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ABSTRACT

Deep generative models have made significant strides in continuous data generation,
such as producing realistic images and 3D protein conformations. However, due
to the sensitivity of topological graphs to noise and the constraints of long-range
discrete relationships, the generation of purely discrete data—such as topolog-
ical graphs—remains a long-standing challenge, with property control proving
even more elusive. In this paper, we propose a novel molecular graph genera-
tive framework, called CtrlMol, to learn the topological graphs of molecules in
a differentiable parameter space. Unlike diffusion models that iteratively refine
samples, CtrlMol optimizes distribution parameters at different noise levels through
a pre-defined Bayesian flow. At each sampling step, we leverage a property-guided
output distribution to have fine-grained control of topological graphs toward the
given property. Experimental results demonstrate that CtrlMol outperforms all the
competing baselines in generating natural molecule graphs. In addition, CtrlMol
advances the state of the art in producing the molecules with the desired properties.

1 INTRODUCTION

The molecular graph generation aims to generate valid and realistic molecules with desired properties,
which is a fundamental task in drug discovery. However, this problem is very challenging. On
the one hand, the sample space is discrete by nature, where the data distribution is rugged and
not easy to learn based on continuous assumptions. On the other hand, the molecular graphs are
primarily multi-modality, including the nodes (i.e., atoms) and the edges (i.e., bonds), which are
jointly dependent but follow disparate distributions. Moreover, the edges in the molecular graph are
not only discrete and sparse but also obey multiple constraints in chemical valence. These distinct
characteristics of the different modalities further lift the complexity of molecular graph generation.

Traditional generative approaches transform the topological molecular structures into sequences
(e.g., SMILES) and formulate molecular graph generation as the sequence generation. In this way,
sequential models such as LSTM and Transformer are used to produce the molecule graph in an
auto-regressive manner. For example, Gómez-Bombarelli et al. (2018) learn the molecular SMILES
strings with a variational auto-encoder. But the lack of explicitly syntactic constraints for molecular
graphs makes them inclined to generate invalid sequences. Dai et al. (2018) and Kusner et al. (2017)
impose task-specific grammars into the sequence decoder to enhance the validity of the generated
sequences. As a cost of introducing the syntactic constraints, the learning of inconsecutive sequences
becomes challenging.

As another alternative, graph generative networks directly output molecule graphs by iteratively
adding atoms and chemical bonds. In particular, GraphAF defines a feed-forward neural network
from molecular graph structures to the base distribution and generates the nodes and edges based on
existing sub-graphs (Shi et al., 2020). GraphDF generates molecular graphs by sequentially sampling
discrete latent variables and mapping them to new nodes and edges (Luo et al., 2021). Although
graph generative models achieve impressive advancement, the graph generative process is more
complicated than the sequential one due to the high degree of freedom in generative ordering. With
the success of the diffusion model (DM) in producing realistic continuous images, DM is also applied
to molecule generation by denoising the token embeddings in the form of molecular sequences.
Runcie & Mey (2023) present a selective iterative latent variable refinement method for conditioning
an existing pre-trained equivariant diffusion model toward the molecule graph generation. However,
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the simplified continuity assumptions of data distribution in DM (e.g., Gaussian distribution) do not
always hold in discrete data, which deepens the difficulties of multi-modality issues.

In this paper, we introduce a novel framework, CtrlMol to address the multi-modality issue in
molecular graph generation. The key idea is to establish a conditional Bayes flow network with
different base distributions for the sampling of the multi-modality. Concretely, CtrlMol adopts a
unified probabilistic modeling formulation for different modalities in the molecular graph, including
the atom identity (i.e., nodes) and the chemical bonds (i.e., edges). Second, we introduce a topo-
logical complete edge sampling strategy to address the huge complexity O(N2) in edge generation.
Further, CtrlMol employs the property-guided output distribution to have fine-grained control of
the topological structures. Finally, CtrlMol optimizes distribution parameters by minimizing the
discrepancy between the output distribution and the true data distribution.

