
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

FLAG: CLUSTERED FEDERATED LEARNING COMBIN-
ING DATA AND GRADIENT INFORMATION IN HETERO-
GENEOUS SETTINGS

Anonymous authors
Paper under double-blind review

ABSTRACT

Federated Learning (FL) emerged as an important tool to enable a group of
agents/clients to collaboratively train a model without sharing their individual data
with each other or any third party, instead exchanging only model updates during
each training round. Although FL performs effectively when clients’ data are
homogeneous (e.g., each client’s data is i.i.d.), data heterogeneity among clients
presents a major challenge, often leading to significant performance degradation.
To address this challenge, a variety of approaches have been proposed. One par-
ticularly effective approach is clustered FL, where similar clients are grouped to-
gether to train separate models. Previous clustered FL approaches tend to rely
solely on either data similarity or gradient similarity to cluster clients. This results
in an incomplete assessment of client similarities, particularly when the datasets
display various types of distributional skews, such as label, feature, or quantity im-
balances. Consequently, these methods fail to capture the full spectrum of client
heterogeneity, leading to suboptimal model performance across diverse client en-
vironments.
In this work, we address the challenge of data heterogeneity in FL by introducing
a novel clustered FL approach, called FLAG. FLAG employs a weighted class-
wise similarity metric that integrates both data and gradient similarity, providing
a more holistic measure of client similarity. This enables more accurate clustering
of clients, ultimately improving model performance across heterogeneous data
distributions. Our extensive empirical evaluation on multiple benchmark datasets,
under various heterogeneous data scenarios, demonstrates that FLAG consistently
outperforms state-of-the-art approaches in terms of accuracy.

1 INTRODUCTION

Federated Learning (FL) enables users/clients to collaboratively train a model on their data without
sharing it with other clients or a central entity (McMahan et al., 2017). However, the diversity in user
behavior often results in heterogeneous data distributions, referred to as non-identically indepen-
dently distributed (non-IID) data, across clients. This heterogeneity can lead to slower convergence
and suboptimal accuracy of the global model (Kairouz et al., 2021; Tan et al., 2022). For exam-
ple, in disease risk prediction using electronic health records, variations in patient demographics
and clinical presentations contribute to data heterogeneity (Prayitno et al., 2021). More specifically,
non-IID data can arise due to various factors, including class/label skew, feature skew, quantity shift,
concept shift, and concept drift — common types of data heterogeneity. Class/label skew refers to
the non-identical distribution of labels/classes at different clients, e.g., the absence of a label at one
client while the same label is present at other clients (Zhang et al., 2022). Feature skew occurs
when distributions vary due to different personalization nuances, e.g., an alphabet letter can be writ-
ten in different ways (Li et al., 2021). Quantity shift happens when different clients have different
amounts of data (Wang et al., 2021), e.g., an online retailer with millions of transaction records is
compared to a local store with only a few hundred records. Concept drift occurs when the statis-
tical properties of the target variable change, leading to different labels for similar data instances
across clients (Kairouz et al., 2021). Concept shift happens when different clients assign the same
label to fundamentally different data samples due to variations in local data distributions or labeling
criteria (Kang et al., 2024).

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Approaches, e.g., personalized FL (Fallah et al., 2020; Liang et al., 2020; Smith et al., 2017; Ari-
vazhagan et al., 2019), aggregation schemes (Wang et al., 2020; Pillutla et al., 2022; Karimireddy
et al., 2020), local-global mixing (Jiang et al., 2024; Mansour et al., 2020; Deng et al., 2020), and
clustered FL (Ghosh et al., 2020; Vahidian et al., 2023; Sattler et al., 2020; Long et al., 2023), have
been proposed to address data heterogeneity. Personalized FL and aggregation-based approaches,
which train a single model, often fail to generalize well to the local distributions of each client. In
local-global mixing approaches, where local distributions differ significantly from the global aver-
age, these methods deteriorate, causing each client to train primarily on its own local data (Vahidian
et al., 2023).

Clustered FL, in contrast, has demonstrated superior performance in handling non-IID data, es-
pecially when distinct groups of clients display substantial variations in their local data distribu-
tions (Ghosh et al., 2020). In clustered FL, clients are grouped into clusters based on the similarities
in their data distributions, and each cluster trains its own model tailored to its specific data.

Despite their advantages, existing clustered FL approaches face several limitations, such as limited
flexibility in capturing complex data heterogeneity, reliance on either data or gradient similarity
alone. Specifically, current clustered FL approaches suffer from the following limitations:

1. Data-only or Gradient-only Clustering: Existing clustered FL approaches rely on either data
subspace (Vahidian et al., 2023) or gradient subspace to compute similarity (Sattler et al., 2020)
between clients.In gradient-only similarity measurement, nearly similar clients can end up with
different learning objectives due to class imbalance (i.e., quantity shift) or high dimensionality.
In data-only cases, clients may exhibit intra-class variance, concept shift, or concept drift, which
may hinder similarity measurement.

2. Improper Data Similarity Method: Data similarity-based clustered FL methods, such as
PACFL (Vahidian et al., 2023), uses a method that leverages cosine similarity measurement
between data subspace but does not account for label information of the data subspace during
comparison. In cases of concept shift, data subspace can exhibit similarity while having different
labels, which might result in incorrect similarity assessment.

3. Predefined Cluster Numbers: Clustered FL approaches, such as IFCA (Ghosh et al., 2020),
assume that the number of clusters are known before running FL training, which can lead to
poor model performance, if the predefined number does not match the actual data distributions.
Previous approaches lack a mechanism for determining the optimal number of clusters when it
is not known in advance.

4. Limited Consideration of Data Skews: Existing clustered FL techniques primarily focus on
experiments with one or two types of data distribution skews, predominantly class/label skew.
They do not account for the broader range of skews, such as concept shift, concept drift, and
quantity shift, in data heterogeneity.

The above-mentioned limitations raise the following crucial question:
How can we overcome the above challenges posed by heterogeneous data distributions by utilizing

both data and gradient information to dynamically group clients into clusters in FL ?

Our Contributions. This work proposes a novel algorithm, titled clustered Federated Learning
with datA and Gradient (FLAG), which integrates both data and gradient information to group
clients. FLAG effectively addresses the limitations of existing clustered FL methods. By com-
bining gradient and data information with an enhanced similarity measurement in data-space, FLAG
tackles a wide range of data heterogeneity challenges, resolving the key limitations of current ap-
proaches. Specifically, in FLAG, each client first performs truncated Singular Value Decomposition
(SVD) (Klema & Laub, 1980) on their dataset and sends a few principal vectors to the server. Fur-
thermore, the client executes a few epochs of local training on their data using Stochastic Gradient
Descent (SGD) (Ruder, 2016) and sends the local model gradients to the server.

The server uses the principal vectors to build a weighted class-wise data similarity matrix for the
clients. In addition, the server computes the cosine angle between the gradient directions of the
clients and constructs a gradient similarity matrix based on those values. Finally, the server combines
these two, i.e., data and gradient, matrices to create the final proximity matrix, which is used as the
adjacency/distance matrix for clustering clients using Agglomerative Hierarchical Clustering (HC).

