adaptively. Zhao et al. (2021)
demonstrated that an effortless logit loss equal to the negative value of the targeted logits could
alleviate the gradient issue and achieve surprisingly strong targeted transferability. Besides, Zhao
et al. (2021) also showed that optimizing with more iterations can significantly increase the targeted
transferability. Although Zhao et al. (2021) demonstrated that continually enlarging the logit of the
targeted class (as shown in Fig. 1(c)) can improve the transferability of adversarial samples, it still
does not thoroughly analyze the insufficient issue in the CE loss function.

In this study, we take a closer look at the vanishing gradient issue in the CE loss function and find
that the logit margin between the targeted and non-targeted classes will quickly get saturated during
the optimization (as shown in Fig. 1(a)). Moreover, this issue will influence the attack performance
of the perturbations and thus essentially limits the transferability. Specifically, along with the training
iterations in CE, we observe that the logits of the targeted and non-targeted classes increase rapidly in
the first few iterations. However, after reaching the peak, the logit margin between the targeted and
non-targeted classes will get saturated, and further training will decrease the logits simultaneously
to maintain this margin. This phenomenon is mainly due to the fact that the softmax function in
CE will approximately output the probability of the target class to 1 when reaching the saturated
margin (e.g., 10). Thus, it raises the problem that the transferability will not be further increased
even with more optimization iterations. A similar saturated phenomenon can be observed in the
Po+Trip loss as shown in Fig. 1(b) (Li et al., 2020). While in practice, we are encouraged to increase
the transferability by maximizing both the logits for the targeted class and its margin against other
non-targeted classes to cross the decision boundaries of other black-box models.

In this paper, we devote to enlarging logit margins to alleviate the above saturation issue in CE.
Inspired by the temperature-scaling used in the knowledge distillation (Hinton et al., 2015), a higher
temperature T will produce a softer probability distribution over different classes. We firstly leverage
this scaling technique into the targeted attack to calibrate the logits. Then the logits margin between
the targeted and non-targeted classes will not be saturated after only a few iterations and will keep
improving the transferability. On the other aspect, instead of using a constant T , we further explore
an adaptive margin-based calibration by scaling the logits based on the logit margin of the target
class and the highest non-target class. In addition, we also investigate the effectiveness of calibrating
the targeted logit into the unit length feature space by L2-normalization, which is equivalent to
minimizing the angle between the adversarial examples and the classifier of targeted class.

Finally, we conduct experiments on the ImageNet dataset to validate the effectiveness of the logits
calibration for crafting transferable targeted adversarial examples. Experimental results demonstrate
that the calibration of the logits helps achieve a higher attack success rate than other state-of-the-art
methods. Besides, the combination of different calibrations can further provide mutual benefits.

2 RELATED WORKS

In this section, we give a brief introduction of the related works from the following two aspects:
untargeted black-box attacks and targeted attacks.
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2.1 UNTARGETD BLACK-BOX ATTACKS

After Szegedy et al. (2015) exposed the vulnerability of deep neural networks, many attack meth-
ods (Xie et al., 2019; Dong et al., 2019) have been proposed to craft highly transferable adversaries
in the non-targeted scenario. We first review several gradient-based attack methods that focus on
enhancing the transferability against black-box models.

Iterative-Fast Gradient Sign Method (I-FGSM) (Kurakin et al., 2018) is an iterative version of
FGSM Goodfellow et al. (2015), which adds a small perturbation with a small step size α in the
gradient direction iteratively:

x̂0 = x, x̂i+1 = x̂′
i + α · sign(∇x̂J(x̂

′
i, y)), (1)

where x̂′
i denotes the adversarial image in the ith iteration, α = ϵ/T ensures the adversaries are

constrained within an upper-bound perturbation ϵ through the lp-norm when optimized by T iterations.

