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ABSTRACT

Autonomous agents deployed in the real world need to be robust against adver-1

sarial attacks on sensory inputs. Robustifying agent policies requires anticipating2

the strongest attacks possible. We demonstrate that existing observation-space at-3

tacks on reinforcement learning agents have a common weakness: while effective,4

their lack of information-theoretic detectability constraints makes them detectable5

using automated means or human inspection. Detectability is undesirable to ad-6

versaries as it may trigger security escalations. We introduce ϵ-illusory attacks7

attacks, a novel form of adversarial attack on sequential decision-makers that is8

both effective and of ϵ−bounded statistical detectability. We propose a novel dual9

ascent algorithm to learn such attacks end-to-end. Compared to existing attacks,10

we empirically find ϵ-illusory attacks to be significantly harder to detect with au-11

tomated methods, and a small study with human subjects1 suggests they are simi-12

larly harder to detect for humans. Our findings suggest the need for better anomaly13

detectors, as well as effective hardware- and system-level defenses.14

1 INTRODUCTION15

The sophistication of attacks on cyber-physical systems is increasing, driven in no small part by16

the proliferation of increasingly powerful commercial cyber attack tools (NSCS, 2023). AI-driven17

technologies, such as virtual and augmented reality systems (Adams et al., 2018) and large-language18

model assistants (Radford et al., 2019), are opening up additional attack surfaces, e.g., the use of19

deep learning methods in autonomous driving tasks (Ren et al., 2015; Shi et al., 2019; Minaee et al.,20

2022), or deep reinforcement learning methods for robotics (Todorov et al., 2012; Andrychowicz21

et al., 2020), and nuclear fusion (Degrave et al., 2022). While AI can be used for cyber defense, the22

threat from automated AI-driven cyber attacks is thought to be significant (Buchanan et al., 2023)23

and the future balance between automated attack and defenses hard to predict (Hoffman, 2021).24

Beyond its beneficial use, deep reinforcement learning has also been proposed as a method for25

learning flexible automated attacks on AI-driven sequential decision makers (Ilahi et al., 2021). A26

common approach to countering adversarial attacks is to use policy robustification (Kumar et al.,27

2021; Wu et al., 2021). This approach can be effective, as visualized by the red-circled budgets in28

Fig. 1. However, as we show in this work, for observation-space attacks with larger budgets (grey29

circles in Fig. 1), robustification can be ineffective. The practical feasibility of large budget attacks30

has been highlighted in domains such as visual sensor attacks (Cao et al., 2021, patch attacks), as31

well as botnet evasion attacks (Merkli, 2020; Schroeder de Witt et al., 2021). This highlights the32

importance of a two-step defense process in which the first step employs anomaly detection (Haider33

et al., 2023), followed by attack-mitigating security escalations. This coincides with common cy-34

bersecurity practice, where intrusion detection systems allow for the implementation of mitigating35

contingency actions as a defense strategy (Cazorla et al., 2018). Therefore, effective cyber attackers36

are known to prioritize detection avoidance (Langner, 2011, STUXNET 417 attack).37

In this paper, we study the information-theoretic limits of the detectability of automated attacks on38

cyber-physical systems. To this end, we introduce a novel observation-space illusory attack frame-39

work. The illusory attack framework imposes a novel information-theoretic detectability constraint40
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Figure 1: We see adversary performance (reduction in the victim’s reward) mapped against the KL
divergence between the unattacked training and the attacked test distribution. Attacks with a small
L2 attack budget (indicated by small circles) can be defended against using randomized smoothing,
and attacks with a large KL divergence can be defended against by triggering contingency options
upon detection of the attack (purple shaded area). Illusory attacks (blue) can achieve significantly
higher performance than classic adversarial attacks (black), as they allow to limit the KL divergence
and thereby avoid detection.

on adversarial attacks that is grounded in information-theoretic steganalysis (Cachin, 1998). Unlike41

existing frameworks, the illusory attack framework naturally allows attackers to exploit environ-42

ment stochasticity in order to generate effective attacks that are hard (ϵ-illusory), or even impossible43

(perfect illusory) to detect.44

We propose a theoretically-grounded dual ascent algorithm and scalable estimators for learning il-45

lusory attacks. On a variety of RL benchmark problems, we show that illusory attacks can exhibit46

much better performance against victim agents equipped with state-of-the-art detectors than conven-47

tional attacks. Lastly, in a controlled study with human participants, we demonstrate that illusory48

attacks can be significantly harder to detect visually than existing attacks, owing to their seeming49

preservation of physical dynamics. Our findings suggest that software-level defenses against au-50

tomated attacks alone might not be sufficiently effective, and that system-wide and hardware-level51

robustification may be required for adequate security protection (Wylde, 2021). We also suggest that52

better anomaly detectors for RL should be developed.53

Our work makes the following contributions:54

• We formalize the novel illusory attack framework information-theoretically grounded at-55

tack detectability constraints.56

• We propose a dual ascent algorithm and scalable estimator to learn illusory attacks in high-57

dimensional control environments.58

• We show that illusory attacks can be effective against victims with state-of-the-art out-of-59

distribution detectors, whereas existing attacks can be detected and hence are ineffective.60

• We show that illusory attacks are significantly harder to detect by humans visual inspection.61

2 RELATED WORK62

Please see Appendix A.1 for additional related work.63

The adversarial attack literature originates in image classification (Szegedy et al., 2013), where64

attacks commonly need to be visually imperceptible. Visual imperceptibility is commonly proxied65

by simple pixel-space minimum-norm perturbation (MNP) constraints (Goodfellow et al., 2014;66

Madry et al., 2023). Several defenses against MNP attacks have been proposed (Das et al., 2018;67

Xu et al., 2018; Samangouei et al., 2023; Xie et al., 2023). Various strands of research in cyber68

2



Under review as a conference paper at ICLR 2024

security concern adversarial patch (AP) attacks that do not require access to all the sensor pixels,69

and commonly assume that the attack target can be physically modified (Eykholt et al., 2018; Cao70

et al., 2021). Illusory attacks differ from both MNP and AP attacks in that they are information-71

theoretically grounded and undetectable even for large budgets.72

MNP attacks have been extended to adversarial attacks on sequential decision-making73

agents (Chen et al., 2019b; Ilahi et al., 2021; Qiaoben et al., 2021). In the sequential MNP frame-74

work, the adversary can modify the victim’s observations up to a step- or episode-wise perturbation75

budget, both in white-box, as well as in black-box settings. Zhang et al. (2020) and Sun et al. (2021)76

use reinforcement learning to learn adversarial policies that require only black-box access to the77

victim policy. Work towards robust sequential-decision making uses techniques such as random-78

ized smoothing (Kumar et al., 2021; Wu et al., 2021), test-time hardening by computing confidence79

bounds (Everett et al., 2021), training with adversarial loss functions (Oikarinen et al., 2021), and80

co-training with adversarial agents (Zhang et al., 2021a; Dennis et al., 2020; Lanier et al., 2022). We81

compare against and build upon this work.82

Another body of work focuses on detection and detectability of learnt adversarial attacks on83

sequential decision makers. Perhaps most closely related to our work, Russo & Proutiere (2022)84

study action-space attacks on low-dimensional stochastic control systems and consider information-85

theoretic detection (Basseville et al., 1993; Lai, 1998; Tartakovsky et al., 2014) based on stochastic86

equivalence between the resulting trajectories. We instead investigate high-dimensional observation-87

space attacks, and consider learned detectors, as well as humans.88

Adversarial attacks against human agents. AI-driven attacks on humans and human-operated89

infrastructure, such as social networks, are an active area of research (Tsipras et al., 2018). (Ye90