FLAG also employs an approach to find the optimal clustering. It does so by first iterating over the
clustering threshold in hierarchical clustering (HC), a hyper-parameter that controls the number of

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Table 1: Test accuracy comparison across different clustering algorithms for non-IID label skew
(20%) and quantity shift (Dirichlet concentration factor 1) over CIFAR-10 and FMNIST data.

ALGORITHM TECHNIQUE CIFAR-10 FMNIST
PACFL Vahidian et al. (2023) Data 90.45 94.412
CFL Sattler et al. (2020) Gradient 72.80 86.973
IFCA Ghosh et al. (2020) Gradient 89.68 94.027
FLAG — THIS PAPER DATA+GRADIENT 93.81 96.36

clusters. It performs clustering only once before training begins, eliminating the need to wait until
iterative training completes to form clusters, as is required in many previous clustered FL frame-
works. FLAG selects the best clustering based on the validation accuracy and performs clustered FL
on that optimal clustering.

In summary, the contributions of this paper are as follows:

1. A new algorithm, FLAG, for clustered federated learning that combines both data and gradient
information from clients to cluster them into groups.

2. A novel class-wise weighted method to compute similarity in data and capture the variations in
underlying distributions of the clients’ data more accurately and robustly in different heteroge-
neous scenarios with skews.

3. An efficient and empirical way to determine the optimal clustering formation for the clients.
4. Extensive experimentation on heterogeneous data distributions was conducted, considering not

only class types but also quantity shifts and class imbalances among clients working with the
same class types. Table 1 provides an overview of the accuracy of the FLAG algorithm compared
to existing clustered FL algorithms for non-IID data with class skew and label skew combined
(details of FL setup in §5.1), showing its effectiveness.

Code and data of the paper is provided here URL.

2 LITERATURE REVIEW

Clustered federated learning (FL) is a technique that addresses the distribution shift problem by
grouping clients into clusters based on their local data distributions. Various methods have been
proposed for clustering clients. Vahidian et al. (2023) introduced a method that clusters clients
by analyzing the principal angles between the client data subspaces. However, this approach does
not account for the label information of the datasets being compared. In scenarios such as concept
shift and concept drift, datasets with similar subspaces can have different labels and learning ob-
jectives. Ignoring label information may lead to incorrect clustering of clients. Additionally, the
method does not regularize the similarity values based on dataset size to address quantity shifts.
Another type of clustered FL approach leverages gradient information or loss values on gradient to
cluster clients (Kim et al., 2024). Ghosh et al. (2020) proposed initializing a set of global models
and, at each round, estimating the cluster identity of the clients based on the minimum loss to the
global model parameters. Then, clients with similar identities are aggregated to minimize the loss
function. However, this method assumes the number of clusters is known beforehand and performs
clustering (estimating identities) of clients at each iteration, making it computationally expensive.
Another gradient-based clustering approach recursively performs bi-partitioning when clients’ gra-
dients differ on a converged global model (Sattler et al., 2020). Zhang et al. (2024) developed
an adaptive clustering algorithm based on cosine-based model similarity of dimensionality-reduced
models. Ruan & Joe-Wong (2022) proposed an approach that employs soft clustering instead of
hard clustering, utilizing a proximal local updating technique that incorporates local information
while encoding knowledge from all cluster models. Another soft clustering-based approach, Guo
et al. (2023), formulates the clustering problem as a bi-level optimization problem and introduces a
new objective function to achieve robust clustering.

3 PRELIMINARIES

Principal Angles Between Two Subspaces. Let span{v1, . . . ,vp} be the span of a set of vectors
and denotes the set of all possible linear combinations of these vectors. Let Rn be the n-dimensional
real coordinate space, which is the set of all n-tuples of real numbers. Let V = span{v1, . . . ,vp}
and X = span{x1, . . . ,xq}, be p-dimensional and q-dimensional subspaces of Rn, respectively.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

The sets {v1, . . . ,vp} and {x1, . . . ,xq} are orthonormal, with 1 ≤ p ≤ q. We define a sequence
of p principal angles as 0 ≤ Φ1 ≤ Φ2 ≤ · · · ≤ Φp ≤ π

2 , and they measure the similarity between
the subspaces. In this context, principal angles are the angles between the closest directions in two
subspaces, and they provide a measure of how “aligned” or “separated” two subspaces are in space.
These angles are calculated as:

Φ(V,X) = min
v∈V,x∈X

cos−1
(
|vTx|
∥v∥∥x∥

)
(1)

where ∥ · ∥ is the norm and vT represents the transpose of the matrix v. The smallest of these angles
is Φ1(v1,x1), with the vectors v1 and x1 as the corresponding principal vectors. The principal
angle distance serves as a metric to quantify the separation between subspaces (Jain et al., 2013).

Gradient based clustering cluster clients based on their gradient similarity (e.g., Duan et al. (2021);
Sattler et al. (2020)) or use loss value on gradient update to identify similar clients (Ghosh et al.,
2020). Each client i ∈ N is initialized with a random model parameter θ and trains the model on
its local data Di until it converges to a stopping point. Afterward, each client i sends their local
gradient updates (denoted by ∆i) to the server for similarity computation. The norm of the client’s
gradient ∥∆i∥ will tend toward zero as we are approaching the stationary point (Drori & Shamir,
2020). So, we can define the stopping point of clients by setting a threshold on the norm of the
gradient update, such that ∥∆i∥ < ϵ. Another way to set up a stopping point that is used in FLAG is
to train each local model for a predefined number of epochs. Upon receiving all the gradient updates,
the server derives the gradient similarity value Gi,j between any two clients i and j by computing the
cosine angle between the two gradient updates ∆i and ∆j ; see Eq. 2. A cosine angle value θi,j = 0◦

implies perfect alignment, θi,j = 90◦ indicates orthogonality, and θi,j = 180◦ means the vectors
are diametrically opposed.

Gi,j = θi,j = cos−1
(
⟨∆i ·∆j⟩
∥∆i∥∥∆j∥

)
× 180

π
(2)

Agglomerative hierarchical clustering (Day & Edelsbrunner, 1984) is a popular method in ma-
chine learning for grouping similar objects based on a proximity (or adjacency) matrix. The process
begins by treating each data point as its own cluster. During each iteration, the algorithm carries
out two main tasks: identifying the two clusters that are most similar and merging these clusters.
The criterion for selecting which clusters to merge depends on a linkage method, such as single,
complete, or average linkage. For instance, in single linkage, the L2 (Euclidean) distance between
two clusters is defined as the smallest distance between any pair of points from the two clusters. For
merging criteria, FLAG defines clustering threshold as α, i.e., any two clusters with a distance less
than α are merged together; see details in §4.2.

4 FLAG ALGORITHM

This section develops FLAG algorithm (see Algorithm 1) that is based on weighted class-wise data
similarity among clients (Algorithm 2) and combining both data and gradient to obtain better clus-
tering (Algorithm 3). Server computes the optimal clustering during the first iteration and performs
the clustered FL in the subsequent iterations. The components of our approach are described below.

4.1 WEIGHTED CLASS-WISE DATA BASED SIMILARITY

Objective and high-level idea. Our first objective is to find the similarity among the client based
on their data. For this, FLAG uses cosine similarity between data of the same class for each pair of
clients and then takes the average across all the classes, which produces the proper magnitude of
similarity instead of just a binary similarity outcome. To account for the quantity shift between the
classes of the two participating clients, we assign weights to the class similarity values based on the
difference in class frequency, as discussed below in detail.