Following the seminal I-FGSM (Kurakin et al., 2018), a series of methods have been proposed to
improve the transferability of attacking black-box models from different aspects, e.g., gradient-based,
input augmentation-based. For example, the Momentum Iterative-FGSM (MI-FGSM) (Dong
et al., 2018) introduces a momentum term to compute the gradient of the I-FGSM, encouraging the
perturbation is updated in a stable direction. The Translation Invariant-FGSM (TI-FGSM) (Dong
et al., 2019) adopts a predefined kernel W to convolve the gradient ∇x̂J(x̂

′
i, y) at each iteration t,

which can approximate the average gradient over multiple randomly translated images of the input
x̂t. On the other aspects, the Diverse Input-FGSM (DI-FGSM) (Xie et al., 2019) leverages the
random resizing and padding to augment the input x̂t at each iteration. Currently, most targeted attack
methods Li et al. (2020); Zhao et al. (2021); Naseer et al. (2021) simultaneously use the MI, TI and
DI to form a strong baseline with better transferability.

2.2 TARGETED ATTACKS

Targeted attacks are different from non-targeted attacks, which need to change the decision to a
specific target class. Kurakin et al. (2016) integrates the above non-targeted attack methods into
targeted attacks to craft targeted adversarial examples. However, the performance is limited because
it is insufficient to fool the black-box model only by maximizing the probability of the target class
with the CE loss.

Po+Trip (Li et al., 2020) finds the insufficiency of CE is mainly due to vanishing gradient issue.
Then, Li et al. (2020) leverages the Poincaré space as the metric space and further utilizes Triplet
loss to improve targeted transferability by forcing adversarial example toward the target label and
away from the ground-truth label. To further address this gradient issue, Logits (Zhao et al., 2021)
adopts a simple and straightforward idea by directly maximizing the target logit to pull the adversarial
examples close to the target class, which can be expressed as:

LLogit = −zt(x
′), (2)

where zt(·) is the output logits of the target class.

On the other hand, many studies employ resource-intensive approaches to achieve targeted attacks,
which train target class-specific models (auxiliary classifiers or generative models) on additional
large-scale data. For example, the FDA methods (Inkawhich et al., 2020b;a) use the intermediate
feature distributions of CNNs to boost the targeted transferability by training class-specific auxiliary
classifiers to model layer-wise feature distributions. The GAP (Poursaeed et al., 2018) trains a
generative model for crafting targeted adversarial examples. Subsequently, Naseer et al. (2019)
adopts a relativistic training objective to train the generative model for improving attack performance
and cross-domain transferability. Recently, the TTP (Naseer et al., 2021) utilizes the global and
local distribution matching for training target class-specific generators for obtaining high targeted
transferability. However, the TTP requires actual data samples from the target class and brings
expensive training costs. Different from the above methods, we introduce three simple and effective
logit calibration methods into the CE loss function, which can achieve competitive performance
without additional data and training.
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3 METHOD

Problem Definition Given a white-box surrogate model Fs and an input x not from the targeted class
t, our primary goal is to learn an imperceptible perturbation δ that can fool the Fs into output the
target t for x̂ = x + δ. Besides, the prediction of x̂ will also be t when feeding to other unknown
black-box testing models. The l∞-norm is usually used to constrain the perturbation δ within an
upper-bound ϵ, denoted as ||δ||∞ ≤ ϵ.

For the surrogate model Fs, we denote the feature for the final classification layer of the input x as
ϕ(x). The logit zi of the category i is computed by zi = WT

i ϕ(x) + bi, where Wi and bi are the
classifier weights and bias for category i. The corresponding probability pi after the softmax function
is calculated by pi =

ezi∑
ezj

.

3.1 LOGIT MARGIN

When successfully attacking the Fs, the logit zt of the target class t will be higher than the logits znt
of any other non-target class in the classification task. Their logit margins can be computed by,

G(ϕ(x̂)) = zt − znt = WT
t ϕ(x̂) + bt −WT

ntϕ(x̂) + bnt. (3)
Li et al. (2020); Zhao et al. (2021) showed that it is insufficient to obtain transferable targeted
adversarial samples that are only close to the target class while not far away enough from the true
class and other non-targeted classes. Based on this property, it encourages us to continually enlarge
this logit margin to increase the separation between the targeted and other non-targeted classes,
thereby improving transferability.