& Li, 2020) consider data privacy and security issues in the age of personal human assistants, and91

Ariza et al. (2023) investigate automated social engineering attacks on professional social networks92

using chatbots. The advent of illusory attacks signifies that such automated attacks may be learnt93

such as to be hard to detect, or indeed undetectable.94

Information-theoretic hypothesis testing. The field of Bayesian optimal experimental design95

(Chaloner & Verdinelli, 1995, BOED) studies optimisation objectives that share similarities with96

the illusory attack objective. Foster et al. (2019) introduce several classes of fast EIG estimators by97

building on ideas from amortized variational inference. Shen & Huan (2022) use deep reinforcement98

learning for sequential Bayesian experiment design.99

3 BACKGROUND AND NOTATION100

We denote a probability distribution over a set X as P(X ), and an unnamed probability distribution101

as P(·). The empty set is denoted by ∅, the indicator function by 1, and the Dirac delta function102

by δ(·). Kleene closures are denoted by (·)∗. For ease of exposition, we restrict our theoretical103

treatment to probability distributions of finite support where not otherwise indicated.104

3.1 MDP AND POMDP.105

A Markov decision process (MDP) (Bellman, 1958) is a tuple ⟨S,A, p, r, γ⟩, where S is the finite2106

non-empty state space, A is the finite non-empty action space, p : S×A 7→ P(S) is the probabilistic107

state-transition function, and r : S ×A 7→ P(R) is a lower-bounded reward function. Starting from108

a state st ∈ S at time t, an action at ∈ A taken by the agent policy π : S 7→ P(A) effects a transition109

to state st+1 ∼ p(·|at) and the emission of a reward rt+1 ∼ r(·|st+1, at). The initial system state110

at time t = 0 is drawn as s0 ∼ p(·|∅). For simplicity, we consider episodes of infinite horizon111

and hence introduce a discount factor 0 ≤ γ < 1. In a partially observable MDP (Åström, 1965;112

Kaelbling et al., 1998, POMDP) ⟨S,A,Ω,O, p, r, γ⟩, the agent does not directly observe the system113

state st but instead receives an observation ot ∼ O(·|st) where O : S 7→ P(Ω) is an observation114

function and Ω is a finite non-empty observation space. In line with standard literature (Monahan,115

1982), we disambiguate two stochastic processes that are induced by pairing a POMDP with a policy116

2For conciseness, we restrict our exposition to finite state, action and observation spaces. Results
carry over to continuous state-action-observation spaces under some technical conditions that we omit for
brevity (Szepesvári, 2010).
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π: The core process, which is the process over state random variables {St}, and the observation117

process induced by observation random variables {Ot}. Please see Appendix A.2 for a more detailed118

exposition on MDPs and POMDPs.119

3.2 OBSERVATION-SPACE ADVERSARIAL ATTACKS.120

Observation-space adversarial attacks consider the scenario where an adversary manipulates the ob-121

servation of a victim at test-time. Much prior work falls within the SA-MDP framework (Zhang122

et al., 2020), in which an adversarial agent with policy ξ : S 7→ P(S) generates adversarial observa-123

tions ot ∼ ξ(st). The perturbation is bounded by a budget B : S 7→ 2S , limiting supp ξ(·|s) ∈ B(s).124

For simplicity, we consider only zero-sum adversarial attacks, where the adversary minimizes the125

expected return of the victim. In case of additive perturbations, S := Rd, d ∈ N and φt ∈ Rd (Ku-126

mar et al., 2021), ξ(st) := δ(ot). Here, ot := st+φt, subject to a real positive per-step perturbation127

budget B such that ∥φt∥22 ≤ B2, ∀t.128

3.3 INFORMATION-THEORETIC HYPOTHESIS TESTING129

Following (Blahut, 1987; Cachin, 1998), we assume two probability distributions P1 and P2 over130

the space Q of possible measurements. Given a measurement Q ∈ Q, we let hypothesis H0 be true131

if Q was generated from P1, and H1 if Q was generated from P2. A decision rule is then a binary132

partition of Q that assigns each element q ∈ Q to one of the two hypotheses. Let α be the type133

I error of accepting H1 when H0 is true, and β be the Type II error of accepting H0 when H1 is134

true. By the Neyman-Pearson theorem (Neyman et al., 1997), the optimal decision rule is given by135

assigning q to H0 iff the log-likelihood log (P1(q)/P2(q)) ≥ T , where T ∈ R is chosen according to136

the maximum acceptable β. For a sequence of measurements qt, this decision rule can be extended137

to testing whether
∑
t log (P1(qt)/P2(qt)) ≥ T (Wald, 1945). It can further be shown (Blahut,138

1987) that d(α, β) ≤ KL(P1|P2), where KL(Q|P) = EQ [logQ− logP] is the Kullback-Leibler139

divergence between two probability distributions Q and P, and d(α, β) ≡ α(logα− log(1− β)) +140

(1 − α)(log(1 − α) − log β) is the binary relative entropy. Note that if KL(P1|P2) = 0, then141

α = β = 1
2 , and therefore H0 cannot be better distinguished from H1 than by random guessing.142

Hence H0 and H1 are information-theoretically indistinguishable if KL(P1|P2) = 0.143

4 ILLUSORY ATTACKS144

4.1 THE ILLUSORY ATTACK FRAMEWORK145

We introduce a novel illusory attack framework in which an adversary attacks a victim acting in the146

environment E at test time, thus inducing a two-player zero-sum game G (Von Neumann & Morgen-147

stern, 1944). Our work assumes that the following facts about G are commonly known (Halpern &148

Moses, 1990) by both adversary and victim: At test time, the adversary performs observation-space149

attacks (see Sec. 3.2) on the victim. The victim can sample from the environment shared with an150

arbitrary adversary at train time, but has no certainty over which specific test-time policy the adver-151

sary will choose. The adversary can sample from the environment shared with an arbitrary victim at152

train time, but has no certainty over which specific test-time policy the victim will choose. The task153

of the victim is to act optimally with respect to its expected test-time return, while the task of the154

adversary is to minimise the victim’s expected test-time return.155

We follow Haider et al. (2023) in that we assume that the victim’s reward signal is endogenous (Barto156

et al., 2009), which means it depends on the victim’s action-observation history and is not explicitly157

modeled at test-time, thereby exposing it to manipulation by the adversary. Additionally, environ-158

ments of interest frequently emit sparse or delayed reward signals that aggravate the task of detecting159

an attacker before catastrophic damage is inevitable (Sutton & Barto, 2018; Haider et al., 2023).160

