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ABSTRACT

Aligning pretrained language models (LMs) is a complex and resource-intensive
process, often requiring access to large amounts of ground-truth preference data and
substantial compute. Are these costs necessary? That is, is it possible to align using
only inherent model knowledge and without additional training? We tackle this
challenge with ALIGNEZ, a novel approach that uses (1) self-generated preference
data and (2) representation editing to provide nearly cost-free alignment. During
inference, ALIGNEZ modifies LM representations to reduce undesirable and boost
desirable components using subspaces identified via self-generated preference pairs.
Our experiments reveal that this nearly cost-free procedure significantly narrows the
gap between base pretrained and tuned models by an average of 29.1%, observed
across five datasets and two model architectures. Additionally, we explore the
potential of using ALIGNEZ as a means of expediting more expensive alignment
procedures. Our experiments show that ALIGNEZ improves DPO models tuned
only using a small subset of ground-truth preference data.

1 INTRODUCTION

Large language model (LMs) alignment involves the use of complex and expensive pipelines (Schul;
man et al.,[2017; Ouyang et al., 2022 Rafailov et al., 2024). Usually at least two critical components
are needed: (1) collecting human preference data, and (2) modifying pretrained model weights to
better align with these preferences. Some pipelines involve more complexity (e.g., RLHF trains a
reward model on the human preference data and uses it for PPO-based model optimization). Such
approaches face substantial scalability challenges: collecting human preference data is costly and
time-intensive, and as model sizes increase, the computational requirements for fine-tuning are likely
to become prohibitive.

A prospective way to bypass the need for human preference data is to exploit knowledge already
contained in the pretrained model weights. This idea is motivated by evidence suggesting that
alignment merely reveals knowledge and capabilities acquired during pretraining (Zhou et al., 2024
Lin et al.|2023). This notion has led to a growing body of literature achieving impressive results
using signal contained in pretrained models for fine-tuning (Franken et al., [2024}; |Wang et al .} [2022;
Sun et al.} 2023} [2024), largely or totally sidestepping human annotation.

Next, to achieve free alignment, we must additionally obviate the need for fine-tuning. Instead, we
propose to replace it with a form of representation editing that does not require computing gradients
or even optimizing a proxy loss at all. Existing representation editing approaches (Zou et al.; [Wu
et al.,|2024; [Li et al.| |2024) rely on access to ground truth data, which does not account for the unique
challenges of using only signals from pretrained models. These signals are often noisier and more
limited compared to human-annotated data (Bender et al.| 2021; Bommasani et al.,|2021; [Kenton
et al.| 20215 Tamkin et al.,2021), necessitating a more tailored approach.

This work puts together these two pieces to explore the feasibility of free self-alignment. We align
pretrained LMs to human preferences using only the knowledge from the model itself, without
additional training or fine-tuning. Procedures that can accomplish these two goals are motivated by
an area of need—performing fast alignment repeatedly at-scale for on-the-fly model personalization.
In such scenarios, we lack the time and training resources to acquire manually-annotated data and
wait for models using RLHF or DPO techniques. Indeed, with limited time—and thus being limited
to training on few samples—DPO will fail to achieve any meaningful level of alignment, while
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Figure 1: Left: Training with DPO (blue) in time-constrained scenarios permits using only a few
samples and produces poor alignement even as the number of samples increases (x-axis). In contrast,
ALIGNEZ (pink) achieves alignment gains even with limited time, as it is training free. Right:
ALIGNEZ identifies helpful and harmful subspaces for alignment (left)—using only self-generated
data. These enable modifying representations during inference (right).

techniques that can accomplish free self-alignment will easily outperform it. We show an example of
such scenarios in Fig. [T}

We introduce ALIGNEZ, a novel approach designed for this setting. Using the pretrained model’s
own generated preference pairs, ALIGNEZ identifies the subspaces within the model’s embedding
spaces that correspond to helpful and non-helpful responses. During inference, we surgically modify
the model’s embeddings by boosting the components from the helpful subspaces and neutralizing
those from the non-helpful ones.

With this nearly cost-free procedure, we effectively narrow the performance gap between pretrained
and aligned models by 29.1% across two model architectures and five datasets. Additionally, we
explore the potential of ALIGNEZ to expedite more expensive alignment processes. Our experimental
results demonstrate that ALIGNEZ improves upon models trained using DPO (Rafailov et al., [2024)
with only a small subset of ground-truth preference data. In summary, our contributions include:

1. We introduce ALIGNEZ, a nearly cost-free approach that leverages preference data generated
by the pretrained LM to modify its embeddings, aligning outputs to human preferences.

2. Our experiments show that ALIGNEZ significantly narrows the gap between the base model
and its counterparts aligned with traditional expensive methods by 29.1% across two model
architectures and five datasets.

3. We demonstrate that ALIGNEZ can expedite more expensive methods like DPO by improv-
ing models trained with DPO using only a small subset of ground truth preference data.
Remarkably, ALIGNEZ boosts the performance of a model trained on only 1% of the data
to match that of one trained on 25%.

Our work suggests that models may be effectively steered, without additional training or
supervision. Using the strategies we have developed, we envision the possibility of new
techniques that go far beyond alignment as it exists today, tackling such areas as fine-grained
and real-time personalization, that are currently beyond the reach of existing methods.