To have a better understanding of the relationship between the logit margins and the targeted
transferability, we visualize the average Top-3 logits (1 targeted class and other two non-targeted
classes) of 50 random adversarial samples trained on ResNet50 by the CE, Po+Trip (Li et al., 2020),
and the Logit (Zhao et al., 2021) loss functions with MI, DI and TI following. We also compute the
average logit margin of the targeted class against the Top-20 non-targeted classes. The logit and the
average logit margin are shown in Figure 1, and the transferability of these three loss functions from
ResNet50 to VGG16 is plotted in Figure 2.
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Figure 2: The targeted attack success
rate (%) on VGG-16 by using the
ResNet-50 as the surrogate model.

From Figure 1, we can observe that the logits of the tar-
geted class and the Top-2 non-targeted classes increase
rapidly in the first few iterations for the CE and Po+Trip
loss, as well as their logit margins. When reaching the
peak, the margin is saturated, and the logits start to de-
crease simultaneously to maintain the saturated margin.
By comparing the CE and Po+Trip, the Po+Trip needs
slightly more iterations to reach the saturated status and
thus shows a marginal better transferability than CE, as
shown in Figure 2. In comparison, the Logit loss function
will keep increasing the logits of the targeted category and
the logit margin. Thus, the Logit loss function shows a
much better transfer targeted-attack success rate than CE
and Po+Trip. On the other hand, the Logit loss also signif-
icantly increases the logits for other non-targeted classes
when training with more iterations.

To further analyze why the logit margin will quickly reach
saturated in the CE loss function and explore the effec-
tiveness of increasing the margin during training, in the following sections, we will revisit the
cross-entropy loss function and introduce the logit calibration to achieve this goal.

3.2 REVISITING THE CROSS-ENTROPY LOSS

Firstly, our objective is to maximize the logit margin in Eq. 3. After computing the gradient w.r.t. to
ϕ(x̂), we can get

∂G

∂ϕ(x̂)
= Wt −Wnt. (4)
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This gradient indicates that the adversarial feature ϕ(x̂) needs to move towards the target class while
apart from those non-target classes. Next, we compute the gradient w.r.t. to ϕ(x̂) in the Cross-Entropy
loss function

LCE = − log(pt) = −zt + log(
∑

ezj ), (5)
and can get the gradient

∂Lce

∂ϕ(x̂)
= − ∂zt

∂ϕ(x̂)
+

1∑
ezj

· ∂
∑

ezj

∂ϕ(x̂)
(6)

= −
∑

ezi∑
ezj

· ∂zt
∂ϕ(x̂)

+
1∑
ezj

∑
ezi

∂zi
∂ϕ(x̂)

=
∑ ezi∑

ezj
· ( ∂zi

∂ϕ(x̂)
− ∂zt

∂ϕ(x̂)
) =

∑
−pi(Wt −Wi).

From Eq. 6, we actually find that the CE loss is designed to adaptively optimize the ϕ(x̂) towards
Wt and away from other Wi. However, after optimization with several iterations, the pi of the
non-targeted class will soon approach to 0 and then the influence of Wt −Wi significantly vanishes.

Let’s consider the case only with 2 classes (t and nt), we have the probabilities pt and pnt as:

pt =
ezt

ezt + eznt
=

1

1 + e−(zt−znt)
, (7)

pnt =
eznt

ezt + eznt
=

1

1 + e(zt−znt)
. (8)

As shown in Figure 3, the pt will get close to 1 when zt − znt > 6 (e.g., pnt ≈ 2e−9

when zt − znt = 20). In such a context, the gradient will significantly vanish. Re-
call that, in the CE loss function (Figure 1 (a)), the logit margin increases rapidly, but will
reach saturated when approaching a certain value. This further indicates that the optimization
of the CE loss function is largely restrained when the logit margin reaches a certain value.
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Figure 3: The probability of pt un-
der different zt − znt.

To this end, we raise the question if we explicitly enforce the
optimization to enlarge the logit margin (zt − znt), could we
get better transferable targeted adversarial samples?

To answer this, we propose to downscale the zt−znt by a factor
s in the CE and extent the informative optimization for more
iterations. Since in such circumstance, zt−znt will be enlarged
by the factor s. Specifically, suppose that the optimization will
be saturated when zt − znt reaches a certain value v. Using
zt − znt and zt−znt

s in the CE will both approach the saturated
value v. Then, it is easy to infer that, for the latter case, zt−znt
will be v × s.