Assuming the victim’s policy πv : (O ×A)
∗ 7→ P(A) conducts adversary detection using161

information-theoretically optimal sequential hypothesis testing on its action-observation history (see162

Section 3.3), the state of the adversary’s MDP must contain the action-observation history of the vic-163

tim. The adversary’s policy ν : S × (O ×A)
∗ 7→ P(O) therefore conditions on both the state of the164

unattacked MDP, as well as the victim’s action-observation history. This turns the victim’s test-time165
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defined in Figure 2. The adversary’s expected
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detectability. The purple line indicates the ad-
versary’s attack return ceiling at 0.0.

decision process into a POMDP with an infinite state space, making the game G difficult to solve166

with game-theoretic means (see Appendix A.3).167

In the illusory attack framework, the trajectory density induced by the adversary’s MDP is given by168

ρa(·) ≡ p0(s0)ν(o0|s0)πv(a0|o0)
∏T
t=1 p(st|st−1, at−1)ν(ot|st, o<t, a<t)πv(at|o<t, a<t). (1)

The trajectory density of the victim’s observation process (see Sec. 3.1) in the attacked environment169

is given by170

ρv(·, ν) ≡
∑
s0...sT

ρa(·, s0 . . . sT ) (2)
Note that ρv(·,1ot=st) reduces to the trajectory density of the unattacked environment171

ρv(·) ≡ ρv(·,1ot=st) = p0(s0)πv(a0|s0)
∏T
t=1 p(st|st−1, at−1)πv(at|s<t, a<t). (3)

4.2 THE ILLUSORY OPTIMISATION OBJECTIVE172

At test-time, the adversary assumes that the victim is employing an information-theoretically optimal173

decision rule in order to discriminate between the hypotheses that an adversary is present, or not (see174

Section 3). At each test-time step, the victim only has access to an empirical distribution ρ̂v(·, ν)175

based on its test-time samples N collected so far, which constrains the power of its hypothesis test.176

We here assume that the adversary does not know how many test-time samples the victim can col-177

lect, but has sampling access to the victim’s test-time policy πv . Therefore, in order to degrade178

the victim’s decision rule performance, the adversary aims to ensure that the KL-distance between179

ρv(·, ν) and ρv(·) is smaller than a detectability threshold ϵ. To maximise attack strength, the adver-180

sary would choose the highest ϵ that warrants undetectability, i.e., renders the victim agent unable to181

distinguish between the observed trajectory distribution of the attacked and unattacked environment.182

We now define information-theoretical optimal adversarial attacks (ϵ-illusory attacks) for a given183

detectability threshold ϵ. We set the direction of the KL-divergence analogously to (Cachin, 1998).184

Definition 4.1 (ϵ-illusory attacks). An ϵ-illusory attack is an adversarial attack ν∗ which minimizes185

the victim reward, subject to KL (ρv(·)||ρv(·, ν)) ≤ ϵ:186

ν∗ = arg inf
ν
Eτ∼ρa [Rt], s.t. KL (ρv(·)||ρv(·, ν)) ≤ ϵ. (4)

The ϵ-illusory attack objective3 therefore aims to train an adversary that reduces the victim’s ex-187

pected cumulative return, while keeping its observed trajectory distribution ϵ-close to the one it188

would have observed in the unattacked environment.189

3Note that the ϵ-illusory attack objective differs from a standard constrained MDP (Altman, 2021,
CMDP) problem in that the illusory constraint cannot be expressed as a discounted sum over state-transition
costs (Achiam et al., 2017, CPO), but instead depends on trajectory densities.
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We call illusory attacks that satisfy ϵ = 0 perfect. In this case, to the victim, the presence of190

the adversary induces a POMDP with infinite state-space (see Appendix A.3), in which the core191

process (see Section 3) differs, but the observation process is statistically indistinguishable from192

the state-transition dynamics of the unattacked MDP. Importantly, as the illusory KL constraint is193

distributional, the adversary can learn stochastic adversarial attack policies that are not restricted to194

the identity function.195

Definition 4.2 (Perfect illusory attacks). A perfect illusory attack is any undetectable non-trivial196

adversarial attack ν, i.e. any ν for which ν ̸= 1ot=st and KL (ρv(·)||ρv(·, ν)) = 0.197

Example. We now build up some intuition over the meaning of illusory attacks by studying a198

simple single-step stochastic control environment (Figure 2). The environment is assigned one of199

two initial states with probabilities 1
3 and 2

3 , respectively. In the unattacked environment (Figure200

2 left), the victim can observe the initial state s0, while under an adversarial attack, it observes o0201

(see right side). Given its observation, the victim chooses between two actions, upon which the202

environment terminates and a scalar reward is issued. The reward conditions on the initial state and203

the victim’s action. Without undetectability constraints, the optimal observation-space attack always204

generates observations fooling the victim over the initial state (Regular Adversary in Figure 2),205

however, changing the victim’s observed initial state distribution. This makes this attack detectable.206

In contrast, a perfect illusory attack only fools the victim half of the time when in the second initial207

state, and always when in the first initial state, as this does not change the victim’s observed initial208

state distribution. Note that attack undetectability comes at the cost of a higher expected victim209

return ( 16 vs. 0).210

4.3 DUAL-ASCENT FORMULATION211

To solve the ϵ-illusory attack objective (see Def. 4.1), we propose the following dual-ascent algo-212

rithm (Boyd & Vandenberghe, 2004) with learning rate hyper-parameter αλk ∈ R+:213

νk+1 = arg inf
ν
Eτ∼ρa [Rt]− λk−1 [KL (ρv(·)||ρv(·, ν))− ϵ] .

λk+1 = max
(
λk + αλk [KL (ρv(·)||ρv(·, ν))− ϵ] , 0

) (5)

This algorithm alternates between policy updates and λ updates. As the KL-constraint is violated, λ214

adapts, thus modifying the influence on the KL-constraint in the policy update objective. Note that215

λ0 has to be initialized heuristically.216

4.4 ESTIMATING THE KL-OBJECTIVE217

Accurately estimating the KL objective in Def. 4.1 is, in general, a computationally complex prob-218

lem due to its nested form and the large support of ρv(·) and ρv(·, ν) (see also Appendix A.4). We219

write220

KL (ρv(·)||ρv(·, ν)) = Eτ∼ρv(·)
[
log ρv(·)

ρv(·,ν)

]
,= H [ρv(·), ρv(·, ν)]−H [ρv(·)] (6)

where H [ρv(·)] is the entropy, and H [ρv(·), ρv(·, ν)] is the cross-entropy (Murphy, 2012, p. 953).221

We now explicitly construct an estimator for the cross-entropy term. Let A ≡
∏T
t=1 πv(at|o<t, a<t).222

Then, ρv(·) = A · p0(o0)
∏T
t=1 pt (ot+1|ot, at), and223

ρv(·|ν) = A · E
s0

[
ν(o0|s0) E

s1

[
ν(o1|s1, o0, a0) E

s2

[
ν(o2|s2, o<2, a<2) · · ·

]
×(T−2). . .