We evaluate CtrlMol on both unconditional and conditional molecule generation tasks. Experimental
results demonstrate that CtrlMol outperforms all competing baselines in generating realistic molecular
graphs. For conditional generation, CtrlMol achieves an improvement of 26% and 64% over the
previous best generators in terms of QED and LogP properties, respectively. Moreover, CtrlMol
could sample with any number of steps by virtue of the continuous parameter sampling space, which
leads to a 100× speedup with SOTA performance on conditional molecule generation.

2 RELATED WORK

Early methods typically adopt SMILES/SMARTS strings as a text-based representation for atom-by-
atom molecule generation. By decoding the molecular strings token by token, the generative model
can learn prior knowledge that encapsulates the grammar and syntax of valid SMILES (Jensen, 2019;
Segler et al., 2018; Gómez-Bombarelli et al., 2018). With the development of graph neural networks
(GNNs), topological graphs emerge as a more prevailing representation of molecules. For example,
JTVAE (Jin et al., 2018b), GCPN (You et al., 2018), GraphAF (Shi et al., 2020), and GraphDF (Luo
et al., 2021) proposed several autoregressive models to generate new nodes and edges based on the
generated molecular graph.

Apart from the molecular strings (1D) and topological graphs (2D), the molecule can be also
represented as the atom types and the corresponding coordinates (3D). For the generation of molecular
3D structures, diffusion models have been widely adopted. DiffSBDD (Schneuing et al., 2022) and
TargetDiff (Guan et al., 2022) learn the distribution of atom types and positions from a standard
Gaussian prior based via the diffusion process. DecompDiff (Guan et al., 2023) decomposes the
ligand molecule and the prior into arms and scaffolds and then leverages the reverse process of
diffusion to generate molecules. In fact, these diffusion-based generative methods leverage the
continuous 3D coordinates to avoid the generation of the chemical bonds of atoms, which are sparse
and discrete. Considering that the 3D structures of molecules are usually not with high-quality (e.g.,
approximated by RDKit library) and available, the generation of atoms and coordinates can hardly
serve as a universal molecular graph generator, especially in the scenarios lack of 3D structures (e.g.,
generation toward in vivo and in vitro properties).

Recently, Bayes flow networks (BFNs) have been introduced to generate discrete structures in
continuous parameter space (Qu et al., 2024; Song et al., 2023). Similar to diffusion generators,
GeoBFN decomposes the molecular structure into atoms and the coordinates. Then GeoBFN adopts
BFN to generate both of them and transforms the atom coordinates to build the final molecular
graphs (Song et al., 2023). Different from GeoBFN, Our approach focuses on the 2D molecular
graph and proposes several novel components (such as the topological complete edge sampler and
property-guided output distribution) to address the multi-modality and edge sparsity issues.

3 METHODOLOGY

3.1 PROBLEM DEFINITION

We focus on the 2D molecular graphs due to the abundance of available data. The geometry of a
2D molecular graph is denoted asM = {(V ,E)}, where V ∈ R|V |×KV is the set of node (i.e.,
atoms) features and E ∈ R|V |×|V |×KE is the set of edge (i.e., bonds) features. Each node and edge
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has categorical attributes corresponding to their types. The i-th node is represented by a one-hot
vector vi ∈ V with KV dimension, where KV represents the total number of atomic types. Similarly,
the j-th edge ej ∈ E is represented as a one-hot vector of dimension KE , with KE denoting
the total number of bond types. Without loss of generality, there is an edge type to stand for no
connection between two nodes. The primary goal of conditional molecular generation is to produce
valid molecular structuresM that satisfy specific properties c (e.g., logP, QED (Bickerton et al.,
2012), etc.). By conditioning the generation process on these properties, we aim to explore the vast
chemical space effectively, facilitating the discovery of new compounds with desired characteristics.

3.2 THE OVERVIEW OF BAYESIAN FLOW NETOWRKS

To effectively address the discrete nature of molecular topology, our CtrlMol model generates
molecules by sampling in a continuous parameter space using the Bayesian Flow Networks (BFN)
framework. The key distinction between BFN and diffusion models is that BFN refines the parameters
of the data distribution rather than operating on noisy data as diffusion models do.