3.3 CALIBRATING THE LOGITS

To downscale the zt − znt during the optimization, we investi-
gate three different types of logit calibrations in this study, i.e.,
Temperature-based, Margin-based, and Angle-based.

3.3.1 TEMPERATURE-BASED

Inspired by the Temperature-scaling used in the knowledge distillation (Hinton et al., 2015), our first
logit calibration directly downscales the logits by a constant temperature factor T ,

z̃i =
zi
T
. (9)

After introducing the T , the probability distribution p will be more softer over different classes. The
corresponding gradient can be compute by:

∂LT
ce

∂ϕ(x̂)
=

ezj/T∑
ezj/T

· 1
T
(

∂zj
∂ϕ(x̂)

− ∂zt
∂ϕ(x̂)

) =
∑

−p̂i
(Wt −Wi)

T
. (10)
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(a) T=5
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(b) T=20
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Figure 4: The average Top-3 logits and logit margin of 50 adversarial samples after the logit calibration
for crafting the ResNet-50.

After downscaling by the factor T , the new p̂i after the softmax will not quickly approach to 0 when
only trained with a few iterations.

In Figure 4 (a)(b), we visualize the trend of logits and margins of using T = 5 and T = 20. We can
find that targeted logits and the logit margin will keep increasing as the same as the Logit in Figure 1.
Meanwhile, the trend of T = 20 is very similar with the Logit (Zhao et al., 2021) and we show that
the Logit loss function can be considered as a special case of calibrating the logits with a large T in
the supplementary.

3.3.2 MARGIN-BASED

The previous Temperature-based logit calibration contains a hype-parameter T , which could be
different for different surrogate model Fs. To migrate this issue, we further introduce an adaptive
margin-based logit calibration without extra hype-parameters. Specifically, we calibrate the logits by
using the margin between the Top-2 logits in each iteration, denoted as:

z̃i =
zi

ẑ1 − ẑ2
, (11)

where ẑ1 and ẑ2 are the Top-1 and the Top-2 logit, respectively.

In this Margin-based logit calibration, we will enforce the pt and p1̂ of the Top-1 non-target class at
each iteration meet the following constraints:

pt =
1

1 +
∑

i ̸=t e
−(z̃t−z̃i)

<
1

1 + e−1
, (12)

p1̂ =
1

ez̃1̂−z̃t +
∑

i ̸=t e
z̃i−z̃1̂

>
1

N − 1
(1− 1

1 + e−1
). (13)

Then, it can adaptively deal with the vanishing gradient issue in the original CE loss function. The
logits and the margin is shown in Figure 4 (c).

3.3.3 ANGLE-BASED

On the other aspect, the weights Wi for different category i usually has a different norm. To further
alleviate the influence of various norms, we calibrate the logit into the feature space with unit length
by L2-normalization, WT

i ϕ(x̂)+bi
||Wi||||ϕ(x)|| . If omit the bi, this calibration is computed the cos(θ) between

ϕ(x̂) and Wi, and we term it as angle-based calibration. Since, this angle-based calibration will
bound each logit smaller than one. Instead of using the CE loss function, we directly minimize the
angle between the ϕ(x̂) and the targeted weights Wt. The optimization loss function is:

Lcosine = − WT
t ϕ(x̂)

||Wt||||ϕ(x̂)||
. (14)

The angle-based classifiers have been widely using in Face-Recognition task (Liu et al., 2017; Deng
et al., 2019). In the experiments, we evaluate the performance of using different logit calibrations and
their mutual benefits.
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Table 1: The targeted transfer success rates (%) in the single-model transfer scenario. (Results with
20/100/300 iterations are reported, and the highest one at 300 iterations is showed bold.)

