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Abstract

Structured sparsity regularization offers a principled way to compact neural net-
works, but its non-differentiability breaks compatibility with conventional stochas-
tic gradient descent and requires either specialized optimizers or additional post-hoc
pruning without formal guarantees. In this work, we propose D-Gating, a fully
differentiable structured overparameterization that splits each group of weights into
a primary weight vector and multiple scalar gating factors. We prove that any local
minimum under D-Gating is also a local minimum using non-smooth structured
L2,2/D penalization, and further show that the D-Gating objective converges at
least exponentially fast to the L2,2/D–regularized loss in the gradient flow limit.
Together, our results show that D-Gating is theoretically equivalent to solving
the original group sparsity problem, yet induces distinct learning dynamics that
evolve from a non-sparse regime into sparse optimization. We validate our theory
across vision, language, and tabular tasks, where D-Gating consistently delivers
strong performance–sparsity tradeoffs and outperforms both direct optimization of
structured penalties and conventional pruning baselines.

1 Introduction

Sparsity in deep learning models has received considerable attention in recent years. On the one hand,
unstructured sparsity methods remove individual weights to reduce parameter counts and achieve
high compression ratios, but they produce irregular connectivity patterns that are hard to accelerate on
standard hardware. On the other hand, structured sparsity targets entire groups of parameters, such
as neurons [49, 62], convolutional filters [38, 40], or attention heads [12, 42, 53, 60, 71], yielding
coarser sparsity patterns that translate directly into reductions in floating-point operations and memory
requirements on existing hardware, which results in more efficient deployment of large models [6, 14].

Beyond computational advantages, introducing sparsity can also improve generalization performance
[10] and increase model interpretability [20]. Nevertheless, most popular sparsification techniques in
deep learning are not based on the non-smooth L1 and L2,1 penalties widely used in classical statistics
and machine learning [55, 56], but rather constitute iterative pruning and retraining pipelines [3, 20,
34], whose main sparsification mechanism is defined by heuristic pruning criteria like parameter
magnitudes. In these methods, the pruning step is decoupled from training, making it difficult
to characterize precisely what overall objective is optimized and to provide principled guarantees.
Further, the decision space is vast—pruning at initialization [10, 11, 18, 36, 54, 61], after training
[38, 40, 41, 69], or sparsification during training [33, 46, 48], each with their own subtleties and
tradeoffs [6, 14, 20]—making it cumbersome for practitioners to select a method that balances
efficiency, accuracy, and theoretical soundness.
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Figure 1: Parameter trajectories for a two-feature squared loss toy objective with non-convex L2,2/D regulariza-
tion L(w) = (y − x1w1 − x2w2)

2 + λ∥w∥2/D2 whose global minimizer is (w∗
1 ,w

∗
2) = (0, 0). Left: Failure

of direct gradient descent (GD) optimization to converge to 0 because of the non-differentiability at the origin.
Right: D-Gated objective where w = ω ·

∏D−1
d=1 γd, converging smoothly to 0.

Sparsity penalties Structured sparsity penalties such as the L2,1 norm are, in theory, capable of
eliminating unimportant parameter groups, but in deep learning, they have mostly served as heuristics
to steer post-hoc pruning rather than achieve exact sparsity [18, 40, 62]. Directly enforcing non-
differentiable structured sparsity regularization requires solvers that can cope with its non-smooth
nature; if this non-differentiability is ignored, optimization may oscillate or converge to dense,
suboptimal solutions, as shown in Fig. 1. Replacing standard stochastic gradient descent (SGD) with
specialized procedures such as proximal-type algorithms (e.g. [8, 23, 43]) introduces substantial
complexity, demands non-standard hyperparameter configurations, and often the routines are adapted
to specific use cases or model classes, thereby foregoing modularity. This renders such approaches
cumbersome to implement and inhibits their adoption for large-scale deep learning.

With these obstacles in mind, we ask and positively answer the following main question:

Research question: Can we design a modular structured sparsity regularization method integrable
into any architecture, amenable to SGD, with theoretical guarantees and little practical overhead?

1.1 Related literature

Structured sparsity A range of methods has been proposed to induce block-wise zeros in neural
networks, yet they often rely on either post-hoc pruning or non-standard optimizers. Early work
applies the convex L2,1 penalty directly to weight groups but optimizes it with vanilla (sub-)gradient
descent [49, 62], which fails to find sparse solutions and must be followed by an explicit pruning
step [8]. To remedy the non-differentiability at zero, [8] proposes the use of a proximal algorithm,
which we aim to avoid in favor of compatibility with SGD. [5] further generalizes the L2,1 regularizer
to non-convex L2,q, q < 1, penalties using a custom optimizer. Rather than penalizing weight
structures directly, [4, 23, 40] introduce shared scaling factors for each group and impose sparsity
on those factors instead of the whole parameter group, but still require careful tuning. Although
these competitors can yield exact sparsity under certain settings, they either fall back on pruning or
abandon standard SGD, motivating our search for a fully differentiable, SGD-compatible alternative.
Differentiable sparsity A possible solution to incorporate sparsity-inducing penalties while retain-
ing differentiability are approaches that split the parameters into multiple components and impose
smooth L2 regularization on the factors, which can be shown to induce the desired non-smooth
sparsity penalty on the reconstructed parameters. This idea dates back to [15, 21] and has re-
cently been adopted to incorporate differentiable L1-type sparsity regularization in neural networks
[25, 30, 28, 29, 57, 72, 73]. In the case of matrix (instead of parameter) factorization using two
factors, a low-rank bias, given by the trace norm, is induced on the product [27, 52]. The implicit
bias literature also investigates such parameter decompositions without L2 regularization, which
can also induce sparsity under certain conditions–such as impractically small initialization scales
[16, 58, 63, 70]. An extension to implicit group sparsity for linear models is presented by [39].
However, existing proposals either focus on unstructured sparsity, are constrained to only two factors,
or do not constitute modular approaches applicable to arbitrary architectures. This leaves a gap in the
current literature on whether extensions to arbitrary structures are possible, how such an approach can
be implemented in practice, and to what extent there are theoretical guarantees to back this method.
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Figure 2: Overview of differentiable D-Gating method for structured sparsity (cf. Algorithm 1). For simplicity,
we show D-Gating visually for a single fully-connected layer with input-wise grouping (colors), but our approach
extends to arbitrary network components such as convolutional filters or attention heads. We proceed by applying
D-Gating (red nodes and their connections) to the neural network weight and running SGD on the gating
parameters with weight decay. After training, the weights are collapsed again and the zero structures removed,
with the resulting sparse minimizers also being minimizers of the non-smooth L2,2/D-regularized objective.

1.2 Our contributions

Inspired by prior work on differentiable sparse regularization, we propose a new approach called
D-Gating, which constitutes a structured sparsity-inducing penalty approach. It can be modularly
incorporated in “arbitrary” architectures and neither incurs a notable overhead in additional parameters
nor requires additional pruning steps, and is compatible with off-the-shelf SGD optimization. We
further establish novel theoretical results that show the equivalence of our proposed differentiable
regularization method and non-differentiable sparsity-inducing penalties (cf. Fig. 2), akin to what
has been shown for approaches with unstructured sparsity penalties. Apart from theoretically and
practically studying the loss landscape and training dynamics of our approach, we also validate our
theory on an array of experiments to showcase its versatility in diverse deep learning applications.

2 Problem statement

In this paper, we propose a general structured sparsity approach for neural networks f(·,w) that allows
penalizing excessive network components without placing restrictions on the type of architecture f
or the position of the unit within the weight vector w ∈ Rp that is targeted with the regularization.
Structures such as filters naturally arise in neural networks, yielding a partition G = {G1, . . . ,GJ}
of a subset of the indices [p] := {1, . . . , p} of w into J groups wGj

with elements wj,g, g ∈ Gj . For
filter sparsity in convolutional neural networks, G would be all indices for weights in the convolutional
layers, and each Gj the indices of weights of one of the J filters.

Given this structure, we seek to optimize a general optimization problem

minimize
w∈Rp

Lw(w) := L0(w) + λ∥w∥2/D2,2/D (1)

for D ≥ 2, where the unregularized objective L0 =
∑n

i=1 ℓ(yi, f
(
xi,w)

)
is the sum of n observed

loss contributions with loss ℓ : Y × Y → R+
0 evaluated on independent data points {(xi, yi)}ni=1 ∈

(X × Y)n. The regularization term in Eq. (1) constitutes a generalization of what is often referred to
as the group lasso [67], or L2,1 penalty, which is recovered for D = 2. For D > 2, we obtain the
more general and non-convex group penalty: ∥w∥2/D2,2/D

:=
∑J

j=1(
∑

g∈Gj
|wj,g|2)1/D [22]. As this

penalty is neither differentiable for D = 2 nor D > 2, SGD optimization of (1) yields unfavorable
optimization dynamics and does not achieve exact sparsity (cf. Fig. 1). We therefore either require
specialized optimization routines or a surrogate objective which induces the solution to (1). We choose
the latter to minimize the overhead (cf. App. E.2) and changes to established training procedures.

3 Differentiable structured sparsity via D-Gating

To solve Eq. (1) while enabling practitioners to use standard SGD optimizers, we derive a fully
differentiable method that implicitly tackles Eq. (1) by employing an overparameterized model and a
smooth surrogate penalty compatible with SGD optimization.
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3.1 Model structure and gating variables

As we are interested in a general method for structured sparsity where arbitrary subsets of network
weights can be sparsified, we assume a parametric learning model

f : X × Rq+p → Rc, (x, w̃) 7→ f(x; w̃), (2)

with inputs x ∈ X and parameters w̃ = (v,w), where w ∈ Rp contains the penalized parameters of
interest and v ∈ Rq the remaining parameters. Further, w is a partitioned (structured) weight object
comprising J groups, w = (wj)

J
j=1 ∈ Rp1+...+pJ = Rp.