Details of the method. Let C be the number of classes and N be the number of clients. A client
can have c ≤ C classes. Let Di,c be data at client i for class c in the form of a matrix, where rows
refer to data points, and columns refer to features. The process starts at the client by computing a set
of principal vectors for each class. The principal vectors are a linear combination of the actual data
and are sent to the server, which computes the principal angle between each pair of clients, which

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

will serve as the basis for computing the weighted class-wise data similarity matrix. The number of
principal vectors sent to the server is less than 1% in size of the actual class data. The client applies
truncated SVD (Klema & Laub, 1980)1 on the transpose of Di,c.2 This results in p principal vectors
for each c class at the client i, denoted by U i

c = [u1, u2, . . . , up]. We take small values for p to
keep the number of principal vectors minimal. After that, each client sends their U i

c to the server.
For each pair of clients i and j, the server computes the principal angle between U i

c and U j
c , as

discussed in §3, for the same class c, resulting in a principal angle matrix, V ′i,j,c, see Eq. 3:

V ′i,j,c =


Φ(U i

c , U
j
c), if c is in both U i and U j ,

180◦, if c in either U i or U j ,

0◦, if c in neither U i nor U j ,

i, j = 1, . . . , N ; c = 1, . . . , C (3)

The smaller the value of the principal angle, the more similar the data of class c is between clients
i and j. If the class c is absent in one of U i or U j , we assign 180◦ to account for the dissimilar
subspace, and 0◦ when c is absent in both datasets to exhibit similarity.

Next, the server derives the similarity score to build the weighted class-wise data similarity matrix,
denoted by Vi,j . To do so, the server takes the weighted average of all principal angles across all the
classes in each pair of clients i and j. The weighting scheme ensures that significant differences in
data size between clients i and j for class c will increase the class principal angle to reflect greater
dissimilarity, while smaller differences will increase similarity. The server first computes the weight
for the principal angle of each class c between client i and j using Eq 4, resulting in a weight matrix
Wi,j,c, where |Di,c| is the size of the data of client i for class c. and ϵ is a small positive value
introduced to ensure numerical stability.

Wi,j,c =
max(ln(|Di,c|+ ϵ), ln(|Dj,c|+ ϵ))

min(ln(|Di,c|+ ϵ), ln(|Dj,c|+ ϵ))
i, j = 1, . . . , N ; c = 1, . . . , C (4)

Then, the server normalizes the weights (see Eq 5), ensuring the weight lies in a given range of
[1−δ, 1+δ], where δ is a positive constant that can be regularized by the server based on the impor-
tance of weights. Here, wmin (or wmax) refers to the minimum (or maximum) weight value in the
weight matrixWi,j,c.

W ′
i,j,c = (1− δ) +

(Wi,j,c − wmin) ((1 + δ)− (1− δ))

wmax − wmin
(5)

Finally, the server multiplies the principal angles by its corresponding normalized weights to com-
pute weighted class-wise data similarity matrix Vi,j , see Eq. 6.

Vi,j =
1

|C|

C∑
c=1

V ′i,j,c ×W ′i,j,c (6)

4.2 OPTIMAL CLUSTERING & COMBINING DATA AND GRADIENT — ALGORITHMS 2 AND 3

Objective and high-level idea. Once the server computes weighted class-wise similarity matrix
Vi,j (as discussed in §4.1), our objective is to identify the optimal cluster formation. For this, FLAG
combines data and gradient information. First, the server computes a proximity matrix based on
Vi,j and a gradient similarity matrix Gi,j and then uses the proximity matrix as the adjacency matrix
for agglomerative hierarchical clustering (HC) (Murtagh & Contreras, 2012) to cluster the clients
together.

Details of the method. To compute the gradient, each client i performs a few rounds (tg) of training
using stochastic gradient descent (SGD) only on its local data, and computes its local gradient direc-
tion ∆i and sends this gradient direction to the server. The server computes the gradient similarity
matrix Gi,j by calculating the cosine similarity between the gradient directions, as discussed in §3.

Proximity Matrix Ai,j (Algorithm 2). The server requires the proximity/adjacency matrix for
the clustering algorithm. First, the server normalizes Vi,j and Gi,j matrices using min-max normal-
ization (Patro, 2015) to maintain consistency of scale, resulting in V̂i,j and Ĝi,j . Then, the server
combines them to obtain the proximity/adjacency matrix. The reason for combining V̂i,j and Ĝi,j

1Truncated SVD is a variation of SVD where only a subset of the singular values and corresponding singular vectors are computed. SVD
shows a good trade-off between computational efficiency and the representational quality of subspace methods (Talwalkar et al., 2013).

2We apply SVD on transposed Di,c because we want to compute principal vectors, not principal features.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

is as follows: using only one factor (data or gradient) to compute client similarity can result in in-
accurate clustering; particularly, in datasets with skews, for example, gradient-only measures can
misalign clients’ learning objectives due to class imbalance or high dimensionality, while data-only
approaches may struggle with intra-class variance, concept shift, or drift. Combining both data and
gradient information helps mitigate these issues, leading to more accurate similarity measurements.
The server computes the proximity matrix as: Ai,j = β ·V̂i,j+(1−β)·Ĝi,j . Here, β is the parameter
to control the weight ratio of each element.

Finding Optimal Clustering (Algorithm 3). Given the proximity/adjacency matrixAi,j , the server
uses a hierarchical clustering (HC) (Murtagh & Contreras, 2012) to find the best clustering. HC
works by finding the most similar clusters and merging them together. In HC, clustering threshold,
α ∈ (0, 1] serves as a merging criterion for any pair of clusters, meaning clusters with a distance
smaller than the threshold are eligible for merging; α also controls the number of clusters formed.
For example, α=1 results in all clients being grouped into a single cluster. The server uses Ai,j as
a distance metric for HC and iterates over different values of the α to find the best clustering. The
server systematically decreases α from 1 to 0 in regular intervals (e.g., 0.1) to generate different
clustering configurations. To assess the goodness or performance of each generated clustering with-
out executing the full clustered FL training, FLAG uses an efficient alternative method, as follows:
the server selects only a few clients, and those clients set aside 10% of their local data as a vali-
dation set. Then, with the remaining data, the selected clients train an efficient lightweight model
with simple architecture in the Clustered FL setting based on that corresponding clustering. After
training the model for a few epochs, each client evaluates the model’s accuracy on the validation set
and sends the accuracy score to the server. The server computes the average accuracy across all the
selected clients, which serves as the cluster goodness metric for the corresponding clustering.

Finally, the server determines the clustering goodness metrics for each α values and uses methods
such as the elbow method (Syakur et al., 2018) or some other criteria to select the best α and the
corresponding optimal clustering {C1, . . . ,CZ}, where Z is the number of clusters.

4.3 CLUSTERED FEDERATED LEARNING

Objective and high-level idea. This section describes how the server utilizes the previously re-
ceived clustering and run clustered FL to obtain the updated global models. The server performs
clustered federated learning by maintaining separate models for each cluster and aggregating the
locally trained models received from clients within the clusters.

