
A scalable platform to build the
data layer of knowledge graph AI

Lucas Vittor∗
Department of Biomedical Informatics

Harvard Medical School
Boston, MA 02115

lvvittor@gmail.com

Iñaki Arango∗

Department of Biomedical Informatics
Harvard Medical School

Boston, MA 02115
inakiarango@college.harvard.edu

Ayush Noori∗
Department of Biomedical Informatics

Harvard Medical School
Boston, MA 02115

anoori@college.harvard.edu

Joaquin Polonuer∗
Department of Biomedical Informatics

Harvard Medical School
Boston, MA 02115

jtpolonuer@gmail.com

Marinka Zitnik†

Department of Biomedical Informatics
Harvard Medical School

Boston, MA 02115
marinka@hms.harvard.edu

Abstract

Knowledge graphs (KGs) underpin modern graph AI, from retrieval-augmented
generation to large graph-language models. However, pipelines to construct and
maintain KGs remain irreproducible and challenging to scale. We introduce
OPTIMUS, an opinionated platform for building large-scale KGs with an em-
phasis on reproducibility and extensibility. OPTIMUS adopts a data lake-inspired
medallion architecture; enforces schema contracts and identifier harmonization;
and produces machine learning-ready KG exports. In benchmarking experiments,
OPTIMUS constructed a biomedical KG with 192,307 nodes, 21.5M edges, and
88.6M properties from 47 heterogeneous datasets. Parallelized execution reduced
wall clock build time by 56.5% compared to sequential execution (143.6 s vs.
62.4 s), while throughput per edge improved as the graph scaled. These results
demonstrate that OPTIMUS enables efficient, reproducible, and scalable KG con-
struction, strengthening the data layer of knowledge-grounded AI.

1 Introduction

Knowledge graphs (KGs) are relational databases that use a graph-based data model to encode
knowledge-informed interactions between different objects [1, 2]. Formally, a KG is defined by
a set of nodes as well as a set of edges that describe relationships between the nodes. In modern
heterogeneous KGs, nodes and edges have different types, and may also contain extra properties or
information [3]. Since 2012, KGs have been utilized across healthcare [4], networking [5], finance

∗Equal contribution
†Correspondence: marinka@hms.harvard.edu

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: New Perspectives in
Advancing Graph Machine Learning.



[6], media [7], search [8], cybersecurity [9], and many other applications. In addition to Google, KGs
have been developed by companies including Airbnb, Amazon, eBay, Facebook, IBM, LinkedIn,
Microsoft, and Uber [2], highlighting the academic and commercial value of the KG data model to
organize human knowledge. Over two decades of research in network science and graph artificial
intelligence (AI) has developed algorithms that ingest knowledge from KGs [10], enabling advances
in recommendation and search [11], knowledge-intensive question answering [12], science [13],
medicine [14, 15], cybersecurity, fraud and anomaly detection [16], materials science [17], code
intelligence, weather forecasting [18], and many other domains. Importantly, neural scaling laws
suggest that the performance of graph AI models improves as the numbers of nodes and edges in the
KG training data increase [19–21]. Therefore, methods to construct KGs and thereby create the data
layer of graph AI are critical.

Unfortunately, the ecosystem of developer tools and applications surrounding KGs is still in its
infancy. Many of the tools that we expect to work with code or tabular data, such as construction
frameworks, standard exchange formats, version control, compression methods, collaboration plat-
forms, and programming libraries, are not available for graph data or are outdated and unmaintained.
In particular, methods to construct KGs face the following challenges: (1) heterogeneity: heteroge-
neous and siloed data must be integrated across inconsistent formats, semantics, and licenses into a
common namespace; (2) evolution: identifiers, ontologies, and releases change frequently; and (3)
reproducibility: traditional construction pipelines rely on custom scripts or manual steps, leading to
poor reproducibility and maintenance. There is a need for principled software engineering solutions
for KG construction and maintenance that enforce consistency and enable reuse across projects.

To address this gap, we introduce OPTIMUS, an opinionated platform for building large-scale KGs
with an emphasis on reproducibility and extensibility. To demonstrate the functionality of OPTIMUS,
we focus on biomedical KGs; however, we emphasize that OPTIMUS is domain-agnostic. By
providing a modular, configurable approach to assemble KGs, OPTIMUS aims to accelerate graph
machine learning research by establishing better data foundations.

2 Related work

We position OPTIMUS relative to prior work on knowledge extraction, end-to-end pipelines for KG
construction, and modern AI systems. For a comprehensive treatment of these subjects, we kindly
refer the reader to several reviews on the state of KG construction [22–26].

Knowledge extraction. The first step in building a KG is to extract structured knowledge from
one or multiple source databases. Early KGs like DBPedia [27], Freebase [28], and Wikidata [29]
were often built manually by human experts, via crowdsourced community contributions, or via
rule-based structured information extraction from text. These approaches achieved high precision
but required significant human effort, were limited in coverage by contributor expertise or the rule
set, and proved difficult to scale. Machine learning (ML) methods soon replaced handcrafted rules
with statistical models. For example, named entity recognition (NER) methods can convert natural
language text into structured triples [30, 31]. More recently, deep learning systems, including graph
neural networks [32, 33] and large language models (LLMs) [34–36], have been used to predict new
edges and populate KGs automatically. These methods expand coverage but are computationally
intensive and can be nondeterministic or error prone. Importantly, knowledge extraction is only
one stage of KG construction; KG developers must still address schema mapping, provenance,
identifier harmonization, and releases. Both rule-based and ML-based extraction methods are thus
complementary to our work, serving as interchangeable processing nodes inside OPTIMUS, which
focuses on orchestrating reproducible end-to-end KG construction.

