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Abstract

Quantitative cardiac T1 mapping by MRI is an essential non-invasive diagnostic tool for
cardiomyopathies. Traditionally, deriving the quantitative T1 maps of myocardial tissue
involves solving non-linear parametric fitting problems per image voxel, which is slow
with sequential CPU computation and requires analytical derivation of the Jacobian ma-
trix per signal model. In this paper, we introduce a new paradigm of parametric fitting,
termed “TorchT1”, which leverages the powerful parallelization of modern GPUs and well-
established functionalities of auto-differentiation in the deep learning framework of Py-
Torch. TorchT1 strictly adheres to the signal model and does not require any training. Our
method was evaluated on a T1 mapping dataset with both pre-contrast and post-contrast
sequences, and benchmarked by conventional CPU-based fitting and recent end-to-end
physics-informed neural network (PINN) mapping. TorchT1 showed more accurate and
reliable mapping quality compared with the pretrained PINN, with a 13-fold acceleration
compared with the CPU baseline.
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1. Introduction

Quantitative cardiac MRI, including T1 and T2 mapping (Messroghli et al., 2004; O’Brien
et al., 2022), is increasingly important in non-invasive diagnosis of cardiomyopathies (Haaf
et al., 2016). The quantitative maps are derived by fitting a parametric model to a sequence
of baseline images acquired under specific MR protocols, often called mapping. Parametric
mapping is an optimization problem, traditionally addressed either through simplex search
methods like the Nelder-Mead algorithm (Nelder and Mead, 1965) or gradient-based meth-
ods like the Levenberg-Marquardt algorithm (Gavin, 2019). Typically, MRI mapping is
performed in a serial manner, voxel by voxel across the field of view, with each voxel involv-
ing an iterative optimization. Mapping the whole imaging field thus becomes quadratically
slow when the image size increases. Acceleration is possible with parallel CPUs but limited
by the number of cores.
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Figure 1: Comparison of the two methodologies: (a) CPU-based Scipy employs serial com-
puting; (b) GPU-based TorchT1 performs parallel computing. The average com-
putation time for one T1 sequence is reported in (c) for Scipy and TorchT1.

We propose a new paradigm of quantitative mapping, termed “TorchT1”, which leverages
the powerful parallelization of modern GPUs, and well-established functionalities of auto-
differentiation (AD) (Paszke et al., 2019) and gradient descent (GD) (Kingma and Ba,
2014) in the state-of-the-art deep learning framework. Different from recent deep learning
work that learns the mapping from data (Guo et al., 2022) or incorporates physics priors
(Sabidussi et al., 2021), TorchT1 strictly adheres to the physics model and does not require
any training. It solves the optimization problem with all voxels in parallel, leveraging
the powerful AD and GD modules of PyTorch (Paszke et al., 2019) without the need to
analytically derive the Jabcobian. This makes our method well scalable in two senses:
first, to larger image size; second, to new physics models of quantitative mapping with an
arbitrary number of parameters (Chow et al., 2022; Božić-Iven et al., 2024). Figure 1 shows
a comparison between the conventional CPU mapping and our proposed TorchT1 mapping.

2. Method and Experiments

In a mapping sequence, N baseline images are acquired, each at a different acquisition
setting. We denote Si,j to be the measured signal at voxel i ∈ {1, 2, . . . ,M} for j-th
baseline image where j ∈ {1, 2, . . . , N}. We consider T1 mapping with the widely adopted
Modified Look-Locker inversion recovery (MOLLI) sequence (Messroghli et al., 2004), with
a 3-parameter signal model:

Si,j =

∣∣∣∣Ci

(
1− ki exp

(
− tj
T ∗
1 i

))∣∣∣∣ , (1)

where tj is the inversion time of j-th image, the parameter set
{
Ci, ki, T

∗
1 i

}
are mapped

at voxel i to derive the tissue property T1i = (ki − 1)T ∗
1 i. With the proposed TorchT1,

we estimate the three parameters by minimizing the mean square error (MSE) between
estimated signal Ŝi,j and true signal Si,j , through gradient descent. For gradient calculation,
we use the AD functionality in PyTorch to calculate the Jacobian of Eq.1. For parallel
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computation, we treat the three parameters as independent vectors C = [C1, C2, . . . , CM ]⊤,
k = [k1, k2, . . . , kM ]⊤, and T1

∗ = [T1
∗
1, T1

∗
2, . . . , T1

∗
M ]⊤. Each entry of the parameter

vector can be processed in parallel (i.e., a calculation taking [C1, k1, T1
∗
1] as input and their

update as output), thanks to the well-established GD functionalities in the deep learning
framework, allowing the estimated signals at time tj , Ŝj = [Ŝ1,j , Ŝ2,j , . . . , ŜM,j ]

⊤ to be
computed in parallel. This implies that the mapping of all voxels in the field of view is done
simultaneously, instead of serially, as illustrated in Fig. 1.

We evaluated the proposed TorchT1 on a cardiac MRI dataset with 30 pre- and 30
post-contrast MOLLI sequences (Philips 3.0T). We used the ADAM optimizer with an
initial learning rate of 3 × 10−4. We compared our method with a bounded Nelder-Mead
algorithm with the same MSE loss in Scipy (Virtanen et al., 2020) as a baseline. In addition,
we compared the results with a pretrained physics-informed neural network (PINN) (Guo
et al., 2022). All experiments were run on the same workstation (Intel Xeon 3.9GHz 8
threads, NVIDIA RTX 4090, 80GB RAM).

3. Results and Conclusions

We compare the T1 mapping accuracy of the baseline Scipy method and our TorchT1 in Fig.
2 (a). TorchT1 demonstrated consistent accuracy in both pre-contrast and post-contrast
mapping, with significantly reduced computation time from 401.3s to 32.8s as shown in Fig.
1 (b). Fig. 2 (b) further shows TorchT1’s visual quality compared to the Scipy baseline.
Unlike the pretrained PINN in Fig. 2 (b) which shows strong bias, TorchT1 operates without
training, ensuring reliability across varied acquisition settings.
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Figure 2: (a) Bland-Altman plot of the average myocardial T1 values by TorchT1 and Scipy.
(b) T1 values estimated by Scipy, PINN, and TorchT1, and their differences.

In conclusion, the accuracy and reliability of the proposed GPU-based TorchT1 are
highlighted by our preliminary quantitative results compared with the conventional imple-
mentation on CPU, with substantial speed acceleration. The qualitative results also affirm
the acclaimed reliability against the pretrained end-to-end PINN which can be biased due
to potential domain shifts across signal models and acquisition settings, suggesting that
our GPU-based TorchT1 can serve as a fast and reliable framework for cardiac T1 mapping.
TorchT1 can potentially be extended to other quantitative MRI sequences given its generic
formulation.
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