
Constraint-Aware Diffusion Guidance for Imitation
Learning

Hao Ma∗

haomah@ethz.ch
Sabrina Bodmer∗

sabodmer@ethz.ch

Andrea Carron∗

carrona@ethz.ch
Melanie Zeilinger∗†

mzeilinger@ethz.ch
Michael Muehlebach‡ †

michaelm@tuebingen.mpg.de

Abstract

We propose Constraint-Aware Diffusion Guidance (CoDiG), a constraint-aware
imitation learning framework based on conditional diffusion models. Unlike con-
ventional imitation learning methods, which often fail to generalize to unseen or
constrained environments, CoDiG enforces safety and physical feasibility dur-
ing inference via barrier function guidance. Our method learns from a limited
number of expert demonstrations without reward supervision or environment in-
teraction, and is capable of generating safe and feasible trajectories in real time.
A warm-start strategy further accelerates sampling by reusing previous outputs.
We evaluate CoDiG on a miniature autonomous racing platform in a challenging
obstacle avoidance task, demonstrating robust generalization, near time-optimal
performance, and 100% success rate in dynamic scenarios. Our results high-
light the potential of constraint-aware diffusion models as a data-efficient and
deployable solution for safe imitation learning in robotics. Videos are available at:
https://www.youtube.com/watch?v=KNYsTdtdxOU.

1 Introduction

Learning policies from expert demonstrations - commonly referred to as imitation learning - has
emerged as a compelling alternative to reinforcement learning (RL), particularly in scenarios where
reward functions are difficult to define, environment interaction is costly or risky, and safety is
critical [Correia and Alexandre, 2024, Argall et al., 2009]. However, conventional imitation learn-
ing methods, such as behavior cloning or adversarial imitation, often fail to generalize to unseen
environments or enforce essential physical constraints [Ross et al., 2011, Ho and Ermon, 2016, Fu
et al., 2018, Lu et al., 2023a]. These limitations significantly hinder their applicability to real-world,
safety-critical robotic systems.

Recently, diffusion models have shown promise in offline imitation settings by learning to generate
expert-like policies through denoising-based generative processes for robotics [Wolf et al., 2025, Chi
et al., 2024, Urain et al., 2023]. While powerful, many of these approaches are trained purely on
data without explicitly enforcing constraints, which can lead to collisions or dynamic infeasibility,
particularly when encountering out-of-distribution scenarios [Kondo et al., 2024, Palo et al., 2025].
Additionally, existing methods often rely heavily on large-scale offline datasets to promote generaliza-
tion, which can limit their adaptability in unseen environments [Lee et al., 2025, Liang et al., 2023].

∗Department of Mechanical and Process Engineering, ETH Zürich, Switzerland.
†Shared last author.
‡Max Planck Institute for Intelligent Systems, Tübingen, Germany.

18th European Workshop on Reinforcement Learning (EWRL 2025).

https://www.youtube.com/watch?v=KNYsTdtdxOU

Addressing these challenges is crucial for enabling the safe and reliable deployment of diffusion
models in safety-critical imitation learning in robotic applications.

To overcome these limitations, we propose Constraint-Aware Diffusion Guidance (CoDiG), a general-
purpose, data-efficient imitation learning framework that integrates diffusion-based trajectory gen-
eration with real-time constraint enforcement. Our method learns from a limited set of expert
demonstrations, without requiring environment interaction or reward functions. CoDiG integrates a
barrier function directly into the reverse diffusion process, steering the sampling away from unsafe or
dynamically infeasible regions without relying on external classifiers or auxiliary models. To further
accelerate sampling and enhance its stability, CoDiG employs a warm-start strategy by initializing
the diffusion process near feasible solutions. By augmenting the score updates with barrier gradients
during inference, CoDiG enforces safety constraints, enabling efficient and reliable deployment in
safety-critical environments. Our main contributions are summarized as follows:

• We introduce Constraint-Aware Diffusion Guidance (CoDiG), a general-purpose and data-efficient
diffusion-based imitation learning framework that learns from a small number of expert demon-
strations and enforces safety constraints at inference time, enabling generalization to unseen and
time-varying environments without reward supervision or online interaction.

• We propose a warm-start strategy that significantly accelerates the inference process, achieving
real-time performance suitable for high-frequency, safety-critical control, while ensuring smooth
transitions between trajectories generated at successive iterations.

• We evaluate CoDiG on a real-world autonomous racing platform, demonstrating that CoDiG can
safely imitate expert behavior (near time-optimal) and perform obstacle avoidance in dynamic and
constrained environments with high reliability.

2 Related work

Our method provides a constraint-aware imitation learning framework that is grounded in diffusion-
based trajectory generation. Unlike traditional reinforcement learning approaches that rely on online
exploration and reward feedback, our method learns purely from offline demonstrations and enforces
constraints directly during inference. This aligns with recent trends in safe offline control and
imitation learning.

In the following, we focus on how recent diffusion-based approaches in robotics have attempted
to incorporate constraints in order to ensure safety and feasibility across a variety of tasks. Some
approaches enforce constraints during training: Bastek et al. [2025] integrate physical laws into the
training objective to ensure physically consistent outputs; Giannone et al. [2023] align sampling
trajectories with constrained optimization paths; and Power et al. [2023] separately train on different
constraints and combine them at inference. Others address constraints during inference: Carvalho
et al. [2023] condition the sampling process on goal-reaching and obstacle avoidance; Christopher
et al. [2024], Xiao et al. [2023] enforce feasibility through projection steps, albeit with significant
computational overhead; Römer et al. [2024] incorporate model-based projections directly into the
backward diffusion process to enforce constraint satisfaction during trajectory generation, avoiding the
need for external post-sampling corrections; and Yu et al. [2024] generate local collision-free motions
through conditional sampling. Several methods handle constraints in both training and inference
phases, such as Ajay et al. [2023] for decision-making, Gong et al. [2025] with trajectory-level
diffusion, and Botteghi et al. [2023], which train safe priors and apply runtime filtering. Among these,
Yu et al. [2024] primarily handle inference-time constraints, while Botteghi et al. [2023] combine both
stages. Overall, incorporation during training time promotes inherent feasibility, while inference-time
methods offer flexibility at the cost of higher computational complexity during inference.

Compared to prior inference-time approaches, our CoDiG framework handles constraints by augment-
ing score updates with lightweight barrier gradients during sampling, without relying on projections,
auxiliary models, or simulators, unlike classifier-guided [Dhariwal and Nichol, 2021] and energy-
guided diffusion [Lu et al., 2023b] that learn auxiliary networks at each step. This provides efficient,
continuous guidance toward feasible trajectories while preserving the generative flexibility of diffusion
models with a time-dependent weight γt that ramps up during denoising. Warm-start initialization fur-
ther accelerates convergence and enhances sampling stability, enabling real-time deployment (2.5Hz
on hardware). Unlike previous works mainly evaluated in simulation or in quasi-static environments,
we demonstrate CoDiG on a real-world autonomous racing platform, where strict dynamic feasibility

2

and rapid obstacle avoidance are critical. While Sheebaelhamd et al. [2025] have also suggested
autoregressive architectures as an alternative to diffusion-based generation, it is unclear whether
constrained-aware generation via barrier functions is also effective with these architectures. These
aspects highlight the unique contributions of CoDiG in enabling efficient, reliable, and real-time
constraint handling within generative robotic planning. See Appendix A for a compact side-by-side
summary of training- vs. inference-time strategies (Table 1).