Pipelines for KG construction. After knowledge extraction, the central challenge is to create a
reproducible end-to-end pipeline that integrates extracted knowledge from heterogeneous datasets
into consistent, queryable graphs. Many domain-specific KGs have been constructed in areas such
as social networks [37], e-commerce [38], biomedicine [4, 39], and genomics [40]. These efforts,
however, rely on custom scripts and ad hoc transformations, making them difficult to reproduce or
extend to new data sources. Some open-source ecosystems attempt to provide reusable infrastructure
for KG construction, including, for example, KGTK [41], metaphactory [42], BioCypher [43], and
KG-Hub [44]. However, these systems often suffer from several drawbacks, including poor ontology
mapping, entity resolution, or release management; complex workflows, requiring substantial re-

2



engineering to add new datasets; and limited scalability, altogether leading to poor reproducibility
and extensibility. For example, of 250 KGs surveyed, only eight (3.2%) had publicly available code
for KG construction, and only one (0.4%) construction pipeline could be successfully executed by
independent evaluators [45]. This indicates a startling lack of reproducible KG construction methods,
motivating the need for OPTIMUS.

LLMs and AI agents. Recently, LLMs and AI agents have been used to both store and retrieve
knowledge. While parametric LLM memory can implicitly store facts, KGs remain indispensable to
improve factuality and mitigate hallucinations [46, 47], enable verifiable provenance [48], rapidly
integrate new knowledge [49], and enhance interpretability [50]. Constructed KGs can be integrated
with LLMs or agents to improve performance at knowledge-intensive tasks [51–55]; therefore,
advances in graph AI are complementary to OPTIMUS.

3 System overview

3.1 Desirable features of KG construction platforms

Optimally, methods for KG construction should achieve the following desiderata [25].

1. Minimizing manual labor. The pipeline should balance automation with customization,
minimizing manual work while still permitting human-in-the-loop input, for example, for
source selection or ontology design.

2. Scalability. The construction method should be grounded in a uniform data model (e.g.,
RDF [56] or LPG [3]) and should scale to many large sources.

3. Customizable knowledge extraction. Customizable methods for knowledge extraction, or
the identification of structured relationships from unstructured or semi-structured data [25],
should be supported per source.

4. Entity resolution. Based on underlying ontologies, entity resolution and fusion should
be performed across sources to unify multiple identifiers that refer to the same concept or
entity.

5. Quality assurance. The construction pipeline should include quality assurance checks to
confirm that the resulting KG is correct, with traceable provenance of each fact; consistent,
with canonical identifiers and no contradictions; timely, with the ability to make updates to
reflect changes in source datasets; and both complete and succinct [57].

6. Metadata management and export. Finally, there should exist tooling for metadata
management, and the KG should be exportable in standard formats used for graph AI (e.g.,
JSON, JSONL, CSV, or Parquet).

To the best of our knowledge, there does not exist a solution that meets all these desiderata. Thus, we
designed OPTIMUS to satisfy these design considerations pre-specified by independent reviews of the
KG construction literature. Specifically, OPTIMUS was designed with three primary goals:

1. Extensibility. A modular design allows for new data sources or processing modules to be
incorporated via providers and hooks with minimal changes to the existing workflow.

2. Reproducibility. Each KG construction step is deterministic and versioned, with provenance
tracking and quality controls.

3. Machine learning readiness. Graphs exported from OPTIMUS are ready for use in standard
graph AI libraries, including PyTorch Geomtric [58], the Deep Graph Library [59], and
NetworkX [60].

3.2 OPTIMUS architecture

OPTIMUS follows a layered medallion architecture adapted from data lake design [61] (Figure 1).
First, in the LANDING layer, raw data is downloaded from data providers. In the BRONZE layer,
raw data from various sources are ingested in its original form, with minimal cleaning or filtering.
The SILVER layer applies validation, normalization, and schema alignment to convert raw inputs
into a consistent intermediate representation, resolving identifier mappings and enforcing ontology

3



Bronze
Raw 


integration

Silver
Filtered, cleaned, 


augmented

Gold
Research-level


aggregates

PG-JSONL

Parquet

Neo4j-JSONL

Partitioned

CSVs

Inferred dependency graph

Structured, 

semi-structured & 

unstructured data

Format (JSON, Parquet), and

naming (snake case) unification

Generate edges and nodes 

with rich metadata

Exported KG in various 

ready-to-use formats

validation 
checks

validation 
checks

validation 
checks

Figure 1: Medallion architecture of OPTIMUS. Snapshots of the original data in LANDING are
passed to BRONZE, where naming conventions and file formats are unified while preserving raw
semantics; then to SILVER, where records are validated, cleaned, deduplicated, and transformed into
node and edge parquet tables with unique identifiers and rich metadata; and finally to GOLD, which
materializes versioned KG exports. Circles denote data quality checks that ensure node artifacts are
correct before proceeding to downstream nodes. An example analysis workflow is shown for a single
dataset; other datasets may traverse different paths within the directed acyclic graph (DAG).

constraints. Finally, the GOLD layer produces of the integrated KG ready for analysis, where all
entities and relationships are harmonized into the target schema and augmented with any derived
features. This multi-layer pipeline incrementally improves data quality and structure, ensuring that
upstream errors are caught early and that the final KG meets standards for consistency.

To orchestrate these steps, OPTIMUS leverages a Kedro workflow engine, enabling parallel processing
of independent data sources and caching of intermediate results. The key components of OPTIMUS
are as follows (Figure 2).

Catalog. A centralized registry of all datasets and resources. The catalog contains metadata about
each data source (name, version, file locations or endpoints, schemas, etc.) and serves as the discovery
layer. By querying the catalog, users can identify what data is available and determine its status in
the pipeline.

Dataset. An abstraction representing a distinct input to the KG. Datasets encapsulate the logic
to fetch or load the raw data (from files, databases, APIs) and define how it should be parsed. In
OPTIMUS, each dataset is associated with a schema (expected fields and types), which is validated on
load.

Schema. OPTIMUS requires the user to define the node types and edge types that constitute the
KG schema (e.g., node types might include gene, disease, or drug; edge types might include
interacts_with, treats, or is_associated_with).

Providers. An abstraction that provides versioned, automatic data downloads from different data
sources.

Node. A Python transformation function.

Pipeline. A sequence of nodes wired into a directed acyclic graph (DAG)-based workflow, organized
by the datasets they consume and produce. Each pipeline is composed of transformations (e.g.,
cleaning, normalizing, or merging) that convert raw data into graph-ready outputs.

Parameters. Used to define constants for filtering the data across the construction process.