]
. (7)

Constructing an unbiased estimator of H(·) is known to be non-trivial (Shalev et al., 2022). How-224

ever, we note that the victim (and adversary) have access to a large number of samples from ρv(·),225

and, in the case of the adversary, ρv(·, ν). In this work, we employ a simple, but highly scalable es-226

timator that we empirically find to perform well across a large number of high-dimensional control227

environments (see Section 5). Jensen’s inequality (Jensen, 1906) yields228

H [ρv(·), ρv(·, ν)] = −Eρv(·) [logEs0...sT [B]] ≤ −Eρv(·),s0...sT [logB] , (8)
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benchmark attacks achieve higher unadjusted scores, their high detection rates result in significantly
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where B ≡ ν(o0|s0)
∏
t ν(ot|st, o<t, a<t). Note that this is analogous to taking a single-sample es-229

timate of ρv(·, ν) in the nested estimator in Equation 7. We thus arrive at the Monte-Carlo estimator230

Ĥ [ρv(·), ρv(·, ν)] = − 1
N

N∑
i=1

[
log ν(oi0|si0) +

T∑
t=1

log ν(oit|sit, oi<t, ai<t)
]
, (9)

where (ot, at)
i i.i.d.∼ ρv(·), and si0

i.i.d.∼ p0, s
i
t>0

i.i.d.∼ p. We note that, as a nested estimation prob-231

lem, constructing an unbiased MC-estimator for H [ρv(·), ρv(·, ν)] (and, analogously, H [ρv(·)]) is232

non-trivial (Rainforth et al., 2018) (see also Appendix A.4).233

5 EMPIRICAL EVALUATION OF ILLUSORY ATTACKS234

We illustrate illusory attacks in a simple stochastic MDP (see Fig. 2), where we show that our opti-235

mization algorithm allows to precisely control the KL distance between the trajectory distributions236

of the attacked and unattacked environment. We then conduct an extensive evaluation of illusory237

attacks in standard high-dimensional RL benchmark environments (Zhang et al., 2021b; Kumar238

et al., 2021). We first empirically demonstrate the ineffectiveness of state-of-the-art robustification239

methods for large perturbation budgets B (see Sec. 3.2). However, we show that state-of-the-art out-240

of-distribution detectors can readily detect such attacks, rendering them ineffective. In contrast, we241

show that ϵ-illusory attacks with large perturbation budgets can be effective, yet undetectable. This242

demonstrates that ϵ-illusory attacks can be more performant than existing attacks against victims243

with state-of-the-art anomaly detectors. In an IRB-approved study, we demonstrate that humans,244

efficiently detect state-of-the-art observation-space adversarial attacks on simple control environ-245

ments, but are considerably less likely to detect ϵ-illusory attacks (Section 5.0.1). We lastly inves-246

tigate robustification against adversarial attacks by use of unperturbed observation channels (reality247

feedback) in Section 5.0.1. We provide a summary video and individual videos per attack and ran-248

dom seed in the supplementary material.249

Experimental setup. We consider the simple stochastic MDP explained in Figure 2 and the four250

standard benchmark environments CartPole, Pendulum, Hopper and HalfCheetah (see Figure 6 in251

the Appendix), which have continuous state spaces whose dimensionalities range from 1 to 17, as252

well as continuous and discrete action spaces. The mean and standard deviations of both detection253

and performance results are estimated from 200 independent episodes per each of 5 random seeds.254

Victim policies are pre-trained in unattacked environments, and frozen during adversary training.255

We assume the adversary has access to the unattacked environment’s state-transition function p.256

Precisely controlling trajectory KL divergence Using an exact implementation of Equation 5,257

we learn ϵ-illusory attacks for the single-step MDP environment pictured in Figure 2. As can be seen258

in Figure 3, the measured KL(ρv(·)||ρv(·, ν) at convergence is bounded tightly by ϵ until it hits the259

divergence value for the unconstrained adversarial attack at ca. 0.11. Furthermore, the adversary’s260

return increases with increasing ϵ until it reaches the return of the unconstrained attack at 0.0.261
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Figure 5: Different adversarial attacks are
shown on the x-axis, with detection rates on the
y-axis. We see that both the automated detec-
tor as well as human subjects are able to detect
SA-MDP and MNP attacks, while ϵ-illusory at-
tacks are less likely to be detected.

Algorithm 1 ϵ-illusory training (dual ascent)

Input: env, state transition function p, λ, πv ,
N , α, ϵ, estimator D̂KL (see Sec. 5.0.1)
Init νψ .
for episode in 1 to N do

s = env.reset()
o = νψ(s); a = πv(o)
onew, r, done = env.step(a)
radv = −r − λ

(
∥o− p(∅)∥22 − ϵ

)
while not done do
o = νψ(s); a = πv(o)
snew, r, done = env.step(a)
radv = −r − λ

(
∥o− p(oold, aold)∥22 − ϵ

)
end while
Update νψ using (s, o, radv, snew).
λ = max(0, λ+ α(D̂KL − ϵ)).

end for

Effectiveness of state-of-the-art robustification methods under large-budget attacks We first262

investigate the effectiveness of different robustification methods against a variety of adversarial at-263

tacks, considering randomized smoothing (Kumar et al., 2021) and adversarial pretraining (ATLA,264

(Zhang et al., 2021a)), for budgets B ∈ {0.02, 0.2}. We compare the performance improvement265

under adversarial attacks of each method relative to the performance without robustification. For an266

attack budget B = 0.05, we find that randomized smoothing results in an average improvement of267

61%, while adversarial pretraining results in a 10% performance improvement. However, for the268

large attack budget B = 0.2, both only result in average performance improvements of 15% and269

8%, respectively (see Appendix A.6 for details).270

5.0.1 COMPARATIVE EVALUATION OF ILLUSORY ATTACKS271

Setup. For all four evaluation environments, we implement perfect illusory attacks (see Def. 2)272

by first constructing an attacked initial state distribution p(·|∅) that exploits environment-specific273

symmetries. We then sample the initial attacked observations o0 from the attacked initial state274

distribution and generate subsequent transitions using the unattacked state transition function275

p(·|ot−1, at−1) where at−1 is the action taken at the last time step (see Appendix A.7 for details).276

In contrast to perfect illusory attacks, ϵ-illusory attacks are learned end-to-end using reinforcement277

learning. For this, we use a practical variant of the illusory dual ascent objective and estimate the278

KL-Distance in accordance with the single-sample estimate of the MC-estimate defined in Eq. 9279

(see Algorithm 1, and Appendix A.8). We estimate D̂KL in Algorithm 1, i.e. the penalty term280

used to update the dual parameter λ, as the sliding window average of the DKL estimate defined in281