3 Generative imitation via diffusion

From an imitation learning perspective, diffusion models amount to learning a generative model over
expert demonstrations conditioned on the environment context (e.g., racetrack, obstacles), without
access to rewards or interaction. Recent advances in score-based generative modeling formulate
diffusion processes via stochastic differential equations (SDEs), offering a continuous-time view
of forward noise injection and reverse denoising [Song et al., 2021]. Since our work builds on
this foundation, we briefly review score-based generative modeling and introduce the notation used
throughout the paper.

3.1 Preliminaries

Let x0 ∈ Rd denote a noise-free data sample drawn from the data distribution p0(x). A score-
based generative model defines a continuous-time diffusion process {xt}t∈[0,T], where t denotes the
diffusion time, such that xT becomes approximately Gaussian. It is important to note that throughout
this paper, we encounter two notions of “time”: here, t refers to the artificial diffusion time governing
the processes, while later, τ will denote the physical time in real-world dynamical systems.

Diffusion Process. The forward diffusion process gradually perturbs the data by solving the
following SDE:

dxt = f(xt, t) dt+ g(t) dwt, t ∈ [0, T], x0 ∼ p0,

where xt ∈ Rd is the perturbed data at time t, f : Rd × [0, T] → Rd is the drift term, g : [0, T] → R
is the scalar-valued diffusion term, and wt ∈ Rd denotes a standard Wiener process.

A common instantiation of the diffusion process is the Ornstein–Uhlenbeck (OU) process [Øksendal,
1995], in which the drift pulls xt toward a mean µ ∈ Rd:

dxt = β(t)(µ− xt) dt+ g(t) dwt, t ∈ [0, T], (1)

where β (t) is a positive scalar-valued function controlling the drift strength. In this case, the OU
process admits a closed-form solution for the mean and variance of the marginal distribution of xt.
Specifically, letting

β̄t := exp

(
−
∫ t

0

β (ν) dν

)
,

then the marginal distribution of xt is Gaussian:

pt (xt | x0) = N

(
xt; µ− (µ− x0)β̄t,

g (t)
2

2β(t)

(
I− β̄2

t I
))

, (2)

where I ∈ Rd×d is the identity matrix.

Sampling Process. To generate new data, one samples from the reverse-time SDE corresponding to
the forward process. Under suitable regularity conditions, this reverse SDE takes the form [Anderson,
1982]:

dxt =
[
f (xt, t)− g (t)

2 ∇x log pt (xt)
]
dt+ g (t) dw̃t, t ∈ [0, T] , xT ∼ pxT

, (3)

where w̃t is a standard Wiener process running backward in time, and ∇x log pt(xt) is the score
function of the marginal distribution.

3

In practice, the score function is unknown and approximated by a neural network sθ(xt, t) trained
using denoising score matching. The training objective minimizes the expected squared error between
the predicted score and the true score:

Et∼U[0,T]Ex0∼p0(x)Ext∼pt(xt|x0)

[
|sθ (xt, t)−∇x log pt (xt | x0)|2

]
,

where |·| denotes the ℓ2-norm, and U [0, T] the uniform distribution with support [0, T].

3.2 Constraint-aware diffusion guidance

To ensure the generated trajectories are not only expert-like but also physically feasible and safe, we
inject constraint-awareness directly into the generative process. Specifically, we augment the score
updates with barrier gradients. Firstly, we specify the functional forms of the drift and diffusion terms
in (1) for concreteness and clarity. It is important to emphasize that the proposed framework does not
rely on these specific choices - the following definitions are adopted purely for illustrative purposes
and to remain consistent with the experimental setup described later.

We let µ = 0, and define the drift term and the diffusion term as

f (xt, t) = −β (t)xt, g (t) =
√

2β (t), t ∈ [0, T] ,

which yields the so-called variance preserving SDE [Song et al., 2021], where g (t)
2
= 2β (t)

holds for all t ∈ [0, T] such that the marginal variance of xt is preserved over time. This specific
choice ensures that the forward process remains stable and tractable for training and sampling,
while still allowing for an expressive and well-defined reverse-time generative process. Under this
formulation, when the terminal time T is sufficiently large, the forward diffusion process described
by (1) converges to a standard Gaussian distribution. As analyzed in Song et al. [2021], the term√
2β(t) should grow with time, requiring β(t) to be strictly increasing.

For simplicity and numerical stability, we normalize the diffusion process to t ∈ [0, 1]. To ensure
convergence to a standard Gaussian, the diffusion term

√
2β (t) must grow rapidly within this interval.

In our implementation, we model β (t) as a quadratic function, β (t) = r1t
2 + r0, with parameters

detailed in Appendix D.3. In this case, (3) can be reformulated as:

dxt = [−β (t)xt − 2β (t)∇x log pt (xt)] dt+
√

2β (t) dw̃t, t ∈ [0, 1] , x1 ∼ px1 . (4)

Next, we consider the marginal distribution pt (xt), which represents the probability distribution of a
sample at an intermediate time step, in the absence of constraints. Before incorporating constraints
into this distribution, we first introduce the following definitions. Let c : Rd × [0, 1] → Rk denote a
time-dependent constraint function, encoding the safety or feasibility requirements of the system. We
define the feasible region at time τ ≥ 0 as

Cτ :=
{
x ∈ Rd | c (x, τ) ≤ 0

}
,

where the inequality is interpreted element-wise. Naturally, when constraints are introduced, the
distribution of interest becomes the conditional distribution:

pt (xt | Cτ) , t ∈ [0, 1] , τ ≥ 0.

These constraints may encode different forms of feasibility or safety requirements, depending on the
task setting. For example, in autonomous racing, Cτ refers to the obstacle-free, drivable region of a
racing track. While in diffusion-based control policies, Cτ must account for system dynamics, as the
use of visual feedback necessitates control that respects the underlying physical constraints of the
system. Here, we use the time subscript τ to emphasize that such constraints can be time-varying,
which is often the case in dynamic or interactive environments. For simplicity, and without loss of
clarity, we will omit this subscript in the following when no confusion arises.

Several existing methods attempt to directly model the marginal distribution pt (xt | C) by injecting
the constraint representation into the diffusion model architecture [Ho and Salimans, 2022]. While
effective in big-data domains such as image synthesis, these approaches face significant limitations in
the context of robotics: (i) Learning pt (xt | C) from scratch requires many expert demonstrations
that satisfy C, which are often expensive or impractical to collect in robotics. (ii) Since C is often

4

time-varying and task-specific, models trained on a fixed distribution may fail to generalize to unseen
or dynamic constraints at test time.