4



Ontologies

(e.g. Bioportal, OBO Foundry)

3rd Party APIs

(e.g. NCBI Datasets API)

External databases

(e.g. PostgreSQL, Neo4j)

Ad-hoc files

(e.g. Blob storage, HTTP(s), Local)

FTP servers

(e.g. Open Targets Platform)

Data store

Neo4j

(Exported graph and sub-graphs)

Data science tooling

Downstream applications

Data replication

(Origin hooks)

Workflow manager

(Kedro)

Data quality

(QualityCheck hooks)

Ontology harmonization

(BIocypher)

Interactive experimentation

(Jupyter Lab, Notebooks, IPython)

Data discovery

(URI-based filesystem)

Configuration management

(Parametrization, Logging, Environments, Catalog, Ontology alignment)

Workflow manager

(Kedro)

Data modeling

(Polars)

OWL, CSV, TSV

ZIP, JSON, XML

Parquet, JSONL 

Query engine

(Neo4j Cypher)

Medallion architecture

(Landing, Bronze, Silver, Gold)

Processing

(Parallel, Sequential, Thread, DYI)

Data formats

Data sources Extract and load Storage Query and process Transform Output

Data Lake

Figure 2: An overview of the components of OPTIMUS. Heterogeneous sources are ingested
in the Extract and load stage via data replication (origin hooks) and Kedro-managed workflows,
with ingestion gated by data-quality hooks. Data land in a lake that stores interoperable formats
and is organized by a medallion architecture to enable incremental, reproducible builds. A central
Configuration management layer and a URI-based Data discovery layer prodive governance and
traceability. In Query and process, OPTIMUS supports parrallel, sequential, and thread execution
and a Neo4j-Cypher query engine, while Interactive experimentation (Jupyter, IPython) attaches
directyle to lake snapshots. The Transform stage combines schema-first data modeling with ontology
harmonization using Biocypher.

Hook. A mechanism to allow injection of custom behavior into the core execution flow, such as
before a node runs (e.g., for checksum checks).

Configuration. A mechanism that separates code from settings, defining the catalog, parameters, and
logging configuration, and ontology harmonization across different environments (e.g., base, local, or
production). Importantly, configuration management permits users to create KGs that incorporate
both private and public data within the same codebase.

These core components work in concert to enable a structured approach to KG construction. In
practice, a developer defines datasets in the catalog, writes pipeline definitions that specify how
those datasets are transformed across layers, possibly adds hooks for custom steps, and customizes
the configuration as necessary. The OPTIMUS runtime then orchestrates the end-to-end build,
automatically applying schema validations and recording provenance at each step. We leverage
additional features of the Kedro framework, such as namespaces, kedro-viz, kedro-datasets
and catalog injection in Jupyter notebooks. OPTIMUS also includes a command line interface, and
the KG can be queried via a Neo4j endpoint to extract subsets of the graph.

3.3 Features

Discovery and provenance. OPTIMUS assigns each dataset a stable URI and organizes entries
as <layer>.<namespace>.<dataset-name>, recording source endpoints, versions, schemas, and
transformation lineage in the catalog. This design enables end-to-end tracing from any node or edge
back to the precise inputs and processing steps, supporting auditability and replication.

Reproducibility and lineage visualization. The full OPTIMUS pipeline is rendered via kedro-viz,
which exposes dependencies across medallion layers and the live execution state, helping authors and
reviewers inspect what was computed.

Automated, versioned data download. OPTIMUS fetches missing datasets on demand, validates
schemas, and records the acquired version and checksum before ingestion. As a result, subsequent
runs recover the same inputs under an identical configuration.

Private datasets with public fallbacks. OPTIMUS permits private sources to participate in the
pipeline; when a collaborator lacks access, the system materializes schema-compatible empty place-

5



holders so the pipeline executes deterministically and results remain comparable. All data sets, public
or private, are explicitly versioned in the catalog.

Configuration and parameterization. To separate “what” from “how,” configuration files declare
catalog entries, parameters, logging, and ontology mappings for different environments (e.g., base,
local, production). Common inclusion/exclusion rules are parameterized, allowing researchers to
alter scope (filters, sources, schema variants) without code changes.

Interactive experimentation from lake snapshots. OPTIMUS injects the catalog into Jupyter and
IPython so scientists can load datasets directly from immutable lake snapshots. This shortens the
edit–run–inspect loop while keeping ad-hoc notebooks consistent with pipeline outputs.

Querying and subgraph export. Downstream tasks often need focused subgraphs. OPTIMUS
provides a containerized Neo4j service; users run Cypher to probe structure, validate entities, and
export task-specific subgraphs for audits or sharing.

Multi-format releases with summary metrics. Each release of OPTIMUS exports PG-JSONL,
Parquet, Neo4j-JSONL, and partitioned CSV files, accompanied by metrics.json and metrics.md
summarizing node, edge type counts, degree statistics, sources, and ontologies.

Developer experience. OPTIMUS uses modern tooling (uv, docker) and Kedro’s engine for parallel,
sequential, and threaded execution. A CLI exposes common tasks (benchmarking, checksums,
metrics generation), making local runs consistent with continuous integration (CI).

Multiple runtimes. OPTIMUS provides multiple runtimes to take advantage of the performance char-
acteristics of the host machine. SequentialRunner executes nodes sequentially in topological order;
ParallelRunner executes independent nodes concurrently via multiprocessing (preferred for CPU-
bound workloads); ThreadRunner executes independent nodes as threads within a single process
(shared memory), effective for I/O-bound workloads with lower overhead than multiprocessing.

4 Performance evaluation

To evaluate the efficiency and scalability of OPTIMUS, we assessed (1) end-to-end execution
time for each runtime and (2) throughput as the KG grows. All experiments were conducted
on OPTIMUSKG, a biomedical KG constructed with OPTIMUS from 47 datasets (Appendix A.1).
OPTIMUSKG contains 192,307 nodes, 21,499,963 edges, and 88,647,077 properties (Tables 1 and 2).

Setup. To ensure reproducibility, experiments were run with all files from the LANDING layer
pre-downloaded and present on disk, eliminating variation caused by differences in network speeds.
All benchmarks were run offline on a single machine with an AMD Ryzen 7 5700G CPU, 64 GB
DDR4 RAM, and a 500 GB NVMe SSD.