Equation 6, using a single-sample estimate (see Eq. 9). We equip the victim agent with the state-of-282

the-art out-of-distribution detector introduced by Haider et al. (2023), which is trained on trajectories283

of the unattacked environment. This detector provides anomaly scores which we use to establish a284

CUSUM (Page, 1954) decision rule tuned to achieve a false positive rate of 3%. We adjust the ϵ-285

illusory treshold to the empirical sensitivity of the detector on each environment. We consider attack286

budgets (see Sec. 3.2 B = 0.05 and B = 0.2, but focus on B = 0.2 in this analysis (see Appendix287

for all results); to ensure a fair comparison, we also apply the attack budget to ϵ-illusory attacks.288

Adversary performance against victim agents with automated detectors. We investigate the289

adversaries’ relative performance in comparison to state-of-the-art adversarial attacks, specifically290

SA-MDP attacks (Zhang et al., 2021a) and MNP attacks (Kumar et al., 2021). MNP attacks can only291

be implemented in CartPole which has a discrete action space. We define the scalar adversary score292

as the resultant reduction in the victim’s return, normalized relative to both the highest adversarial293

return in each class, as well as the victim’s expected return in the unattacked environment. We294

simulate contingency actions by setting the adversary’s return to zero across episodes classified as295

attacked. This reflects a middle ground across different scenarios in which adversary detection could296

trigger victim contingency options ranging from no action, to test-time termination, major security297

escalation, and adversary persecution. As detailed in Figure 5, the detector detects MNP and SA-298
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MDP attacks with a probability close to 100%. In contrast, the detector classifies ϵ-illusory attacks299

as adversarially attacked with very low probability. In coherence, the full columns in Figure 4 show300

that ϵ-illusory attacks result in the highest average adversary scores when adjusting for detection. In301

contrast, detection-adjusted adversary scores for state-of-the-art attacks are close to zero, which is302

expected due to their high empirical detectability (see Fig. 5).303

Detection of adversarial attacks by human inspection. We we perform a controlled study with304

n = 10 human participants to investigate whether humans unfamiliar with adversarial attacks can305

detect adversarial attacks in simple and easy-to-understand environments. We found CartPole and306

Pendulum, in contrast to Hopper and HalfCheetah, to be immediately accessible to participants with-307

out the need for additional training. Participants were first shown an unattacked introduction video308

for both CartPole and Pendulum, exposing them to environment-specific dynamics. Participants309

were then shown a random set of videos containing both videos of unattacked and attacked trajec-310

tories. For each video, participants were asked to indicate whether they believed that the video was311

unsuspicious, with the prompt “the system shown in the video was [not] the same as the one from312

the introduction video”. This phrasing was chosen so that participants would not be primed on the313

concept of illusory attacks (see details in Appendix A.9). We found that participants classified MNP314

and SA-MDP attacks as suspicious with high accuracy (see Human detection in Figure 5). In con-315

trast, participants were almost equally likely to classify videos of unattacked and ϵ-illusory attacked316

trajectories as unsuspicious. In fact, at a confidence level of 95%, the hypothesis participants are317

equally likely to classify an unattacked sequence as attacked as to classify an ϵ-illusory attacked318

sequence as attacked cannot be rejected. Our findings suggest that humans are unable to detect319

ϵ-illusory attacks from short observation sequences in our simple environments. See Appendix A.9320

for full results and the corresponding z-test statistic.321

Robustification using reality feedback. We conclude our empirical investigations by exploring322

the importance of utilizing uncorrupted observation channels as system-level defense, which we323

refer to as reality feedback. We define reality feedback ζ as a part of the victim’s observation Z324

in E ′ that cannot be corrupted by the adversary, i.e. , we assume that the victim’s observations325

Z := Z0 ×Zζ , where the adversary can modify z0 ∈ Z0 but not zζ ∈ Zζ . We establish two reality326

feedback scenarios for CartPole: one where the cart observation is unattacked, and one where the327

observation of the pole is unattacked. We find that robustifying the victim agent through adversarial328

training allows victim policies to use reality feedback effectively at test-time if those channels are329

sufficiently informative. In the scenarios studied, we found that having access to an unattacked330

observation of the pole is more valuable than having access to an unattacked observation of the cart.331

See App. A.10 for details.332

6 CONCLUSION AND FUTURE WORK333

This paper introduces a novel class of observation-space adversarial attacks, illusory attacks, which334

admit an information-theoretically grounded notion of statistical detectability. We show the effec-335

tiveness and scalability our approach against both humans, and AI agents with access to state-of-336

the-art anomaly detectors across a variety of benchmarks.337

We expect the potential positive impact of our work to outweigh the potential negative consequences338

as our work contributes to the design of secure cyber-physical systems. However, it should be339

acknowledged we assume the availability of contingency options for victim agents, which may not340

always hold true in real-world scenarios. Moreover, our experimental investigations are confined to341

simulated environments, necessitating further exploration in more intricate real-world domains.342

Future research should conduct comprehensive theoretical analysis of the Nash equilibria within the343

two-player zero-sum game introduced by the illusory attack framework. Furthermore, efforts are344

required to develop more effective defenses against adversarial attacks applicable to real-world en-345

vironments, including (1) improved detection mechanisms, (2) robustified policies that incorporate346

detectors, and (3) improved methods to harden observation channels against adversarial attacks. An347

equally significant aspect of detection is gaining a deeper understanding of the human capability to348

perceive and identify (illusory) adversarial attacks. We ultimately aim to demonstrate the viability349

of illusory attacks and the corresponding defense strategies in real-world settings, particularly in350

mixed-autonomy scenarios.351
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Reproducibility. We are committed to promoting reproducibility and transparency in our research.352

To facilitate the reproducibility of our results, we will release the code and data used in our experi-353

ments source code with the camera-ready version.354

We acknowledge that the release of adversarial attack code may pose security and ethical concerns.355

Therefore, to safeguard against potential misuse, we have opted to withhold our code for attacks on356

high-dimensional environments temporarily. We, however, provide the source code for the single-357

step step example in the supplementary material.358

We provide detailed overviews for all steps of the experiments conducted in the Appendix, where359

we also link to the publicly available Code repositories that our work uses.360
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A APPENDIX691

A.1 ADDITIONAL RELATED WORK692

Assuming a different black-box setting, Hussenot et al. (2019) introduce a class of adversaries for693

which a unique mask is precomputed and added to the agent observation at every time step. Our694

framework differs from these previous works in that it preserves consistency across trajectories of695

observation sequences. Korkmaz (2023) proposes adversarial attacks motivated by a notion of im-696

perceptibility measured in policy network activation space. One major difference is that the paper697

focuses on per-state imperceptibility, while our work focuses on information-theoretic undetectabil-698

ity, which hence requires focusing on whole trajectories.699

AP attack targets include cameras (Eykholt et al., 2018; Chen et al., 2019a; Duan et al., 2020; Huang700

et al., 2020; Hu et al., 2021), LiDAR (Sun et al., 2020a; Cao et al., 2019; Zhu et al., 2021; Tu et al.,701