To convert the non-smooth optimization problem into a smooth optimization problem, we subdivide
w into two parts using the following gating operation:
Definition 1 (D-Gating). Let w ∈ Rp and G = {G1, . . . ,GJ} be a partition of the indices [p] of w
into J groups. Further let ω ∈ Rp be the primary weight of the same size as w, γd ∈ RJ one of
D − 1 vectors containing group-wise gating factors, and let γ⊙ := γ1 ⊙ . . . ⊙ γD−1 denote the
element-wise product of the gating factors with entries γ⊙

j =
∏D−1

d=1 γj,d for j ∈ [J ]. For brevity, we
collect the scaling factors in the matrix Γ =

[
γ1, . . . ,γD−1

]
∈ RJ×(D−1). The D-Gating operation

▶ : Rp × RJ×(D−1) → Rp, (ω,Γ) 7→ ω ▶ γ⊙, decomposes w as

w = ω ▶ γ⊙ :=
(
ωj

∏D−1
d=1 γj,d

)J
j=1

=
(
ωj · γ⊙

j

)J
j=1

, (3)

and we call w D-Gated if it is parametrized as ω ▶ γ⊙.

Intuitively, the D-Gating operation splits each group weight wj into D factors: the vector ωj ,
corresponding to the original group weights, and the D − 1 additional gating factors γj,d ∈ R, which
are applied multiplicatively to all entries of ωj .

3.2 Differentiable penalty

Given the gated formulation, we can now impose surrogate L2 regularization on (ω,Γ), defined as

L(v,ω,Γ) = L0(v,ω ▶ γ⊙) + λR(ω,Γ) (4)

=

n∑
i=1

ℓ
(
yi, f

(
xi, (v,ω ▶ γ⊙)

))
+

λ

D

∑J
j=1

(
∥ωj∥22 +

∑D−1
d=1 γ2

j,d

)︸ ︷︷ ︸
∥ω∥2

2+∥Γ∥2
F

(5)

where L0(v,w) denotes the unregularized, differentiable loss function with per-sample loss ℓ. In the
following, we will denote local minimizers of the D-Gating objective as

(v̂, ω̂, Γ̂) ∈ arg locmin
(v,ω,Γ)∈Rq+p+J(D−1)

L(v,ω,Γ). (6)

While the function values of Eq. (4) are not necessarily equal to those of Eq. (1), our next section
provides a theoretical guarantee of the equivalence of both objectives with regards to their minima
and shows that the difference between both objectives is vanishing at least exponentially fast.

4 Theoretical results

Because the presence of ungated parameters v is inconsequential for our analyses and all results
directly carry over, they will be omitted from now on, and we assume for simplicity of exposition
that all model parameters are D-Gated.

4.1 Stationarity condition and loss simplification

The following result establishes that all stationary points of L(ω,Γ) correspond to balanced D-
Gating parameters. Otherwise, one could continuously perturb the D-Gating parameters toward a
more balanced configuration without altering the effective parameter w = ω ▶ γ⊙ while strictly
decreasing the L2 penalty R(ω,Γ).
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Lemma 1 (Balancedness at stationary points). Let (ω,Γ) be D-Gating parameters satisfying wj =

ωj

∏D−1
d=1 γj,d for j ∈ [J ]. If (ω,Γ) is a stationary point of the L2-regularized objective L(ω,Γ)

with λ > 0, then the gating factors are group-wise balanced in the sense that

∥ωj∥22 = γ2
j,1 = · · · = γ2

j,D−1 = ∥wj∥2/D2 ∀ j ∈ [J ]. (7)

Notably, the loss evaluated at balanced parameters simplifies to reveal its sparsity-inducing nature:
Corollary 1 (Loss simplification at balanced gating parameters). Let (ω,Γ) be balanced D-Gating
parameters satisfying wj = ωj

∏D−1
d=1 γj,d and Eq. (7) for j ∈ [J ]. The D-Gated objective L(ω,Γ)

in Eq. (5) then simplifies to

L0(ω ▶ γ⊙)+
λ

D
(∥ω∥22+∥Γ∥2F ) = L0(w)+λ

∑J
j=1 ∥wj∥2/D2 = L0(w)+λ ∥w∥2/D2,2/D︸ ︷︷ ︸

:=Rw(w)

=: Lw(w) (8)

4.2 Equivalence of optimization problems

The previous result is reassuring as it demonstrates the equivalence of objectives at balanced gating
parameters. It does, however, not guarantee that optimizing one objective provides a meaningful
solution for the other objective. The following result establishes equivalence at the solution level.
Theorem 1 (Equivalence of D-Gating and L2,2/D regularization). The two optimization problems

minimize
ω∈Rp,Γ∈RJ×(D−1)

L(ω,Γ) := L0(ω ▶ γ⊙) +
λ

D
(∥ω∥22 + ∥Γ∥2F ) (9)

minimize
w∈Rp

Lw(w) := L0(w) + λ∥w∥2/D2,2/D (10)

are equivalent in the sense that their local minima are identical. If (ω̂, Γ̂) ∈ arg locminL(ω,Γ),
then ω̂ ▶ γ̂⊙ = ŵ ∈ arg locminLw(w), and likewise, if ŵ ∈ arg locminLw(w), then any
balanced gating representation (ω̂, Γ̂) such that ŵ = ω̂ ▶ γ̂⊙ is a local minimizer of L(ω,Γ).

Specifically, there is a bijective mapping between the local minimizers of Lw(w) and the equivalence
class of local minimizers of L(ω,Γ), resulting in the same effective parameter w.

4.3 Optimization dynamics

Under ubiquitous (S)GD-based optimization of the D-Gated objective in Eq. (5), as well as its
theoretically simpler continuous-time gradient flow (GF) limit with infinitesimal learning rate η, we
can additionally establish results characterizing the evolution of parameter balancedness, i.e., quantify
how fast the D-Gated objective converges to the original L2,2/D regularized loss.

4.3.1 Evolution of imbalance and loss convergence for D-Gated models under GF dynamics

The group-wise continuous-time gradient flow dynamics for j ∈ [J ] are given by
ω̇j = −∇ωjL, ˙γj,d = −∂γj,d

L. (11)
The gradients with respect to the D-Gating parameters ωj and the γj,d are, using the chain rule,

∇ωjL = γ⊙
j ∇wjL0 +

2λ

D
ωj , ∂γj,dL =

(
γ⊙
j

γj,d

)
ω⊤

j ∇wjL0 +
2λ

D
γj,d , d ∈ [D − 1] . (12)

We define the pair-wise imbalance I between any two group-wise factors d ̸= d′ ∈ [D] and show it
vanishes exponentially in time:

Ij,d,d′(t) :=

{
∥ωj(t)∥22 − γj,d′(t)2, if d = 1,

γj,d(t)
2 − γj,d′(t)2, if d ̸= 1.

(13)

Lemma 2 (Exponential decay of imbalance under continuous-time GF). Under the gradient flow
dynamics Eqs. (11) and (12), the pair-wise imbalance Ij,d,d′(t) (13) between two gating parameters
d, d′ of group j satisfies

d

dt
Ij,d,d′(t) = −

4λ

D
Ij,d,d′(t) ∀d ̸= d′, j ∈ [J ]. (14)

Solving the ODE shows Ij,d,d′(t) decays exponentially for λ ≥ 0: Ij,d,d′(t) = Ij,d,d′(0)e−
4λ
D t.
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Figure 3: Evolution of imbalance during SGD of a neuron-wise D-Gated LeNet-300-100 for D ∈ {2, 3, 4}
(left to right). As predicted by our theory, the losses converge exponentially, with the rate increasing in λ and
decreasing in D.

This result further shows that for λ = 0, Ij,d,d′(t) is a conserved quantity [32, 74], i.e., imbalances
decay with a 0 rate. The difference of losses is determined by the difference of regularizers, termed
misalignment M(ω,Γ), and thus depends on the overall degree of balancedness.

L(ω,Γ)− Lw(ω ▶ γ⊙) = λM(ω,Γ) := λ
(
R(ω,Γ)−Rw(ω ▶ γ⊙)

)
(15)

= λ
(
D−1(∥ω∥22 + ∥Γ∥2F )− ∥ω ▶ γ⊙∥2/D2,2/D

)
≥ 0 . (16)

Using this, the previous result can be extended to show |L(ω,Γ)− Lw(ω ▶ γ⊙)| → 0:
Lemma 3 (Convergence of D-gated loss to L2,2/D regularized loss under GF). Assume that the model
parameters of Eq. (4) with effective weight w(t) = ω(t) ▶ γ⊙(t) as in Eq. (3) evolve with time t
according to the gradient flow in Eqs. (11) and (12). Then, the D-Gated loss L(ω(t),Γ(t)) in Eq. (9)
converges to the non-smooth L2,2/D regularized loss Lw(w(t)) in Eq. (10) at least exponentially
fast given an initialization-dependent constant C ≥ 0:

L(ω(t),Γ(t))− Lw(w(t)) ≤ Ce−
4λ
D t, (17)

Intuitively, this is because balancedness in D-Gating is precisely the condition required for L(ω,Γ)
to simplify to Lw(w) (cf. Corollary 1). Hence, as the pair-wise imbalances vanish, the balancedness
condition becomes increasingly true, and the two losses converge.

4.3.2 Evolution of imbalance for D-Gated models under (S)GD dynamics

For an analysis of the discrete-time evolution of imbalances, the dynamics becomes more convoluted,
but we can establish geometric decay up to first-order in η, and find symmetry-induced absorbing
SGD states [72] for balanced gating configurations.
Lemma 4 (Imbalance evolution under discrete-time GD). Consider the D-Gated objective Eq. (5).
Then, under (S)GD, for any j ∈ [J ], (i) the pair-wise imbalances in Eq. (13) evolve as

I(t+1)
j,d,d′ =

(
1− 4λη/D

)
I(t)
j,d,d′ + η2∆

(t)
j,d,d′ , η > 0, d, d′ ∈ [D], d ̸= d′, (18)

with separate second-order terms ∆j,d,d′ for d = 1 and d, d′ > 1. For sufficiently small η or
near stationarity, the imbalance I(t+1)

j,d,d′ ≈ (1− 4λη/D) · I(t)
j,d,d′ exhibits discrete exponential decay.