Execution time as a function of runtime. We measured the wall time required by OPTIMUS to
produce the final Parquet-formatted KG across the three available runtimes: SequentialRunner,
ThreadRunner, and ParallelRunner. Enabling parallelism, both thread-wise and process-wise,
substantially improved performance. Basic sequential execution generated the graph in 143.6 s
on average, while the thread-parallelized version averaged 81.3 s (43.4% faster) and the process-
parallelized version averaged 62.4 s (56.5% faster). ParallelRunner was consistently the fastest
implementation for OPTIMUSKG (Figure 3a) as it exploits parallel paths in the graph construction
DAG.

Throughtput as a function of edge count. To assess scalability, we incrementally enabled more
datasets in the OPTIMUSKG Parquet-formatted construction pipeline and measured the impact on
performance, as assessed by wall time normalized by total edge count (Figure 3b). Edge count was
increased by adding edge types in ascending order of their cardinality (Supplementary Table 3).
All runs used the ParallelRunner runtime with asynchronous I/O enabled. As reflected by the
pronounced downward slope in Figure 3b, average time per edge generally decreased as the graph
grew. We attribute this to fixed startup costs and file I/O overhead, which were progressively
absorbed with increased edge count. However, certain additions induced significant dataset overhead,
increasing throughput. For example, the addition of exposure-protein edges required the ingestion
and normalization of OpenTargets, a large external resource, which involved costly entity resolution
joins. The addition of drug-drug edges required parsing and normalizing DrugBank’s large XML
dataset and deriving information from deeply nested records, which necessitated expensive joins.

6



101 102 103 104 105 106 107

Edges

10°5

10°4

10°3

10°2

10°1

N
or

m
al

iz
ed

tim
e

(s
ec

on
ds

/e
dg

e)

Exposure-Protein
edges added

Drug-Drug
edges added

Mean normalized time

SequentialRunner ThreadRunner ParallelRunner

60

80

100

120

140

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

a b

Figure 3: OPTIMUS is efficient and scalable. OPTIMUS’s execution time was benchmarked as
a function of the runtime, edge count, and runner type. (a) Execution time distributions (seconds)
for 100 independent runs of the Bronze to Silver pipeline under three runners. Asynchronous I/O
was enabled where supported (i.e., ParallelRunner and SequentialRunner). (b) Mean normalized
construction time per edge versus cumulative edge cardinality for an incremental, edge-type expansion
(log-log). Each marker is the arithmetic mean of 100 independent runs of the construction pipeline;
plotted values are the wall-clock mean time (seconds) divided by the cumulative number of edges
in that benchmark (seconds per edge). Error bars are omitted because standard deviations are small
relative to the axis resolution (largest SD = 0.83 s at the largest edge type by edge count; mean
= 54.81 s).

These cases illustrate that heterogeneous upstream sources and complex transformations can have a
significant impact on runtime, even with modest edge counts.

5 Discussion

We introduced OPTIMUS, a reproducible and extensible platform for large-scale KG construction.
By combining a medallion architecture with modern workflow orchestration, OPTIMUS addresses
long-standing challenges in KG construction and maintenance, including data heterogeneity, poor
reproducibility, and limited scalability. Benchmarking shows that OPTIMUS achieves efficient
execution and improved throughput as graphs grow. Although demonstrated in biomedicine with the
construction of OPTIMUSKG, the OPTIMUS platform is domain-agnostic and readily extensible to
other fields.

There are limitations to our work. The quality of the KG that OPTIMUS generates ultimately depends
on upstream data sources, which may contain errors, incomplete annotations, or licensing constraints.
Versioning in OPTIMUS depends on whether upstream sources themselves provide versioned releases.
Addressing these challenges will require the generation of higher-quality datasets and improved
knowledge extraction algorithms. Nonetheless, we envision that OPTIMUS will enable the generation
of KGs to serve as the data foundation for the next generation of graph AI systems, including
retrieval-augmented generation, graph LLMs, and autonomous agents, advancing the integration of
structured, verifiable, and traceable knowledge into AI.

References
1. Ehrlinger, L. & Wöß, W. Towards a definition of knowledge graphs. SEMANTiCS (Posters,

Demos, SuCCESS) 48, 2 (2016).
2. Hogan, A. et al. Knowledge Graphs. ACM Comput. Surv. 54, 71:1–71:37. doi:10.1145/

3447772 (2021).
3. Angles, R., Arenas, M., Barceló, P., Hogan, A., Reutter, J. & Vrgoč, D. Foundations of Modern

Query Languages for Graph Databases. ACM Comput. Surv. 50, 68:1–68:40. doi:10.1145/
3104031 (2017).

7

https://doi.org/10.1145/3447772
https://doi.org/10.1145/3447772
https://doi.org/10.1145/3104031
https://doi.org/10.1145/3104031


4. Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine.
Scientific Data 10, 67. doi:10.1038/s41597-023-01960-3 (2023).

5. Le-Phuoc, D., Nguyen Mau Quoc, H., Ngo Quoc, H., Tran Nhat, T. & Hauswirth, M. The
Graph of Things: A step towards the Live Knowledge Graph of connected things. Journal of
Web Semantics 37-38, 25–35. doi:10.1016/j.websem.2016.02.003 (2016).

6. Cheng, D., Yang, F., Wang, X., Zhang, Y. & Zhang, L. Knowledge Graph-based Event Embed-
ding Framework for Financial Quantitative Investments in Proceedings of the 43rd International
ACM SIGIR Conference on Research and Development in Information Retrieval (Association
for Computing Machinery, New York, NY, USA, 2020), 2221–2230. doi:10.1145/3397271.
3401427.

7. Dye, M., Ekanadham, C., Saluja, A. & Rastogi, A. Supporting content decision makers with
machine learning 2021.

8. Xiong, C., Power, R. & Callan, J. Explicit Semantic Ranking for Academic Search via Knowledge
Graph Embedding in Proceedings of the 26th International Conference on World Wide Web
(International World Wide Web Conferences Steering Committee, Republic and Canton of
Geneva, CHE, 2017), 1271–1279. doi:10.1145/3038912.3052558.