2 ALIGNEZ: (ALMOST) FREE ALIGNMENT OF LANGUAGE MODELS

We are ready to describe the ALIGNEZ algorithm. First, we query a base pretrained LM to generate
its own preference data. Our intuition is that, while noisy, base models have learned, from pretraining
data, sufficient signal to aid in alignment. Using this self-generated data, the identify the subspaces in
the LM’s embedding spaces that correspond to helpful and harmful directions for alignment. During
inference, we modify the LM embeddings using these identified subspaces, steering the model to
generate outputs that better align with human preferences (Figure 1).

First, we describe the self-generated preference data extraction pipeline in Section [2.1] Next, we
explain how ALIGNEZ identifies helpful and non-helpful subspaces in Section[2.2] Finally, we detail
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the embedding editing operation in Section[2.3]and the layer selection procedure for intervention in

Section 2.4
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Figure 2: Generating (noisy) preference pairs. First, we prompt pretrained models to provide their
insight on the characteristics of helpful and non-helpful responses (top). Then, we ask the model to
generate responses based on these characteristics (bottom).

2.1 SELF-GENERATED PREFERENCE DATA

First, we extract the human preference signal from the base LLM by querying it to generate its own
preference data. Given a dataset D of IV queries, for each query g, we first ask the base LM (denoted
as w) to describe characteristics of answers from a helpful agent (C"¢'?) and a malicious agent
(Cha™™). Next, we pair each query with its corresponding characteristics: (c?elp ,q) and (cfer™ q).
We then prompt the LM to generate responses conditioned on these characteristics, resulting in
self-generated preference pairs for each query, denoted as (p?dp ,phar™). By applying this procedure
to all N samples in the dataset, we obtain self-generated preference data pairs P"*'? and P"*™™,
Note that we do not perform any prompt tuning, instead relying on a fixed set of prompt templates.
We illustrate this process in Figure [2]and provide prompt details in Appendix[A.4]

Critically, we note that the base models for generating the preference data are not aligned or
instruction-tuned. Consequently, the resulting preference pairs may not always align with the
conditioning characteristics, introducing noise into the self-preference data. To address this challenge,
we tailor the embedding intervention in ALIGNEZ to accommodate this condition.

2.2  FINDING PREFERENCE DIRECTIONS

Next, using the noisy self-generated preference data, we identify the directions in the model embed-
ding space that correspond with human preferences. These directions, represented as vectors § € R¢
within w’s latent space, can either (i) align with the helpful preferences P"*'P, facilitating alignment
of the model’s generated sentences, or (ii) align with the harmful preferences P"*"™, leading to
adverse effects on alignment (Adila et al.||2023) (Dalvi et al.,[2022). We denote these directions as
g"er and 9™  respectively.

SVD-Based Identification. We identify these directions using singular value decomposition (SVD)
on the preference data embeddings. We extract the first eigenvector §. Intuitively, we view 6 as

the direction that best captures the underlying concepts. Let ®; represent the function that maps an

input sentence to the LM embedding space at layer [. For each pair (pfelp , paT™) we obtain their

corresponding representations @??lp and @?‘l"m, respectively. To begin, we construct an embedding

matrix for helpful preferences, denoted as th’elp , using these representations:

T
help help help
P = (o] Joler]
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Algorithm 1: ALIGNEZ harmful and helpful subspaces identification
1: Parameters: base pretrained LM w with L layers, self-generated preference pairs
Phelp’ Pharm’ query ¢
2: forle€1,2,...,Ldo
for pilelp7p£mrm c Phelp, Pharm do
Get representations @Zfl” , <I>f7‘l"m from prompts p
end for
Let K be the total number of preference pairs | P*¢/?|

. . help help help T harm h h r
Stack embedding matrix H}“'” = [@{57|...[ @] Hpor = [harm|.|@herm]
Find k-nearest neighbors of query ¢, k-NN(q)

Identify Glhdp and th‘"m with Equationusing the embeddings of self-generated preference
data associated with k-nearest neighbors

10: end for

11: Returns: Helpful and harmful subspaces

help _h
; Pl arm

R A A A

help pharm
01 ’ 0[

where K is the total number of self-generated data. Similarly, we create the harmful preferences
embedding matrix Hf‘”m. Then, we proceed to identify the helpful direction as follows:

H}“"" = UZV
elhelp = V.. (1)
Here, U and V represent the left and right unitary matrices produced by running SVD, respectively,

and X is the diagonal matrix of singular values. We define th’ “IP 45 the first row of V, corresponding
to the first top right singular vector of Hfmlp . The harmful direction Olh‘””m is defined similarly.

Sample-conditional estimation of #"¢!? and "™, A simple way to denoise self-generated data
is by leveraging the local smoothness of the embedding space (Chen et al.,[2022); that is, embeddings
within a localized region tend to exhibit similar properties. This suggests that preference samples
from similar queries will be closer together in the embedding space and share common characteristics.
To exploit this, we estimate sample-conditional helpful and harmful directions. Instead of applying
SVD to the entire self-generated preference dataset and identifying a single set of directions for #"¢?
and 07" we compute these directions in a sample-specific manner. This reduces noise from distant,
unrelated samples, allowing SVD to identify more meaningful directions.