Attack Surrogate Model: ResNet50 Surrogate Model: Dense121
→Dense121 →VGG16 →Inc-v3 →Res50 →VGG16 →Inc-v3

CE 27.0/40.2/42.7 17.4/27.6/29.1 2.3/4.1/4.6 12.3/17.2/18.4 8.6/10.5/10.9 1.6/2.3/2.8
Po+Trip 27.9/51.2/54.8 17.9/35.5/34.7 3.2/6.8/7.8 11.0/14.8/15.0 7.3/9.2/8.6 1.6/2.8/2.8
Logit 31.4/64.0/71.8 23.8/55.0/62.4 3.1/8.6/10.9 17.4/38.6/43.5 13.7/33.8/37.8 2.3/6.6/7.5
T=5 33.3/69.9/77.8 24.8/59.9/66.1 3.1/9.4/12.2 19.3/43.4/47.5 14.6/36.6/39.4 2.3/7.3/8.8
T= 10 31.6/68.5/77.0 23.6/58.5/66.4 2.8/9.4/11.6 17.9/43.2/49.3 13.4/36.8/41.5 2.2/7.7/8.8
Margin 33.3/65.8/76.5 23.1/58.6/65.7 3.0/9.5/12.2 18.8/42.8/47.2 14.5/36.5/41.4 2.5/7.7/9.4
Angle 38.9/72.5/77.2 29.2/60.7/65.2 4.4/10.7/11.1 20.6/43.2/47.8 16.5/35.7/39.3 3.0/7.7/8.9

Attack Surrogate Model: VGG16 Surrogate Model: Inc-v3
→Res50 →Dense121 →Inc-v3 →Res50 →Dense121 →VGG16

CE 0.5/0.3/0.6 0.6/0.3/0.3 0/0/0.1 0.7/1.2/1.8 0.6/1.3/1.9 0.4/0.8/1.3
Po+Trip 0.7/0.6/0.7 0.7/0.6/0.5 0.1/0.1/0.1 1.0/1.6/1.7 0.6/1.7/2.5 0.7/1.2/1.8
Logit 3.4/9.9/11.6 3.5/12.0/13.9 0.3/1.0/1.3 0.6/1.1/2.0 0.6/1.9/3.0 0.6/1.5/2.8
T=5 3.1/7.0/6.9 3.3/7.6/7.8 0.2/0.9/0.8 0.7/1.7/2.1 0.5/1.9/3.3 0.4/1.6/2.6
T= 10 3.6/9.0/9.7 3.4/10.5/11.7 3.2/1.1/1.3 0.5/1.3/1.9 0.6/2.0/2.7 0.4/1.5/2.8
Margin 3.3/10.3/12.0 3.5/12.5/14.5 0.3/1.1/1.3 0.5/1.4/1.7 0.7/2.1/3.1 0.5/1.7/2.7
Angle 0.4/0.7/0.5 0.6/0.4/0.5 0/0/0.1 0.8/1.8/2.6 0.8/2.2/3.0 0.9/1.7/2.4

4 EXPERIMENTS

Experimental Setup. In this section, we evaluate the effectiveness of logit calibration for improving
transferable targeted adversarial attack. Following the recent study (Zhao et al., 2021), we conduct the
experiments on the difficult ImageNet-Compatible Dataset1. This dataset contains 1,000 images with
1,000 unique class labels corresponding to the ImageNet dataset. We implement our methods based
on the source code2 provided by the Logit (Zhao et al., 2021). The same four diverse CNN models are
used for evaluation, i.e., ResNet-50 (He et al., 2016), DenseNet-121 (Huang et al., 2017), VGG-16
with Batch Normalization (Simonyan and Zisserman, 2015) and Inception-v3 (Szegedy et al., 2016).
The perturbation is bounded by L∞ ≤ 16. The TI (Dong et al., 2019), MI (Dong et al., 2018) and
DI (Xie et al., 2019) are used for all attacks, and ||W ||1 = 5 is set for TI. The I-FSGM is adopted for
optimization with the α = 2. The attacks are trained for 300 iterations on a NVIDIA-2080 Ti GPU.
We run all the experiments for 5 times, and report the average targeted transfer success rates (%).
Expect from the experiments in the following sections, more experimental results can be found in the
supplementary of using the calibration in TTP (Naseer et al., 2021) and the non-targeted attack.

4.1 COMPARISON WITH OTHER METHODS IN SINGLE-MODEL TRANSFER

We first compare the proposed (temperature-based, margin-based and angle-based) logit calibrations
with the original CE, Po+Trip (Li et al., 2020), and Logit (Zhao et al., 2021) in the single-model
transfer task. In this task, we take one surrogate model for training, and test the targeted transferability
in attacking other 3 models.