9. Jia, Y., Qi, Y., Shang, H., Jiang, R. & Li, A. A Practical Approach to Constructing a Knowledge
Graph for Cybersecurity. Engineering. Cybersecurity 4, 53–60. doi:10.1016/j.eng.2018.
01.004 (2018).

10. Xia, F. et al. Graph Learning: A Survey. IEEE Transactions on Artificial Intelligence 2, 109–127.
doi:10.1109/TAI.2021.3076021 (2021).

11. Ying, R., He, R., Chen, K., Eksombatchai, P., Hamilton, W. L. & Leskovec, J. Graph Con-
volutional Neural Networks for Web-Scale Recommender Systems in Proceedings of the 24th
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (Association
for Computing Machinery, New York, NY, USA, 2018), 974–983. doi:10.1145/3219819.
3219890.

12. Yasunaga, M., Ren, H., Bosselut, A., Liang, P. & Leskovec, J. QA-GNN: Reasoning with
Language Models and Knowledge Graphs for Question Answering 2022. doi:10.48550/
arXiv.2104.06378.

13. Townshend, R. J. L. et al. Geometric deep learning of RNA structure. Science 373, 1047–1051.
doi:10.1126/science.abe5650 (2021).

14. Johnson, R., Li, M. M., Noori, A., Queen, O. & Zitnik, M. Graph Artificial Intelligence in
Medicine. Annual Review of Biomedical Data Science 7, 345–368. doi:10.1146/annurev-
biodatasci-110723-024625 (2024).

15. Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph
convolutional networks. Bioinformatics 34, i457–i466. doi:10.1093/bioinformatics/
bty294 (2018).

16. Akoglu, L., Tong, H. & Koutra, D. Graph based anomaly detection and description: a survey.
Data Mining and Knowledge Discovery 29, 626–688. doi:10.1007/s10618-014-0365-y
(2015).

17. Xie, T. & Grossman, J. C. Crystal Graph Convolutional Neural Networks for an Accurate
and Interpretable Prediction of Material Properties. Physical Review Letters 120, 145301.
doi:10.1103/PhysRevLett.120.145301 (2018).

18. Lam, R. et al. Learning skillful medium-range global weather forecasting. Science 382, 1416–
1421. doi:10.1126/science.adi2336 (2023).

19. Liu, J., Mao, H., Chen, Z., Zhao, T., Shah, N. & Tang, J. Neural Scaling Laws on Graphs 2024.
doi:10.48550/arXiv.2402.02054.

20. Sypetkowski, M. et al. On the Scalability of GNNs for Molecular Graphs 2024. doi:10.48550/
ARXIV.2404.11568.

21. Ji, X. et al. Uni-Mol2: Exploring Molecular Pretraining Model at Scale 2024. doi:10.48550/
arXiv.2406.14969.

22. Ryen, V., Soylu, A. & Roman, D. Building Semantic Knowledge Graphs from (Semi-)Structured
Data: A Review. Future Internet 14, 129. doi:10.3390/fi14050129 (2022).

23. Tamašauskaitė, G. & Groth, P. Defining a Knowledge Graph Development Process Through a
Systematic Review. ACM Trans. Softw. Eng. Methodol. 32, 27:1–27:40. doi:10.1145/3522586
(2023).

8

https://doi.org/10.1038/s41597-023-01960-3
https://doi.org/10.1016/j.websem.2016.02.003
https://doi.org/10.1145/3397271.3401427
https://doi.org/10.1145/3397271.3401427
https://doi.org/10.1145/3038912.3052558
https://doi.org/10.1016/j.eng.2018.01.004
https://doi.org/10.1016/j.eng.2018.01.004
https://doi.org/10.1109/TAI.2021.3076021
https://doi.org/10.1145/3219819.3219890
https://doi.org/10.1145/3219819.3219890
https://doi.org/10.48550/arXiv.2104.06378
https://doi.org/10.48550/arXiv.2104.06378
https://doi.org/10.1126/science.abe5650
https://doi.org/10.1146/annurev-biodatasci-110723-024625
https://doi.org/10.1146/annurev-biodatasci-110723-024625
https://doi.org/10.1093/bioinformatics/bty294
https://doi.org/10.1093/bioinformatics/bty294
https://doi.org/10.1007/s10618-014-0365-y
https://doi.org/10.1103/PhysRevLett.120.145301
https://doi.org/10.1126/science.adi2336
https://doi.org/10.48550/arXiv.2402.02054
https://doi.org/10.48550/ARXIV.2404.11568
https://doi.org/10.48550/ARXIV.2404.11568
https://doi.org/10.48550/arXiv.2406.14969
https://doi.org/10.48550/arXiv.2406.14969
https://doi.org/10.3390/fi14050129
https://doi.org/10.1145/3522586


24. Zhong, L., Wu, J., Li, Q., Peng, H. & Wu, X. A Comprehensive Survey on Automatic Knowledge
Graph Construction. ACM Comput. Surv. 56, 94:1–94:62. doi:10.1145/3618295 (2023).

25. Hofer, M., Obraczka, D., Saeedi, A., Köpcke, H. & Rahm, E. Construction of Knowledge
Graphs: Current State and Challenges. Information 15, 509. doi:10.3390/info15080509
(2024).

26. Choi, S. & Jung, Y. Knowledge Graph Construction: Extraction, Learning, and Evaluation.
Applied Sciences 15, 3727. doi:10.3390/app15073727 (2025).

27. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R. & Ives, Z. DBpedia: A Nucleus
for a Web of Open Data in The Semantic Web: 6th International Semantic Web Conference, 2nd
Asian Semantic Web Conference, ISWC 2007 + ASWC 2007, Busan, Korea, November 11-15,
2007. Proceedings (Springer-Verlag, Berlin, Heidelberg, 2007), 722–735. doi:10.1007/978-
3-540-76298-0_52.

28. Bollacker, K., Evans, C., Paritosh, P., Sturge, T. & Taylor, J. Freebase: a collaboratively created
graph database for structuring human knowledge in Proceedings of the 2008 ACM SIGMOD
international conference on Management of data (Association for Computing Machinery, New
York, NY, USA, 2008), 1247–1250. doi:10.1145/1376616.1376746.