Concretely, for each ¢ C D, let k-NN(q) represent the k¥ < N nearest neighbors of ¢ (including
q itself) in the embedding space. We apply SVD to find §7¢? and #"%"™ using Equation [1|on the
embeddings of k-nearest neighbors.

2.3 ALIGNMENT WITH EMBEDDING EDITING.

With the harmful and helpful subspaces 7:*"™ and F)lhelp identified, we proceed to modify the LM
embeddings during inference. Given z; as the output of the MLP of layer [, the ALIGNEZ editing
process proceeds as follows:

(a1, 0™)

~ hel
<$la 9[ ¢ p> help
<01harm7 elharm> .

eharm
l help phelpy 1
(0,°7,0,°7)

Ty < X — and ;< 2+

In the first step, we use vector rejection to remove the influence of 9{“"7" from z;. In the second step,

we adjust the embedding by steering it towards the helpful direction thdp . We perform the edit at
every generation time-step. We illustrate ALIGNEZ’s representation editing step in Figure ]

2.4 SELECTING LAYERS FOR INTERVENTION.

The last piece of the puzzle is determining which layers of the LM to apply our embedding editing
to. Intuitively, we want to steer the embeddings in a consistent direction across layers, ensuring that
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interventions on different layers do not conflict or cancel each other out. We select the top L layers

based on the highest cosine similarity between thelp at layer [ all other layers. The pseudocode for
this layer selection process is provided in the Appendix [A.3]

3 THEORETICAL ANALYSIS

We provide an analysis that characterizes under what conditions AlignEZ can improve aligment.
We use a standard assumption: that the latent space of the MLP layer outputs contains an latent
concept set. For simplicity, we assume that this concept set is given by the orthonormal vectors
{z1,. -y 2d—2, Zhelps Zharm }- The language model MLP layers produce, for a particular generation
step at layer /, a representation x that is a mixture of concepts ) _, 7;2;, where 7; > 0 are weights.
We decompose this mixture into a set of components that are helpful or harmful to alignment, as well
as components that simply contain unrelated language information:

d—2
T = Qelp2help + Otharm Zharm + E ;2
i=1

——

other linguistic components

Similarly, the identified top right singular vectors can be represented as

d—2 d—2
hel h
0T = ﬂhelpzhelp + 6harmzharm + E 61 zj and 0" = “helpZhelp + Yharm Zharm + E YiZi-
=1 =1

Ideally, we hope to obtain zhelp, zhelp from H"'? and H"a™™/! by taking their top right singular
vectors. Then the procedure in Section [2.3]yields

d—2
T= 2ahelpzhelp + Z ajzj,
j=1
which is the more (helpfully) aligned representation while preserving other linguistic components.
This is critical, as we do not wish to hurt the coherence of the generations in the process of alignment.

However, the self-generated preference data is noisy. Hence, we analyze the effect of noise in
self-generated preference data.

Assume that Bycip, Yharm are constants and Sharm, Yharm ~ N(0, aahgn) form the noise. Furthermore,
we assume that noise in other linguistic components is affected by the maximal distance from the

max,ci. Nd
associated queries and the number of neighbors % such that ojinguisic = C 9€kNN(g.,) (g2, q)’

where ¢, is the query associated with = and C' is some constant. Specifically, 5;,v; ~ N (0, Olinguistic )
for each 1 < ¢ < d — 2. This assumption reflects the idea that k-NN reduces noise by focusing
on closely related preference pairs. However, including unrelated queries can amplify noise by
increasing the denominator.

For the post-ALIGNEZ coefficients Apeip, Aharm, Ai (1 < i@ < d — 2), we provide a lower bound on
Apelp, Which we want to increase, an upper bound on Ay, which we want to remove, and a bound
controlling the deviation from the other linguistic components A; that we seek to preserve.

Theorem 3.1. Under the noise model described above,

o Aparm for harmful concept satisfies

2 2 2

Oali Trion + (d —2)07 uictic

|E[Aharm]| < |®harm ﬁa;gn atign 5 inguistic
help Yharm

* With an additional assumption ouam < 0, Aperp for helpful concept satisfies

2
6 help

2 2 2
Bhelp + Ualign + (d - 2)onlinguisfic

]E[Ahelp] Z 1 +

Xpelp -
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ITI + Ground Truth CAA + Ground Truth ALIGNEZ
Model Dataset
W% L% A% RI \ W% L% A% RI \ W% L% A% RI
oasst 28.0 33.0 -5.0 - 160 180 -2.0 - [48.0 21.0 27.0 49.1
MT 11.3 288 -17.5 - |1625 11.25 50 12.0|325 350 -25 -
Mistral-7B-v0.3 helpful-base 32.7 37.6 -49 - 158 109 50 150(43.6 30.7 129 382
self-instruct 20.4 34.5 -142 - 10 124 -3 - [40.7 274 133 27.0
koala 23.7 368 -13.2 - 158 145 13 3.0 |{50.0 29.0 21.1 43.0
oasst 45.0 470 -2.0 - 47.0 33.0 4.0 100 |44.0 40.0 4.0 100
MT 430 456 -2.5 - 405 468 -63 - |41.8 392 25 89
Llama-3.1-8B  helpful-base 42.6 44.6 -2.0 - 446 525 2.0 - [40.6 30.7 99 99
self-instruct 48.7 443 44 14.7| 540 41.6 124 30.1|443 398 44 14.7
koala 632 31.6 316 100 | 447 500 -53 - |42.1 53.6 -10.5 -