2020), and multi-sensor fusion mechanisms (Cao et al., 2021; Abdelfattah et al., 2021).702

Lin et al. (2017) develop an action-conditioned frame module that allows agents to detect adversarial703

attacks by comparing both the module’s action distribution with the realised action distribution.704

Tekgul et al. (2021) detect adversaries by evaluating the feasibility of past action sequences. Li705

et al. (2019); Sun et al. (2020b); Huang & Zhu (2019); Korkmaz & Brown-Cohen (2023) focus706

on the detectability of adversarial attacks but without considering notions of stochastic equivalence707

between observation processes.708

A.2 SUPPLEMENTARY POMDP NOTATION.709

A Markov decision process (MDP) (Bellman, 1958) is a tuple ⟨S,A, p, r, γ⟩, where S is the finite4710

non-empty state space, A is the finite non-empty action space, p : S×A 7→ P(S) is the probabilistic711

state-transition function, and r : S × A 7→ P(R) is a lower-bounded reward function, i.e. ∀(s, a) ∈712

S ×A, |r(s, a)| ≤ R almost surely for some finite R > 0. Starting from a state st ∈ S at time t, an713

action at ∈ A taken by the agent policy π : S 7→ P(A) effects a transition to state st+1 ∼ p(·|at)714

and the emission of a reward rt+1 ∼ r(·|st+1, at). We define the initial system state at time t = 0 is715

drawn as s0 ∼ p(·|∅). For simplicity, we consider episodes of infinite horizon and hence introduce716

a discount factor 0 ≤ γ < 1.717

In a partially observable MDP (Åström, 1965; Kaelbling et al., 1998, POMDP) ⟨S,A,Ω,O, p, r, γ⟩,718

the agent does not directly observe the system state st but instead receives an observation ot ∼719

O(·|st) where O : S 7→ P(Ω) is an observation function and Ω is a finite non-empty observation720

space. The canonical embedding pomdp : M ↪→ P from the set of finite MDPs M to the family of721

POMDPs P maps Ω 7→ S, and sets O(s) = s, ∀s ∈ S. In a POMDP, the agent acts on a policy π :722

H∗
\r 7→ P(A), growing a history ht+1 = htatot+1rt+1 from a set of histories Ht := (A×O × R)t,723

where H∗ :=
⋃
tHt denotes the set of all finite histories. We denote histories (or sets of histories)724

from which reward signals have been removed as (·)\r.725

In line with standard literature (Monahan, 1982), we distinguish between two stochastic processes726

that are induced by pairing a POMDP with a policy π: The core process, which is the process over727

state random variables {St}, and the observation process, which is induced by observation random728

variables {Ot}. The frequentist agent’s goal is then to find an optimal policy π∗ that maximizes729

the total expected discounted return, i.e. π∗ = arg supπ∈Π Eh∞∼Pπ
∞

∑∞
t=0 γ

trt, where Π := {π :730

H∗
\r 7→ P(A)} is the set of all policies.731

A.3 PROOF OF THEOREM A.1732

Theorem A.1 (POMDP Correspondence). For any E (·)
ν , there exists a corresponding POMDP733

Ee (E (·)
ν ) for which the victim’s learning problem is identical.734

Theorem A.1 implies that, given enough memory (Yu & Bertsekas, 2008) , the adversary can be735

chosen such that the state-space of Ee(E (·)
ν ) becomes arbitrarily due to its infinite horizon. This736

4For conciseness, we restrict our exposition to finite state, action and observation spaces. Results
carry over to continuous state-action-observation spaces under some technical conditions that we omit for
brevity (Szepesvári, 2010).
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renders the worst-case problem of finding an optimal victim policy in Ee(E (·)
ν ) intractable even if737

the adversary’s policy is known (Hutter, 2005; Leike, 2016). The underlying game G, therefore,738

assumes an infinite state space, preventing recent progress in solving finite-horizon extensive-form739

games (Kovařı́k et al., 2022; McAleer et al., 2023; Sokota et al., 2023) from being leveraged in740

characterizing its Nash equilibria. We now a give a proof of construction.741

We first restate Theorem A.1 in a slightly more precise way. Consider a POMDP Ee :=742

⟨S ′,A,Ω,O′, p′, r, γ⟩ with finite horizon T , a state space S ′ := (S × A × Ω)T , deterministic743

observation function O′ : S ′ 7→ Ω, and stochastic state transition function p′ : S ′ × A 7→ P(S ′).744

Then, for any πv : H∗
\r 7→ P(A) and ν : S × H∗

\r 7→ P(Ω), we can define corresponding p′ and O′745

such that the reward and observation processes cannot be distinguished by the victim.746

Recall that the semantics of Eπν are as follows: Fix a victim policy π : H∗
\r 7→ P from the space747

of all possible sampling policies Π. At time t = 0, we sample an initial state s0 ∼ p(·|∅). The748

adversary then samples an observation o0 ∼ ν(·|s0) which is emitted to the victim. The victim takes749

an action a0 ∼ π(·|o0), upon which the state transitions to s1 ∼ p(·|s0, a0) and the victim receives750

a reward r1 ∼ (·|s0, a0). At time t > 0, the victim has accumulated a history ht := o0a0r1 . . . ot,751

on which ot ∼ ν(·|st, ht\r) conditions.752

Proof. Now consider an equivalent POMDP formulation. Define p′ as the following sequen-753

tial stochastic process: At time t = 0, first sample s0 ∼ p(·|∅). Then sample o0 ∼ ν(·|s0),754

and define s′0 := p′(∅) := (s0, o0). For any t > 0, first sample st ∼ p(·|st−1, at−1), then755

ot ∼ ν(·|s≤t, a<t, o<t) and define s′t := p′(s′t−1, st, ot, at−1). We finally define O(s′t) :=756

projo(s
′
t) := ot, where we indicate that ot is stored in s′t by using an explicit projection opera-757

tor projo. Clearly, under any sampling policy π, the observation and reward processes induced by758

Ee and Eπv
ν are identical as T → ∞. This renders the reward and observation processes identical in759

both environments. Note that, as T → ∞, Ee’s state space grows infinitely large.760

A.4 ON THE DIFFICULTY OF ESTIMATING THE ILLUSORY OBJECTIVE761

We note that estimating the illusory objective is, in general, difficult. Even when choosing a non-762

parametric kernel with optimal bandwidth, the risk of conditional density estimators increases as763

O(N− 4
4+d ) with support dimensionality d (Wasserman, 2006; Grünewälder et al., 2012; Fellows764

et al., 2023). This is aggravated by KL-estimation being a nested estimation problem (Rainforth765

et al., 2018).766

While the estimator bias may be further reduced by using a more sophisticated nested estima-767

tion method such as a multi-level MC estimator (Naesseth et al., 2015), and by performing im-768

proved estimates for ρν(·, ν) using variational inference (Blei et al., 2017, VI), or sequential Monte-769