Details of the method. At this stage, after obtaining the optimal clustering {C1, . . . ,CZ} (as dis-
cussed in §4.2), the server performs the clustered FL. Since FLAG performs one-shot clustering in
the first iteration, the server does not need to perform clustering in subsequent iterations. For clus-
tered FL, the server maintains a separate model for each cluster z ∈ Z and initializes each with a
random model parameter θ0g,z; where θ0g,z denotes the cluster z initial global model parameter for
iteration t=0. In each round t, the server samples a set of available clients St = {i1, i2, . . . , im}
from the client population, where m is determined by the sampling rate R ∈ (0, 1]. The server then
broadcasts the cluster-specific global model parameters θtg,z to each client i ∈ Cz corresponding to
its cluster assignment. Upon receiving the model, each client i performs local training on its own
dataset Di, optimizing the received model θtg,z through stochastic gradient descent (SGD) for a fixed
number of local epochs. After local training, each client i computes an updated local model θt+1

i,z
and sends it back to the server. This process is expressed as:

θt+1
i,z ← ClientUpdate(i, θtg,z) (7)

where ClientUpdate denotes the model update with SGD using the client’s data. Once all selected
clients have sent their locally updated models, the server aggregates the clients’ models by per-
forming weighted model averaging within each cluster The weighted average for each cluster z is
computed as follows:

θt+1
g,z ←

∑
i∈Cz

|Di|θt+1
i,z∑

i∈Cz
|Di|

(8)

where |Di| represents the size of client i’s local dataset. The server then repeats the process to
continue the clustered FL training process (see Lines 14-16 of Algorithm 1).

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Algorithm 1: FLAG ALGORITHM

Input: Number of clients N , sampling rate R ∈ (0, 1], combination ratio β, clustering threshold α, number of classes C
Output: Updated global model parameters

1 Initialize the server model with θ0
g ;

2 for each round t = 0, 1, . . . do
3 m← max(R ·N, 1) // Sampling rate
4 Sm ← {i1, ..., im} // Set of m sampled clients
5 for each client i ∈ N in parallel do
6 if t = 0 (For one-shot clustering) then
7 Client i applies Singular Value Decomposition (SVD) and extracts Ui for each class c ∈ C and sends to server
8 Client i trains on local data for tg epochs and sends ∆i to the server
9 Server forms the proximity matrixA ← ProximityMatrix(U∗,∆∗, β)

(Algorithm 2)// U∗ = {U1, . . . , UN}, β is combination ratio of data and gradient
10 Clusters C1, . . . ,CZ ← OptimalClusteringSearch(A) (Algorithm 3)// Find optimal clustering

using the threshold search function

11 Initialize all cluster models θ0
g,z ← θ0

g for all z ∈ Z

12 else
13 Client i (if sampled in Sm) receives the corresponding cluster model θt

g,z from the server;

14 θt+1
i,z ← ClientUpdate(i, θt

g,z) // if client i sampled in Sm

15 for each cluster z = 1 to Z do

16 θt+1
g,z ←

∑
i∈Cz

|Di|θ
t+1
i,z∑

i∈Cz
|Di|

// Apply model averaging for each cluster

17 Function ClientUpdate(i, θt
g,z):

18 With Stochastic Gradient Descent (SGD) train local model on client i’s data to get θt+1
i,z

19 return θt+1
i,z

Algorithm 2: Proximity Matrix Calculation for Clustering
Input: The set of first p principal vectors for all clients U∗, all clients’ local model gradient direction vectors ∆∗

Output: A, proximity matrix between all pairs of clients for clustering.
1 Function: ProximityMatrix(U∗,∆∗, β)
2 for client i = 1, 2, . . . , N do
3 for client j = i, 2, . . . , N do
4 for class c = 1, 2, . . . , C do
5 V′

i,j,c ← execute Eq. 3 andWi,j,c ← execute Eq. 4
6 W′ ← normalize weight matrixW as per Eq. 5
7 for client i = 1, 2, . . . , N do
8 for client j = 1, 2, . . . , N do
9 Vi,j ← 1

|C|
∑

c∈C V
′
i,j,c ×W′

i,j,c // Data-based similarity matrix, averaged over all classes

10 Gi,j ← cos−1(∆i ·∆j) // Gradient based similarity matrix

11 V̂ ← normalize(V), Ĝ ← normalize(G) // Min-max normalize

12 returnAi,j ← normalize(Ai,j)← V̂ · β + Ĝ · (1− β) // Final normalized proximity matrix combining V and G

Algorithm 3: Function for Clustering Threshold Search in Federated Learning
Input: Proximity matrixA
Output: Optimal clustering {C1, . . . ,CZ}

1 Function OptimalClusteringSearch(A):
2 Sm′ ← {i1, . . . , im′} Select m′ clients at random from N
3 for each client i ∈ Sm′ do
4 Client i sets aside 10% of local data as validation set Vi and keeps 90% as training data Ti

5 Initialize empty list to store clustering goodness metric X ← [] // store average validation acc
6 for α← {1, 0.9, . . . , 0.1} do
7 Generate candidate clustering Cα using hierarchical clustering (HC) onA with threshold α
8 for each client i ∈ Sm′ do
9 Client i trains a lightweight model on Ti for t′ rounds in the clustered (FL) setting on Cα

10 Client i evaluates the model on its validation set Vi

11 Client i sends its validation accuracy score Ai to the server
12 Server computes the average validation accuracy Gα ← 1

|S
m′ |

∑
i∈S

m′ Ai and append Gα to X
13 Plot clustering goodness metrics X against corresponding α values
14 Use the elbow method or any other criteria to select the optimal threshold α∗

15 return Optimal clustering {C1, . . . ,CZ} corresponding to α∗

5 EXPERIMENTS

This section provides details on the experiments and compares FLAG against existing work. We
investigate the following questions:

1. how much better FLAG is compared to existing method — §5.1
2. how effectively does FLAG find clustering — §5.2

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

3. to what extent combining data and gradient improves upon using them separately — §5.3
4. how many communication round does FLAG take to converge—§5.4

Datasets. We used four popular datasets for the image classification task in the federated learning
setting, i.e., CIFAR-10 (Krizhevsky et al., 2009), FMNIST (Xiao et al., 2017), SVHN (Netzer et al.,
2011), CIFAR-100 (Krizhevsky et al., 2009).

Baselines. We compare FLAG against SOTA methods: (i) Single model methods: FedAvg (McMa-
han et al., 2017), FedProx (Li et al., 2020), (ii) personalized FL method: PerFedAvg (Fallah et al.,
2020), (iii) clustered FL — data-based methods: PACFL(Vahidian et al., 2023), (iv) clustered FL —
gradient-based method: IFCA (Ghosh et al., 2020), (CFL) (Sattler et al., 2020), FedSoft (Ruan &
Joe-Wong, 2022).

Setup. Our experiments consider a total of 100 clients, with 20% randomly selected for each round.
Unless mentioned otherwise, the experiments run for 200 communication rounds, where each client
performs 10 local epochs using a batch size of 10 and SGD as the local optimizer. For U i

c , the prin-
cipal vector sent per class is approximately 1% of |Di,c|. For computing G, each client runs 20 local
epochs. For combination ratio between data gradient, β, we used grid-search to fine-tune through
various values and found β = 0.5 generalizes more effectively across different heterogeneity. For
finding the clustering threshold (Algorithm 3), the server selects 30 clients at random and runs 5
communication rounds of clustered FL.