Table 1: ALIGNEZ significantly improves the base model’s performance, closing the gap with
aligned models (RLHF and instruction-tuned). Additionally, ALIGNEZ consistently outperforms
other test-time alignment methods.

e The coefficients for linguistic components A; (1 < i < d — 2) satisfy

1 1
|E[AZ} - ai| < aialzinguistic(ﬁgil + ?) .
elp arm

These results show that ALIGNEZ will be successful when the top singular vectors #¢'» gharm
provide strong signals for the alignment axes (large Bpeip, Yharm), have small alignment noise (small
Oalign) and when k-NN successfully controls oiinguisiic- The proof is provided in Appendix

4 EXPERIMENTS

We evaluate the following claims about ALIGNEZ.

* Reduces alignment gap (Section d.I). ALIGNEZ significantly reduces the performance gap
between the base model and aligned model without any additional fine-tuning and access to
ground-truth preference data.

* Expedites alignment (Sectiond.2). ALIGNEZ expedites DPO alignment by improving models
that have been DPOed on only a small subset of ground-truth preference data.

* Compatible with prompting techniques (Section[4.3). ALIGNEZ is compatible with and can be
used in combination with prompt engineering-based alignment methods (Lin et al., 2023)).

* Ablations (Section[d.4). We analyze the components of ALIGNEZ algorithm and empirically show
that ALIGNEZ benefits from its k—NN component.

Metrics. We follow the most popular standard for automatic alignment evaluation, using GPT-4 as
a judge to compare a pair of responses (Zheng et al.l 2024) and calculate the win rate (W %) and lose
rate (L%). We measure the following metrics:

1. Net Win% (A%) = W% — L%: A model that produces meaningful improvement over the base
model will exhibit a higher win rate than lose rate, resulting in a positive net win percentage.
2. Relative Improvement (RI).

A _
ours — base < 100.

A aligned — base

This metric evaluates how much ALIGNEZ improves alignment of the base pretrained model,
relative to the aligned model. A value of 0% means ALIGNEZ offers no improvement over the
base model, while 100% means ALIGNEZ matches the performance of the aligned model. Positive
percentages between 0% and 100% indicate that ALIGNEZ narrows the performance gap between
the base and aligned models, and a negative percentage indicates a performance decline from the
base model. Excitingly, we additionally sometimes observe AlignEZ performance beyond the
aligned model.
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Datasets. To evaluate ALIGNEZ’s generalization capability across diverse tasks and topics while
keeping evaluation affordable, we use the helpfulness slice of the just—eval-instruct dataset
(Lin et al.l2023). This dataset is a diverse collection of queries created by sampling and merging
several datasets. Specifically, we use the helpfulness slice, which combines (1) AlpacaEval
(Li et al., 2023b) (including helpful-base, koala, open—-assistant (oasst), and
self-instruct), and (2) MT-Bench (Zheng et al.,|2024). We report ALIGNEZ’s performance
on these individual slices.

Baseline 1: Pretrained Models. We compare ALIGNEZ against several base models, namely
Mistral-7B-v0.3 (Jiang et al., 2023) and L1lama-3.1-8B (Touvron et al. [2023). As an
upper bound, we also compare these base models to their aligned versions. For Llama3, we use
Llama-3.1-8B-Instruct, the RLHF version of the base model (met,|[2024). For Mistral, we
use Mistral-7B-Instruct-v0. 3, a version of the base model fine-tuned with instruction
tuning datasets (Jiang et al., [2023)). We report results using the Mistral instruction-tuned model
because our experiments show it outperforms the open-source Mistral DPO (Tunstall et al., 2023 on
our evaluation datasets.

While we do not expect ALIGNEZ to consistently outperform the aligned models, we anticipate a pos-
itive RI metric. This would indicate that ALIGNEZ effectively brings the base model’s performance
closer to that of the aligned model without incurring additional costs.

Baseline 2: Test-time Alignment Methods. We also compare ALIGNEZ against test-time align-
ment methods, such as Activation Steering. Specifically, we implement the CAA (Rimsky et al.}
2023)) and ITI (Li et al.;,[2024) methods, using ground-truth preference data from the hh—-r1hf
helpfulness slice to compute the steering vector (the vector used to adjust the model’s activa-
tions). For each experiment, we sample 300 random examples. The optimal intervention layer
for CAA and ITI hyperparameters are selected based on validation using the vicuna slice of
just-eval-instruct.

4.1 REDUCING ALIGNMENT GAP

First, we assess how effectively ALIGNEZ brings the performance of the base pretrained model
closer to that of its aligned version.

Setup. All experiments use frozen LLM weights, with no additional training of these weights. We
arbitrarily choose [ (number of layers to edit) to 5 and k& (number of sample nearest-neighbor) to 10
across all experiments.

Results. Table[I] presents our findings, showing consistent positive Relative Improvement (RI)
across various datasets and model architectures. These results confirm that ALIGNEZ effec-
tively narrows the performance gap between base models and their aligned counterparts,
occasionally even surpassing the aligned models. Furthermore, ALIGNEZ outperforms the test-time
alignment baseline, CAA, achieving these improvements without relying on ground-truth preference
data—unlike CAA, which requires such data.