To overcome these limitations, we leverage the known structure of the constraint C during sampling to
dynamically guide the generation process. We propose an alternative formulation of the constrained
distribution pt (xt | C), which does not require learning the conditional model directly from data:

pt (xt | C) = pt (xt)
e−γtV (xt; C)

Zt
,

where Zt :=
∫
Rd pt (x) e

−γtV (x, C) dx is a normalization constant. The barrier function V : Rd →
R+ assigns large values to infeasible data points, while remaining close to zero within the feasible
region. Intuitively, applying the barrier function pushes the probability of infeasible data points
toward zero. Importantly, the barrier function is derived from explicit task constraints (e.g., obstacle
clearance and near time-optimality) rather than a heuristic penalty, and we use a time-dependent
weight γt that ramps up across denoising steps to enforce constraints more strongly as samples
approach the data manifold. As a result, the constrained distribution focuses its support almost
entirely on the feasible region. We substitute the above formula into the score function and get

∇x log pt (xt | C) = ∇x log pt (xt)− γt∇xV (xt; C) , (5)

where the normalization constant Zt vanishes when taking the gradient of the log-probability, and
hence does not affect the reverse-time dynamics. By substituting the right-hand side of (5) into (4),
we obtain the modified reverse SDE that incorporates constraint information:

dxt = β (t) [−xt − (1 + η) (∇x log pt (xt)− γt∇xV (xt; C))] dt+ η
√

2β (t) dw̃t, (6)

where a constant η ∈ [0, 1] is introduced to accelerate convergence and enhance the stability of the
sampling process [Song and Ermon, 2020]. We observe that the first term on the right-hand side
of (5) corresponds exactly to the unconstrained score function defined in (4). This term can still be
approximated by the neural network sθ (xt, t) trained without considering any constraints. Crucially,
the effect of the constraint appears only during the denoising process, in an explicit gradient-based
form - as an additive term derived from the constraint potential (e.g., a barrier function). This
formulation significantly reduces the need for large amounts of constraint-compliant training data, as
the constraint is not encoded in the network itself but instead injected at inference time. Moreover,
because the constraint enters the reverse SDE as a differentiable time-varying potential, the framework
can naturally accommodate dynamic, time-varying constraints.

It is important to note, as pointed out by Bastek et al. [2025], that applying constraints to data that is
close to pure noise in diffusion models is not meaningful. Therefore, during the denoising process -
i.e., as t decreases from one to zero - we gradually increase the value of γt starting from zero at t = 1.
This progressive scheduling is crucial for ensuring the stability of the denoising process. The specific
design of γt is detailed in Appendix B.

4 Constraint-aware imitation in autonomous racing

We now demonstrate how a policy trained via constraint-aware imitation learning can be deployed in
a real-world robotic task. We choose autonomous racing with obstacle avoidance as a representative
challenge to evaluate constraint satisfaction, physical feasibility, and generalization. While this exam-
ple serves to ground our discussion, the barrier function design and constraint-handling mechanisms
are task-agnostic. Thus, our framework is not limited to autonomous racing but serves as a general-
purpose solution for safety-critical robotics applications. For details on expert demonstration, dataset
construction, diffusion model architecture, and training procedures, please refer to Appendix D.

4.1 Constraint-aware barrier function

For the considered application, the barrier function, which is instantiated from task constraints (safety
and near time-optimality) rather than tuned heuristics, is designed as follows:

V
(
ŷ, ϕ̂; C

)
=

N−1∑
k=0

α1 {ŷk /∈ Ck}︸ ︷︷ ︸
first part

+
ϵ

2
|ŷk − ŷnominal,k|2 +

ϵ

2

∣∣∣ϕ̂k − ϕ̂nominal,k

∣∣∣2︸ ︷︷ ︸
second part

, (7)

5

where the symbol 1 {·} denotes the indicator function4, and the subscript (·)nominal refers to the time-
optimal solution computed offline in the absence of obstacles, which serves as a reliable reference.
Here, N represents the number of discrete points obtained by uniformly sampling along the track
center line. In our setting, ŷ denotes the lateral displacement and ϕ̂ represents the yaw angle in the
Frenet coordinate system (see Appendix D.1). The feasible region Ck is also defined in the Frenet
frame, capturing the obstacle-free area at each sampled position along the track.

In (7), the first part accounts for time-varying obstacles by guiding the sampling process toward
safe, obstacle-free regions. The second part addresses the missing curvature information of the
track during training, which is intentionally discarded when transforming trajectories into the local
Frenet coordinate system. Beyond promoting near time-optimality without requiring global geometric
knowledge of the track, this part also facilitates the generation of dynamically feasible trajectories.
The local representation ensures that the resulting motions adhere more closely to the physical and
kinematic constraints of the system. The positive constants α and ϵ are tunable hyperparameters that
balance the importance of the two components. Specifically, α modulates the influence of physical
safety constraints, while ϵ regulates the adherence to nominal time-optimality.

It is worth noting that the design of the barrier function is not unique and can be tailored to the
specific task. While such customization may require a small amount of tuning effort, it is negligible
compared to the cost of collecting expert demonstrations, especially in robotics domains where data
is expensive. This makes our framework both flexible and data-efficient.

4.2 Constraint-aware inference

We train the diffusion model as described in Appendix D.2 for 500 epochs. During inference, we
applied the Euler-Maruyama discretization (8), which corresponds to the discretized version of (6).
The denoising process proceeds from t = 1.0 to t = 0.0 in 1000 steps, gradually transforming
samples from noise to data. The results are shown in Fig. 1. Fig. 1a illustrates the denoising process
without using the barrier function, while Fig. 1b shows the effect of the proposed constraint-aware
guided generation. Each row depicts intermediate generation results at t = 1 s, 0.591 s, 0.002 s,
from left to right. The black points and arrows indicate the evolving trajectories in the z-y plane. See
Appendix B for the concrete values of the hyperparameters used during inference.

As shown in Fig. 1a, a diffusion model trained purely on expert demonstrations (i.e., standard
imitation learning without constraints) learns to generate trajectories that broadly follow the racetrack
and respect basic physical layout. However, due to limited number of expert demonstrations, such
models struggle to consistently avoid obstacles, especially in areas not well-covered by the training
data. This behavior highlights a key limitation of imitation learning methods that rely solely on
demonstration data: they lack explicit mechanisms to enforce safety or task-specific constraints.

After incorporating the barrier function into the inference process, the model is able to systematically
guide samples away from unsafe regions while still preserving expert-like behavior. As seen in
Fig. 1b, the guided trajectories successfully avoid all obstacles and produce dynamically feasible
motion. Moreover, the model converges faster during the denoising process due to stronger guidance,
resulting in cleaner and more structured trajectories earlier in the sampling process.

Interestingly, beyond simply avoiding obstacles, the guided trajectories also exhibit characteristics
of the expert’s behavior - in particular, they closely track the nominal time-optimal solution even in
the presence of obstacles. This is achieved via the second part of the barrier function, which softly
penalizes deviation from a precomputed time-optimal baseline without any obstacles. As a result,
the generated motion achieves a balance between safety and efficiency, a hallmark of high-quality
imitation in safety-critical settings.

4.3 Near time-optimality

To quantitatively evaluate the near time-optimality of the generated trajectories, we compare them with
offline-computed time-optimal solutions [Verschueren et al., 2016] across multiple obstacle scenarios.
Fig. 2 presents several representative obstacle configurations extracted from a real-world experiment.
In each scenario, the red trajectory denotes the real-time obstacle-avoidance path generated by the
CoDiG framework, while the black trajectory represents the time-optimal path computed offline under

4One possible differentiable approximation is provided in Appendix E.

6

−1 0 1

−1

0

1

z [m]

y
[m

]

−1 0 1
z [m]

−1 0 1
z [m]

(a) Sampling without barrier function.

−1 0 1

−1

0

1

z [m]

y
[m

]

−1 0 1
z [m]

−1 0 1
z [m]

(b) Sampling with barrier function.