Carlo (Doucet et al., 2001, SMC), these methods come with increased computational complexity.770

A.5 DETECTOR AND DECISION RULE USED IN EXPERIMENTS771

We implement the out-of-distribution detector proposed by Haider et al. (2023) using the imple-772

mentation provided by the authors5. As this detector provides anomaly scores at every time step773

but does not provide a decision rule for classifying a distribution as attacked, we implement a774

CUSUM (Page, 1954) decision rule based on the observed anomaly scores observed at test time775

and the mean anomaly score for a held-out test set of unattacked episodes. We train the detector776

on unperturbed environment interactions, using the configuration provided by the authors. We then777

tune the CUSUM decision rule such that a per-episode false positive rate of 3% is achieved. We778

assess the accuracy of detecting adversarial attacks across all scenarios presented in Table A.8.1.779

A.6 ROBUSTIFICATION780

We implement the ATLA (Zhang et al., 2021a) victim by co-training it with an adversary agent, and781

follow the original implementation of the authors 6. We implemented randomized smoothing as a782

5https://github.com/FraunhoferIKS/pedm-ood
6https://github.com/huanzhang12/ATLA_robust_RL
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Figure 6: Benchmark environments used for empirical evaluation, from left to right. In CartPole,
the agent has to balance a pole by moving the black cart. In Pendulum, the agent has to apply a
torque action to balance the pendulum upright. In Hopper and HalfCheetah, the agent has to choose
high-dimensional control inputs such that the agent moves towards the right of the image.

standard defense against adversarial attacks on RL agents, as introduced in Kumar et al. (2021). We783

use the author’s original implementation 7. See Table 1 for results.784

A.7 PERFECT ILLUSORY ATTACKS IMPLEMENTATION785

We implement perfect illusory attacks in CartPole and Pendulum as detailed in Algorithm 2. Here,786

the first observation o0 is set to the negative of the true first state sampled from the environment.787

Note that in HalfCheetah and Hopper the initial state distribution is not centered around the origin,788

we hence first subtract the offset, and then compute the negative of the observation and add the789

offset again. As the distribution over initial states is symmetric in all environments (after removing790

the offset), this approach satisfies the conditions of a perfect illusory attack (see Definition 4.2).791

We provide videos of the generated perfect illusory attacks in the supplementary material in the792

respective folder.793

Algorithm 2 Perfect illusory adversarial attack

Input: environment env, environment transition function t whose initial state distribution p(·|∅)
is symmetric with respect to the point psymmetry in S, victim policy πv .
k = 0
s0 = env.reset()
o0 = −(s0 − psymmetry) + psymmetry
a0 = πv(o0)
, done = env.step(a0)

while not done do
k = k + 1
ok ∼ t(ok−1, ak−1)
ak = πv(ok)
, done = env.step(ak)

end while

A.8 LEARNING ϵ-ILLUSORY ATTACKS WITH REINFORCEMENT LEARNING794

We next describe the algorithm used to learn ϵ-illusory attacks and the training procedures used to795

compute the results in Table A.8.1. We use the CartPole, Pendulum, HalfCheetah and Hopper envi-796

ronments as given in Brockman et al. (2016). We shortened the episodes in Hopper and HalfCheetah797

to 300 steps to speed up training. The transition function is implemented using the physics engines798

given in all environments. We normalize observations by the maximum absolute observation. We799

train the victim with PPO (Schulman et al., 2017) and use the implementation of PPO given in Raffin800

et al. (2021), while not making any changes to the given hyperparameters. In both environments we801

train the victim for 1 million environment steps.802

We implement the illusory adversary agent with SAC (Haarnoja et al., 2018), where we likewise803

use the implementation given in Raffin et al. (2021). We initially ran a small study and investigated804

7https://openreview.net/forum?id=mwdfai8NBrJ
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four different algorithms as possible implementations for the adversary agent, where we found that805

SAC yields best performance and training stability. We outline the dual ascent update steps in806

Algorithm 1, which, like RCPO (Tessler et al., 2018), pulls a single-sample approximation of the807

constraint into the reward objective. We approximate D̂KL by taking the mean of the constraint808

violation ∥o−p(oold, aold)∥22 over the last 50 time steps. We further ran a small study over hyperpa-809

rameters α ∈ {0.01, , 0.1, 1} and the initial value for λ ∈ {10, 100} and chose the best performing810

combination. We train all adversarial attacks for four million environment steps.811
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Figure 7: Detection results for B = 0.05. Dif-
ferent adversarial attacks are shown on the x-
axis, with detection rates on the y-axis. We see
that the automated reliably detector detects SA-
MDP and MNP attacks, while ϵ-illusory attacks
are less likely to be detected.

Table 1: Adversary scores under different at-
tacks and defenses.

Norm. adversary [%]

Attack Budget B no
de

fe
nc

e

sm
oo

th
in

g

A
T

L
A

MNP (Kumar et al., 2021) 0.05 3 ± 7 64 ± 6 -
SA-MDP (Zhang et al., 2021a) 0.05 85 ± 7 50 ± 5 75 ± 4
MNP (Kumar et al., 2021) 0.2 97 ± 3 97 ± 3 -
SA-MDP (Zhang et al., 2021a) 0.2 87 ± 6 72 ± 3 79 ± 6

Computational overhead of ϵ-illusory attacks. Note that there is no computational overhead812

of our method at test-time. We found in our experiments that the computational overhead during813

training of the adversarial attack scaled with the quality of the learned attack. In general, we found814

that the training wall-clock time for the ϵ-illusory attacks attacks results presented in Table 1 was815

about twice that of the SA-MDP attack (note that MNP attacks and perfect illusory attacks do not816

require training).817

A.8.1 RESULTS FOR PERTURBATION BUDGET 0.05818

We show the remaining results for a perturbation budget of B = 0.05 in Figures 8 and 7. Note that819

the corresponding Figures in the main paper are for a perturbation budget of B = 0.2.820
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Figure 8: Results for B = 0.05. We display normalised adversary scores, indicating the reduction in
the victim’s reward, on the y-axis. Each plot shows results in different environments, with different
adversarial attacks on the x-axis. We show both the raw adversary score, as well as the adversary
score adjusted for detection rates of different adversarial attacks (see Figure 5). While the SA-MDP
and MNP benchmark attacks achieve higher unadjusted scores, their high detection rates result in
significantly lower adjusted scores. Note that MNP attacks perform significantly worse for B =
0.05, as compared to B = 0.2 (see Figure 4).
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Table 2: Full results table for all four environments

attack budget β Detection Rate Victim reward

Pendulum

SA-MDP (Zhang et al., 2021a) 0.05 76.3±0.05 -797.2±69.9
ϵ-illusory attack (ours) 0±0 -524.1±104.3

SA-MDP (Zhang et al., 2021a) 0.2 100±0.03 -1387.0±119.0
ϵ-illusory attack (ours) 3.6±0.02 -980.0±84.0