4.2 EXPEDITING ALIGNMENT

Next, we evaluate ALIGNEZ’s ability to expedite more expensive alignment techniques like DPO.
Specifically, we test whether ALIGNEZ can improve models trained with DPO using only a smaller
subset of ground-truth preference data.

Setup. We perform DPO fine-tuning on the Mistral-7b-base model using the UltraFeedback-
binarized dataset (Cui et al., 2023} [Tunstall et al., 2023)) and do evaluation on the test set. We provide
the complete DPO training parameters in the Appendix

Results. Figure[3|shows that ALIGNEZ significantly improves the alignment of models trained with
DPO using a small subset of ground-truth preference data. Remarkably, it boosts the performance
of DPO with just 1% of the data to match that achieved with 25%. These results validate our
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Model Dataset A% R e
koala 9.21 °

Mistral-7B-v0.3  oasst 6.00 = -0y
selfinstruct  3.54

==je=_DPO

koala 10.00 DPO-+AlignEZ
Llama-3.1-8B oasst 10.00 1 g 0 %
selfinstruct 5.31 DPO data percentage %

Table 2: Compatibility with prompting- Figure 3: DPO with 1% data + ALIGNEZ
based methods. ALIGNEZ combined matches the performance of DPO with 25% data
with URIAL yields improvements over (blue dashed line). DPO training and evalua-

using URIAL alone. tion are done with the UltraFeedback-binarized
dataset.
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Figure 4: Ablation study.

claim that ALIGNEZ accelerates DPO alignment, offering substantial gains when ground-truth
preference data is limited.

4.3 COMPATIBILITY WITH PROMPTING TECHNIQUES

We also investigate the adaptability of ALIGNEZ when combined with other cost-effective alignment
techniques, such as prompting (Lin et al., 2023).

Setup. We evaluate whether ALIGNEZ can be effectively combined with URIAL, a prompt engi-
neering method introduced in|Lin et al.|(2023). URIAL uses manually crafted in-context learning
examples to emulate the style of high-performing models like ChatGPT and other advanced aligned
LLMs. In our setup, we apply the URIAL prompt as a prefix to each query and compare the Net Win
(A%) of URIAL combined with ALIGNEZ versus URIAL alone.

Results. Table 2]demonstrates that ALIGNEZ enhances performance beyond what is achieved by
using the prompting technique alone, as indicated by the positive A%. This confirms our claim
that ALIGNEZ is compatible with prompting techniques and shows its versatility to be used in
combination with other cost-effective alignment methods.

4.4 ABLATIONS

Setup. We investigate the effect of k by running ALIGNEZ with k = {3, 5,10, 15, 20, 25, 30} while
keeping L fixed at 5. Similarly, to study the effect of L, we vary L = {1, 5,7, 10,15, 20, 25,30}
while fixing k at 10. Additionally, we analyze the relationship between Glh‘”’m and Glhdp by measuring
their cosine similarity in two cases: per layer, and averaged as we progressively increase the number
of selected layers using our layer selection method (Section[2.4). We report the result averaged across
all datasets used in Table[Tl
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Results 1: Effects of Kk and L. In FigureE](a), we see that when k is too small, ALIGNEZ shows
no improvement over the base model, likely due to increased noise from using too few samples to

find thelp and 9{“”’”. Similarly, with a large k, including unrelated samples results in minimal gains.
A similar trend is observed for L in Figure d (b): intervening on too few layers (L < 3) has little
effect, while intervening on too many layers (L > 20) degrades performance. We hypothesize that as
each layer’s intervention influences subsequent layers, intervening on too many layers accumulates
these changes and thus shifts the model’s behavior too much.

Results 2: On the dynamics of thelp and 69", As the number of layers selected by ALIGNEZ

help

increases, the average cosine similarity between the helpful components in different layers (6;;

and Hl;mlp , 1 # j) decreases (Figure left). However, this decline slows dramatically around L = 5,

suggesting that beyond this point, a subset of selected layers has 9;’6“7 vectors that remain relatively
similar. This supports the effectiveness of our layer selection method: the intervention directions
across layers remain aligned enough to avoid canceling each other out.

In Figure {4 (right), we plot the cosine similarity between the helpful and harmful directions at each
individual layer. The lowest cosine similarities are observed in the middle layers (layers 10 to 25),
indicating the most distinct separation between harmful and helpful components in this range.

5 RELATED WORK

Our work tackles alignment and sits at the intersection of self-generated synthetic data and efficient
model editing. We give a (necessarily) compressed introduction to these areas.

LM Alignment. The standard approach to aligning LMs with human values and preferences relies
on human-annotated preference data. This data is used either to (i) train a reward function and
subsequently fine-tune the LM to maximize this reward using reinforcement learning objectives,
as in methods like RLHF (Ouyang et al., 2022; |Christiano et al., 2017), or (ii) optimize a proxy
loss to maximize the margin between preferred and not preferred outputs, as in methods like DPO
(Rafailov et al., 2024)). While these methods achieve remarkable performance, they are challenging
to implement due to their complex pipelines, the high cost of computing resources, and the limited
scalability of acquiring human-preference data.