As illustrated in Figure 1, the generative process can be conceptualized as a message exchange
between a sender and a receiver. The receiver begins with prior knowledge of the data distribution,
referred to as the “input distribution” (pI(M | θ)), where θ is the parameters of the prior distribution
for the dataM. Additionally, the receiver can estimate an “output distribution” (pO(M̂ | Φ(θ, t)))
based on the parameters θ of the input distribution along with the processing time t, using a neural
network to predict the data M̂.

During each message-passing step, the sender introduces noise (controlled by an accuracy parameter
α) to the origin data, creating a “sender distribution” (pS(y | M;α)), and sending a sampled data
point y to the receiver. The receiver then constructs a “receiver distribution” ((pR(y | θ; t, α))) by
adding noise to the estimated output distribution, generating the sender sample y such that

pR(y | θ; t, α) = E
M̂∼pO(M̂|Φ(θ,t))

pS(y | M̂;α). (1)

When the sender transmits a sample from pS to the receiver, the cost incurred is the KL divergence
between receiver pR and sender pS . Subsequently, the receiver updates the parameters of its input
distribution pI based on the received sample y by Bayesian inference, which can be expressed in
closed form if the input distribution of each variable in the data is independent. Here we denote the
Bayesian update function as h, which applies the rules of Bayesian inference to compute the updated
parameters θ′, specifically, θ′ ← h(θ,y, α). Then the Bayesian update distribution is obtained by
marginalizing out y as follows:

pU (θ
′ | θ,M;α) = E

y∼pS(y|M;α)
δ(θ′ − h(θ,y, α)), (2)

where δ is the Dirac delta distribution. The accuracy α has the additive property (as proven by Gra
), that is, pU (θ′′ | θ,M;αa + αb) = E

pU (θ′|θ,M;αa)
pU (θ

′′ | θ′,M;αb). Therefore the accuracy

schedule β(t) is introduced by accumulating α, that is

β(t) =

∫ t

t′=0

α(t′)dt′. (3)

Then the Bayesian flow distribution can be derived by marginalizing distribution over input parameters
at time t:

pF (θ | M; t) = pU (θ | θ0,M;β(t)) (4)

Considering a sequence of n steps where n sender samples y1,y2, . . . ,yn is sampled at times
t1, t2, . . . , tn. At time step ti, the sender distribution is pS(· | M;αi), where αi = β(ti)− β(ti−1).
The receiver distribution is pR(· | θi−1; ti−1, αi), which is determined by the θi−1 and ti−1 since the
receiver has not received the message to update its input parameters. The input parameter sequence
θ1,θ2, . . . ,θn is updated from Bayesian update function h: θi = h(θi−1,M, α(i)). Then the n-step
discrete-time loss Ln(M) can be calculated by the KL divergence between the sender and receiver
distributions as follows:

Ln(M) = E
p(θ1,θ2,...,θn−1)

n∑
i=1

DKL(pS(· | M;αi)||pR(· | θi−1; ti−1, αi)) (5)
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Bayes flow

Figure 1: The generative process of the CtrlMol framework.

The summation term can be rewritten as:
n∑

i=1

DKL = n× 1

n

n∑
i=1

DKL = n×
n∑

i=1

1

n
DKL = n E

i∼U{1,n}
DKL. (6)

where we abbreviate KL divergence as DKL and U{1, n} is the uniform distribution over the integers
from 1 to n. Then the discrete-time loss (Eq 5) is reformulated as

Ln(M) = n E
i∼U{1,n}

E
pU (θ1|θ0,M;α1)

E
pU (θ2|θ1,M;α2)

. . . E
pU (θi−1|θi−2,M;αi−1)

DKL

= n E
i∼U{1,n},pF (θ|M;ti−1)

DKL(pS(· | M;αi)||pR(· | θi−1; ti−1, αi)) (7)

which allows us approximate Ln(M) via Monte-Carlo sampling without summation over n steps.

3.3 THE CTRLMOL MODEL

In this section, we will elaborate on the details of different components of CtrlMol within the field of
discrete molecular graph data. Furthermore, We introduce a property-guided output distribution (as
described in section 3.3.2) that allows for finer-grained control over the generation of topological
structures, aiding in the production of molecules with specific properties. Since both atoms and
edges in the molecules are discrete data and are represented similarly, we will primarily use nodes as
examples to illustrate our model. Any differences related to edges will be explicitly noted.