(ii) Balancedness is conserved between any two scalar factors d, d′ > 1, i.e., I(t)
j,d,d′ = 0 ⇒

I(t′)
j,d,d′ = 0∀ t′ > t, and (iii), for balanced zero representations (ω

(t)
j , {γ(t)

j,d}
D−1
d=1 ) = 0, it holds

(ω
(t′)
j , {γ(t′)

j,d }D−1
d=1 ) = 0∀ t′ > t.

5 Numerical experiments

In the following, we empirically investigate the learning dynamics of our approach in Section 5.1 and
then showcase various applications in Section 5.2 to demonstrate our method’s modularity.

5.1 Learning dynamics and misalignment
5.1.1 Exponential decay of imbalance

We first validate our theoretical results on learning dynamics and loss convergence of D-Gating from
Section 4.3. For this, we apply D-Gating with D ∈ {2, 3, 4} to a LeNet-300-100 at the neuron level
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Figure 4: Regularization paths for sparse linear regression task using D-Gating. Left: Test RMSE vs λ. The
curves for 2-Gating and group lasso coincide beyond a certain λ, but are outperformed by D-Gating with D > 2.
Middle: Group sparsity of 2-Gating coincides with group lasso solution. Dashed grey line indicates optimal λ
for all models. Deeper gating yields sparser solutions. Right: Transition of 2-Gating to group lasso solution
beyond a certain λ coincides with zero imbalance attained after training. Direct optimization with GD yields
notably different regularization paths far from the global minima. The dashed black line indicates 0 misalignment
at the end of traininig. Means and 95% confidence intervals over ten simulations are shown for the left two plots.

and train the model on the MNIST dataset using SGD. We use a grid of λ values and measure the loss
convergence as defined in Eq. (17). Fig. 3 visualizes the results and confirms our theoretical findings
on the exponential decay of the loss difference. Appendix E.4 contains further results, e.g., for Adam.

5.1.2 D-Gating and misalignment for group lasso

To further validate the equivalence of optimization problems as established in the previous section,
we run a sparse linear regression where direct L2,1-regularized optimization is more accessible due
to the availability of specialized optimization routines. For this, we simulate data as described in
Appendix C.1 with 40 feature groups of 5 features each, of which 7 are informative (with truly
non-zero effects). We use accelerated proximal gradient descent [50] to directly optimize the original
L2,1-penalized linear model and apply our approach for D ∈ {2, 3, 4} over the same grid of λ values.
In addition, we also perform direct GD optimization of the L2,1-regularized linear model and compare
all methods against an oracle (a linear model using only the signal variables). Results in Fig. 4
confirm the established equivalence between the original and D-Gated objective for D = 2, but also
demonstrate the improvement in the performance-sparsity tradeoff for D > 2.

5.2 Modularity

Next, we demonstrate the flexibility of our method. To this end, we study various types of structured
sparsity problems that arise in neural networks. In these experiments, we focus on demonstrating
the broad applicability of our method rather than an exhaustive benchmark comparison. Our method
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supports any form of structured sparsity in neural networks, enabling diverse applications. Selected
use cases are shown below. Further results are presented in Appendix E.

5.2.1 Feature selection in non-linear models

We start by investigating input feature selection, i.e., by individually gating the first-layer weights
outgoing from each input feature. We follow the setup of [37] by running the proposed method,
LassoNet, as well as HSIC [66] on six diverse datasets as done in [37]. We use the same LeNet-300-
100 architecture as a backbone for LassoNet, HSIC and our D-Gating approach (cf. Appendix C.2).

Fig. 5 depicts the comparison results, showing that 2-Gating is often inferior to LassoNet and
HSIC. 3- and 4-Gating, however, dominate all other methods for almost all possible input sparsity
configurations and, hence, are the favorable options among these methods for feature selection.

5.2.2 Filter sparsity in convolutional neural networks

In the next experiment, we investigate filter sparsification — one of the most prominent applications
of structured sparsity in neural networks. As comparison methods, we select three commonly used
methods in the filter sparsity literature [20]: Global magnitude pruning, L2,1-penalization with naïve
optimization followed by magnitude pruning (MP) [62], and network slimming [40]. A more detailed
description can be found in Appendix C.3. We run experiments on CIFAR-10, CIFAR-100, and
SVHN, using a VGG-16 [51] and ResNet-18 model [19]. D-Gating is implemented by adding gating
parameters on the filter level, which, given the size of these models, has a negligible parameter
overhead (see Table 5). As filter sparsity can be used to construct a smaller model, potentially
deployable on edge devices or similar, we also measure the theoretical speed-up of the sparsified
model using floating-point operations (FLOPs). Similar to previous results, Fig. 6 unveils a superior
performance of D > 2-Gating compared to gating with D = 2. However, all gating approaches
outperform the filter sparsity baselines despite our approach not requiring post-hoc pruning as the
main sparsification mechanism. This is the case both in terms of the accuracy-sparsity tradeoff
provided by our method as well as the theoretical speed-up implied (cf. Table 1 and Fig. 11).
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Figure 6: Structured accuracy-sparsity tradeoffs of D-Gated neural networks and comparison methods.

Table 1: Largest theoretical speed-up ( base
sparse FLOPs) within 5% / 10% of the max. test accuracy.

Method VGG-16
(CIFAR-10)

VGG-16
(SVHN)

ResNet-18
(CIFAR-100)

D-Gating (D = 2) 16.13 / 52.70 175.49 / 175.49 5.13 / 14.91
D-Gating (D = 3) 11.17 / 25.51 266.66 / 390.03 8.27 / 15.14
D-Gating (D = 4) 18.88 / 48.97 262.05 / 541.65 12.76 / 41.04
L2,1 + Mag. pruning 6.97 / 6.97 18.88 / 18.88 3.35 / 14.01
Network Slimming 2.45 / 4.91 7.53 / 7.53 3.56 / 3.56

5.2.3 Structured sparsity in language modeling

Our next application considers the effect of D-Gating in an attention-based language model [59]. For
this, we use NanoGPT and apply D-Gating to the attention heads of all attention layers. A natural
comparison is again the direct optimization of the L2,1-penalty, i.e., without first transforming the
objective into a differentiable one through D-Gating. To highlight the shortcomings of this naïve
approach, we also follow the direct optimization with an explicit pruning step. We train NanoGPT on
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TinyShakespeare (details in Appendix C.4) and evaluate the model’s validation accuracy as well as
validation perplexity for different regularization strengths and hence levels of attention head sparsity.

Fig. 7 confirms our hypothesis that direct optimization does not result in structured sparsity. Notably,
the min. and max. norms of the attention heads converge for large λ under direct L2,1 penalization.
In contrast, D-Gating shows the desired effect of increased sparsity for higher regularization and
provides a smooth tradeoff between accuracy and sparsity. Even when combining direct optimization
of the L2,1 regularized objective with additional post-hoc pruning, and taking, at each pruning ratio,
the best performance over a grid of λ values, we see that D-Gating achieves much higher head
sparsity values before performance degrades significantly.
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5.2.4 Tree sparsity in neural trees
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Figure 8: Regularization paths for NODE on
the Wine dataset with 2-Gating on tree level.
Means and standard deviations over four data
splits are shown.

As a final application, we investigate the sparsification of
neural trees. More specifically, we propose a novel modi-
fication of Neural Oblivious Decision Ensembles (NODE)
[47], a neural network-based decision tree ensemble model.
While there are multiple options to apply our approach
within this architecture, we demonstrate the efficacy of
D-Gating by inducing sparsity on the tree-level, i.e., using
the different trees as groups. We test our approach on the
Wine data set [7] using a range of λ values for a single
tree-layer as suggested by [47]. The tree layer consists
of 500 trees, and the weights corresponding to each tree
are gated with D = 2 to induce differentiable L2,1 group
sparsity. This is already lower than the default hyperpa-
rameter for the tree count of 2048 reported in [47], but
raises the question whether 500 trees are in fact necessary
to obtain reported performances. Fig. 8 shows the test
root mean squared error (RMSE) and the number of active trees as functions of λ. While the full
non-sparse model reaches baseline RMSE values, we observe that it is possible to achieve a very
similar performance by using less than 5 trees, e.g., for λ = 3× 10−3. This suggests that, at least for
the Wine data set, a much simpler and notably less expensive configuration is sufficient.

5.2.5 Further experiments and ablation studies

Additional experimental results are provided in Appendix E. Appendices E.5 and E.6 demonstrate the
effectiveness of D-Gating beyond the model classes studied above. First, D-Gating is implemented
for multi-modal subnetwork selection in late-fusion architectures, where it consistently succeeds in
removing irrelevant data modalities and retaining only informative information.
Next, Appendix E.6 studies a variant of Neural Additive Models (NAMs) [1] with differentiable
shape function sparsity, termed D-SNAMs. NAMs combine the inherent interpretability of additive
models with the expressivity of neural networks by processing each input independently through
its own shape function subnetwork before summing the outputs. Here, D-Gating is applied to the
first-layer weights of each feature-specific subnetwork to enforce shape function sparsity, effectively
removing uninformative inputs while maintaining the flexibility to model non-linear effects of
informative features. Our differentiable approach outperforms competing methods in terms of
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predictive performance, such as sparse NAMs (SNAMs) [65], which are based on non-differentiable
(group lasso) penalties, and does not require post-hoc pruning. In particular, we observe for D > 2,
i.e., non-convex induced regularization, that D-Gating produces increasingly sparse solutions while
maintaining low generalization error, explainable by the the more aggressive sparsification capabilities
of non-convex over convex sparsity penalties [22]. These experiments substantiate D-Gating as a
promising approach for subnetwork sparsification, which is amenable to differentiable optimization,
whether in multi-modal settings or for attaining shape function sparsity in neural additive modeling.
Finally, Appendix E.2 includes further information and experiments on the negligible parameter,
runtime, and memory overheads incurred by overparameterization using D-Gating, while Appendix
E.3 contains ablation studies on performance and numerical stability with respect to the gating depth
D, supporting the recommendation that D ∈ {3, 4} typically yields the best tradeoff.