Self-Improvement. The difficulty of obtaining human-annotated data has led to significant efforts
to bypass this requirement. Methods such as those proposed by (Wang et al.| |2022; |Sun et al.|
2024; Mclntosh et al.|[2023)) use manually crafted seed prompts to generate high-quality synthetic
datasets from pretrained LMs, which are then used for fine-tuning or training reward models. (Guo
et al.| 2024)) uses retrieval-augmented generation to remove reliance on manually designed prompts.
Another approach, (Li et al., [2023a)), leverages instruction-tuned models to assist in generating
synthetic datasets. The work most similar to our approach is (Frianken et al.,|2024), which emphasizes
maximizing the use of knowledge from the pretrained model being aligned. Our work takes this further
by exploring whether self-alignment can be made even more cost-effective by replacing fine-tuning
with representation editing, dramatically accelerating the alignment process.

Representation Editing. A parallel line of work seeks to modify model behavior without fine-
tuning—doing so by solely editing the model’s representations. For vision-language models like
CLIP, (Adila et al.,2023)) and (Chuang et al.,[2023)) show that removing spurious or unwanted concept
subspaces from embeddings boosts model accuracy on rare class predictions. (Limisiewicz et al.,
2023)) shows that doing so in LLM architectures reduces gender bias in generated sentences without
degrading model performance in other tasks. (Zou et al.;|L1 et al., | 2024; |Han et al.| [2023; [Rimsky et al.,
2023)) demonstrate that modifying embeddings during inference to steer them towards certain traits
(e.g., honesty, truthfulness, sentiment) can effectively enhance these traits in the generated outputs.
Similarly, (Wu et al.,[2024) and (Kong et al., 2024) learns the appropriate embedding modification,
acting as a form of fine-tuning. These methods assume access to ground-truth preference datasets.
Our work differentiates itself by designing an intervention technique that can handle the noisier signal
from synthetic data generated by LMs.
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6 DISCUSSION

Future Work. ALIGNEZ presents several avenues for future exploration. First, we perform
embedding editing at every generation time step. However, it remains uncertain whether selecting
specific time steps for intervention could yield further improvements. Second, characterizing the
conditions in which self-alignment is possible by developing a specialized metric for predicting the
model’s ability to self-align would be useful.

Conclusion. We introduce ALIGNEZ, a novel approach for aligning pretrained LMs with human
preferences without access to human-annotated data and fine-tuning. By leveraging the inherent
knowledge within pretrained models, ALIGNEZ modifies model embeddings during inference to
produce outputs that better align with human preferences. We empirically show that ALIGNEZ
consistently enhances the alignment of the base model across multiple evaluation aspects, occasionally
surpassing the performance of their aligned counterparts. Additionally, we show that ALIGNEZ can
expedite more costly alignment techniques like DPO.

This work takes an initial step toward achieving truly cost-free alignment and paves the way for the
development of techniques in exciting new domains like real-time dynamic alignment and fast model
personalization — areas currently beyond the reach of standard alignment methods.
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Symbol Definition

D Dataset of queries

q; Sample query

w Language Model

l Language model layer index

cpetr Characteristic of helpful answer

et Characteristic of harmful/unhelpful answer
help

i Helpful preference sample

phelp Self generated helpful preference data

Pharm  Self generated harmful/unpreferred preference data
hetp Subspace of helpful preference samples

gharm Subspace of harmful/unpreferred preference samples

@' Embedding of p'“'? in layer | of w, abbreviation of ®;(p/“'?)

fl)ﬁi‘l”m Embedding of p*"™ in layer [ of w, abbreviation of ®;(pher™)

H'”  Embedding matrix stacked from <I>Z elp
H'"™  Embedding matrix stacked from @ﬁf‘l"m
Vo« First row of the right unitary matrix

T Output of MLP at layer [

T MLP output after ALIGNEZ embedding edit

Table 3: Glossary of variables and symbols used in this paper.

A APPENDIX

A.1 GLOSSARY

Table 3] shows glossary of terms used in this paper.

A.2 DPO TRAINING DETAILS

Dataset DPO experiment were trained on binarized UltraFeedback dataset (Cui et al.,2023; Tunstall
et al.l [2023)).

Computing resources Experiment training on 1%, 5%, 10% and 25% of the dataset were run on
an Amazon EC2 Instances with eight Tesla V100-SXM2-16GB GPUs.

Hyperparameters The hyperparameters we used consist of 1 training epoch, a gradient accu-
mulation step of 1, a learning rate of 5e-5, a max grad norm of 0.3, a warmup ratio of 0.1 (based
on (Dettmers et al.| 2023)), a precision of bfloat16, a memory saving quantize flag of "bnb.nf4”, a
learning rate scheduler type of cosine, and an optimizer of AdamW (Loshchilov & Hutter, [2019)
(based on (Raschkal 2023))). We applied PEFT (Mangrulkar et al., 2022)) method to model training
with hyperparameters of a r of 256, a « of 128, a dropout of 0.05 and a task type of causal language
modeling (based on (Dettmers et al.,|2023} |Raschkal 2023))). A batch size of 16 is used to train the
1%, 5%, 10% and 25% data experiment. A batch size of 20 is used to train the full data experiment.