Figure 1: Intermediate denoising results during sampling at three representative time steps t =
1 s, 0.591 s, 0.002 s, from left to right. (a) Sampling process without the barrier function. (b)
Sampling process with the proposed barrier function. Black dots and arrows represent the generated
trajectory points and their heading directions in the global frame.

the same obstacle layout. As illustrated in Fig. 2, CoDiG produces trajectories that closely match the
expert’s behavior while also avoiding obstacles in real time. Minor deviations typically arise in two
cases: (i) conservative safety margins near obstacles, and (ii) slight smoothing near sharp corners
for dynamic feasibility. Nonetheless, the overall match confirms that the model has successfully
internalized the expert’s motion style and planning objectives, achieving near time-optimal behavior
even under dynamic constraints.

5 Real-world experiments

We evaluate CoDiG in experiments on a real-world miniature autonomous racing platform [Bodmer
et al., 2024, Carron et al., 2023]. For more details on the experimental platform, the obstacle setup,
and a flowchart illustrating how the CoDiG framework is deployed to achieve real-time obstacle
avoidance, please refer to Appendix G.

5.1 Warm-starting

Real-time obstacle avoidance requires not only safe trajectories but also fast replanning. As shown in
Sec. 4.2, our diffusion model with a barrier function produces high-quality trajectories after 1000
denoising steps, but this results in a low sampling frequency of 0.25Hz, which is insufficient for
real-time racing.

While various acceleration techniques exist [Song et al., 2022, Palo et al., 2025, Zhang and Chen,
2023], we propose a warm-start strategy tailored to robotic control. Unlike standard diffusion
generation, which samples each trajectory from pure noise, our proposed warm-start technology
perturbs the previous output with small noise and reuses it as the next input. This maintains temporal
consistency, reduces trajectory variance, and improves control stability [Morari and Lee, 1999]. By

7

−1 0 1

−1

0

1

z [m]

y
[m

]

−1 0 1
z [m]

−1 0 1
z [m]

−1

0

1

y
[m

]

−1

0

1

y
[m

]

Figure 2: Comparison between trajectories generated in real time by CoDiG (red) and offline-
computed time-optimal trajectories (black) under various obstacle configurations.

promoting smooth transitions between consecutive trajectories, warm-starting significantly lowers
the number of denoising steps required and enhances real-time feasibility. A detailed analysis and
comparison of results with and without warm-starting are provided in Appendix F.

5.2 Experimental results

Through the integration of our warm-start technique, we achieve a sampling frequency of 2.5Hz
on a computer equipped with an NVIDIA RTX 4090 GPU. While there is still potential for further
acceleration, this performance already satisfies the real-time requirements of obstacle avoidance in
racing scenarios.

We successfully deployed CoDiG on our real-world autonomous racing platform for real-time
trajectory planning. A tracking model predictive control (TMPC) [Limon et al., 2008, Soloperto
et al., 2023] is employed to follow the planned trajectories. Notably, the TMPC operates without
any knowledge of obstacles, relying solely on the reference trajectories for control. Fig. 3 illustrates
two representative obstacle avoidance maneuvers during autonomous driving. In both Fig. 3a and
Fig. 3b, the red lines represent the trajectories planned by CoDiG, the gray circles denote static
obstacles, while the black circles indicate dynamic obstacles. The black dashed lines show the
predicted trajectories generated by the TMPC as it attempts to follow the red reference trajectory.
Each sequence from left to right captures a complete avoidance cycle: (i) Obstacle Encroachment:
An obstacle intrudes into a previously feasible trajectory, making it infeasible. (ii) Replanning:
The planner detects the encroachment and generates a new collision-free trajectory. (iii) Successful
Avoidance: The vehicle safely bypasses the obstacle.

As shown in the figures, the predicted trajectories from the TMPC closely align with the reference
trajectories generated by the diffusion model. This highlights that the planned trajectories are closely
aligned with physical feasibility, enabled by the barrier function, which is crucial for effective tracking

8

−1 0 1

−1

0

1

z [m]

y
[m

]

−1 0 1
z [m]

−1 0 1
z [m]

(a) Obstacle avoidance episode 1.

−1 0 1

−1

0

1

z [m]

y
[m

]

−1 0 1
z [m]

−1 0 1
z [m]

(b) Obstacle avoidance episode 2.

Figure 3: Real-world demonstration of real-time obstacle avoidance using CoDiG. Red lines represent
the planned trajectories generated by the CoDiG diffusion planner. Gray circles indicate static
obstacles, and black circles represent dynamic obstacles. Black dashed lines show the predicted
trajectory from the TMPC while following the reference plan. Each episode illustrates a complete
avoidance cycle: obstacle encroachment, real-time replanning, and successful passage.

performance. Additionally, even in the presence of obstacles, the generated trajectories maintain near
time-optimality, indicating that the planner does not overly sacrifice efficiency for safety.

Finally, thanks to the warm-start strategy, significant replanning is only triggered when the obstacle
actually interferes with the current path. In static conditions, consecutive trajectories remain almost
unchanged, ensuring system stability. We conducted five experimental trials, each consisting of 15
racing laps, across ten different obstacle configurations. The framework achieved a 100% success
rate in obstacle avoidance, demonstrating its robustness and reliability in diverse scenarios.

6 Conclusion

In this work, we introduce CoDiG, a constraint-aware diffusion-based imitation learning framework
for robotics. CoDiG learns offline from a small number of expert demonstrations, without requiring
environment interaction or reward supervision. At inference time, it integrates physical and safety
constraints via barrier-guided score updates, enabling the generation of feasible and safe trajectories
in dynamic and constrained environments.

We demonstrate CoDiG on autonomous racing with dynamic obstacles, achieving robust real-world
performance with reliable obstacle avoidance and precise tracking at 2.5Hz. The resulting behavior
closely mimics time-optimal expert trajectories while ensuring safety, making CoDiG a promis-
ing direction for deploying scalable and safe imitation learning in safety-critical domains such as
autonomous racing.

9

Acknowledgments

We thank Matteo Facchino for providing code related to time-optimal control solvers. We also
gratefully acknowledge Jan-Hendrik Bastek for the insightful discussions on constraint handling in
diffusion models. We thank the German Research Foundation and the Max-Planck ETH Center for
Learning Systems for the support.

References
André Correia and Luís A Alexandre. A Survey of Demonstration Learning. Robotics and Au-

tonomous Systems, 182(0):104812–104841, 2024.

Brenna D Argall, Sonia Chernova, Manuela Veloso, and Brett Browning. A Survey of Robot Learning
from Demonstration. Robotics and Autonomous Systems, 57(5):469–483, 2009.

Stephane Ross, Geoffrey Gordon, and Drew Bagnell. A Reduction of Imitation Learning and
Structured Prediction to No-Regret Online Learning. In International Conference on Artificial
Intelligence and Statistics, pages 627–635, 2011.

Jonathan Ho and Stefano Ermon. Generative Adversarial Imitation Learning. In Advances in Neural
Information Processing Systems, pages 1–9, 2016.

Justin Fu, Katie Luo, and Sergey Levine. Learning Robust Rewards with Adversarial Inverse
Reinforcement Learning. arXiv:1710.11248, pages 1–15, 2018.