6 Discussion

In this paper, we introduce D-Gating, a differentiable structured sparsity method compatible with SGD
and applicable to arbitrary differentiable architectures, addressing limitations of non-differentiable
penalties in deep learning. We thereby positively answer our initial research question on whether it is
possible to design a modular structured sparsity routine, integrable into any architecture, amenable to
SGD, with theoretical sparsity guarantees and little practical overhead.

Limitations and future work Due to the flexibility of D-Gating, our approach can provide
structured sparsity penalties for arbitrary grouping structures. We systematically demonstrate this
flexibility through a diverse set of applications in Section 5.2 and Appendix E. While our theoretical
results guarantee equivalence to the original sparse but non-smooth optimization problem, future
work could further explore the benefits of this formulation or assess its performance when combined
with sophisticated pruning and retraining schedules. Secondly, although the gradient flow limit
admits clear analysis, it remains an open question how discrete-time SGD with large learning rates or
scheduling impacts the learning dynamics. Finally, integrating D-Gating into the complex training
pipelines of modern large-scale foundation models, where sparse training from scratch is often
impractical, presents another promising direction.
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A Algorithm

In Algorithm 1, we provide the algorithm for sparse training using the proposed D-Gating method.
Not that it is assumed here that all model parameters w are gated, which is inconsequential for the
procedure. If D-Gating is applied only to model substructures, the remaining weights are initialized
and updated as usual, and then copied over to the sparse architecture without modification.

Algorithm 1 D-Gating Network Training

1: Input:
2: Data D = {(xi, yi)}ni=1, model architecture f with weights w ∈ Rp partitioned into J groups {Gj}Jj=1

3: Gating depth D ≥ 2

4: Training hyperparameters {T, |B|, {η(t)}Tt=0, λ}
5: Threshold εtiny
6: D-Gating parametrization:
7: Replace weights w in f by primary weights ω = (ωj)

J
j=1 and gating factors Γ = (γj,d)j∈[J], d∈[D−1]

8: Effective weights w = ω ▶ γ⊙, so wj = ωj

∏D−1
d=1 γj,d

9: Initialize ω(0) ← Standard-Init(w|f), Γ(0) ← 1J1
⊤
D−1 ∈ RJ×(D−1), and η ← η(0)

10: for t = 0 to T − 1 do
11: Sample mini-batch B(t) ⊆ D
12: Compute w(t) = ω(t) ▶ (γ⊙)(t) and mini-batch loss

L(ω(t),Γ(t)) =
∑

(x,y)∈B(t)

ℓ
(
y, f(x;w(t))

)
+

λ

D

(
∥ω(t)∥22 + ∥Γ(t)∥2F

)
13: Compute gradients∇ωL(ω(t),Γ(t)), ∇ΓL(ω(t),Γ(t))
14: Update

ω(t+1) ← ω(t) − η

|B|∇ωL(ω(t),Γ(t)), Γ(t+1) ← Γ(t) − η

|B|∇ΓL(ω(t),Γ(t))

15: Set η ← η(t+1)

16: end for

17: Collapse gates and reduce architecture:
18: ŵ = ω(T ) ▶ (γ⊙)(T )

19: Zero out removed weight groups: ŵj ← 0 if ∥ŵj∥2 < εtiny
20: Load sparse weights ŵ into compact architecture f̃

21: Output: Sparse network parameters ŵ and reduced architecture f̃

B Missing proofs

B.1 Proof of Lemma 1

Proof. We argue by contradiction. Suppose that for some group j the gating factors are not balanced;
that is, there exist indices d, d′ ∈ [D − 1] such that, without loss of generality,

γ2
j,d < γ2

j,d′ . (19)

An analogous argument applies if one considers an imbalance between ∥ωj∥22 and one of the scalar
factors. We now apply a first-order perturbation argument. Consider an infinitesimal perturbation
parameter ε and define the perturbed factors as

γ̃j,d = γj,d(1 + ε) and γ̃j,d′ = γj,d′(1− ε). (20)
Noting that

(1 + ε)2 ≈ 1 + 2ε, (1− ε)2 ≈ 1− 2ε, (21)
the product of the perturbed factors satisfies

γ̃j,d γ̃j,d′ = γj,d(1 + ε) γj,d′(1− ε)

= γj,dγj,d′ (1 + ε)(1− ε)

= γj,dγj,d′(1− ε2) ≈ γj,dγj,d′ , (22)
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so that the effective parameter wj = ωj

∏D−1
d=1 γj,d remains unchanged to first order. On the other

hand, the original L2 penalty for the two factors is given by

R(γj,d, γj,d′) = γ2
j,d + γ2

j,d′ . (23)

After perturbation, we have

(γ̃j,d)
2 ≈ γ2

j,d(1 + 2ε), (γ̃j,d′)2 ≈ γ2
j,d′(1− 2ε), (24)

so that the new penalty becomes

R(γ̃j,d, γ̃j,d′) ≈ γ2
j,d(1 + 2ε) + γ2

j,d′(1− 2ε)

=
(
γ2
j,d + γ2

j,d′

)
+ 2ε

(
γ2
j,d − γ2

j,d′

)
. (25)

Since γ2
j,d < γ2

j,d′ by Eq. (19), it follows that

2ε
(
γ2
j,d − γ2

j,d′

)
< 0. (26)

This strict decrease in the L2 penalty contradicts the stationarity of (ω,Γ) with respect to L(ω,Γ).
Therefore, the gating parameters must be balanced at any stationary point, which, together with the
invariance of the effective parameter w, implies the result Eq. (7).

B.2 Proof of Corollary 1

Proof. We begin by group-wise separating the smooth surrogate penalty in (5):

1

D

(
∥ω∥22 + ∥Γ∥2F

)
=

J∑
j=1

1

D

(
∥ωj∥22 +

D−1∑
d=1

γ2
j,d

)
. (27)

Next, for each group j ∈ [J ], we apply the inequality of arithmetic and geometric means (AM-GM)
to the D non-negative terms ∥ωj∥22, γ2

j,1, . . . , γ
2
j,D−1:

1

D

(
∥ωj∥22 +

D−1∑
d=1

γ2
j,d

)
≥
(
∥ωj∥22 ·

∏D−1
d=1 γ2

j,d

)1/D
. (28)

Since wj = ωj

∏D−1
d=1 γj,d, the right-hand side becomes(

∥ωj∥22 ·
∏D−1

d=1 γ2
j,d

)1/D
= |
∏D−1

d=1 γj,d · ∥ωj∥2|2/D = ∥ωj ·
∏D−1

d=1 γj,d∥2/D2 = ∥wj∥2/D2 . (29)

Summing over all J groups yields

1

D

(
∥ω∥22 + ∥Γ∥2F

)
≥

J∑
j=1

∥wj∥2/D2 = ∥w∥2/D2,2/D , (30)

with equality holding if and only if ∥ωj∥22 = γ2
j,1 = · · · = γ2

j,D−1 for each j ∈ [J ], i.e. exactly
the balancedness condition (7). Under that condition, each group-wise penalty attains its minimal
value ∥wj∥2/D2 subject to the constraint that the effective parameter wj remains unchanged. Finally,
substituting back into L(ω,Γ) = L0(ω ▶ γ⊙) + λ

D (∥ω∥22 + ∥Γ∥2F ) gives

L(ω,Γ) = L0(w) + λ

J∑
j=1

∥wj∥2/D2 = L0(w) + λ∥w∥2/D2,2/D = Lw(w), (31)

completing the proof.
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B.3 Proof of Theorem 1

Proof. The two objectives are

L(ω,Γ) = L0

(
ω ▶ γ⊙)+ λ

D

(
∥ω∥22 + ∥Γ∥2F

)
, (32)

Lw(w) = L0(w) + λ

J∑
j=1

∥wj∥2/D2 . (33)

For the first direction, suppose that ŵ is a local minimizer of Lw(w). Then there is ε > 0 such that
Lw(ŵ) ≤ Lw(w) ∀ w ∈ B(ŵ, ε) , (34)

where B(ŵ, ε) denotes an ε-ball around ŵ ∈ Rp. By the multiplicative and surjective nature of the
D-Gating overparameterization ▶ , we can always choose a balanced representation (ω̂, Γ̂) in the
preimage of ŵ, i.e.,

ω̂ ▶ γ̂⊙ = ŵ, ∥ω̂j∥22 = γ̂2
j,1 = · · · = ∥ŵj∥2/D2 ∀ j = 1, . . . , J. (35)

Using Corollary 1, balancedness implies that the D-Gated objective simplifies to

L(ω̂, Γ̂) = Lw(ŵ). (36)
Further, by continuity of ▶ , there is δ > 0 such that

∥(ω,Γ)− (ω̂, Γ̂)∥2 < δ =⇒ ∥ω ▶ γ⊙ − ŵ∥2 < ε. (37)

Hence all (ω,Γ) ∈ B((ω̂, Γ̂), δ) map to some effective weight w = ω ▶ γ⊙ ∈ B(ŵ, ε). Moreover,
the gated objective L(ω,Γ) can be related to its non-differentiable counterpart Lw(w) as L(ω,Γ) =

Lw

(
ω ▶ γ⊙)+λM(ω,Γ), where M(ω,Γ) := D−1(∥ω∥22+∥Γ∥2F )−∥ω ▶ γ⊙∥2/D2 measures

the (non-negative) misalignment of the D-Gating variables, achieving 0 if and only if (ω,Γ) is a
balanced representation of the effective weight w = ω ▶ γ⊙. Then, using Eq. (34) and Eq. (36),
we obtain the following chain of inequalities

∀(ω,Γ) ∈ B((ω̂, Γ̂), δ) : L(ω,Γ) = Lw

(
ω ▶ γ⊙)+ λM(ω,Γ)︸ ︷︷ ︸

≥0

≥ Lw

(
ω ▶ γ⊙) (38)

≥ Lw(ŵ)

= L(ω̂, Γ̂) ,

showing (ω̂, Γ̂) is a local minimizer of L(ω,Γ).