A.3 LAYER SELECTION PSEUDOCODE

Below is the pseudocode for layer selection.

def get_interventions_dict (pos_insights_emb, neg_insights_emb) :
layer_idxs = [i for 1 in range(n_layers)]
tmp_dict = {}
for layer_idx in layer_idxs:
pos_emb__ = np.vstack([p[layer_idx, :] for p in pos_insights_emb])
neg_emb_ = np.vstack([n[layer_idx, :] for n in neg_insights_emb])
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8 # get theta help

9 _,_,v_pos = linalg.svd(pos_emb_, full _matrices=False)

0 # get theta harm

_,_,v_neg = linalg.svd(neg_emb_, full _matrices=False)

3 tmp_dict[layer_idx] = (v_pos[0,:], v_neg[0,:])
4
5 chosen_idxs = layer_idxs

8 tmp_ = []
9 for idx in chosen_idxs:
20 tmp_.append (tmp_dict [idx] [0])

1
1
1
1
1
1
16 interventions = {}
1
1
1
2 tmp_ = np.vstack (tmp_)

23 # get each layer theta help cosine similarity w/ other layers

24 cos = cosine_similarity (tmp_, tmp_)

26 sum_cos = np.sum(cos, axis=0)

27

28 # pick layers w/ highest cosine similarity
29 sorted_ = np.argsort (sum_cos) [::-1]

30 chosen_idxs = sorted_|[:n_layers_to_edit]

3

32 chosen_idxs = np.sort (chosen_idxs)

A.4 PROMPT TEMPLATE

A.4.1 SELF-GENERATED DATA PROMPTS

Generating helpful samples characteristics:

[QUERY]. You are a helpful assistant. Your answer to this

query should:

Generating harmful/unpreferred sample characteristics:

[QUERY]. Pretend you are a malicious and useless assistant.

Your answer to this query should:

A.4.2 GPT-4 EVALUATION PROMPT

We follow the evaluation script from Kong et al.[(2024); |Khanov et al.|(2024), and randomly shuffle
the assistants orders every API call to mitigate the bias in option orders.
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System Prompt:

“You are a helpful, harmless, and precise assistant for checking the quality of the answer. We
would like to request your feedback on the performance of two Al assistants in response to the
user question. Please rate the harmlessness, helpfulness, and level of detail of their responses.

Your evaluation should consider factors such as the helpfulness, harmlessness, rele-
vance, accuracy, depth, creativity, and level of detail of the response. Note that if a response
appears cut off at the end due to length constraints, it should not negatively impact the score.
Also, base your evaluation solely on the given answer, disregarding any preceding interactions
in the question. Each assistant receives an overall score on a scale of 1 to 10, where a higher
score indicates better overall performance.

Please first output a single line containing only two values indicating the scores for
Assistant 1 and 2, respectively. The two scores are separated by a space. In the subsequent
line, please provide a comprehensive explanation of your evaluation, avoiding any potential
bias and ensuring that the order in which the responses were presented does not affect your
judgment.”

User prompt:

## Question: [QUESTION]

## Assistant 1: [ASSISTANT 1 ANSWER]
## Assistant 2: [ASSISTANT 2 ANSWER]

B THEORY DETAILS

We recap the setup. We assume the basis is given by the concept set {z1, ..., 242, Zhelp, Zharm s
where 2j,cip, Zharm are the dimensions for helpful, harmful components of language, and z1tozq—2
are dimensions for other linguistic aspects. A representation x, the estimated helpful subspace vector
0"el? and the estimated harmful vectors 07¢'P can be written

d—2
I = (¥help<help =+ Otharm Zharm + § Az
=1
d—2
hel
grer = 5helpzhelp + Bharm Zharm + E Bizi
i=1
d—2
== f)/helpzhelp + “Yharm Zharm + E Yi%i
i=1

gha'rm

where thelp, Otharm, @ (1 < @ < d — 2), Bhelp; Yharm are constants, Sharm, Yharm ~ N (0, 0align), and
Bi,vi ~ N(0, Olinguistic) for < ¢ < d — 2. For simplicity, we assume that the subtraction and the
addition operation are applied simultaneously, i.e.

<.T, 0harm> harm + <$, 9h€lp>
<9ha7'm, 9hu7"rn> <9help’ 9help>

T4 x— help
Denote the coefficients of £ as Anelp, Aharm, Ai TOr Zhelp, Zharm, 2i, TEspectively.

d—2

T= Ahelpzhelp + Anarm Zharm + § Aiz
=1

Let

d—2
Thelp = <9help, Hhelp> = ﬂl?elp + Bl?arm + Z 512
i=1
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d—2

harm ph 2 2 2
Tharm = <9 g arm> = help * Yharm T Z i
i=1
. Then, after some algebraic manipulation, we can obtain

2
ﬁ help _ 6§arm>
3

Thelp Tharm

Ahelp = Olhelp (1 +

2 2
“he Y
Aharm = Oharm (1 + ham _ harm)
Thelp Tharm

, and

A .
Ai=a; (14 — forl1 <i<d—2.
Thelp Tharm

Now, we provide the proofs for theorems in Section [3]

Proof of Theorem

2 2 9
Oali Ootion 1 (d - 2)0. .
b |]E[Aha7‘WL]| < Qlharm a2lzgn 4 align . linguistic .
ﬁhelp Yharm

2
’Yharm Yharm
E Aharm =|E Qharm <1 + = ):|
| [ ” Thelp Tharm

[ arm 76 +Zl Vi
= |E | dtharm (Wh + help ! )]‘

Thelp Tharm
i 2 2 4 d=2 2
o (B )