Perfect illusory attack (ours) 1 3.0±0.02 -1204.8±88.6

unattacked 3.2±0.03 -189.4

CartPole

MNP (Kumar et al., 2021) 0.05 86.9±0.3 485.0±33.5
SA-MDP (Zhang et al., 2021a) 80.5±0.8 9.4±0.2
ϵ-illusory attack (ours) 1.5±0.02 12.9±0.3

MNP (Kumar et al., 2021) 0.2 100±0 18.3±20.8
SA-MDP (Zhang et al., 2021a) 100±0 9.3±0.1
ϵ-illusory attack (ours) 3.7±0.01 11.0±0.5

Perfect illusory attack (ours) 1 3.1±0.01 30.1±2.2

unattacked 3.2±0.01 500.0

HalfCheetah

SA-MDP (Zhang et al., 2021a) 0.05 100±0 -1570.8±177.4
ϵ-illusory attack (ours) 0±0 -180.8± 50.1

SA-MDP (Zhang et al., 2021a) 0.2 100±0 -1643.8±344.8
ϵ-illusory attack (ours) 0±0 -240.6± 18.0

Perfect illusory attack (ours) 1 2.9±0.04 5.9 ±36.8

unattacked 3.1±0.02 2594.6
Hopper

SA-MDP (Zhang et al., 2021a) 0.05 87.4±0.02 144.1±265.4
ϵ-illusory attack (ours) 0±0 209.4±90.8

SA-MDP (Zhang et al., 2021a) 0.2 95.6±0.02 -761.5±127.4
ϵ-illusory attack (ours) 1.56±0.4 -260.9‡140.8

Perfect illusory attack (ours) 1 3.1±0.02 679.2‡63.9

unattacked 2.8±0.08 958.1

A.8.2 VIDEOS OF ALL ADVERSARIAL ATTACKS821

We provide a video summarising results in the supplementary material. Further, we provide videos822

for different seeds for all adversarial attacks in the supplementary material. The folders are named823

respectively. All videos were generated for a budget B = 0.2.824

A.9 HUMAN STUDY825

Study approval. Our study was approved by an independent ethics committee under reference826

xxxxx/xxxxx.827

Setup. We performed a controlled study with n = 10 human participants. All participants were828

graduate-level university students. None had prior knowledge about the objective of the study. Par-829

ticipants participated voluntarily; we estimate the time needed per participant to be around 15 min-830

utes. Participants were handed a slide show which contained all relevant information. This slide831

show is included in the supplementary material in the respective folder. We further add the sheet832

with ground truth labels for all video sequences.833

After consenting to participate, participants were provided with the slide show and an online sheet834

to indicate their answers. The study was self-paced and done by the participants without further835

supervision. We further advised participants not to do the study if they would not feel comfortable836

at any point in time.837

The first 18 videos in the slide show are 100-frame long sequences of the Pendulum environment,838

i.e. six each for either no adversarial attack, an ϵ-illusory attack (for which we added an l∞ penalty839

to the l2 penalty in Algorithm 1) or an SA-MDP attack (Zhang et al., 2021a). The subsequent 24 10-840

frame long sequences of the CartPole include the same attacks as for Pendulum, plus an additional841
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Table 3: Reward achieved by victim for
different reality feedback scenarios.

Victim agent

Reality feedback naive ATLA abl.
Pole 10.23± 0.5 192.44± 26.4
Cart 9.72± 0.2 28.54± 11.7

Table 4: Results from our study with human par-
ticipants.

Environment

both Pendulum CartPole
P (false | no attack) 34.2± 11.4 31.5± 10.5 37.0± 12.3
P (false | SA-MDP) 81.4± 27.2 96.3± 32.1 66.7± 22.2
P (false | ϵ-illusory attack ) 32.4± 10.8 37.0± 12.3 27.7± 9.3
P (false | MNP) 83.3± 27.8 83.3± 27.8

six sequences under an MNP attack (Kumar et al., 2021). Note that MNP attacks cannot be applied842

to the Pendulum environment, as it has a continuous action space. For all attacks, the budget B was843

0.2. Within both groups, the order of the videos shown was randomised. Subjects had to choose844

for each video between correct and false, where false indicates that subjects find that the system845

observed in the respective video is not the same as the one observed in the introductory video. We846

likewise refer to a video marked as false as a suspicious video. Table 4 includes all empirically847

estimated probabilities and standard deviations for classifying a segment from a given class as false.848

Result analysis. We find that subjects reported one-third of unattacked sequences as false. Sub-849

jects classified sequences under an MNP or SA-MDP (Zhang et al., 2020) attack as false with a prob-850

ability higher than 80%, while categorizing illusory attacks as false with a probability of only 32.4%.851

We computed the double-sided z-statistics and were able to reject both the hypothesis that P (false852

| SA-MDP)=P (false | no attack) and the hypothesis that P (false | MNP)=P (false | no attack)853

for α = 0.05, while the hypothesis that P (false | E-illusory attack )=P (false | no attack) cannot854

be rejected. We conclude that subjects were able to distinguish SA-MDP and MNP attacks from855

unattacked sequences while being unable to distinguish illusory attacks from unattacked sequences.856

A.10 REALITY FEEDBACK857

Setup. We evaluate the importance of realism feedback in the CartPole environment by investi-858

gating two possible scenarios. Note that the observation in CartPole is given as a four-dimensional859

vector of the pole angle and angular velocity, as well as cart position and velocity. In the first test860

scenario, the victim correctly observes the pole, while the adversary can attack the observation of861

the cart; the second scenario is vice versa. We investigate two test cases for each scenario: First,862

attacking a naive victim, and second, attacking an agent pretrained with co-training.863

Results and discussion. Table 3 shows that the reward achieved by the victim is generally higher864

when pretrained with co-training. We hypothesize that this pretraining enables the agent to learn how865

to utilize the reality feedback effectively. The achieved victim performance when reality feedback866

contains information about the pole is more than 10 times larger than when containing information867

on the cart instead. This seems intuitive, as the observation of the pole appears much more useful868

for the task of stabilizing the pole, and underlines the importance of equipping agents with strong869

reality feedback channels.870

A.11 RUNTIME COMPARISON871

We investigate wall-clock time for training different adversarial attacks. We first recall that MNP872

attacks (Kumar et al., 2021) as well as perfect illusory attacks do not require training. For SA-MDP873

attacks (Zhang et al., 2021a) and ϵ-illusory attacks, training time is highly dependent on the complex-874

ity of the environment, with lower training times for the CartPole and Pendulum environments, and875

higher training times for Hopper and HalfCheetah environments. All reported times are measured876

using an NVIDIA GeForce GTX 1080 and an Intel Xeon Silver 4116 CPU. We trained SA-MDP877

attacks for 6 hours, and 12 hours in the simpler and more complex environments respectively. We878

trained ϵ-illusory attacks for 10 hours, and 20 hours in the simpler and more complex environments879

respectively. At test-time, inference times for ϵ-illusory attacks are identical to SA-MDP attacks as880

they only consist of a neural network forward pass. Memory requirements are identical.881
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