29. Vrandečić, D. & Krötzsch, M. Wikidata: a free collaborative knowledgebase. Commun. ACM
57, 78–85. doi:10.1145/2629489 (2014).

30. Etzioni, O. et al. Unsupervised named-entity extraction from the Web: An experimental study.
Artificial Intelligence 165, 91–134. doi:10.1016/j.artint.2005.03.001 (2005).

31. Al-Moslmi, T., Gallofré Ocaña, M., L. Opdahl, A. & Veres, C. Named Entity Extraction for
Knowledge Graphs: A Literature Overview. IEEE Access 8, 32862–32881. doi:10.1109/
ACCESS.2020.2973928 (2020).

32. Liu, S., Grau, B., Horrocks, I. & Kostylev, E. INDIGO: GNN-Based Inductive Knowledge
Graph Completion Using Pair-Wise Encoding in Advances in Neural Information Processing
Systems 34 (Curran Associates, Inc., 2021), 2034–2045.

33. Dai, G., Wang, X., Zou, X., Liu, C. & Cen, S. MRGAT: Multi-Relational Graph Attention
Network for knowledge graph completion. Neural Networks 154, 234–245. doi:10.1016/j.
neunet.2022.07.014 (2022).

34. Wei, Y., Huang, Q., Kwok, J. T. & Zhang, Y. KICGPT: Large Language Model with Knowledge
in Context for Knowledge Graph Completion in Findings of the Association for Computational
Linguistics: EMNLP 2023 (2023), 8667–8683. doi:10.18653/v1/2023.findings-emnlp.
580.

35. Zhang, Y., Chen, Z., Guo, L., Xu, Y., Zhang, W. & Chen, H. Making Large Language Models
Perform Better in Knowledge Graph Completion in Proceedings of the 32nd ACM International
Conference on Multimedia (Association for Computing Machinery, New York, NY, USA, 2024),
233–242. doi:10.1145/3664647.3681327.

36. Yao, L., Peng, J., Mao, C. & Luo, Y. Exploring Large Language Models for Knowledge Graph
Completion in ICASSP 2025 - 2025 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP) (2025), 1–5. doi:10.1109/ICASSP49660.2025.10889242.

37. Ugander, J., Karrer, B., Backstrom, L. & Marlow, C. The Anatomy of the Facebook Social
Graph 2011. doi:10.48550/arXiv.1111.4503.

38. Dong, X. L. Challenges and Innovations in Building a Product Knowledge Graph in Proceedings
of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining
(Association for Computing Machinery, New York, NY, USA, 2018), 2869. doi:10.1145/
3219819.3219938.

39. Himmelstein, D. S. et al. Systematic integration of biomedical knowledge prioritizes drugs for
repurposing. eLife 6 (ed Valencia, A.) e26726. doi:10.7554/eLife.26726 (2017).

40. Feng, F. et al. GenomicKB: a knowledge graph for the human genome. Nucleic Acids Research
51, D950–D956. doi:10.1093/nar/gkac957 (2023).

41. Ilievski, F. et al. KGTK: A Toolkit for Large Knowledge Graph Manipulation and Analysis in
The Semantic Web – ISWC 2020 (eds Pan, J. Z. et al.) (Springer International Publishing, Cham,
2020), 278–293. doi:10.1007/978-3-030-62466-8_18.

42. Haase, P., Herzig, D. M., Kozlov, A., Nikolov, A. & Trame, J. metaphactory: A platform for
knowledge graph management. Semantic Web 10, 1109–1125. doi:10.3233/SW- 190360
(2019).

9

https://doi.org/10.1145/3618295
https://doi.org/10.3390/info15080509
https://doi.org/10.3390/app15073727
https://doi.org/10.1007/978-3-540-76298-0_52
https://doi.org/10.1007/978-3-540-76298-0_52
https://doi.org/10.1145/1376616.1376746
https://doi.org/10.1145/2629489
https://doi.org/10.1016/j.artint.2005.03.001
https://doi.org/10.1109/ACCESS.2020.2973928
https://doi.org/10.1109/ACCESS.2020.2973928
https://doi.org/10.1016/j.neunet.2022.07.014
https://doi.org/10.1016/j.neunet.2022.07.014
https://doi.org/10.18653/v1/2023.findings-emnlp.580
https://doi.org/10.18653/v1/2023.findings-emnlp.580
https://doi.org/10.1145/3664647.3681327
https://doi.org/10.1109/ICASSP49660.2025.10889242
https://doi.org/10.48550/arXiv.1111.4503
https://doi.org/10.1145/3219819.3219938
https://doi.org/10.1145/3219819.3219938
https://doi.org/10.7554/eLife.26726
https://doi.org/10.1093/nar/gkac957
https://doi.org/10.1007/978-3-030-62466-8_18
https://doi.org/10.3233/SW-190360


43. Lobentanzer, S. et al. Democratizing knowledge representation with BioCypher. Nature Biotech-
nology 41, 1056–1059. doi:10.1038/s41587-023-01848-y (2023).

44. Caufield, J. H. et al. KG-Hub—building and exchanging biological knowledge graphs. Bioin-
formatics 39, btad418. doi:10.1093/bioinformatics/btad418 (2023).

45. Babalou, S., Samuel, S. & König-Ries, B. Reproducible Domain-Specific Knowledge Graphs in
the Life Sciences: a Systematic Literature Review 2023. doi:10.48550/arXiv.2309.08754.

46. Lavrinovics, E., Biswas, R., Bjerva, J. & Hose, K. Knowledge Graphs, Large Language Models,
and Hallucinations: An NLP Perspective. Journal of Web Semantics 85, 100844. doi:10.1016/
j.websem.2024.100844 (2025).

47. Sansford, H., Richardson, N., Maretic, H. P. & Saada, J. N. GraphEval: A Knowledge-Graph
Based LLM Hallucination Evaluation Framework 2024. doi:10.48550/arXiv.2407.10793.