To show the reverse direction, assume (ω̂, Γ̂) is a local minimizer of L(ω,Γ). We can apply Lemma 1
to establish the balancedness of the gating parameters (ω̂, Γ̂) and further define the effective weight
as ŵ = ω̂ ▶ γ̂⊙. Since (ω̂, Γ̂) is balanced, M(ω̂, Γ̂) = 0 and thus L(ω̂, Γ̂) = Lw(ŵ). By local
minimality of (ω̂, Γ̂), there exists δ > 0 such that

L(ω̂, Γ̂) ≤ L(ω,Γ) ∀ (ω,Γ) ∈ B((ω̂, Γ̂), δ). (39)

Define for each group j ∈ [J ] the continuous function rj(wj) = ∥wj∥1/D2 on Rpj . Given any
w′ ∈ Rp in a neighborhood of ŵ, we can construct corresponding balanced D-Gating parameters as
follows:

γ′
j,d =

{
sign(γ̂j,d) rj(w′

j), γ̂j,d ̸= 0,

rj(w
′
j), γ̂j,d = 0.

ω′
j =

{
w′

j/
∏D−1

d=1 γ′
j,d, rj(w

′
j) ̸= 0,

0, rj(w
′
j) = 0.

(40)

Then ω′
j

∏D−1
d=1 γ′

j,d = w′
j , and by construction, ∥ω′

j∥22 = γ′2
j,d = rj(w

′
j)

2 = ∥w′
j∥

2/D
2 for all

j ∈ [J ] and d ∈ [D − 1]. Let (ω′,Γ′) denote the collection of group-wise gating parameters, i.e.,
(ω′,Γ′) = ({ω′

j}Jj=1, {γ′
j,d}

J,D−1
j=1,d=1). By Corollary 1, we obtain L(ω′,Γ′) = Lw(w′). Continuity

of rj and of the map w′
j 7→ ω′

j guarantees the existence of ε > 0 such that

∥w′ − ŵ∥2 < ε =⇒ ∥(ω′,Γ′)− (ω̂, Γ̂)∥2 < δ. (41)
Therefore, for every w′ ∈ B(ŵ, ε), the constructed D-Gating parameters (ω′,Γ′) satisfy Eq. (39)
and thus

∀w′ ∈ B(ŵ, ε) : Lw(w′) = L(ω′,Γ′) ≥ L(ω̂, Γ̂) = Lw(ŵ).
It follows that ŵ is a local minimizer of Lw(w), completing the proof.
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B.4 Proof of Lemma 2

Proof. We differentiate the pair-wise imbalance defined in Eq. (13) with respect to time and treat the
two cases of d = 1 and d ̸= 1 separately. In the following we use γ⊙

j ∈ R to abbreviate
∏D−1

d=1 γj,d.

Case 1: For d = 1, we have

Ij,1,d′(t) = ∥ωj(t)∥22 − γj,d′(t)2.

Differentiating with respect to time yields

d

dt
Ij,1,d′(t) = 2ωj(t)

⊤ω̇j(t)− 2 γj,d′(t) γ̇j,d′(t). (42)

Substituting the dynamics from Eq. (12) (with the appropriate negative signs) gives

d

dt
Ij,1,d′(t) = − 2

[
γ⊙
j ωj(t)

⊤∇wj
L0 +

2λ

D
∥ωj(t)∥22

]

+ 2 γj,d′(t)

[(
γ⊙
j

γj,d′(t)

)
ωj(t)

⊤∇wj
L0 +

2λ

D
γj,d′(t)

]
.

(43)

Since

γ⊙
j = γj,d′(t)

(
γ⊙
j

γj,d′(t)

)
,

the terms involving ωj(t)
⊤∇wj

L0 cancel, leaving

d

dt
Ij,1,d′(t) = −4λ

D

(
∥ωj(t)∥22 − γj,d′(t)2

)
= −4λ

D
Ij,1,d′(t). (44)

Case 2: For d ̸= 1, we have

Ij,d,d′(t) = γj,d(t)
2 − γj,d′(t)2.

Differentiating with respect to t yields

d

dt
Ij,d,d′(t) = 2 γj,d(t) γ̇j,d(t)− 2 γj,d′(t) γ̇j,d′(t). (45)

Substituting the expressions from Eq. (12) for both γ̇j,d(t) and γ̇j,d′(t) and using the identity

γ⊙
j = γj,d(t)

(
γ⊙
j

γj,d(t)

)
,

the cancellation of the terms involving ωj(t)
⊤∇wj

L0 follows analogously to the first case, yielding

d

dt
Ij,d,d′(t) = −4λ

D

(
γj,d(t)

2 − γj,d′(t)2
)
= −4λ

D
Ij,d,d′(t). (46)

Thus, in both cases, we have
d

dt
Ij,d,d′(t) = −4λ

D
Ij,d,d′(t),

so that the solution to the differential equation is

Ij,d,d′(t) = Ij,d,d′(0)e−
4λ
D t.
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B.5 Proof of Lemma 3

Proof. For a fixed group j, the squared gating parameters are denoted as

a1(t) = ∥ωj(t)∥22, ad+1(t) = γj,d(t)
2, d ∈ [D − 1], (47)

the group-level regularizer is Rj(t) :=
1
D

∑D
d=1 ad(t), and the effective group weight is wj(t) =

ωj(t)
∏D−1

d=1 γj,d(t) = ωj(t) · γ⊙
j (t), so that by construction ∥wj(t)∥2/D2 =

(∏D
d=1 ad(t)

)1/D
.

Note that by Lemma 2, for each group j ∈ [J ], the pair-wise imbalances (as in Eq. (13)) satisfy

Ij,d,d′(t) = Ij,d,d′(0)e−
4λ
D t. (48)

The overall misalignment in group j, measuring the balancedness of the gating representation, is
given by

Mj(t) := Rj(t)− ∥wj(t)∥2/D2 ≥ 0. (49)

Let mj(t) = min1≤d≤D ad(t) and Mj(t) = max1≤d≤D ad(t). Then, by definition, the maximal
pair-wise imbalance for group j ∈ [J ] is Imax,j(t) := Mj(t)−mj(t). Since Rj(t) is an arithmetic
mean, it satisfies mj(t) ≤ Rj(t) ≤ Mj(t) and hence is upper bounded by Mj(t). Because the
geometric mean is not smaller than its smallest component, it is lower bounded by mj(t), i.e.,

∥wj(t)∥2/D2 =
(∏D

d=1 ad(t)
)1/D

≥ mj(t), so that we have

Mj(t) = Rj(t)− ∥wj(t)∥2/D2 ≤ Mj(t)−mj(t) = Imax,j(t). (50)

By Lemma 2, for any pair (d, d′) in group j we have

|ad(t)− ad′(t)| ≤ |ad(0)− ad′(0)|e− 4λ
D t, (51)

so that Imax,j(t) ≤ Imax,j(0)e
− 4λ

D t. Hence, Mj(t) ≤ Imax,j(0)e
− 4λ

D t for every group j. Defining
Imax(0) = maxj∈{1,...,J} Imax,j(0), we obtain Mj(t) ≤ Imax(0)e

− 4λ
D t for all j. Summing over j,

the overall misalignment is

M(t) =

J∑
j=1

Mj(t) ≤ J Imax(0)e
− 4λ

D t. (52)

By adding and subtracting Rw(w) := ∥w∥2/D2,2/D to the D-Gated objective L(ω,Γ), we can express
it as Lw(w) plus the misalignment M(ω,Γ) ≥ 0, i.e.,

L(ω,Γ) = L0(ω ▶ γ⊙) + λR(ω,Γ) + λ
(
Rw(w)−Rw(w)

)
= Lw(ω ▶ γ⊙) + λM(ω,Γ) .

(53)
As the difference between both losses is simply L(ω(t),Γ(t))−Lw(w(t)) = λM(t), it follows that

L(ω(t),Γ(t))− Lw(w(t)) ≤ λJ Imax(0)︸ ︷︷ ︸
:=C

e−
4λ
D t = Ce−

4λ
D t , (54)

where C is an initialization-dependent constant. We conclude that as t → ∞, L(ω(t),Γ(t)) converges
at least exponentially fast to Lw(w(t)), with their difference vanishing with rate increasing in λ and
decreasing in D.

B.6 Proof of Lemma 4

Proof. We first abbreviate the gradient of L0 w.r.t. wj as g
(t)
j := ∇wj

L0(w
(t)). For clarity of

exposition, w.l.o.g., consider full-batch gradient descent updates, given by

ω
(t+1)
j = ω

(t)
j − η

(
(γ⊙

j )(t)g
(t)
j +

2λ

D
ω

(t)
j

)
, γ

(t+1)
j,d = γ

(t)
j,d − η

( ∏
d′ ̸=d

γ
(t)

j,d′ · ω
(t)⊤
j g

(t)
j +

2λ

D
γ
(t)
j,d

)
, (55)
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and pair-wise imbalances I(t)
j,1,d′ = ∥ω(t)

j ∥22−
(
γ
(t)
j,d′

)2
and I(t)

j,d,d′ =
(
γ
(t)
j,d

)2− (γ(t)
j,d′

)2
for d, d′ > 1.