Yiren Lu, Justin Fu, George Tucker, Xinlei Pan, Eli Bronstein, Rebecca Roelofs, Benjamin Sapp,
Brandyn White, Aleksandra Faust, Shimon Whiteson, Dragomir Anguelov, and Sergey Levine.
Imitation Is Not Enough: Robustifying Imitation with Reinforcement Learning for Challenging
Driving Scenarios. In International Conference on Intelligent Robots and Systems, pages 7553–
7560, 2023a.

Rosa Wolf, Yitian Shi, Sheng Liu, and Rania Rayyes. Diffusion Models for Robotic Manipulation: A
Survey. arXiv:2504.08438, pages 1–28, 2025.

Cheng Chi, Zhenjia Xu, Siyuan Feng, Eric Cousineau, Yilun Du, Benjamin Burchfiel, Russ Tedrake,
and Shuran Song. Diffusion policy: Visuomotor policy learning via action diffusion. The
International Journal of Robotics Research, 0(0):1–21, 2024.

Julen Urain, Niklas Funk, Jan Peters, and Georgia Chalvatzaki. SE(3)-DiffusionFields: Learning
smooth cost functions for joint grasp and motion optimization through diffusion. In International
Conference on Robotics and Automation, pages 5923–5930, 2023.

Kota Kondo, Andrea Tagliabue, Xiaoyi Cai, Claudius Tewari, Olivia Garcia, Marcos Espitia-Alvarez,
and Jonathan P. How. CGD: Constraint-Guided Diffusion Policies for UAV Trajectory Planning.
arXiv:2405.01758, pages 1–8, 2024.

Norman Di Palo, Leonard Hasenclever, Jan Humplik, and Arunkumar Byravan. Diffusion Augmented
Agents: A Framework for Efficient Exploration and Transfer Learning. In Conference on Lifelong
Learning Agents, pages 268–284, 2025.

Kin Man Lee, Sean Ye, Qingyu Xiao, Zixuan Wu, Zulfiqar Zaidi, David B. D’Ambrosio, Pannag R.
Sanketi, and Matthew Gombolay. Learning Diverse Robot Striking Motions with Diffusion Models
and Kinematically Constrained Gradient Guidance. arXiv:2409.15528, pages 1–8, 2025.

Zhixuan Liang, Yao Mu, Mingyu Ding, Fei Ni, Masayoshi Tomizuka, and Ping Luo. AdaptDiffuser:
Diffusion Models as Adaptive Self-evolving Planners. In International Conference on Machine
Learning, pages 20725–20745, 2023.

Jan-Hendrik Bastek, WaiChing Sun, and Dennis M. Kochmann. Physics-Informed Diffusion Models.
arXiv:2403.14404, pages 1–26, 2025.

Giorgio Giannone, Akash Srivastava, Ole Winther, and Faez Ahmed. Aligning Optimization Trajecto-
ries with Diffusion Models for Constrained Design Generation. In Advances in Neural Information
Processing Systems, pages 51830–51861, 2023.

10

Thomas Power, Rana Soltani-Zarrin, Soshi Iba, and Dmitry Berenson. Sampling Constrained
Trajectories Using Composable Diffusion Models. In International Conference on Intelligent
Robots and Systems, pages 1–5, 2023.

João Carvalho, An T. Le, Mark Baierl, Dorothea Koert, and Jan Peters. Motion Planning Diffusion:
Learning and Planning of Robot Motions with Diffusion Models. In International Conference on
Intelligent Robots and Systems, pages 1916–1923, 2023.

Jacob K. Christopher, Stephen Baek, and Ferdinando Fioretto. Constrained Synthesis with Projected
Diffusion Models. arXiv:2402.03559, pages 1–20, 2024.

Wei Xiao, Tsun-Hsuan Wang, Chuang Gan, and Daniela Rus. SafeDiffuser: Safe Planning with
Diffusion Probabilistic Models. arXiv:2306.00148, pages 1–19, 2023.

Ralf Römer, Alexander von Rohr, and Angela P. Schoellig. Diffusion Predictive Control with
Constraints. arXiv:2412.09342, pages 1–14, 2024.

Wenhao Yu, Jie Peng, Huanyu Yang, Junrui Zhang, Yifan Duan, Jianmin Ji, and Yanyong Zhang.
LDP: A Local Diffusion Planner for Efficient Robot Navigation and Collision Avoidance. In
International Conference on Intelligent Robots and Systems, pages 5466–5472, 2024.

Anurag Ajay, Yilun Du, Abhi Gupta, Joshua Tenenbaum, Tommi Jaakkola, and Pulkit Agrawal. Is
Conditional Generative Modeling All You Need for Decision-Making? arXiv:2211.15657, pages
1–24, 2023.

Ze Gong, Akshat Kumar, and Pradeep Varakantham. Offline Safe Reinforcement Learning Using
Trajectory Classification. In Conference on Artificial Intelligence, pages 16880–16887, 2025.

Nicolò Botteghi, Federico Califano, Mannes Poel, and Christoph Brune. Trajectory Generation,
Control, and Safety with Denoising Diffusion Probabilistic Models. arXiv:2306.15512, pages
1–18, 2023.

Prafulla Dhariwal and Alexander Nichol. Diffusion Models Beat GANs on Image Synthesis. In
Advances in Neural Information Processing Systems, pages 8780–8794, 2021.

Cheng Lu, Huayu Chen, Jianfei Chen, Hang Su, Chongxuan Li, and Jun Zhu. Contrastive Energy
Prediction for Exact Energy-Guided Diffusion Sampling in Offline RL. In International Conference
on Machine Learning, pages 22825–22855, 2023b.

Ziyad Sheebaelhamd, Michael Tschannen, Michael Muehlebach, and Claire Vernade. Quantization-
Free Autoregressive Action Transformer. arXiv:2503.14259, pages 1–15, 2025.

Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon, and
Ben Poole. Score-Based Generative Modeling through Stochastic Differential Equations. In
International Conference on Machine Learning, pages 10362–10383, 2021.

Bernt Øksendal. Stochastic Differential Equations. Springer Berlin Heidelberg, 1995.

Brian D.O. Anderson. Reverse-Time Diffusion Equation Models. Stochastic Processes and their
Applications, 12(3):313–326, 1982.

Jonathan Ho and Tim Salimans. Classifier-Free Diffusion Guidance. arXiv:2207.12598, pages 1–14,
2022.

Yang Song and Stefano Ermon. Improved Techniques for Training Score-Based Generative Models.
In Advances in Neural Information Processing Systems, pages 12438–12448, 2020.

Robin Verschueren, Mario Zanon, Rien Quirynen, and Moritz Diehl. Time-optimal Race Car Driving
using an Online Exact Hessian based Nonlinear MPC Algorithm. In European Control Conference,
pages 141–147, 2016.

Sabrina Bodmer, Lukas Vogel, Simon Muntwiler, Alexander Hansson, Tobias Bodewig, Jonas Wahlen,
Melanie N. Zeilinger, and Andrea Carron. Optimization-Based System Identification and Moving
Horizon Estimation Using Low-Cost Sensors for a Miniature Car-Like Robot. arXiv:2404.08362,
pages 1–11, 2024.

11

Andrea Carron, Sabrina Bodmer, Lukas Vogel, René Zurbrügg, David Helm, Rahel Rickenbach,
Simon Muntwiler, Jerome Sieber, and Melanie N. Zeilinger. Chronos and CRS: Design of a
miniature car-like robot and a software framework for single and multi-agent robotics and control.
In International Conference on Robotics and Automation, pages 1371–1378, 2023.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising Diffusion Implicit Models.
arXiv:2010.02502, pages 1–22, 2022.