As shown in Table 1, the original CE loss function produces a worst performance than the Po+Trip
and Logit. But after performing the logit calibration in the CE loss function, we can find a significant
performance is boosted compared with the original CE. All the calibration methods can outperform
the Logit, especially when using the ResNet50 and Dense121 as the surrogate model. These results
indicate that the logit margin can significantly influence the performance of the targeted transferability.
On the other aspect, we find that T = 10 has better performance than T = 5 on the VGG-16,
suggesting that different models may need different T . Instead of finding the best T for a different
model, the Margin-based calibration can solve the issue and reach the overall best transferability in
all four models. However, we find that the Angle-based calibration is not working on the VGG16,
which needs further investigation.

1https://github.com/cleverhans-lab/cleverhans/tree/master/cleverhans_v3.
1.0/examples/nips17_adversarial_competition/dataset

2https://github.com/ZhengyuZhao/Targeted-Tansfer
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4.2 THE INFLUENCE OF DIFFERENT T IN CE

In this section, we evaluate the influence of using different T in the CE loss function. The results are
reported in Table 2. From the Table, we can have the following observations. 1) The scaling factor
T has a significant influence on the targeted transferability. Specifically, there is a large decrease in
performance when using a small T = 0.5. After increasing the T , we can observe the number of
successfully attacked samples will increase. 2) The optimal T for different model is different. For
example, T = 5 can produce the overall best performance for ResNet50, Dense121, and Inception v3,
while the VGG16 with fewer convolutional layers requires a large T to obtain better transferability.
3) The performances are comparable when using T = 5 and T = 10 for ResNet50, Dense121, and
Inception v3. This is because that we use I-FSGM for optimization, which only considers the sign of
the gradients. 4) Using a larger T , the performance will be similar to the Logit loss function (see
Table 1). We provide a deep analysis of this phenomenon in the supplementary material.

Table 2: The targeted transfer success rates (%) by using different T in CE loss function. (Results
with 20/100/300 iterations are reported.)

Attack Surrogate Model: ResNet50 Surrogate Model: Dense121
→Dense121 →VGG16 →Inc-v3 →Res50 →VGG16 →Inc-v3

T=0.5 13.2/16.0/19.5 7.1/9.5/11.0 1.2/1.8/2.4 4.2/5.0/6.2 2.5/3.5/3.2 0.6/0.9/1.1
T=1 27.0/40.2/42.7 17.4/27.6/29.1 2.3/4.1/4.6 12.3/17.2/18.4 8.6/10.5/10.9 1.6/2.3/2.8
T=2 34.2/62.8/67.7 24.4/52.3/53.9 3.3/7.2/8.5 18.7/35.0/36.1 13.2/27.3/27.0 2.2/5.5/6.1
T=5 33.3/69.9/77.8 24.8/59.9/66.1 3.1/9.4/12.2 19.3/43.4/47.5 14.6/36.6/39.4 2.3/7.3/8.8
T= 10 31.6/68.5/77.0 23.6/58.5/66.4 2.8/9.4/11.6 17.9/43.2/49.3 13.4/36.8/41.5 2.2/7.7/8.8
T = 20 30.4/65.6/74.3 22.9/55.4/63.6 3.2/9.0/11.6 17.6/40.3/46.2 13.4/35.4/40.1 2.3/6.7/8.7

Attack Surrogate Model: VGG16 Surrogate Model: Inc-v3
→Res50 →Dense121 →Inc-v3 →Res50 →Dense121 →VGG16