We first inspect the vector–scalar case I(t+1)
j,1,d′ and start by expanding the squared norm of ω(t+1)

j :

∥ω(t+1)
j ∥22 =

∥∥∥ω(t)
j − η

(
(γ⊙

j )(t)g
(t)
j +

2λ

D
ω

(t)
j

)∥∥∥2
2

= ∥ω(t)
j ∥22 − 2η(γ⊙

j )(t)ω
(t)⊤
j g

(t)
j − 4λ

D
η∥ω(t)

j ∥22 + η2
∥∥∥(γ⊙

j )(t)g
(t)
j +

2λ

D
ω

(t)
j

∥∥∥2
2
. (56)

Similarly, we expand the squared updated scalar γ(t+1)
j,d′ and separate the terms by their order in η,

(
γ
(t+1)
j,d′

)2
=
(
γ
(t)
j,d′

)2 − 2ηγ
(t)
j,d′ ·

∏
d′′ ̸=d′

γ
(t)
j,d′′ · ω(t)⊤

j g
(t)
j − 4λ

D
η
(
γ
(t)
j,d′

)2
+ η2

( ∏
d′′ ̸=d′

γ
(t)
j,d′′ · ω(t)⊤

j g
(t)
j +

2λ

D
γ
(t)
j,d′

)2
. (57)

Subtracting (57) from (56) to get I(t+1)
j,1,d′ , the first-order terms −2η(γ⊙

j )(t)ω
(t)⊤
j g

(t)
j from both

expansions cancel, since (γ⊙
j )(t) = γ

(t)
j,d′ ·

∏
d′′ ̸=d′ γ

(t)
j,d′′ , and we obtain after re-grouping of terms:

I(t+1)
j,1,d′ =

(
1− 4λ

D
η
)
I(t)
j,1,d′ + η2∆

(t)
j,1,d′ , (58)

where

∆
(t)
j,1,d′ : =

∥∥(γ⊙
j )(t)g

(t)
j +

2λ

D
ω

(t)
j

∥∥2
2
−
( ∏

d′′ ̸=d′

γ
(t)
j,d′′ · ω(t)⊤

j g
(t)
j +

2λ

D
γ
(t)
j,d′

)2
= ∥∇ωj

L(ω(t),Γ(t))∥22 −
(∂L(ω(t),Γ(t))

∂γj,d′

)2
(59)

is the second-order residual that reduces to the imbalance of gradients.2 This further implies that
close to stationarity of the D-Gated objective, ∆(t)

j,1,d′ also vanishes and the discrete-time dynamics
reduce to simple geometric decay .
For the scalar-scalar imbalances I(t+1)

j,d,d′ , we already derived (γ
(t+1)
j,d′ )2 in Eq. (57), which also sym-

metrically defines (γ(t+1)
j,d )2. Subtracting both, the first-order terms cancel again, and we obtain

I(t+1)
j,d,d′ =

(
1− 4λ

D
η
)
I(t)
j,d,d′ + η2

(
(A

(t)
j,d)

2 − (A
(t)
j,d′)

2
)
:=
(
1− 4λ

D
η
)
I(t)
j,d,d′ + η2∆

(t)
j,d,d′ , (60)

where (A
(t)
j,d)

2 :=
(∏

d′′ ̸=d γ
(t)
j,d′′ · ω(t)⊤

j g
(t)
j + 2λ

D γ
(t)
j,d

)2
=
(

∂L(ω(t),Γ(t))
∂γj,d

)2
. This shows point i).

Similar to the vector-scalar case, ∆(t)
j,d,d′ being a difference of squared partial derivatives implies that

the term vanishes at stationarity, resulting in geometric decay.

For point ii), we assume balancedness, i.e., I(t)
j,d,d′ = 0, for any two scalar factors d, d′ > 1. The

imbalance under (S)GD evolves as I(t+1)
j,d,d′ =

(
1− 4λ

D η
)
I(t)
j,d,d′ + η2

(
(A

(t)
j,d)

2 − (A
(t)
j,d′)2

)
. Therefore,

we must show that pair-wise balancedness I(t)
j,d,d′ = 0 (with potentially non-zero factors γj,d, γj,d′)

implies ∆(t+1)
j,d,d′ = 0 for d, d′ > 1. Abbreviating

(
γ
⊙\d
j

)(t)
:=
∏

d′′ ̸=d γ
(t)
j,d′′ , we factor the second-

order term as

∆
(t)
j,d,d′ = (A

(t)
j,d)

2 − (A
(t)
j,d′)

2 = (A
(t)
j,d +A

(t)
j,d′)(A

(t)
j,d −A

(t)
j,d′). (61)

2Note that this can be further simplified to ∆
(t)

j,1,d′ =
(
(γ

⊙\d′
j )(t)

)2 · ((γ(t)

j,d′)
2∥g(t)

j ∥
2
2 −

(
ω

(t)⊤
j g

(t)
j

)2)
+

4λ2

D2 I(t)j,1,d′ , showing that we can not fully factor I(t)j,1,d′ out of ∆(t)

j,1,d′ . Hence I(t)j,1,d′ = 0 does not generally

imply I(t+1)

j,1,d′ = 0 for vector-scalar imbalances where d > 1.
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The sum term is
(
(γ

⊙\d
j )(t) + (γ

⊙\d′

j )(t)
)
· ω(t)⊤

j g
(t)
j + 2λ

D (γ
(t)
j,d + γ

(t)
j,d′), and the difference term(

(γ
⊙\d
j )(t) − (γ

⊙\d′

j )(t)
)
· ω(t)⊤

j g
(t)
j + 2λ

D (γ
(t)
j,d − γ

(t)
j,d′). Expanding their product, we obtain:

∆
(t)

j,d,d′ =
(
(γ

⊙\d
j )(t) + (γ

⊙\d′
j )(t)

)(
(γ

⊙\d
j )(t) − (γ

⊙\d′
j )(t)

) (
ω

(t)⊤
j g

(t)
j

)2
+
(4λ2

D2

)(
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The last two mixed terms cancel, which can be seen by summing them and factoring:(
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This shows for scalar gates γj,d, γj,d′ with d, d′ ∈ [D]\{1}, all terms in I(t+1)
j,d,d′ depend multiplicatively

on I(t)
j,d,d′ , and hence I(t)

j,d,d′ = 0 implies I(t+1)
j,d,d′ = (1− 4λ

D ) · 0 + η2 · 0 = 0, proving point ii).

For point iii), note that a balanced zero representation (ω
(t)
j , {γ(t)

j,d}
D−1
d=1 ) = 0 of all vector-scalar

and scalar-scalar factor pairs satisfies I(t)
j,d,d′ = 0 for all d, d′ ∈ [D]. Since all terms in ∆
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j,d,d′ are

multiplicative in either ω(t)
j or γ(t)

j,d, it vanishes. Therefore, I(t+1)
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D η) · 0 + η2 · 0 = 0 for

d, d′ ̸= 1. Analogously, ∆(t+1)
j,1,d′ = 0 using the same argument. Hence I(t+1)

j,1,d′ = 0. Beyond simply
enforcing balancedness between both vector and scalar gating factors, inspecting the updates for
ω

(t)
j = 0 and γ(t)

j,d = 0 in Eq. (55) directly shows that ω(t+1)
j = 0−η·0 = 0 and γ(t+1)

j,d = 0−η·0 = 0.
By induction, the iterates of a balanced zero representation in group j ∈ [J ] are thus confined to
w

(t′)
j = 0∀ t′ > t under (S)GD dynamics. This completes the proof.

C Experimental details

In all our experiments, we evaluate D-Gating only for D ∈ {2, 3, 4}, resulting in induced L2,1, L2,2/3,
and L2,0.5 regularization, following broadly established ranges for Lp,q group regularization [22].
Although an ever deeper D-Gating parametrization better approximates a group L0 penalty, the
increase in non-convexity potentially causes numerical instabilities without necessarily improving
performance beyond 4-Gating (cf. Appendix E.3). Nevertheless, in the majority of our experiments,
there is a marked distinction between convex group penalization (D = 2) and the non-convex
extension (D > 2). Throughout all experiments, ω is initialized using a standard initialization
scheme as for w, while the gating parameters γj,d are initialized with unity, i.e., Γ(0) = 1J1

⊤
D−1, see

Algorithm 1.
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Table 2: Summary of datasets used in feature selection experiments.

Dataset Training Samples Test Samples Classes Input Features

ISOLET [9] 6,328 1,559 26 617
COIL20 [44] 1,152 288 20 400
ACTIVITY [2] 4,252 1,492 6 561
MNIST [34] 60,000 10,000 10 784
F-MNIST [64] 60,000 10,000 10 784
MADELON [17] 2,080 520 2 500

C.1 Details on group lasso simulation

Simulation details For our group sparse linear regression set-up, we simulate n = 200 training (and
2000 test) samples with p = 200 features grouped into 40 groups of 5 features each. 7 feature groups
contain informative (non-zero) weights and 33 groups contain noise features only. We draw both
the feature values and the (informative) weights from N (0, 1) and likewise add standard Gaussian
additive noise to the simulated predictor to obtain the targets.

Training details We train the D-Gated models and direct L2,1 penalization using full-batch gradient
descent for 1500 iterations using a cosine learning rate schedule with initial learning rate 5× 10−2

and 0.9 momentum. We consider parameter groups with norm smaller than 10−6 to be zero. For the
specialized optimization routine to solve the Group Lasso efficiently, we use the accelerated proximal
gradient method proposed by [50]. The oracle method shown in Fig. 4 is the efficient ordinary least
squares estimator computed only on the truly non-zero coefficients. Within each simulation, all
regularized methods are run on a grid of 30 λ values spaced logarithmically between 10−5 and 15.
The procedure is repeated over 10 simulations and the average results reported in Fig. 4.