Qinsheng Zhang and Yongxin Chen. Fast Sampling of Diffusion Models with Exponential Integrator.
arXiv:2204.13902, pages 1–33, 2023.

Manfred Morari and Jay H. Lee. Model predictive control: past, present and future. Computers &
Chemical Engineering, 23(4-5):667–682, 1999.

Daniel Limon, Ignacio Alvarado Aldea, Teodoro Alamo, and Eduardo F. Camacho. MPC for tracking
piecewise constant references for constrained linear systems. Automatica, 44(9):2382–2387, 2008.

Raffaele Soloperto, Johannes Köhler, and Frank Allgöwer. A Nonlinear MPC Scheme for Output
Tracking Without Terminal Ingredients. Transactions on Automatic Control, 68(4):2368–2375,
2023.

Timothy Sauer. Numerical Solution of Stochastic Differential Equations in Finance. In Handbook of
Computational Finance, pages 529–550. Springer, 2012.

Hugh C. Crenshaw and Leah Edelstein-Keshet. Orientation by Helical Motion—II. Changing the
Direction of the Axis of Motion. Bulletin of Mathematical Biology, 55(1):213–230, 1993.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
Resolution Image Synthesis with Latent Diffusion Models. arXiv:2112.10752, pages 1–45, 2022.

James Hensman, Nicolas Durrande, and Arno Solin. Variational Fourier Features for Gaussian
Processes. Journal of Machine Learning Research, 18(151):1–52, 2018.

12

A Comparison of Constraint-Enforcement Strategies

This section provides a concise, side-by-side comparison of how constraints are handled across
methods in Table 1: whether constraints are enforced during training, inference, or both; the guidance
source (e.g., classifier, energy, projection, or physics-based barrier); whether learned auxiliary models
or projection steps are required; and whether any real-time evidence is reported.

B Hyperparameters

During inference, the hyperparameters are set as follows:

η = 0.1, α = 0.4, ϵ = 16.0.

In practice, we set α in the range 10–15, whereas ϵ is chosen at a smaller magnitude, typically
0.1–0.5. We also observe that our method is not particularly sensitive to these hyperparameters across
environments: the same settings generalize well on both training and test scenarios.

In particular, the time-varying weight γ (t) is assigned non-uniform values according to the following
scheme:

γ (t) =
ℏ1

1 + exp (−ℏ2 (ℏ3 − t))
, t ∈ [0, 1] ,

where ℏ1 = 1.0, ℏ2 = 50.0, and ℏ3 = 0.7. The choice of the function γ is not unique. The guiding
principle is to introduce the constraint progressively during denoising so that its gradient increasingly
shapes the samples as they approach the data manifold. Any monotone schedule that follows this
principle (e.g., linear or logistic ramp-up) works in practice.

C Discrete-time integration

Assuming a denoising process over M ∈ N++ steps, we partition the interval [0, 1] non-uniformly as
follows:

tk =

(
1− k

M

)p

, k = 0, . . . ,M,

where p = 2.2 in our case. Starting from an initial sample x0 drawn from a standard Gaussian
distribution, we perform denoising according to the following discrete Euler-Maruyama [Sauer, 2012]
update scheme:

x̄k+1 = xk + β (tk) [−xk − (1 + η) (sθ (xk, tk)− γtk∇xV (xk; C))] ∆tk,

xk+1 = x̄k+1 + η
√
2β (tk)

√
|∆tk|σk, k = 0, . . . ,M − 1,

(8)

where ∆tk = tk+1 − tk denoting the step size between successive time points. The noise term
σk ∈ Rd is sampled from a standard Gaussian distribution. Here, x̄ denotes the mean estimate at
each step, while x denotes the noisy sample.

D Data and model pipeline

In this section, we describe the pipeline used to train our diffusion model for obstacle avoidance in
racing scenarios. We begin by presenting our data collection process, where expert demonstrations are
gathered to reflect optimal driving behaviors in the presence of obstacles. Then, we introduce a data
augmentation strategy that diversifies the training distribution while preserving expert intent. Next, we
detail the architecture of our proposed diffusion model, which is adapted to handle time-conditioned
inputs and spatial constraints relevant to the racing task. Finally, we present the training results of the
diffusion model under various input configurations, demonstrating how different modalities affect the
training performance.

D.1 Expert dataset construction

Even on a miniature autonomous racing platform, collecting expert demonstrations via manual
teleoperation is highly challenging and time-consuming. Therefore, we generate expert data by

13

M
et

ho
d

St
ag

e
G

ui
da

nc
e

so
ur

ce
A

ux
.m

od
el

Pr
oj

ec
tio

n
R

T
ev

id
en

ce

C
oD

iG
(o

ur
s)

In
fe

re
nc

e
B

ar
ri

er
gr

ad
ie

nt
(p

hy
si

cs
&

sa
fe

ty
)

✗
✗

✓
(2

.5
H

z)

D
ha

ri
w

al
an

d
N

ic
ho

l[
20

21
]

In
fe

re
nc

e
C

la
ss

ifi
er

∇
lo
g
p
(y

|x
)

✓
✗

–
L

u
et

al
.[

20
23

b]
In

fe
re

nc
e

E
ne

rg
y

gr
ad

ie
nt

✓
✗

–
C

hr
is

to
ph

er
et

al
.[

20
24

]
X

ia
o

et
al

.[
20

23
]

In
fe

re
nc

e
Pr

oj
ec

tio
n

op
er

at
or

⃝
✓

–

R
öm

er
et

al
.[

20
24

]
In

fe
re

nc
e

M
od

el
-b

as
ed

co
ns

tr
ai

nt
s

⃝
⃝

–

Y
u

et
al

.[
20

24
]

In
fe

re
nc

e
L

oc
al

co
lli

si
on

-f
re

e
co

nd
iti

on
in

g
⃝

✗
–

B
as

te
k

et
al

.[
20

25
]

Tr
ai

n
Ph

ys
ic

s-
in

fo
rm

ed
tr

ai
ni

ng
lo

ss
✗

✗
–

G
ia

nn
on

e
et

al
.[

20
23

]
Tr

ai
n

A
lig

n
to

co
ns

tr
ai

ne
d

op
t.

pa
th

s
✗

✗
–

Po
w

er
et

al
.[

20
23

]
Tr

ai
n

M
ul

ti-
co

ns
tr

ai
nt

tr
ai

ni
ng

⃝
✗

–

A
ja

y
et

al
.[

20
23

]
B

ot
h

C
on

st
ra

in
ed

de
ci

si
on

di
ff

us
io

n
⃝

⃝
–

G
on

g
et

al
.[

20
25

]
B

ot
h

Tr
aj

ec
to

ry
-l

ev
el

di
ff

us
io

n
w

/c
on

st
ra

in
ts

⃝
⃝

–
B

ot
te

gh
ie

ta
l.