T=0.5 0.2/0.1/0.2 0.1/0.1/0.1 0/0/0 0.3/0.9/0.9 0.3/0.8/1.4 0.3/0.6/1.3
T=1 0.5/0.3/0.6 0.6/0.3/0.3 0/0/0.1 0.7/1.2/1.8 0.6/1.3/1.9 0.4/0.8/1.3
T=2 1.6/1.8/1.8 1.8/1.9/1.6 0.2/0.2/0.2 0.6/1.5/2.0 0.4/1.7/2.2 0.5/1.2/2.0
T=5 3.1/7.0/6.9 3.3/7.6/7.8 0.2/0.9/0.8 0.7/1.7/2.1 0.5/1.9/3.3 0.4/1.6/2.6
T= 10 3.6/9.0/9.7 3.4/10.5/11.7 0.3/1.1/1.3 0.5/1.3/1.9 0.6/2.0/2.7 0.4/1.5/2.8
T = 20 3.4/9.7/11.1 3.6/12.7/13.8 0.3/1.2/1.3 0.5/1.4/2.3 0.6/1.8/3.1 0.5/1.6/2.4

4.3 THE TARGETED SUCCESS RATES FOR TRANSFER WITH VARIED TARGETS

Following the settings in (Zhao et al., 2021), we further evaluate the performance of different
calibration methods in the worse-case transfer scenario by gradually varying the target class from the
highest-ranked to the lowest one.

From the results in Table 3, we can have the following findings: 1) The three types of logit calibration
methods can improve the targeted transfer success rate over the original CE. The angle-based
calibration can achieve the best performance. 2) The Temperature-based (T=5/10) and the Angle-
based calibrations can outperform the Logit loss by a large margin, especially the Angle-based
calibration. 3) The margin-based calibration doesn’t work well in this setting. When the target class is
after 200th, the performance of margin-based will be significantly lower than the Temperature-based
and Angle-based calibrations.

Table 3: Targeted transfer success rate (%) when varying the target from the high-ranked class to low.
2nd 10th 200th 500th 800th 1000th

Logit 83.7 83.2 74.5 71.5 64.9 52.4
CE 77.4 58.6 26.9 23.7 16.7 7.0
CE/5 91.3 88.7 77.1 75.8 70.1 58.8
CE/10 89.0 87.8 81.0 79.2 73.5 62.5
Margin 87.4 81.7 61.3 51.6 43.1 23.0
Angle 92.4 89.1 80.3 79.2 76.1 66.3
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4.4 THE MUTUAL BENEFITS OF DIFFERENT CALIBRATION METHODS

In this part, we evaluate the mutual benefits of combining different calibrations and can have the
following findings. 1) Combining the T=5/10/20 and Margin, there is no increase in performance
compared with using one of them. This is because that the gradient directions of these two methods
are very similar. 2) Combining the T=5 and Angle, we can observe a further improvement when
using ResNet50 and Dense121 as the surrogate model, e.g., the transferable rate of “ResNet50 →
Dense121” is increased to 82.4% with 300 iterations. Since the Angle obtains poor performance on
VGG16, the transferable rates of corresponding combinations are also low in T=5/10+Angle, but
T=20+Angle can deal with this issue. 3) Combining the Margin and Angle, there are only slight
improvements on ResNet50 and Dense121, while it can alleviate the negative effects caused by the
angle-based calibration. Finally, by jointly considering the results in Table 1, 2 and 4, we suggest
using T=5 + Angle for CNNs with more layers and the single Margin-based calibration for CNNs
with fewer layers to achieve better targeted transfer attack.

Table 4: The comparison of combining logit calibrations. (The targeted transfer success rates (%)
with 20/100/300 iterations are reported.)

Attack Surrogate Model: ResNet50 Surrogate Model: Dense121
→Dense121 →VGG16 →Inc-v3 →Res50 →VGG16 →Inc-v3

T=5 + Margin 33.8/69.8/77.2 24.0/59.0/65.5 3.3/9.6/11.1 19.3/44.3/47.8 14.1/37.7/40.8 2.5/7.5/9.4
T=5 + Angle 34.5/74.3/82.4 25.6/66.5/72.2 3.6/10.5/13.1 20.3/52.7/61.9 15.8/45.0/53.6 2.3/9.2/12.7
T=10 + Margin 32.7/69.5/77.3 22.8/59.4/66.3 12.9/9.7/11.5 18.3/44.1/49.1 13.7/36.9/41.6 2.4/8.3/9.2
T=10 + Angle 33.0/69.8/79.1 24.4/59.0/68.9 3.4/10.0/12.9 19.4/47.2/56.1 14.8/40.1/47.0 2.5/8.3/11.0
T=20 + Margin 33.0/69.2/76.2 23.1/58.4/65.8 3.2/9.5/11.8 19.1/43.4/48.5 13.9/36.7/41.4 2.4/7.8/9.5
T=20 + Angle 34.2/68.6/76.5 24.7/58.7/66.6 3.4/9.7/12.7 20.0/44.4/50.9 15.5/38.4/43.7 2.5/8.2/9.5
Margin + Angle 34.4/70.8/78.1 24.3/60.2/67.4 3.5/10.4/12.6 19.9/46.6/52.7 15.2/39.3/44.5 2.7/8.2/9.9