C.2 Details on feature selection experiments

Architecture As a backbone for all methods (D-Gating, LassoNet, HSIC), we use a fully-connected
LeNet-300-100 architecture [35] with two hidden layers (300 and 100 neurons) and ReLU activation
functions and Kaiming Normal initialization. To obtain feature selection for non-linear models
using our approach, we group the first-layer weights of the network by input feature and apply
D-Gating. We train the network on all classification tasks and methods using SGD for 100 epochs
with a batch size of 256 and cosine schedule with an initial learning rate of 0.1. All models are
initialized using a Kaiming Normal scheme, with the scaling factors for D-Gating being initialized
with unity (cf. Algorithm 1). Moreover, we consider parameter groups with 2-norm smaller than
float32.mach.eps ≈ 1.19 × 10−7 to be 0. Table 2 describes the basic properties of the used
datasets. For datasets which do not explicitly provide a test set, we randomly assign 20% of
the samples to the test set. Note that, to ensure a fair comparison to D-Gating, LassoNet [37] is
implemented without an additional debiasing step that retrains the model only on the selected features.

C.3 Details on filter sparsity experiments

Architectures VGG-16 for CIFAR-10 and SVHN consists of 13 convolutional layers and 3 fully-
connected layers [51]. The convolutional layers are organized into five groups: two layers with 64
filters, two with 128 filters, 3 layers with 256 filters, 3 layers with 512 filters, and another 3 layers
with 512 filters. After each group, we apply a 2× 2 max-pooling operation. All filters are 3× 3. We
add batch normalization immediately before every ReLU activation. To reduce parameters compared
to the ImageNet version, we follow [68] and replace the two dense layers before the output with a
single fully-connected layer of 512 neurons.
ResNet-18 is an 18-layer deep residual network introduced by [19]. For small-image datasets, we
follow, e.g., [54], by replacing the initial 7 × 7 convolution and the following max-pooling layer
with a single 3× 3. The model begins with that convolution, then proceeds through four stages of
basic residual blocks, each stage consisting of two blocks, with filter counts of [64, 128, 256, 512].
Finally, global average pooling reduces the feature maps before the fully connected output layer. In
all methods we only regularize the convolutional but not the fully-connected layers, either through
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Table 3: Summary of datasets used in image classification experiments.
Dataset Training Samples Test Samples Classes Input Features

CIFAR-10 [31] 50,000 10,000 10 3,072 (32×32×3)
SVHN [45] 73,257 26,032 10 3,072 (32×32×3)
CIFAR-100 [31] 50,000 10,000 100 3,072 (32×32×3)

D-Gating or by directly regularizing the filter weights using an L2,1 penalty [62, 49, 38] or the batch
normalization scaling variables as in network slimming [40].

Data We conduct experiments on three standard image classification benchmark tasks described
in Table 3. We use the train/test split provided by the datasets. Additionally, we use standard pre-
processing and data augmentation techniques, namely normalizing the input images and employing
horizontal flips, width or height shifts up to 12.5%, and up to 15◦ rotations.

Training Our training hyperparameter settings generally follow broadly established configurations
for the respective tasks [51, 19, 68]. Because established learning rate settings were found to perform
suboptimally, we scanned the interval [10−3, 1] using a small regularization strength λ for each
method and dataset separately. Table 4 lists the hyperparameters for the filter sparsity experiments.

Table 4: Training hyperparameters for different architectures and image classification datasets. The learning rates
correspond to D-Gating with D = {2, 3, 4} (set) and the comparison methods (second value). The comparison
methods use standard Kaiming initialization.

Architecture Dataset Epochs Batch size Optim. Mom. Init. LR Schedule

VGG-16 CIFAR-10 200 128 SGD 0.9 Kaiming Normal {0.3,0.4,0.4}, 0.1 Cosine
SVHN 200 128 SGD 0.9 Kaiming Normal {2e-3, 3e-3, 3e-3}, 2e-3 Cosine

ResNet-18 CIFAR-100 200 128 SGD 0.9 Kaiming Normal {0.2,0.3,0.4}, 0.2 Cosine

In D-Gating, the sparsity is controlled by the regularization strength λ. To obtain the accuracy-
sparsity tradeoffs, we therefore train models for each D ∈ {2, 3, 4} along a grid of λ values that spans
the whole sparsity range. For the comparison methods, direct optimization of the sparsity-inducing
L2,1 and L1 penalties does not result in sparse filters whose norm is below float32.mach.eps ≈
1.19× 10−7. To achieve sparsity and construct the tradeoff curves, we also train these models along
a grid of λ values but subsequently post-hoc prune each of these models along a sequence of pre-
defined pruning ratios {0.1, 0.2, . . . , 0.9, 0.95, 0.98, 0.99}. The tradeoff curves are then constructed
by taking the best performance over all λ values separately at each pruning ratio. This optimally
reflects different regularization requirements at different sparsity ranges. In contrast to the original
proposals of [62, 38, 40], we implement both direct L2,1 regularization with post-hoc filter pruning
and network slimming (L1 regularization of the batch normalization scaling parameters) as a one-shot
procedure without retraining after sparsification to ensure a fair comparison to D-Gating, which
can be seen as merely another optimization vehicle to optimize non-smooth structured sparsity
penalties, making them comparable outside of a sophisticated pruning pipeline. Moreover, like
direct optimization of these penalties, D-Gating can be arbitrarily combined with other pruning and
retraining schemes.

C.4 Details on language modeling experiments

We choose a variant of NanoGPT trained on the character-level TinyShakespeare dataset comprising
5, 458, 199 tokens and a vocabulary size of 91 different symbols. Deviating from the usual
performance evaluation metrics for language models, the character-level granularity also allows for
reporting the validation accuracy instead of only the perplexity. We set aside 10% of the training data
for validation purposes.

Our NanoGPT implementation contains 10.8 mio. parameters and has 6 layers, 12 attention heads
per multi-head attention layer, block size of 256, an embedding dimension of 384 and dropout
with parameter 0.2 between the layers. We train all models on a grid of logarithmically spaced λ
values between 10−4 and 102 for 3000 iterations using a batch size of 32 and Adam [26] with a
cosine schedule and initial learning rate 10−3. Since direct optimization of the L2,1 penalty does
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Figure 9: Schematic illustration of D-Gating overparameterization to achieve structured head sparsity in a
multi-head attention layer. Left: original attention layer. Right: D-Gated value matrices sparsify the whole
attention head. Red nodes indicate the location of the additional gating parameters.

not yield sparse solutions, defined as having a 2-norm smaller than 10−5, we further prune these
models using structured global magnitude pruning to sparsity ratios {0.05, 0.1, 0.2, . . . , 0.9, 0.95},
and report the best performance over all λ values for a given sparsity ratio. Note that the D-Gated
models incorporate no additional pruning.
Fig. 9 illustrates how we implement structured attention head penalization using D-Gating. Note
that we only gate the value matrices of each head, which suffices for the whole attention head to be
removed when sparsified.

C.5 Details on Neural Oblivious Decision Ensembles

We optimize the squared loss on the Wine quality prediction task (n = 4, 898; p = 11) [7] using
SGD with Nesterov momentum 0.9 and a cosine decay learning rate schedule with initial learning
rate 0.4. The models are trained for 400 epochs without early stopping using a batch size of 1024.
Fig. 10 describes the application of D-Gating in NODEs for D = 2.

Figure 10: Schematic illustration of D-Gating overparameterization to achieve structured tree sparsity in a
NODE model. Left: original NODE structure. Right: NODE with 2-gated tree structures (multiplied by a
shared factor).

D Computational Environment

All experiments were conducted either on a single NVIDIA RTX A6000 or A4000 GPU with 48GB
and 16GB of memory, respectively. Smaller experiments, e.g., for toy models, were carried out on
standard CPU workstations. The total single-GPU runtime for all experiments is estimated to be
around 500 hours.

E Further experiments and ablation studies

E.1 Additional plots for filter sparsity in image classification

Besides the accuracy-sparsity tradeoff, the reduction of FLOPs through is of special interest for
structured sparsification methods. Besides Table 1, we show the full tradeoff curves for accuracy and
theoretical speed-up, measured as the ratio of FLOPs of the original and sparse models, in Fig. 11.

Additionally, Fig. 12 shows the regularization paths for D-Gating with D ∈ {2, 3, 4} for all three
image classification datasets we experimented on. Complementing the conclusions from the tradeoff
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Figure 11: Test accuracy vs. theoretical speed-up (measured as the ratio of FLOPs) of D-Gated convolutional
neural networks and comparison methods.

curves in the main text, both plots corroborate our findings of superior tradeoffs for D = {3, 4} over
D = 2, as well as increased sparsity at the same regularization parameter λ.
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Figure 12: Effect of regularization λ on filter sparsity for D ∈ {2, 3, 4}.

E.2 Overheads

Parameter overhead To quantify the parameter overhead incurred by applying D-Gating in our
experiments, we contrast the number of additional parameters with the models’ parameters. The
results are shown in Table 5, highlighting that larger architectures typically have fewer regularized
groups (attention heads, convolutional filters) with large group sizes of thousands of parameters,
suggesting that our approach scales better for larger than for small architectures by introducing
relatively fewer additional parameters.

Table 5: Parameter count overhead for D-Gating. The linear model is the one from Fig. 4, the input-sparse
LeNet-300-100, the one from Fig. 5, VGG-16 from Fig. 6, and NanoGPT from Fig. 7. The overhead rate in the
worst case (D = 4 and the largest input dimension), is given by #new params

#old params − 1.
Model Vanilla Params Additional Params Overhead rate (D = 4) Details

Lin. Mod. 200 40 · (D−1) 6.0× 10−1 40 groups of 5 features
LeNet-300-100 ≈ 266,000 input_dim · (D−1) 8.8× 10−3 input_dim ∈ [400, 784]
VGG-16 ≈ 15 mio. 4, 224 · (D−1) 8.4× 10−4 Sum of conv. filters in 13 layers
NanoGPT ≈ 10.8 mio. 72 · (D−1) 2.0× 10−5 6 layers, 12 att. heads

Runtime and memory overhead Additionally, we measure the wall-clock runtime overhead of
D-Gating for D ∈ {2, 3, 4} against the vanilla models. Similarly, we record the peak GPU memory
utilization during training.