Creation of non-IID data. We combine class skew with quantity shift to test our algorithm against
other baselines. To simulate class skew, we first randomly select ρ% of the total available labels
and assign that set of labels to a random set of clients. Then, we pick another set of clients and
repeat the process until all clients are assigned ρ% of the labels. Next, we use the Dirichlet distri-
bution (Ng et al., 2011) to distribute the samples of each label amongst the clients assigned to those
labels. The Dirichlet distribution introduces quantity shift and class imbalance among clients, and
also simulates varying levels of heterogeneity. Thus, we create a more realistic distribution, in which
we have different groups of clients that work on different types of classes. And, clients working on
similar types of classes exhibit quantity shift and class imbalance among them. An example of this
would be predictive text input (discussed in §1), or e-commerce recommendation system, where
different vendors sell different types of products (e.g., electronics, home goods), with some over-
lapping products, exhibiting class skew. However, each vendor may sell certain categories in higher
volumes (e.g., one vendor focuses more on smartphones, another on laptops), thus creating class
imbalance and quantity shift among clients handling same type of classes. Another such example
include: healthcare diagnosis system with different clinics working with different disease cases.

5.1 LABEL SKEW AND QUANTITY SHIFT

In our experiments, we combined label skew and quantity shift for the non-IID data to test our
algorithm. We have class skew ρ = 20% and 30%, and the Dirichlet distribution concentration
parameter (denoted as α′) is set to 1 for a low degree, and to 0.25 for a high degree of quantity shift
non-IID.3. Table 2 exhibits the performance comparison results among different algorithms for ρ =
20% and 30% with α′ = 1 and Table 3 shows for ρ = 20% and 30% with α′ = 0.25. We can observe
that single global model-based FL baselines, i.e., FedAvg and FedProx, perform inefficiently due to
weight divergence and model drift issues in heterogeneous settings (Zhao et al., 2018). From Table
2 and Table 3, we can observe that clustered FL methods (except CFL) yield better performance
compared to other categories of FL approaches. It is also evident that FLAG consistently outperforms
all SOTA algorithms across all datasets. This is because FLAG can effectively identify the number
of underlying groups of clients that work on similar types of classes in the Non-IID data distribution.
FLAG has outperformed all clustered FL approaches, including both data-based (e.g., PACFL) and
gradient-based (e.g., CFL, IFCA) ones.

5.2 FINDING THE OPTIMAL CLUSTER FORMATION

The server uses hierarchical clustering (HC) (Murtagh & Contreras, 2012) to find the best cluster-
ing for the FL training. The server systematically decreases the clustering threshold α from 1 to 0
in regular intervals of 0.1 to generate different clustering configurations. To assess the quality of

3Higher values of the Dirichlet parameter α indicate that the distribution of clients’ local datasets across classes is more uniform.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 2: Performance Comparison across various SOTA Algorithms on Various Datasets with 20%
and 30% Non-IID Label Skew with low degree of quantity shift (Dirichlet parameter α′ = 1)

20% Label Skew 30% Label Skew
Algorithm CIFAR-10 FMNIST SVHN CIFAR-100 CIFAR-10 FMNIST SVHN CIFAR-100

FedAvg 46.20 ± 0.97 57.12 ± 0.30 74.61 ± 0.36 51.34 ± 0.78 57.28 ± 0.17 77.56 ± 0.24 68.34 ± 0.45 53.13 ± 1.46
FedProx 46.77 ± 0.14 56.81 ± 0.16 77.23 ± 0.45 53.38 ± 0.86 57.8 ± 0.23 73.87 ± 0.25 69.65 ± 0.19 53.97 ± 0.85

PerFedAvg 84.68 ± 0.19 91.18 ± 0.21 92.34 ± 0.13 69.43 ± 0.22 82.83 ± 0.14 94.74 ± 0.17 91.48 ± 0.29 60.70 ± 0.30
Fedsoft 77.42 ± 0.21 87.64 ± 0.35 90.48 ± 0.24 65.98 ± 0.37 76.94 ± 0.38 89.56 ± 0.37 84.86 ± 0.45 56.61 ± 0.31
PACFL 90.45 ± 0.30 94.41 ± 0.31 94.96 ± 0.12 70.35 ± 0.36 87.01 ± 0.38 97.28 ± 0.24 94.36 ± 0.19 63.91 ± 0.76

CFL 72.80 ± 0.66 86.97 ± 0.23 82.06 ± 0.34 61.43 ± 0.92 71.85 ± 0.79 85.67 ± 0.23 80.23 ± 0.25 52.90 ± 1.17
IFCA 89.68 ± 0.17 94.02 ± 0.09 93.28 ± 0.13 72.86 ± 0.29 86.42 ± 0.25 96.61 ± 0.14 92.86 ± 0.19 61.34 ± 0.43
FLAG 93.81 ± 0.09 96.36 ± 0.13 96.64 ± 0.14 74.12 ± 0.33 90.35 ± 0.13 97.71 ± 0.05 96.42 ± 0.08 65.06 ± 0.61

Table 3: Performance Comparison across various SOTA Algorithms on Various Datasets with 20%
and 30% Non-IID Label Skew with high degree of quantity shift (Dirichlet parameter α′ = 0.25)

20% Label Skew 30% Label Skew
Algorithm CIFAR-10 FMNIST SVHN CIFAR-100 CIFAR-10 FMNIST SVHN CIFAR-100

FedAvg 42.02 ± 1.17 53.11 ± 0.31 69.79 ± 0.51 47.16 ± 0.91 54.24 ± 0.08 72.86 ± 0.40 64.15 ± 0.64 50.99 ± 1.35
FedProx 43.98 ± 0.17 53.61 ± 0.20 74.75 ± 0.27 50.56 ± 0.70 54.99 ± 0.20 68.22 ± 0.16 64.80 ± 0.25 48.66 ± 0.80

PerFedAvg 81.09 ± 0.35 86.51 ± 0.19 89.20 ± 0.05 65.59 ± 0.02 77.45 ± 0.24 89.77 ± 0.15 88.23 ± 0.31 57.38 ± 0.10
Fedsoft 76.44 ± 0.18 84.58 ± 0.14 83.75 ± 0.33 62.54 ± 0.41 72.48 ± 0.17 85.15 ± 0.17 82.43 ± 0.40 55.24 ± 0.43
PACFL 86.99 ± 0.40 91.90 ± 0.47 89.88 ± 0.25 66.11 ± 0.29 84.66 ± 0.29 91.96 ± 0.25 90.98 ± 0.23 58.30 ± 0.56