Attack Surrogate Model: VGG16 Surrogate Model: Inc-v3
→Res50 →Dense121 →Inc-v3 →Res50 →Dense121 →VGG16

T=5 + Margin 3.5/10.2/11.4 3.7/12.4/14.6 0.3/1.1/1.3 0.5/1.4/1.6 0.6/2.1/2.9 0.5/1.7/2.8
T=5 + Angle 2.2/2.5/2.3 2.4/2.6/2.3 0.2/0.1/0.2 0.5/1.6/2.4 0.6/2.0/3.1 0.5/1.7/2.5
T=10 + Margin 3.2/10.7/11.7 3.4/12.9/15.0 0.2/1.0/1.4 0.5/1.4/1.9 0.5/1.9/3.0 0.3/1.5/2.3
T=10 + Angle 3.4/6.2/5.1 3.5/7.5/7.0 0.2/0.6/0.6 0.6/1.3/1.9 0.6/2.0/3.2 0.5/1.6/2.6
T=20 + Margin 3.5/10.1/11.8 3.4/12.0/14.9 0.3/1.2/1.4 0.6/1.2/1.9 0.5/1.9/2.9 0.5/1.6/2.7
T=20 + Angle 3.2/9.7/10.1 3.9/11.9/13.3 0.3/1.0/1.2 0.6/1.6/2.0 0.6/2.0/3.5 0.5/1.7/2.9
Margin + Angle 3.3/9.8/11.1 3.5/12.6/14.6 0.3/1.2/1.4 0.6/1.4/2.0 0.6/1.7/3.1 0.5/1.5/2.6

4.5 TRANSFER-BASED ATTACKS ON GOOGLE CLOUD VISION

Table 5: Non-targeted and targeted transfer success
rates (%) on Google Cloud Vision API.

Logit CE (T=5) Margin
Targeted 16 15 12
Non-targeted 51 53 42

Following the evaluation protocol in Zhao et al.
(2021), we randomly select 100 images to
conduct a real-world adversarial attack on the
Google Cloud Vision API. The attacking per-
formance is computed based on transfer-based
attacks of the ensemble of four CNNs (i.e., Inc-
V3, ResNet-50, Dense-121 and VGG-16). The
results are shown in Table 5. We can find that
the results of the Logit and CE (T=5) are very
similar. But the Margin-based calibration performs worse than Logit and CE (T=5). These results
reveal that our logit calibration-based targeted transfer attacks can cause a potential thread to the
real-world Google Cloud Vision API.

5 CONCLUSION

In this study, we analyze the logit margin in different loss functions for the transferable targeted attack,
and find that the margin will quickly get saturated in the CE loss and thus limits the transferablity.
To deal with this issue, we introduce to use logit calibrations in the CE loss function, including
Temperature-based, Margin-based, and Angle-based. Experimental results verify the effectiveness
of using the logit calibration in the CE loss function for crafting transferable targeted adversarial
samples. The proposed logit calibration methods are simple and easy to implement, which can
achieve state-of-the-art performance in transferable targeted attack.
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6 ETHICS STATEMENT

Our findings in targeted transfer attacks can potentially motivate the AI community to design more
robust defenses against transferable attacks. In the long run, it may also be directly used for suitable
social applications, such as protecting privacy. Contrariwise, some applications may use targeted
transferable attacks in a harmful manner to damage the outcome of AI systems, especially in scenarios
of speech recognition and facial verification systems. Finally, we firmly believe that our investigation
in this study can provide valuable insight for future researchers by using the logit calibration for both
adversarial attack and defense.
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