[2
02

3]
B

ot
h

Sa
fe

pr
io

rs
+

ru
nt

im
e

fil
te

ri
ng

⃝
⃝

–

Ta
bl

e
1:

C
om

pa
ris

on
ac

ro
ss

en
fo

rc
em

en
tp

ha
se

s.
“A

ux
.”

in
di

ca
te

s
le

ar
ne

d
au

xi
lia

ry
ne

tw
or

ks
;“

Pr
oj

ec
tio

n”
in

di
ca

te
s

pr
oj

ec
tio

n
st

ep
s;

RT
=

re
al

-ti
m

e.
“✓

”
m

ea
ns

th
e

ite
m

is
re

qu
ir

ed
,“

✗
”

m
ea

ns
it

is
no

tn
ee

de
d,

“⃝
”

de
no

te
s

th
at

it
is

op
tio

na
l,

an
d

“–
”

m
ea

ns
th

at
no

re
su

lt
is

re
po

rt
ed

.

14

solving a time-optimal control problem [Verschueren et al., 2016], including car states and control
inputs.

To collect expert data, we randomly place obstacles on the track and solve the aforementioned
time-optimal control problem to obtain optimal driving trajectories with continuous looping and
corresponding control inputs. An example is shown in Fig. 4a, where the gray regions indicate
obstacles. The red curve shows the trajectory in the z-y plane, and the black rectangles and arrows
illustrate the approximate shape and orientation of the vehicle, respectively, reflecting the fact that
the vehicle is not treated as a point mass to account for the system dynamics.

−1 0 1

−1

0

1

z [m]

y
[m

]

(a) Time-optimal expert trajectory.

−1 0 1

−1

0

1

z [m]

y
[m

]
(b) Redundant obstacle augmentation.

0 500 1,000 1,500 2,000 2,500 3,000

−0.2

0

0.2

Index

y
[m

]

(c) Flattened Frenet representation.

Figure 4: (a) A time-optimal trajectory (red line) computed for a given obstacle configuration (gray
regions) on the racing track. Black rectangles and arrows indicate the approximate vehicle shape and
heading. (b) Redundant obstacles (brown regions) added in areas that do not affect the trajectory,
providing data augmentation without solving additional optimal control problems. (c) A flattened
track representation in the local Frenet coordinate system, visualizing both the trajectory (red line)
and obstacles (black regions).

As previously mentioned, collecting expert data is expensive. Solving a single time-optimal control
problem takes around 10 minutes on average. To address this limitation, we propose a method for
dataset augmentation. We observe that once the time-optimal solution is obtained for a given map
(with a specific obstacle configuration), adding extra obstacles within the safe region that do not
interfere with the trajectory will not alter the time-optimal solution. These redundant obstacles -
illustrated as brown regions in Fig. 4b - can be arbitrarily placed without affecting the outcome. Based
on this observation, we first collect 100 trajectories by solving time-optimal problems with randomly
placed obstacles, which takes approximately 16 hours in total. We then expand this dataset to 10 000
trajectories by adding random redundant obstacles in safe regions, using 80% of them when training
the diffusion model.

During training, we only use the pose information - namely y and yaw angle ϕ - which are transformed
into a local Frenet coordinate system [Crenshaw and Edelstein-Keshet, 1993]. This yields the local
variables ŷ and ϕ̂, representing the lateral displacements and heading relative to the reference path.
Together with the obstacle representation, this results in a flattened map as shown in Fig. 4c. In

15

this map, the presence of obstacles naturally induces an obstacle-free region, denoted by C, which
is already defined in the local Frenet frame. For notational simplicity, we omit the explicit time
index τ , but we emphasize that C is inherently time-varying, reflecting the dynamic nature of the
environment. The set C provides a time-varying constraint in the planning process and is considered
in the definition of our constraint-aware barrier function.

By performing this transformation, we deliberately discard information about the global curvature
of the track. This enhances the generalization capability of the trained diffusion model, enabling
the model to handle arbitrary (even moving) obstacles. However, this also means that the generated
trajectories may not inherently account for curvature constraints, an issue we address using a barrier
function in the denoising process, which is detailed in Sec. 4.2.

D.2 Diffusion model architecture

As illustrated in Fig. 5, we adopt a time-conditioned U-Net architecture as the backbone of our
diffusion model [Rombach et al., 2022]. The network follows a classic encoder-decoder structure,
augmented with time and conditional information to support trajectory generation in dynamic
environments.

32

conv1

+

64

conv2

+

128

conv3

+

attn1

256

conv4

+

attn2 128

tconv1

+

64

tconv2

+

32

tconv3

+

output

256

time embedding

128

condition embedding

Figure 5: Architecture of the proposed time-conditioned score-based generative model. The U-Net
backbone extracts multi-scale features through a sequence of convolutional and deconvolutional
layers, with temporal embeddings injected via dense layers. Spatial transformer modules enable
conditional attention guided by task-specific context. Skip connections ensure spatial consistency
across scales.

The input is a single-channel spatial-temporal representation of the trajectory, and the output preserves
the same spatial resolution. Temporal conditioning is achieved via Gaussian Fourier features [Hens-
man et al., 2018], which embed the diffusion time step into a high-dimensional representation. This
embedding is injected at every resolution level to inform the network of the denoising progress.

The encoder consists of a sequence of down-sampling convolutional blocks, each followed by time
embedding fusion and group normalization. To enhance spatial reasoning and enable conditional
generation, spatial transformer modules are inserted at deeper layers, where they incorporate context
information - such as a reference track - encoded via a lightweight convolutional neural network.

The decoder mirrors the encoder with up-sampling blocks and skip connections, allowing the network
to reconstruct high-resolution outputs by fusing low-level and high-level features. Each decoding
layer is also conditioned on time to ensure consistency with the diffusion process.

This architecture is designed to be data-efficient, modular, and generalizable. It supports plug-and-
play conditional guidance and is easily extendable to other tasks in robotics beyond the case study of
autonomous racing.

D.3 Training of the network

We experiment with different input modalities for the diffusion model. Specifically, we considered:
(i) the lateral displacement ŷ after transforming into the Frenet coordinate system; (ii) both the lateral

16

displacement ŷ and the yaw angle ϕ̂ in the Frenet frame; (iii) the states including x̂, ŷ, ϕ̂ along with
their corresponding velocities v̂x, v̂y, ω̂ in the Frenet frame. For each input configuration, we train
the model for 500 epochs and explore different values of r1 and r0 in constructing the noise schedule
β (t) = r1t

2 + r0 for t ∈ [0, 1]. The training results are shown in Fig. 6, where the three plots from
left to right correspond to the aforementioned three input configurations, respectively.

0 200 400

100

101

102

103

Epoch

L
o
ss

0 200 400

Epoch

0 200 400

Epoch

r1 = 60, r0 = 1 r1 = 60, r0 = 30 r1 = 100, r0 = 1 r1 = 100, r0 = 30 r1 = 100, r0 = 90

Figure 6: Training performance of the diffusion model under different input configurations and noise
schedules. From left to right, the three plots correspond to using (i) lateral displacement ŷ in the
Frenet frame only, (ii) lateral displacement ŷ and yaw angle ϕ̂ in the Frenet frame, and (iii) the states
x̂, ŷ, ϕ̂ along with velocities v̂x, v̂y, ω̂ as model inputs. Each setting was trained for 500 epochs
while varying the parameters r1 and r0 in the noise schedule.