CFL 68.67 ± 0.76 81.90 ± 0.10 79.83 ± 0.38 57.38 ± 0.95 67.57 ± 0.69 80.64 ± 0.21 75.21 ± 0.09 49.63 ± 1.29
IFCA 86.64 ± 0.13 90.93 ± 0.17 89.51 ± 0.10 69.08 ± 0.48 83.45 ± 0.37 91.50 ± 0.11 88.81 ± 0.09 56.33 ± 0.40
FLAG 90.29 ± 0.12 93.19 ± 0.20 93.41 ± 0.23 69.37 ± 0.20 86.79 ± 0.16 92.42 ± 0.04 92.19 ± 0.11 62.86 ± 0.60

that clustering, the server uses the average validation score across a few clients as a cluster good-
ness metric. Figure 1 presents the average validation accuracy for each clustering, illustrating the
relationship between different α values and the resulting number of clusters. For each dataset, we
applied a class skew of 30%, combined with a low degree of quantity shift (Dirichlet parameter α′
= 1), across four different datasets. In Figure 1, x-axis shows the α values and the y-axis shows
the corresponding average validation score for that α. The red line indicates the validation accuracy
and blue bars represent the number of clusters at each value of α. We can observe that α=1 puts all
the clients in a single cluster. As α decreases, more clusters are created, and we observe a steep in-
crease in validation accuracy. This happens because more similar clients are being grouped into the
same clusters, and disparate clients reside in separate clusters. Decreasing the α more at one point,
halts the steep accuracy increase. At that point, the number of clusters has reached the underlying
number of groups that have similar classes in the Non-IID distribution. The distribution which was
formed as discussed above §5. Decreasing α further beyond this point and creating more clusters
is detrimental to the FL training because it cannot benefit from the similar clients. Thus, we aim to
keep the number of clusters minimal. We can use the elbow method (Syakur et al., 2018) to find the
optimal point in α. For example, in Figure 1(a), the optimal α using elbow method can be identified
as α = 0.6.

Figure 1: Comparison of average validation accuracy with cluster α values and number of clusters
as a function of the distance threshold.

(a) CIFAR-10 (b) FMNIST (c) SVHN (d) CIFAR-100

5.3 ABLATION STUDY

We conducted ablation studies to see how combing gradient and data improves upon accuracy com-
pared to just using either data or gradient alone. To achieve this, we set the combination ratio β=0
and β=1 to cluster clients with gradient only and data only similarity metric. Table 4 presents the
accuracy metrics for the ablation studies and we also included the results of FedAvg as a baseline for
comparison under the same distribution. The results clearly show that combining data and gradient
significantly improves accuracy compared to using only the data or gradient similarity metric.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 4: Ablation study for effectiveness of combining gradient and data (denoted as G+D), com-
pared to using just gradient (as G) and data (as D), non-IID, 20% and 30% label skew, α′=1.

Class skew Dataset FedAvg G D G+D
20% CIFAR-10 46.20 ±0.97 87.47 ±0.64 89.95 ±0.13 93.81 ±0.09

SVHN 74.61 ±0.36 84.82 ±0.14 94.91 ±0.13 96.64 ±0.14
FMNIST 57.12 ±0.30 88.38 ±0.15 94.67 ±0.05 96.36 ±0.13

CIFAR-100 51.34 ±0.78 62.53 ±0.24 71.73 ±0.19 74.12 ±0.35
30% CIFAR-10 57.48 ±0.17 81.34 ±0.52 87.93 ±0.09 90.31 ±0.13

SVHN 68.34 ±0.45 90.05 ±0.16 94.29 ±0.13 96.42 ±0.08
FMNIST 77.17 ±0.24 92.68 ±0.11 94.65 ±0.07 97.71 ±0.08

CIFAR-100 53.13 ±1.46 54.23 ±0.62 62.35 ±0.39 65.06 ±0.61

5.4 COMMUNICATION ROUND

In this section, we compare the performance of our proposed method with the rest of the SOTA under
a limited communication budget of 80 rounds. We present the average final local test accuracy
over all clients versus the number of communication rounds across four different datasets, with
a Non-IID label skew (30%), in Figure 2. As we can see in Figure 2, FLAG takes between 20
to 30 communication rounds for the Non-IID label skew (30%) to reach convergence and reaches
convergence faster than the other SOTA algorithms in all datasets.

Figure 2: Test accuracy versus number of communication rounds for Non-IID (30%), α′=1.

6 CONCLUSIONS

This work presents a novel algorithm, FLAG (Federated Learning with Data and Gradient), which
addresses the limitations of existing clustered FL techniques and effectively tackles data hetero-
geneity challenges in FL. FLAG combines both data and gradient information to cluster clients more
effectively, addressing a broader range of data heterogeneity issues. The algorithm leverages princi-
pal vectors and gradient similarity to create a robust proximity matrix, which is used for clustering
via Agglomerative Hierarchical Clustering. Moreover, FLAG employs an efficient method to deter-
mine the optimal number of clusters, improving scalability and performance. Extensive experiments
on various heterogeneous data distributions, including quantity shifts and class imbalances, demon-
strate that FLAG outperforms existing approaches in terms of accuracy.

REFERENCES

Code of the paper: https://drive.google.com/drive/folders/
1cxjjDWbg-UcdEeRAMEizNlO6259qUKHv.

Manoj Ghuhan Arivazhagan, Vinay Aggarwal, Aaditya Kumar Singh, and Sunav Choudhary. Fed-
erated learning with personalization layers. arXiv preprint arXiv:1912.00818, 2019.

Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H Brendan McMahan, Sarvar
Patel, Daniel Ramage, Aaron Segal, and Karn Seth. Practical secure aggregation for privacy-
preserving machine learning. In proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security, pp. 1175–1191, 2017.

10

https://drive.google.com/drive/folders/1cxjjDWbg-UcdEeRAMEizNlO6259qUKHv
https://drive.google.com/drive/folders/1cxjjDWbg-UcdEeRAMEizNlO6259qUKHv

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

William HE Day and Herbert Edelsbrunner. Efficient algorithms for agglomerative hierarchical
clustering methods. Journal of classification, 1(1):7–24, 1984.

Yuyang Deng, Mohammad Mahdi Kamani, and Mehrdad Mahdavi. Adaptive personalized federated
learning. arXiv preprint arXiv:2003.13461, 2020.

Yoel Drori and Ohad Shamir. The complexity of finding stationary points with stochastic gradient
descent. In International Conference on Machine Learning, pp. 2658–2667. PMLR, 2020.

Moming Duan, Duo Liu, Xinyuan Ji, Renping Liu, Liang Liang, Xianzhang Chen, and Yujuan
Tan. Fedgroup: Efficient federated learning via decomposed similarity-based clustering. In
2021 IEEE Intl Conf on Parallel & Distributed Processing with Applications, Big Data &
Cloud Computing, Sustainable Computing & Communications, Social Computing & Network-
ing (ISPA/BDCloud/SocialCom/SustainCom), pp. 228–237. IEEE, 2021.

Alireza Fallah, Aryan Mokhtari, and Asuman Ozdaglar. Personalized federated learning with the-
oretical guarantees: A model-agnostic meta-learning approach. Advances in neural information
processing systems, 33:3557–3568, 2020.

Avishek Ghosh, Jichan Chung, Dong Yin, and Kannan Ramchandran. An efficient framework for
clustered federated learning. Advances in Neural Information Processing Systems, 33:19586–
19597, 2020.

Yongxin Guo, Xiaoying Tang, and Tao Lin. Fedrc: Tackling diverse distribution shifts challenge in
federated learning by robust clustering. arXiv preprint arXiv:2301.12379, 2023.

Tzu-Ming Harry Hsu, Hang Qi, and Matthew Brown. Measuring the effects of non-identical data
distribution for federated visual classification. arXiv preprint arXiv:1909.06335, 2019.