The runtime results are shown in Fig. 13, showing slight to moderate increases between 0% and 30%
for smaller batch sizes, with the difference becoming increasingly irrelevant for commonly used
larger batch sizes as well as larger architectures.
Similarly, Fig. 14 shows the memory overhead over vanilla models, indicating indiscernible utilization
for the vast majority of settings. The behavior of the fully-connected LeNet-300-100 exhibits high
variance and less clear patterns compared to the larger models, potentially due to its small size.
Generally, part of the difference in runtime and memory overhead is likely due to implementation
efficiency reasons and not necessarily an inherent difference.
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E.3 Depth and instability ablation studies

To guide the selection of the gating depth D and demonstrate that the full benefits of non-convex
L2,q, q < 1, regularization are usually attained at q = 2/3 or q = 0.5, corresponding to D = 3, 4 for
D-Gating [22], we further conduct depth ablation studies for the input-sparse LeNet-300-100 from
the experiment in Fig. 5 on ISOLET, extend the results for the filter-sparse VGG-16 on CIFAR-10
(Fig. 6), and analyze performance and instability for the group sparse regression task in Fig. 4.
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Figure 15: Effect of increasing the gating depth D beyond D = 4 for the input-sparse LeNet-300-100 on
ISOLET as well as the filter-sparse VGG-16 trained on CIFAR-10.

Fig. 15 shows the results for LeNet-300-100 and VGG-16 for increasing depth up to D = 20 and
D = 8, respectively. Importantly, we observe no measurable improvement in the performance-sparsity
tradeoff beyond D = 4, while the instability increases slightly.

For the group sparse linear regression task shown in Fig. 16, the left panel illustrates the numerical
instability caused by too large D, evidenced by the jagged regularization paths for D > 6. The
tradeoff curves in the right panel reveal that these instabilities degrade the performance at lower
sparsity values for large D.

Taken together, the values of q ∈ {2/3, 0.5}, i.e., D ∈ {3, 4}, recommended in the literature
are supported by our ablation studies, where deeper gating approaches show at best equivalent
performance while increasing numerical instability.

E.4 Imbalance decay and loss convergence for SGD and Adam

The convergence of the D-Gating objective L(ω,Γ) to the non-smooth regularized objective Lw(w),
as shown in Fig. 3, is directly related to the convergence of the regularizers of both objectives, as well
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Figure 16: Effect of increasing the gating depth D beyond D = 4 on the group-sparse linear regression task.
The left panel shows the regularization paths, and the right panel the performance-sparsity tradeoffs. The setup
is the same as in Fig. 4.

as the balancedness of the gating representations. To see this, note that

L(ω,Γ)− Lw(w) = L0(ω ▶ γ⊙) + λ(∥ω∥22 + ∥Γ∥2F )/D − L0(w)− λ∥w∥2/D2,2/D

= λ((∥ω∥22 + ∥Γ∥2F )/D − ∥w∥2/D2,2/D)

= λ(R(ω,Γ)−Rw(w))

= λM(ω,Γ), (66)

Hence, the losses converge if the regularizers converge, which, by the AM-GM inequality, happens if
and only if the gating representations are balanced. This relationship is verified in Fig. 17, showing
the same experiment as in Fig. 3, but plotting the convergence of regularizers instead of losses.
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Figure 17: Convergence of regularizers, i.e., evolution of misalignment, instead of loss convergence for SGD
trained on a neuron-sparse LeNet-300-100. Setting is the same as for Fig. 3.

Another interesting question is to empirically investigate the evolution of misalignment for a common
optimizer, for which the gradient flow and descent results Lemma 3 and Lemma 4 do not apply, i.e.,
Adam [26]. Fig. 18 shows the evolution of misalignment for the same setting as the previous Fig. 17,
but optimized with Adam instead of SGD. Results show that the D-Gating objective also converges
to the sparsity-inducing objective Lw(w) faster than SGD overall, albeit not at a neat exponential
rate. Moreover, the convergence speeds do not seem to depend as strongly on D as for SGD.
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Figure 18: Convergence of regularizers with Adam instead of SGD trained on a neuron-sparse LeNet-300-100.
Setting is the same as for Fig. 3.
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E.5 Subnetwork selection

In an additional application, we investigate whether D-Gating can correctly select whole data
modalities in a simple late-fusion multimodal network [13]. In these architectures, the modalities
are processed independently in separate subnetworks before their latent representations are fused in
the penultimate late-fusion layer. Fig. 19 visualizes such an architecture as well as our D-Gating
proposal for differentiable selection of modalities. In the D-Gating variant, the final-layer weights are
grouped by modality and subsequently gated, effectively selecting out whole modality subnetworks.
To control the contribution of the modalities, we simulate a semi-synthetic dataset combining both

Figure 19: Schematic illustration of modality selection in a late-fusion multimodal network using D-Gating
overparameterization. Left: original late-fusion architecture. Right: architecture including D-Gating of the
late-fusion layer, where the red nodes indicate the location of the gating factors.

tabular and image information additively in a predictor. To be precise, we simulate targets as

Y = (1− α) · ηtabular + α · ηimage + ε , ε ∼ N (0, 1) , α ∈ {0, 0.5, 1}.

The image predictor is based on the MNIST dataset of handwritten images and is simply the
(demeaned) face value of the digit contained in the image. The tabular predictor is given by ηtabuar =∑6

k=1 fk(xk) , xk ∼ U [−1, 1] , where the fk(·) are fixed smooth non-linear shape functions. Both
predictors are constructed to be similarly distributed. We simulate n = 2000 training and test
observations from the above data-generating process. In the late-fusion architecture, we use a small
VGG-style subnetwork with 4 convolutional layers for the MNIST images and a shallow subnetwork
to model the non-linear effects fk(·) of the tabular covariates xk. The models are optimized for 300
epochs using SGD with 0.8 momentum, a batch size of 32, and a learning rate of 5× 10−3. Fig. 20
shows the results for D ∈ {2, 3, 4} and α ∈ {0, 0.5, 1}. As expected, using the one standard error
rule to select the regularization strength λ, D-Gating can consistently select out the unimportant
modalities, with the separation of important and unimportant modalities becoming clearer as D
increases. Notably, for equal modality contributions (middle row), neither the validation-optimal λopt

nor λ1se selects out any of the modalities.

E.6 Differentiable sparse neural additive models

In another application, we show that D-Gating can be seamlessly applied to achieve differentiable
shape function sparsity in Neural Additive Models (NAMs) [1], which we call D-SNAMs. In
NAMs, each feature is processed independently in a separate subnetwork to learn a flexible shape
function non-parametrically. Then, the learned functions are combined additively to obtain the final
inherently interpretable predictor. Fig. 21 visualizes such an architecture as well as our D-Gating
proposal for differentiable shape function selection in NAMs. In the D-Gating variant, all outgoing
first-layer weights from each feature are grouped and subsequently gated, effectively selecting out
shape functions altogether. A related approach we compare against, Sparse Neural Additive Models
(SNAMs), imposes a non-differentiable L2,1 group lasso penalty on the shape function weights and
proceeds by direct optimization using SGD, i.e., its subgradient variant [65]. We further compare
against direct optimization using SGD with an L1 or L2 penalty on the same weights.

We investigate the behavior of D-SNAM, i.e., D-Gating in NAMs, on synthetic data simulated as
follows. The sparse non-linear additive data-generating process (DGP) for the response is given by

Y = sin(x1) + cos(x2) + x2
3 − x4 − |x5|+

∑20
j=6 0 · xj + ε , ε ∼ N (0, 1) ,

with five informative features x1, . . . , x5 and additional noise covariates x6, . . . , x20, all drawn
independently from N (0, 1). Thus, only the first five features contribute a non-zero signal, while the
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Figure 20: Regularization path and weight norms in multi-modal late-fusion network for different modality
contributions (rows) and D-Gating depth D ∈ {2, 3, 4} (columns). Norms below 10−5 are clipped. The solid
vertical bar indicates the validation-optimal λopt and the dashed vertical bar the λ1se chosen by the 1se rule, i.e.,
the sparsest model that performs within one standard error of the lowest validation RMSE (10 splits).

Figure 21: Schematic illustration of differentiable shape function selection in Neural Additive Models using
D-Gating overparameterization. Left: original NAM architecture. Right: differentiable sparse D-SNAM
architecture including D-Gating for each feature, where the red nodes indicate the locations of the gating factors.

remaining 15 are uninformative noise. We draw ntotal = 1000 independent samples from the DGP,
and perform 5-fold cross-validation (CV) to obtain mean performance and sparsity metrics, together
with standard errors. The regularization strength λ varies on a grid between 10−2 and 101.

The NAMs are defined to have identical shape function subnetworks with layers of size
(100, 100, 64, 1), respectively, ReLU activations for the hidden layers, and batch normalization
[24] after each hidden layer. Optimization of the squared loss is performed for 1000 epochs using
Adam optimizer with the default learning rate 10−3 and batch size 32 without early stopping. Shape
functions with a weight norm smaller than 10−3 are considered zero.

Fig. 22 shows the results for D ∈ {2, 3, 4} as well as the comparison methods SNAM and direct
L1 and L2 regularization. Across settings, D-Gating achieves differentiable shape function sparsity
while SNAM is not able to shrink the weights sufficiently and demands a post-training pruning step.
Further, D-SNAM effectively removes irrelevant shape functions while retaining informative feature
effects. For non-convex induced regularization using D > 2, the CV-optimal models are much
sparser than both D = 2 and the dense SNAM results. Moreover, compared to the direct optimization
used in the baselines, D-Gating with differentiable group sparsity achieves a markedly lower CV
error for D ∈ {3, 4} (left plot in Fig. 22).
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Figure 22: Performance of sparse NAMs with differentiable D-Gating for D ∈ {2, 3, 4}, compared against
L1, L2, and L2,1 (SNAM) baselines. Means and standard errors for 5-fold cross-validation are reported. The
annotated stars in the right plot indicate the CV-optimal models for each method and their CV error.
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