Our experiments show that varying r1 has negligible impact on the final training performance. In
contrast, increasing r0 generally improves training outcomes, suggesting that larger initial noise
levels may facilitate better learning. However, due to the limited size of our training dataset,
excessively large values of r0 can lead to overfitting risks. Additionally, we observe that as the input
dimensionality increases, the training performance degrades, likely due to the increased complexity
of the data distribution and the limited model capacity under fixed training resources. Based on these
observations, we choose to use only the lateral displacement ŷ and the yaw angle ϕ̂ in the Frenet
frame as inputs in our final framework, setting r1 = 100.0 and r0 = 30.0.

It is important to emphasize that although we adopt a simplified input representation in this work,
our approach remains general and can naturally extend to handle higher-dimensional or multimodal
inputs. This flexibility paves the way toward directly modeling control inputs using diffusion models
in future work.

E Differentiable Approximation of the Indicator

To facilitate reproducibility, we detail a specific approximation of the indicator in (7), while noting
that alternative formulations are possible. We approximate the indicator 1 {ŷk /∈ Ck} with a piecewise-
linear function defined on the signed distance to the nearest obstacle center. Let dist (ŷk) be the
signed distance that is positive inside obstacles, zero on the boundary, and negative outside. We use
the normalized linear map

1̂ {ŷk /∈ Ck} = min

(
1,max

(
0,

dist (ŷk)

ρ (Ck)

))
so that points on the obstacle edge map to zero and (approximately) the obstacle center maps to one.
Here ρ is a normalization scale corresponding to the obstacle half-width (for disks, the radius; for
general shapes, the inradius or a fixed calibration constant). In practice, we compute dist (·) from the
obstacle binary mask using a (Euclidean) distance transform; outside obstacles dist (·) ≤ 0 hence
1̂ = 0, while inside obstacles it increases linearly with the interior distance and saturates at one.

17

F Warm-start evaluation

In this work, we incorporate a warm-starting strategy to accelerate the sampling process, thereby
enabling real-time obstacle avoidance. This section presents a quantitative analysis of the effects
introduced by this partial diffusion strategy on trajectory generation performance.

Fig. 7 illustrates the reference trajectories generated with and without the application of the warm
start technique under an identical obstacle configuration, sampled at consistent time instances. In the
figures, gray circles denote static obstacles, while black circles denote dynamic obstacles. The nine
subfigures are arranged sequentially from left to right and top to bottom. In each subfigure, the black
solid line represents the trajectory obtained using the standard diffusion model, which initiates from
standard Gaussian noise and progresses through 500 denoising steps. In contrast, the red solid line
corresponds to the trajectory generated with the warm start method, which undergoes 50 denoising
steps of partial noised initial trajectory.

−1 0 1

−1

0

1

z [m]

y
[m

]

−1 0 1
z [m]

−1 0 1
z [m]

−1

0

1

y
[m

]

−1

0

1

y
[m

]

Figure 7: Comparison of reference trajectories generated with and without the warm start technique
under an identical obstacle configuration. Gray circles denote static obstacles, and black circles
denote dynamic obstacles. The black solid lines represent trajectories produced by the standard
diffusion model after 500 denoising steps starting from standard Gaussian noise. The red solid
lines represent trajectories generated using the warm start approach, where 50 denoising steps are
performed. The warm start method accelerates the sampling process while maintaining successful
obstacle avoidance, albeit with slightly coarser trajectory profiles and more conservative motion
planning behavior.

As evidenced by the results, both approaches successfully achieve obstacle avoidance at all time
steps, demonstrating their respective effectiveness. Nevertheless, the trajectories generated via the
warm start technique exhibit a coarser structure, primarily due to the incomplete denoising process
inherent to partial diffusion. Furthermore, from the perspective of physical feasibility, the trajectories
derived from the standard diffusion model better adhere to realistic vehicle dynamics. Specifically,
the final subfigure demonstrates that the warm start method tends to converge to a local solution and
favors a more conservative path - remaining closer to the previous time point - to avoid obstacle.

18

Despite this conservatism, the warm start approach proves crucial, as it reduces the sampling time by
approximately a factor of three, thereby making real-time obstacle avoidance feasible. Moreover, the
conservative behavior introduced by warm start contributes positively to the overall system stability.

G Experimental platform and the CoDiG framework

Fig. 8 illustrates the experimental platform used to evaluate the performance of the CoDiG framework
for real-time obstacle avoidance in autonomous racing. The platform consists of a down-scaled race
track (Fig. 8a), a custom-built autonomous car (Fig.8b), and a motion capture system (not shown in
the figure). This setup enables agile maneuvering and real-time control in dynamic, safety-critical
scenarios such as obstacle avoidance. It provides a reproducible environment to evaluate our approach
under realistic conditions.

(a) Down-scaled race track. (b) Custom-built autonomous car.

(c) Obstacle configuration.

Figure 8: Experimental platform used to evaluate the performance of the CoDiG framework for
real-time obstacle avoidance in autonomous racing. The setup includes (a) a down-scaled race track,
(b) a custom-built autonomous vehicle, and (c) an obstacle configuration that simulates a challenging
and realistic racing scenario.

Additionally, Fig. 8c depicts the obstacle configuration used during the experiments. The vehicle
positioned at the starting line is the one under our control, responsible for executing the obstacle
avoidance task. Yellow boxes represent static obstacles, while the remaining vehicles serve as
either dynamic or static obstacles. This setup faithfully simulates a complex and challenging racing

19

environment, emphasizing the effectiveness and robustness of our framework under realistic, high-
difficulty conditions.

The flowchart illustrating how the CoDiG framework enables real-time obstacle avoidance for
autonomous racing on the experimental platform is shown in Fig. 9. The core component of the
CoDiG framework is a trained diffusion planner module, which generates a safe reference trajectory
yref capable of avoiding all obstacles. This is achieved by incorporating map and obstacle information,
and guiding the sampling process via gradients provided by a constraint-aware guidance mechanism.

CoDiG

Map and
Obstacles

Diffusion
Planner

Tracking
MPC

Car

State
Estimator

Warm
Start

Constraint-Aware
Guidance

map yref u

states

yinit

map

gradient

Figure 9: Flowchart of the proposed CoDiG framework for real-time obstacle avoidance in au-
tonomous racing. The framework integrates a diffusion-based trajectory planner, a constraint-aware
guidance module that guides the denoising process, a warm start strategy to accelerate sampling, and
a tracking MPC controller. All modules operate within the experimental platform described in Fig. 8.

To improve sampling efficiency, the reference trajectory generated at the current time point is further
used to construct the initial input yinit for the diffusion process at the next time step, via a warm
start strategy. This replaces the conventional use of standard Gaussian noise as the initial condition,
thereby accelerating the trajectory generation process.

Subsequently, a tracking MPC module computes the control input u required to follow the reference
trajectory yref, based on the current vehicle state estimated by a state estimator module. Finally, the
control input u is applied to the vehicle to execute real-time obstacle avoidance.

20

	Introduction
	Related work
	Generative imitation via diffusion
	Preliminaries
	Constraint-aware diffusion guidance

	Constraint-aware imitation in autonomous racing
	Constraint-aware barrier function
	Constraint-aware inference
	Near time-optimality

	Real-world experiments
	Warm-starting
	Experimental results

	Conclusion
	Comparison of Constraint-Enforcement Strategies
	Hyperparameters
	Discrete-time integration
	Data and model pipeline
	Expert dataset construction
	Diffusion model architecture
	Training of the network

	Differentiable Approximation of the Indicator
	Warm-start evaluation
	Experimental platform and the CoDiG framework