3.3.1 INPUT DISTRIBUTION

Input distribution of nodes. Given a molecular graphM = {(V ,E)}, both nodes (atoms) and
edges (bonds) are categorical (discrete) variables defined by their type indices. The input distribution
characterized for them can be represented as a categorical distribution. It is important to note that
the input distribution for each variable in a data point is independent. Take atoms V as an example,
for an atom (a variable) v(i) ∈ V , the categorical distribution with KV categories is denoted by a
KV -dimensional vector, θ(i) = (θ

(i)
1 , θ

(i)
2 , . . . , θ

(i)
KV

) ∈ [0, 1]KV , where each entry θ
(i)
kv

corresponds
to the probability assigned to class kv for the variable v(i). The input distribution of atoms V is then
expressed as the joint probability over the true categories of all Nv variables v(i), i.e.,

pI(V | θ) =
Nv∏
i=1

θ
(i)

v(i) . (8)
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The parameters of input distribution form a matrix θ = (θ(1), θ(2), . . . , θ(Nv)) ∈ [0, 1]KV ×NV . For
prior θ0, each entry is set to 1

KV
according to a uniform distribution.

Input distribution of edges. Similar to the node distribution, the input distribution of edges is also a
categorical uniform distribution over all the edge types. Note that, the edge types and connection
states can be changed during the sampling process. Therefore, we consider the possibility of no edge
connection between two nodes and include a new edge type named no connections in addition to
single bond, double bond, etc.

However, the parallel generation of edges E ∈ RNv×Nv×KE should be sampled from the full
connections1. It requires the complexity of O(Nv

2) for each of the molecular graphs, requiring huge
computational resources. While the total number of edges in true data distribution is far smaller
than full connections. In addition, the input distribution is the true distribution for the learning of
the output distribution. With the complexity of O(Nv

2), the output distribution should describe the
probability for each entry of the full connection, leading to computational redundancy for the edge
prediction.

Topological complete edge sampling strategy. As demonstrated in Theorem 1, the connections of
a K-regular graph can cover any arbitrary graph with the node degree at most K, regardless of the
node identity. In other words, if we want to generate a given topological graph with Nv nodes and
the degree at most K, the K-regular graph with Nv nodes is complete to be the initial topological
graph for sampling. Considering that the node in molecular graphs with the maximum connections
is the carbon atom, we set the maximum number of the edge connections in the initial graph as
K = 4. Formally speaking, we will randomly add several edges with "no connection" type into
the given molecular graphM = {(V ,E)} to satisfy that the degree equals K and then build the
input distribution of edges. Note that the above topological edge sampling strategy is guaranteed by
Theorem 1 and largely reduces the computational complexity to O(KNv), where K is a constant.

Theorem 1. For arbitrary positive integer N and D (D < N ), undirected graph G =< V, E > that
has |V| = N and deg(v) = D, v ∈ V , undirected graphH =< VH , EH > that has |VH | = N and
deg(v) ≤ D, v ∈ VH , there exists at least one subgraph G′ ⊆ G such that H is isomorphic to G′.
(Function deg(v) denotes the degree of the vertex v.)

Proof. Our goal is to find a subgraph G′ ⊆ G that is isomorphic to H. We employ a combinatorial
argument based on the properties of regular graphs and the degrees of vertices in H. We will take
the following steps to construct a subgraph G of G using a greedy algorithm: (1) Start with an empty
subgraph G′. (2) Iterate through the vertices of H. For each vertex vi in H, we will select deg(vi)
neighbors from G that are not yet included in G′ and add them to G′. (3) For each vertex vi in H:
Identify deg(vi) vertices from G that are not already included in G′ and that can serve as neighbors.
This selection is possible because G is K-regular. As long as the vertices chosen are distinct and do
not exceed K in degree, we can ensure that the selections are valid. (4) To ensure that the resulting
subgraph G′ is isomorphic toH, we need to maintain the structure ofH. The selection of neighbors
in G should respect the edges present inH. By the property of regular graphs, since G has sufficient
edges to accommodate the degree constraints ofH (as G has K edges available per vertex), we can
map the edges ofH to G′.
After selecting neighbors for all vertices of H, we have ensured that G′ has n vertices. The edges
selected match the edges ofH in terms of structure. Thus, we have constructed a subgraph G′ of G
such that G′ is isomorphic toH.