Prateek Jain, Praneeth Netrapalli, and Sujay Sanghavi. Low-rank matrix completion using alter-
nating minimization. In Proceedings of the forty-fifth annual ACM symposium on Theory of
computing, pp. 665–674, 2013.

Meirui Jiang, Anjie Le, Xiaoxiao Li, and Qi Dou. Heterogeneous personalized federated learning
by local-global updates mixing via convergence rate. In The Twelfth International Conference on
Learning Representations, 2024.

Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin
Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, et al. Ad-
vances and open problems in federated learning. Foundations and trends® in machine learning,
14(1–2):1–210, 2021.

Myeongkyun Kang, Soopil Kim, Kyong Hwan Jin, Ehsan Adeli, Kilian M Pohl, and Sang Hyun
Park. Fednn: Federated learning on concept drift data using weight and adaptive group normal-
izations. Pattern Recognition, 149:110230, 2024.

Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian Stich, and
Ananda Theertha Suresh. Scaffold: Stochastic controlled averaging for federated learning. In
International conference on machine learning, pp. 5132–5143. PMLR, 2020.

Heasung Kim, Hyeji Kim, and Gustavo De Veciana. Clustered federated learning via gradient-based
partitioning. In Forty-first International Conference on Machine Learning, 2024.

Virginia Klema and Alan Laub. The singular value decomposition: Its computation and some appli-
cations. IEEE Transactions on automatic control, 25(2):164–176, 1980.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia Smith.
Federated optimization in heterogeneous networks. Proceedings of Machine learning and sys-
tems, 2:429–450, 2020.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Xiaoxiao Li, Meirui Jiang, Xiaofei Zhang, Michael Kamp, and Qi Dou. Fedbn: Federated learning
on non-iid features via local batch normalization. arXiv preprint arXiv:2102.07623, 2021.

Paul Pu Liang, Terrance Liu, Liu Ziyin, Nicholas B Allen, Randy P Auerbach, David Brent, Ruslan
Salakhutdinov, and Louis-Philippe Morency. Think locally, act globally: Federated learning with
local and global representations. arXiv preprint arXiv:2001.01523, 2020.

Guodong Long, Ming Xie, Tao Shen, Tianyi Zhou, Xianzhi Wang, and Jing Jiang. Multi-center
federated learning: clients clustering for better personalization. World Wide Web, 26(1):481–500,
2023.

Yishay Mansour, Mehryar Mohri, Jae Ro, and Ananda Theertha Suresh. Three approaches for
personalization with applications to federated learning. arXiv preprint arXiv:2002.10619, 2020.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial intelli-
gence and statistics, pp. 1273–1282. PMLR, 2017.

Fionn Murtagh and Pedro Contreras. Algorithms for hierarchical clustering: an overview. Wiley
Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2(1):86–97, 2012.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Baolin Wu, Andrew Y Ng, et al.
Reading digits in natural images with unsupervised feature learning. In NIPS workshop on deep
learning and unsupervised feature learning, volume 2011, pp. 4. Granada, 2011.

Kai Wang Ng, Guo-Liang Tian, and Man-Lai Tang. Dirichlet and related distributions: Theory,
methods and applications. 2011.

S Patro. Normalization: A preprocessing stage. arXiv preprint arXiv:1503.06462, 2015.

Krishna Pillutla, Sham M Kakade, and Zaid Harchaoui. Robust aggregation for federated learning.
IEEE Transactions on Signal Processing, 70:1142–1154, 2022.

Prayitno, Chi-Ren Shyu, Karisma Trinanda Putra, Hsing-Chung Chen, Yuan-Yu Tsai, KSM Toza-
mmel Hossain, Wei Jiang, and Zon-Yin Shae. A systematic review of federated learning in the
healthcare area: From the perspective of data properties and applications. Applied Sciences, 11
(23):11191, 2021.

Yichen Ruan and Carlee Joe-Wong. Fedsoft: Soft clustered federated learning with proximal local
updating. In Proceedings of the AAAI conference on artificial intelligence, volume 36, pp. 8124–
8131, 2022.

Sebastian Ruder. An overview of gradient descent optimization algorithms. arXiv preprint
arXiv:1609.04747, 2016.

Felix Sattler, Klaus-Robert Müller, and Wojciech Samek. Clustered federated learning: Model-
agnostic distributed multitask optimization under privacy constraints. IEEE transactions on neu-
ral networks and learning systems, 32(8):3710–3722, 2020.

Virginia Smith, Chao-Kai Chiang, Maziar Sanjabi, and Ameet S Talwalkar. Federated multi-task
learning. Advances in neural information processing systems, 30, 2017.

Muhammad Ali Syakur, B Khusnul Khotimah, EMS Rochman, and Budi Dwi Satoto. Integration
k-means clustering method and elbow method for identification of the best customer profile clus-
ter. In IOP conference series: materials science and engineering, volume 336, pp. 012017. IOP
Publishing, 2018.

Ameet Talwalkar, Sanjiv Kumar, Mehryar Mohri, and Henry Rowley. Large-scale svd and manifold
learning. Journal of Machine Learning Research, 14, 2013.

Alysa Ziying Tan, Han Yu, Lizhen Cui, and Qiang Yang. Towards personalized federated learning.
IEEE transactions on neural networks and learning systems, 34(12):9587–9603, 2022.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Saeed Vahidian, Mahdi Morafah, Weijia Wang, Vyacheslav Kungurtsev, Chen Chen, Mubarak Shah,
and Bill Lin. Efficient distribution similarity identification in clustered federated learning via prin-
cipal angles between client data subspaces. In Proceedings of the AAAI conference on artificial
intelligence, volume 37, pp. 10043–10052, 2023.

Jianyu Wang, Qinghua Liu, Hao Liang, Gauri Joshi, and H Vincent Poor. Tackling the objective
inconsistency problem in heterogeneous federated optimization. Advances in neural information
processing systems, 33:7611–7623, 2020.

Lixu Wang, Shichao Xu, Xiao Wang, and Qi Zhu. Addressing class imbalance in federated learning.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pp. 10165–10173,
2021.

Shanshan Wu, Tian Li, Zachary Charles, Yu Xiao, Ziyu Liu, Zheng Xu, and Virginia Smith.
Motley: Benchmarking heterogeneity and personalization in federated learning. arXiv preprint
arXiv:2206.09262, 2022.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmark-
ing machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

Jie Zhang, Zhiqi Li, Bo Li, Jianghe Xu, Shuang Wu, Shouhong Ding, and Chao Wu. Federated learn-
ing with label distribution skew via logits calibration. In International Conference on Machine
Learning, pp. 26311–26329. PMLR, 2022.

Yuxin Zhang, Haoyu Chen, Zheng Lin, Zhe Chen, and Jin Zhao. Fedac: A adaptive clustered
federated learning framework for heterogeneous data. arXiv preprint arXiv:2403.16460, 2024.

Yue Zhao, Meng Li, Liangzhen Lai, Naveen Suda, Damon Civin, and Vikas Chandra. Federated
learning with non-iid data. arXiv preprint arXiv:1806.00582, 2018.

7 APPENDIX

8 ALGORITHM TECHNICAL ISSUES

In this section we will discuss the additional technical issues related to the FLAG algorithm.