48. Wang, Y., Lipka, N., Rossi, R. A., Siu, A., Zhang, R. & Derr, T. Knowledge Graph Prompting
for Multi-Document Question Answering. Proceedings of the AAAI Conference on Artificial
Intelligence 38, 19206–19214. doi:10.1609/aaai.v38i17.29889 (2024).

49. Mitchell, T. et al. Never-ending learning. Commun. ACM 61, 103–115. doi:10.1145/3191513
(2018).

50. Ying, Z., Bourgeois, D., You, J., Zitnik, M. & Leskovec, J. GNNExplainer: Generating Expla-
nations for Graph Neural Networks in Advances in Neural Information Processing Systems 32
(Curran Associates, Inc., 2019).

51. Pan, S., Luo, L., Wang, Y., Chen, C., Wang, J. & Wu, X. Unifying Large Language Models and
Knowledge Graphs: A Roadmap. IEEE Transactions on Knowledge and Data Engineering 36,
3580–3599. doi:10.1109/TKDE.2024.3352100 (2024).

52. Sanmartin, D. KG-RAG: Bridging the Gap Between Knowledge and Creativity 2024. doi:10.
48550/arXiv.2405.12035.

53. Matsumoto, N. et al. KRAGEN: a knowledge graph-enhanced RAG framework for biomedical
problem solving using large language models. Bioinformatics 40, btae353. doi:10.1093/
bioinformatics/btae353 (2024).

54. Edge, D. et al. From Local to Global: A Graph RAG Approach to Query-Focused Summarization
2025. doi:10.48550/arXiv.2404.16130.

55. Mavromatis, C. & Karypis, G. GNN-RAG: Graph Neural Retrieval for Large Language Model
Reasoning 2024. doi:10.48550/arXiv.2405.20139.

56. Wood, D., Lanthaler, M. & Cyganiak, R. RDF 1.1 concepts and abstract syntax. W3C Recom-
mendation, W3C (2014).

57. Madnick, S. E., Wang, R. Y., Lee, Y. W. & Zhu, H. Overview and Framework for Data and
Information Quality Research. J. Data and Information Quality 1, 2:1–2:22. doi:10.1145/
1515693.1516680 (2009).

58. Fey, M. & Lenssen, J. E. Fast Graph Representation Learning with PyTorch Geometric 2019.
doi:10.48550/arXiv.1903.02428.

59. Wang, M. et al. Deep Graph Library: A Graph-Centric, Highly-Performant Package for Graph
Neural Networks 2019.

60. Hagberg, A., Swart, P. J. & Schult, D. A. Exploring network structure, dynamics, and func-
tion using NetworkX tech. rep. LA-UR-08-05495; LA-UR-08-5495 (Los Alamos National
Laboratory (LANL), Los Alamos, United States, 2007).

61. Armbrust, M., Ghodsi, A., Xin, R. & Zaharia, M. Lakehouse: a new generation of open platforms
that unify data warehousing and advanced analytics in Proceedings of CIDR 8 (2021), 28.

10

https://doi.org/10.1038/s41587-023-01848-y
https://doi.org/10.1093/bioinformatics/btad418
https://doi.org/10.48550/arXiv.2309.08754
https://doi.org/10.1016/j.websem.2024.100844
https://doi.org/10.1016/j.websem.2024.100844
https://doi.org/10.48550/arXiv.2407.10793
https://doi.org/10.1609/aaai.v38i17.29889
https://doi.org/10.1145/3191513
https://doi.org/10.1109/TKDE.2024.3352100
https://doi.org/10.48550/arXiv.2405.12035
https://doi.org/10.48550/arXiv.2405.12035
https://doi.org/10.1093/bioinformatics/btae353
https://doi.org/10.1093/bioinformatics/btae353
https://doi.org/10.48550/arXiv.2404.16130
https://doi.org/10.48550/arXiv.2405.20139
https://doi.org/10.1145/1515693.1516680
https://doi.org/10.1145/1515693.1516680
https://doi.org/10.48550/arXiv.1903.02428


A Technical Appendices and Supplementary Material

A.1 Data sources used to build OPTIMUSKG

OPTIMUSKG was constructed from 47 biomedical data sources, including the Anatomical Therapeu-
tic Chemical Classification System (ATC), Bgee Gene Expression Database (Bgee), British National
Formulary (BNF), Clinical Genomic Information (CGI), Clinical Genome Resource (ClinGen),
ClinicalTrials.gov, Comparative Toxicogenomics Database (CTD), DailyMed, Disease Ontology
(DOID), DrugBank, European Medicines Agency (EMA), Experimental Factor Ontology (EFO),
Genomics England PanelApp (Genomics England), Gene Ontology (GO), Human Phenotype Ontol-
ogy (HPO), Kyoto Encyclopedia of Genes and Genomes (KEGG), Mammalian Phenotype Ontology
(MP), Medical Dictionary for Regulatory Activities (MedDRA), Medical Subject Headings (MeSH),
Monarch Disease Ontology (MONDO), NCI Thesaurus (NCIt), Ontology for Biomedical Investi-
gations (OBI), Ontology for General Medical Science (OGMS), Ontology of Biological Attributes
(OBA), OnSIDES Adverse Drug Events Resource (OnSIDES), Open Targets Platform, Open Targets
Rare Disease (OTAR), Orphanet Rare Disease Ontology (Orphanet), Phenotype And Trait Ontology
(PATO), PsyGeNET, PubChem, PubMed, PubMed Central (PMC), Reactome, Uber-anatomy ontol-
ogy (UBERON), Universal Protein Resource (UniProt), U.S. Food and Drug Administration (FDA),
and Wikipedia, among other datasets.

Label Count Percentage Avg. Degree Avg. Properties
Gene 61,106 31.78% 323.65± 443.99 17.86± 3.78
Disease 36,992 19.24% 279.49± 1278.84 15.82± 0.92
BiologicalProcess 25,754 13.39% 11.15± 110.19 8.67± 0.47
Phenotype 19,341 10.06% 51.94± 430.65 8.96± 3.55
Drug 16,591 8.63% 167.02± 388.27 9.32± 4.25
Anatomy 14,624 7.60% 603.53± 4876.54 8.27± 0.85
MolecularFunction 10,161 5.28% 11.43± 150.56 8.71± 0.46
CellularComponent 4,052 2.11% 28.28± 267.97 8.55± 0.50
Pathway 2,805 1.46% 18.76± 29.49 3.00± 0.05
Exposure 881 0.46% 14.29± 43.85 3.75± 0.43

Table 1: Summary statistics for node types in OPTIMUSKG, including counts, relative proportions,
average node degrees, and average number of properties per node type.