3.3.2 PROPERTY-GUIDED OUTPUT DISTRIBUTION

The property-guided output distribution receives the parameters θ at step t and the condition in-
formation c (e.g., the LogP property) to approximate the sender distribution at each step. The
output distribution differs from the input distribution in that the parameters of each variable’s input
distribution are independent and do not incorporate contextual information (such as neighboring
information). In contrast, the output distribution is formed by jointly processing the parameters of
the input distributions for all variables, resulting in an interdependent distribution that integrates the
contextual relationship among these variables. To achieve this, we can employ graph neural networks

1In principle, there are only Nv×Nv−1
2

edges needed to be determined since the edge matrix is symmetry .
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(denoted by Φ) to aggregate all the parameters from the input distribution and produce the output
distribution.

Specifically, the input distribution parameters θ and the process time t are fed into a neural net-
work (denoted by Φ). The network then generates the output distribution parameters Φ(θ, t) =
(Φ(1)(θ, t),Φ(2)(θ, t), . . . ,Φ(D)(θ, t)). For a molecular graphM = {(V ,E)}, the output parame-
ters Φ(i)(θ, t) are passed through a softmax function to produce the output categorical distribution,
with the probability corresponding to the true label v(i) for atom v(i) ∈ V given by:

p
(i)
O (v(i) | θ; t; c) = (softmax(Φ(i)(θ, t, c)))v(i) . (9)

Then the output distribution of atoms V is calculated as follows:

PO(V | θ; t; c) =
Nv∏
i=1

p
(i)
O (v(i) | θ; t; c). (10)

Note that the output distribution parameters Φ(i)(θ, t) depend on all of θ through the neural network
Φ, enabling access to contextual information.

Similarly, the output distribution of edges E can be derived in the same manner as above. Here, we
utilize a graph attention neural network Φ to jointly process all the input distribution parameters. The
output node embedding and edge embedding are projected to the KV and KE dimensions for the
output categorical distribution of atoms V and edges E, respectively.

3.3.3 SENDER DISTRIBUTION

The sender distribution is used to construct observation samples y, which can convey information
about the real data and can be considered as the messenger of the data.

Following Graves et al. (2023), the sender distribution of atom vi ∈ V could be derived with the
central limit theorem, which lies in the form of

pS(y
(i)
V | v(i);α) = N (y

(i)
V | α(KV ov(i) − 1), αKV I), (11)

where 1 is a vector of ones, I is the identity matrix, and oj ∈ RKV is a vector defined as the projection
from the class index j to a length KV one-hot vector. Each entry in oj is defined as (oj)k = δjk,
where δjk is the Kronecker delta function. Then the sender distribution of atoms V is expressed as
follows,

pS(yV | V ;α) = N (yV | α(KV oV − 1), αKV I), (12)

where oV = (ov(1) ,ov(1) , . . . ,ov(Nv)) ∈ RKV ×Nv .

3.3.4 RECEIVER DISTRIBUTION

To obtain the receiver distribution for atom vi ∈ V , we substitute Eq 10 and Eq 12 into Eq 1 resulting
in the following receiver distribution

p
(i)
R (y

(i)
V | θ; t, α) =

KV∑
v(i)=1

p
(i)
O (v(i) | θ; t) · pS(y(i)V | v(i);α), (13)

Then distribution distribution of atoms V is produced by

pR(yV | θ; t, α) =
Nv∏
i=1

p
(i)
R (y

(i)
V | θ; t, α). (14)

3.3.5 BAYESIAN UPDATES

Taking atoms V as an example, to update the input distribution parameters θi given θi−1 and the
atoms sample yV drawn from pS(yV | V ;αi) (Eq 12), we utilize the Bayesian update function h
defined in Graves et al. (2023) as follows

θi ← h(θi−1,yV , αi), (15)

6
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h(θi−1,yV , αi)
def
=

eyV θi−1∑Kv

k=1 e
yk
V (θi−1)k

. (16)