6 help ’yharm

d—2
(E[’Y}?a_rm] E[Vl%elp] + Zi:] E[V?]) ‘
Qharm 2 +

2
B help “Yharm

2 d— 2 o2
Jalign ahgn + Z lmguistic
harm 5+

ﬁ help ’Yharm

2 2
o Ualign Ualign + ( Ulmgmstlc
= |Qharm 2 +
/8 help 7ha1m

Bre

e

2 2 2 2 Olhelp -
5 help + Ualign ( )Ullngulstlc

IN

IN

IN

L] ]E[Ahelp} 2 (1 +

Bl Apep] = & [y ( 1+ L2 Sim
r P Thelp Tharm

>E |f)zhelP (1 + §:61P>
elp

B
> Qhhelp <1 + E[;;Z N Jensen’s inequality

by the assumption aperp > 0

6 help
= Qthelp 1+
( B}?elp + U’Elign + (d - 2)012inguistic

2 1 1
Ulvinguistic( ﬁthlp )

° |]E[AZ] — Oti| S

(67 Pl
Yharm
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Model Dataset M
W% L% A%

oasst 73.0 18.0 55.0

MT 64.6 24.1 40.5

. helpful-base 64.4 30.7 33.7
Mistral-7B-v0.3 - yeingruct 732 24,1 49.1
koala 73.3 24.0 493

oasst 48.0 450 3.0

MT 50.0 413 8.8

helpful-base 90.1 9.9 80.2

Llama-3.1-8B self-instruct  61.1 31.0 30.1
koala 54.0 38.1 15.8

Table 4: Upper bound: Aligned (RLHF-ed / instruction-tuned) model performance

IE[A4; — o

IN

IN

IN

2o ()|
Thelp Tharm
|: Thelp Tharm>:| ‘

<Bhelp harm) ] |
2
E[5?] | Eb?

B help harm

0121ngu1stlc + Ulginguislic
ﬁ help ’yl?arm

) 1 1
Q Olinguistic 52 + P}
help “Vharm

C UPPER BOUND PERFORMANCE

Table [ shows the upper bound of improvements upon base model — the improvements from aligned

models (from RLHF or other expensive alignment techniques)

D #'¢? AND f"*"™ yISUALIZATION

Figure [5|shows the §"¢/P and §*™™ for all test samples in oasst and helpful-base datasets, projected
into the first two principal components. Notably, these vectors form distinct and separable clusters
even in this low-dimensional representation. This clear separation suggests that the #"¢/? and
g"er™ vectors identified by ALIGNEZ capture meaningful and interpretable directions to steer LLM

representations with.

E EFFECTS TO SAFETY AND HALLUCINATION OF THE BASE MODEL

We tested whether ALIGNEZ impacts other important properties in the base LLM, such as safety and

hallucination.
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Figure 5: 0”7 (blue) #"%"™ (red) from the layers with the most influence (Section[2.4). L-R: Mistral
3 oasst dataset, Mistral 3 helpful-base dataset, Llama 3.1 helpful-base dataset, Llama 3.1 oasst dataset.

Model MaliciousInstruct JailBreakBench
Mistral-7B-v0.3 1.0 -1.0
Llama-3.1-8B 3.0 6.0

Table 5: ALIGNEZ Net Win A% over base model on safety tasks

Model Base Model Base Model + ALIGNEZ
Mistral-7B-v0.3  0.458 0.452
Llama-3.1-8B 0.444 0.436

Table 6: ALIGNEZ FactScore for Base model and Base Model with ALIGNEZ. A higher score
means less hallucinated output

Safety. We tested AlignEZ on two safety datasets, namely MaliciousInstruct|Huang et al.| (2023))
and JailBreakBench (2024), and report the Net Win in Table 5]
The results show that ALIGNEZ provides a modest safety improvement for Llama 3.1 and has minimal

impact on safety for Mistral 3. This indicates that ALIGNEZ does not negatively affect safety and may
even present opportunities for developing specialized versions tailored for safety-critical applications.

Hallucination. We conducted the FActScore test (2023)), an evaluation method for
assessing the degree of hallucination in LLM-generated responses. FActScore works by breaking
down an LLM’s output into a series of atomic facts and calculating the percentage of these facts
supported by a reliable knowledge source, such as Wikipedia. For our evaluation, we used the default
prompts, questions, and knowledge source provided in the FActScore repository. The scores range
from O to 1, where a higher score indicates a less hallucinated response.

The results in Table 6] show that ALIGNEZ has little to no effect on the original model’s degree of
hallucination, maintaining its factual accuracy.

F HEAD TO HEAD COMPARISON WITH URITAL

We conducted a head-to-head comparison between URIAL (2023)), a prompting-based
method, and ALIGNEZ. Since URIAL was specifically optimized for the just-eval dataset used in
our main paper, we ensured a fair comparison by evaluating both methods on 100 randomly selected
samples from HH-RLHF (2022)), with results averaged across three random seeds. We
report the Net Win (A%) = Win%-Lose% for ALIGNEZ in Tablem The positive Net Win scores
highlight ALIGNEZ effectiveness and superiority compared to URIAL.
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Instruct Model
W% L% A%
Mistral-7B-v0.3 48.7 36.0 12.7

Llama-3.1-8B  53.7 39.7 14.0

Model

Table 7: Head to head comparison with URIAL
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