11



Label Count Percentage Directed Undirected Avg. Properties
Disease-Protein 9,770,626 45.44% 0 9,770,626 4.02± 0.40
Anatomy-Protein 8,787,955 40.87% 0 8,787,955 4.00± 0.00
Drug-Drug 1,345,376 6.26% 1,345,376 0 3.00± 0.06
Phenotype-Protein 793,279 3.69% 793,279 0 4.01± 0.32
BiologicalProcess-Protein 158,410 0.74% 0 158,410 5.00± 0.00
Disease-Phenotype 157,144 0.73% 0 157,144 11.00± 0.00
CellularComponent-Protein 105,309 0.49% 0 105,309 5.00± 0.00
MolecularFunction-Protein 90,933 0.42% 0 90,933 5.00± 0.00
Drug-Disease 55,378 0.26% 0 55,378 4.00± 0.00
Pathway-Protein 46,977 0.22% 0 46,977 2.00± 0.00
Disease-Disease 45,083 0.21% 45,083 0 2.00± 0.00
BiologicalProcess-BiologicalProcess 44,494 0.21% 44,494 0 2.00± 0.00
Phenotype-Phenotype 24,862 0.12% 24,862 0 2.00± 0.00
Drug-Protein 20,694 0.10% 20,694 0 2.42± 1.04
Anatomy-Anatomy 19,004 0.09% 19,004 0 2.00± 0.00
MolecularFunction-MolecularFunction 12,587 0.06% 12,587 0 2.00± 0.00
CellularComponent-CellularComponent 4,639 0.02% 4,639 0 2.00± 0.00
Drug-Phenotype 4,251 0.02% 0 4,251 3.73± 0.68
Exposure-Protein 2,989 0.01% 2,989 0 32.00± 0.00
Pathway-Pathway 2,819 0.01% 2,819 0 2.00± 0.00
Exposure-Exposure 2,443 0.01% 2,443 0 32.00± 0.00
Exposure-Disease 2,391 0.01% 2,391 0 32.00± 0.00
Exposure-BiologicalProcess 2,260 0.01% 0 2,260 32.00± 0.00
Exposure-MolecularFunction 47 0.00% 0 47 32.00± 0.00
Exposure-CellularComponent 13 0.00% 0 13 32.00± 0.00

Table 2: Summary statistics for edge types in OPTIMUSKG, including counts, relative proportions,
directionality, and average number of properties per edge type.

Run Total Edges New Edge Type New Edges
1 13 Exposure–CellularComponent 13
2 60 Exposure–MolecularFunction 47
3 2,320 Exposure–BiologicalProcess 2,260
4 4,711 Exposure–Disease 2,391
5 7,154 Exposure–Exposure 2,443
6 9,973 Pathway–Pathway 2,819
7 12,962 Exposure–Protein 2,989
8 17,213 Drug–Phenotype 4,251
9 21,852 CellularComponent–CellularComponent 4,639

10 34,439 MolecularFunction–MolecularFunction 12,587
11 53,443 Anatomy–Anatomy 19,004
12 74,137 Drug–Protein 20,694
13 98,999 Phenotype–Phenotype 24,862
14 143,493 BiologicalProcess–BiologicalProcess 44,494
15 188,576 Disease–Disease 45,083
16 235,553 Pathway–Protein 46,977
17 290,931 Drug–Disease 55,378
18 381,864 MolecularFunction–Protein 90,933
19 487,173 CellularComponent–Protein 105,309
20 644,317 Disease–Phenotype 157,144
21 802,727 BiologicalProcess–Protein 158,410
22 1,596,006 Phenotype–Protein 793,279
23 2,941,382 Drug–Drug 1,345,376
24 11,729,337 Anatomy–Protein 8,787,955
25 21,499,963 Disease–Protein 9,770,626

Table 3: Incremental edge-type addition during scalability benchmarking. Each run adds a new edge
type to OPTIMUSKG, reporting both the cumulative edge count and the marginal edges contributed.
Edge types are ordered by ascending edge cardinality.

12



NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We have, to the best of our ability, considered each claim and we believe each
to be accurate.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: They are described in the Discussion section (Section 5).
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]

13



Justification: [NA]
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: To the best of our ability, we have made the details necessary to reproduce the
experimental results of the paper available in our methodological description.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

14



Answer: [No]
Justification: The code for OPTIMUS will be publicly released via an open-source GitHub
repository at a future date.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: To the best of our ability, we have made the details necessary to reproduce the
experimental results of the paper available in our methodological description.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: [Yes]
Guidelines: Figure 3a, error bars are provided representing the interquartile range of the
data distribution. In Figure 3b, error bars are omitted because standard deviations are small
relative to the axis resolution (largest SD = 0.83 s at the largest edge type by edge count;
mean = 54.81 s). This is explained in the figure caption.

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

15

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: This information is provided in the Performance evaluation section (Section 4).
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We believe that we are fully compliant with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: We have not identified direct harms caused by the research process, and
negative societal impacts from the intended use of OPTIMUS are unlikely. One possible
risk is that automatically constructed graphs may contain factual inaccuracies due to errors
in upstream data sources or integration pipelines. However, this risk is not specific to
OPTIMUS and is already present in existing KG construction workflows. Moreover, by
emphasizing provenance, versioning, and observability, OPTIMUS arguably mitigates rather
than exacerbates these risks. Therefore, we assess that the broader societal impact of this
work is limited.
Guidelines:

16

https://neurips.cc/public/EthicsGuidelines


• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.

17



• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

18

paperswithcode.com/datasets


• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

19

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Related work
	System overview
	Desirable features of KG construction platforms
	Optimus architecture
	Features

	Performance evaluation
	Discussion
	Technical Appendices and Supplementary Material
	Data sources used to build OptimusKG