Once we have the Bayesian update function h, the Bayesian update distribution can be derived by
substituting Eq 12 and Eq 16 into Eq 2, that is

pU (θ | θi−1, V ;α) = E
N (yV |α(KV eV −1),αKV I)

δ(θ − eyV θi−1∑Kv

k=1 e
yk
V (θi−1)k

) (17)

Then we substitute Eq 17 into Eq 4, generating the Bayesian flow distribution

pF (θ | V ; t) = E
N (yV |β(t)(KV eV −1),β(t)KV I)

δ(θ − eyV θ0∑Kv

k=1 e
yk
V (θ0)k

) (18)

Recall that the prior is set to uniform distribution with parameters θ0 = 1
Kv

. The above equation can
be transformed into

pF (θ | V ; t) = E
N (yV |β(t)(KV eV −1),β(t)KV I)

δ(θ − softmax(yV )) (19)

4 EXPERIMENT

4.1 DATASET

Our experiments are conducted on ZINC-250K (Irwin et al., 2012), a dataset comprising 250,000 drug-
like molecules selected from the ZINC database. We performed experiments on both unconditional
and conditional molecule generation tasks. For conditional molecule generation, we select two
properties (drug-likeness QED and hydrophobicity LogP) to guide the generation process.

4.2 COMPETING MODELS

We compare our model against several state-of-art models for molecule generation. For unconditional
molecule generation, our model is evaluated alongside JT-VAE (Jin et al., 2018a), GCPN (You et al.,
2018), MRNN (Popova et al., 2019), GraphNVP (Madhawa et al., 2019), GRF (Honda et al., 2019),
GraphAF (Shi et al., 2020), MoFlow (Zang & Wang, 2020), GraphCNF (Lippe & Gavves, 2020), and
GraphDF (Luo et al., 2021). For conditional molecule generation, we compare our model with GDSS
(Jo et al., 2022), DiGress (Vignac et al., 2022), GLDM, SSVAE (Mailoa et al., 2023) and ConGen
Mailoa et al. (2023).

4.3 METRICS

We use several widely used metrics to evaluate our model on both conditional and unconditional
molecular graph generation. For unconditional molecule generation, we focus on three metrics:
validity, uniqueness, and novelty. Validity measures the percentage of molecules that comply with
chemical valency rules. In addition, since some methods check the valency during the generation
process, we also report Validity w/o check, which reflects the validity percentage when this valency
correction is disabled. Uniqueness is defined as the percentage of unique molecules among the
generated valid molecules. Novelty represents the percentage of the generated molecules that do not
appear in the training data. For conditional molecule generation, we evaluate the performance of each
model by comparing the mean absolute error (MAE) between the target properties and those of the
generated molecules. All the metrics are calculated based on 10000 generated molecules.

4.4 IMPLEMENTATION DETAILS

Our CtrlMol uses a graph attention network to model the interdependence of the different variables
and produce the output distribution. The network consists of 9 graph attention layers with 8 attention
heads. Both the hidden dimension and the output dimension are 256. The node and edge features
output by the graph network are then mapped to the dimensions corresponding to the number of atom
types KV = 9 and edge types KE = 5 to generate the output distribution. The model is trained
through the Adam optimizer for 1000 epochs, where the batch size is 256 and the learning rate is
0.0005.
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Table 1: Random generation performance on ZINC250K dataset.

Method Validity Validity w/o check Uniqueness Novelty

JT-VAE 100% - 100% 100%
GCPN 100% 20% 99.97% 100%
MRNN 100% 65% 99.89% 100%
GraphNVP 42.6% - 94.8% 100%
GRF 73.4% - 53.7% 100%
GraphAF 100% 68% 99.1% 100%
MoFlow 100% 50.3% 99.99% 100%
GraphCNF 96.35% - 99.98% 99.98%
GraphDF 100% 89.03% 99.16% 100%
Ours 100% 91.6% 100% 100%

Table 2: Mean Absolute Error for molecular property guided generation. A lower number indicates a
better controllable generation result.

Property QED LogP

GDSS 0.44 -
DiGress 0.53 -
GLDM 0.41 -
HGLDM 0.35 -
SSVAE 0.81 2.38
ConGen 0.82 2.13
Ours 0.26 0.77
Improvement over SOTA 25.71% 63.85%

4.5 RESULTS

Unconditional molecule generation We evaluate the ability of the CtrlMol to generate realistic
molecules by calculating metrics validity, uniqueness, and novelty. Table 1 shows that our model
outperforms the previous methods across these metrics. While several models utilize valency checks
during each sampling step to ensure the validity of generated molecules, this checking process relies
on external chemical rules that the model itself does not learn, which does not accurately reflect the
model’s true capabilities. For instance, GCPN may achieve 100% validity through valency checking,
yet it fails to capture the underlying distribution of molecules (20% validity without check).

Therefore, we focus on the validity without check, which can truly reflect the model’s understanding of
molecular characteristics. CtrlMol achieves the best results in validity without checking, highlighting
the superiority of our model in generating realistic molecules through a one-shot sampling process
without re-sampling by valency check. Additionally, CtrlMol demonstrates 100% uniqueness and
novelty, highlighting its capability to produce new molecular structures that do not appear in the
training data. This indicates that the model has genuinely captured the underlying distribution
characteristics of the molecules, rather than merely overfitting to the training data.

Conditional molecule generation For conditional molecule generation, we evaluate the CtrlMol
model based on 2 properties: hydrophobicity LogP and drug-likeness QED. The model is provided
with a specific property value to generate molecules that align with the desired property c. The
property of generated molecule ĉ is measured by RDKit. The mean absolute error (MAE) between c
and ĉ is calculated to determine the relevance of the generated molecules to the conditioned property.

The results are shown in Table 2. The MSE of our model is considerably lower than that of other
baseline models by an obvious margin in both the QED and LogP conditional generation tasks,
suggesting that it generates molecules that more effectively align with the property conditions.
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Table 3: The performance of CtrlMol with respect to different sampling steps

Sample steps 10 100 300 500 700 900 1000 (reference)

Validity w/o check 85.9% 88.9% 89.8% 88.0% 87.6% 91.5% 91.7%
LogP MSE 0.93 0.85 0.74 0.76 0.81 0.75 0.77

Figure 2: An example of the conditional molecule generation process.

Few-step sampling Furthermore, the CtrlMol model exhibits excellent performance with a limited
number of sampling steps. We show the performance in unconditional generation (validity w/o check
metric) with different sampling steps in Table 3. Our model requires only 300 sampling steps to
surpass the "validity w/o check" metric of GraphDF using 1000 sampling steps. Notably, with just 10
sampling steps, the model achieved a validity w/o check of 85.9%, already exceeding the results of
other models with 1000 sampling steps, resulting in a 100× speed-up during the sampling generation
process. Similarly, in conditional generation, CtrlMol also demonstrates superiority, the property
LogP of generated molecules with only 10 sampling steps is more accurate compared to other models.

Case study We illustrate a conditional molecule generation process in Figure2. Given a target
LogP value of 5.0, the CtrlMol model successfully generates a molecule that aligns with the desired
property within 10 sampling steps. In the first step, the output samples consist of some molecular
fragments. Subsequently, the model begins to output valid molecules. As the time steps progress,
the logP values of the molecules gradually converge toward the target. After seven steps, the output
molecules stabilize and no longer change. The logP value of the final molecule is 4.9, showcasing
the model’s proficiency in closely aligning with the specified property while maintaining structural
validity.

5 CONCLUSION

Deep generative models have achieved remarkable progress in generating continuous data, such as
lifelike images and 3D protein structures. Nonetheless, purely discrete data like topological molecular
graphs surfer the serious issues of the multi-modality and the connection sparsity, making molecular
graph generation a challenging task for the existing methods. In this paper, we introduce CtrlMol,
an innovative framework for generating molecular graphs within a differentiable parameter space.
In contrast to diffusion models that enhance samples through iterative refinement, CtrlMol adjusts
distribution parameters at different noise levels via a non-parametric Bayesian flow. CtrlMol also
integrates a topological complete edge sampling strategy and property-guided output distribution to
address the above generative issue. The experimental results indicate that CtrlMol outperforms all
current benchmarks in creating realistic molecular graphs, also establishing a new benchmark for
generating molecules with pre-defined characteristics.
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