Problem formulation FLAG, which is a cluster FL problem, can be formulated as a standard em-
pirical risk minimization (ERM) task. The objective is to learn parametric models by minimizing
a loss function defined over the data. We assume the presence of one server and N clients. The
server and clients communicate using a predefined communication protocol. Additionally, we con-
sider Z distinct data distributions, ρ1, . . . , ρZ , with the N clients partitioned into Z disjoint clusters,
C1, . . . ,CZ . We assume that the cluster identities of the clients are not revealed to FLAG. Each
client i ∈ Cz holds a dataset Di, which may be non-iid and subject to various types of data skews.
The goal is to minimize the loss function Fz(θ) := Ei∼Dz [f(θ; d)] for all z ∈ {1, . . . , Z}, where
f(θ; d) represents the loss associated with a data point d ∈ Di for client i ∈ {1, . . . , N}.
Privacy constraints Privacy is an important factor of FL, as it aims to enable collaborative model
training while concealing the sensitive data of individual clients. In this section we will discuss the
privacy constraints and concerns of our proposed FLAG. Regarding weighted class-wise data-based
similarity detection, clients share a small set of principal vectors with the server. Additionally, each
client’s class frequency information is shared with the server to compute the weights for similarity
measurements. However, in FLAG, the privacy of the clients’ data is still preserved since the princi-
pal vectors are linear combinations of the data points and not the actual data themselves. Moreover,
the number of principal vectors shared with the server is less than 1% of the size of the dataset
for each class per client. This approach aligns with prior works, such as Vahidian et al. (2023).
In privacy-sensitive scenarios, additional privacy mechanisms such as those proposed by Bonawitz
et al. (2017), encryption methods, or differential privacy techniques can be used to prevent infor-
mation leakage and provide stronger protection. Similarly, these privacy-preserving methods can
be employed when sharing class frequency information. Alternatively, in more privacy sensitive
cases, uniform weights can be used for similarity measurements, eliminating the need to share class

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

frequency information entirely. Additionally, to address concerns regarding information leakage in
gradient-based similarity detection,

Time complexity of FLAG The computational complexity of the federated learning part of Flag
(Algorithm 1, line 12-19) is largely comparable to the other clustered federated learning (FL) ap-
proaches. Algorithm 3 is essentially iterating over different clusterings to find the best cluster for-
mation. We tried to reduce time required to do so in Algorithm 3 compared to other literature. We
adopted a framework that uses a lightweight model with fewer layers, employing a fraction of the
clients, running fewer rounds of training. The clustering part of the Flag which can be denoted
by (Algorithm 1, line 6-11), which also incorporates Algorithm 2, is the main source of additional
computational overhead compared to vanilla FedAvg (McMahan et al., 2017). That said, our ap-
proach uses a one-shot clustering strategy, meaning clustering is performed only once at the start
to assign each client a fixed cluster ID. This is more efficient than other methods (e.g., Ghosh et al.
(2020), Ruan & Joe-Wong (2022)) that perform iterative clustering, where client clusters are repeat-
edly updated at every training round until the FL process ends. Compared to the aforementioned
approaches our approach is much more efficient since we are performing the clustering one time
and obtaining the final cluster ID’s.

In this part, we analyze the overhead of the clustering part of the Flag. As referred to Algorithm
1, line 8, each client performs SGD training on its local data before sending the local update to the
server. Here, each client performs at least 2 rounds of SGD training with local epochs of 10 steps
for each client. As for applying SVD to extract principal vectors, referred to in (Algorithm 1, line
8), each client applies SVD on the dataset of each class. Which takes less time compared to another
approach Vahidian et al. (2023) that performs SVD on each client’s whole dataset. It is because
performing SVD on a large dataset of a client with N data points, F features, and assuming N > F ,
would cost O(FN2). But, partitioning the dataset into C classes where each partition is of size
approximately N/C, the total computational cost becomes:C · O

(
F ·

(
N
C

)2)
= O

(
FN2

C

)
. Here,

SVD benefits from the quadratic relationship with the number of data points. This is a reduction by
a factor of C compared to performing SVD on the entire dataset of size N .

The communication complexity The FL part of Flag has communication complexity that is similar
to other notable cluster FL approaches (Vahidian et al., 2023). Since, Flag is a one-shot clustering,
during the FL training FLAG doesn’t do any clustering. Which is faster compared to some of the
other iterative clustering approaches (Ghosh et al., 2020; Sattler et al., 2020). Other sources of
communication burden relies on building the proximity matrix. Prior to start of the FL protocol,
each client, after running about 20 epochs of local training, sends the gradient update to the server.
This is the main overhead, but I also want to point out that this is done only one time with one-shot
clustering. Compared to some of the other approaches that on each iteration sends gradient update
or use gradient information to update cluster identities. Another part of computing the proximity
matrix is sending the principal angles to the server by each client. But, the communication burden
is very small here because the number of principal vectors shared with the server is less than 1% of
the size of the dataset for each class per client. Since, the data was very non-IID with each client
having arbitrary number of classes, the overall accuracy was lower compared to the previous data
partition. But, FLAG was robust in capturing similar clients yielding huge accuracy advantages over
other algorithms.

9 EXPERIMENT ON ADDITIONAL DATA PARTITION

We conducted experiments on an additional data partition to investigate the robustness of our FLAG
algorithm. This particular data distribution is achieved by sampling client data using a Dirichlet
distribution over categories (Hsu et al., 2019; Wu et al., 2022). The process can be summarized as
follows: each client samples data based on probability factors derived by multiplying the Dirichlet
concentration factor (α′) with the relative label popularity. This yields a multinomial distribution
over labels, controlling the data heterogeneity among clients. As α′ approaches 0, each client re-
ceives data from a single category, whereas as α′ approaches infinity, the client distribution mirrors
the overall label popularity. Table 5 presents the performance comparison of different algorithms
under this data partition, where the Dirichlet concentration factor α′ is set to 0.25. We set a lower
value for α′ to achieve a more heterogeneous dataset. The hyperparameters of the experiment are

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

as follows: δ = 0.5, tg = 3 rounds of SGD training on local data, each client performing 10 local
epochs, m′ = 25 sampled clients for optimal clustering, and an interval size of α = 0.01.

Table 5: Performance Comparison across various SOTA Algorithms on Various Datasets with Non-
IID data based on Dirichlet distribution over categories, α′ = 0.25

Algorithm CIFAR-10 FMNIST SVHN
FedAvg 55.32±0.19 79.52±0.24 72.41±0.18
Fedsoft 53.54±0.31 82.24±0.29 79.81±0.25
PACFL 59.88±0.22 87.12±0.14 84.42±0.44

CFL 42.84±0.13 81.85±0.31 80.43±0.14
IFCA 57.21±0.27 85.23±0.41 83.75±0.52
FLAG 64.34 ± 0.18 89.83±0.13 87.14 ±0.23

10 HYPERPARAMETERS TUNING

In the context FLAG, hyperparameters play a crucial role in determining the model’s performance,
stability, and robustness. To better understand the effectiveness of FLAG, we investigate how sensi-
tive the algorithm is to variations in different hyperparameters.

The combination ratio β represents the weighting ratio between the data adjacency matrix and the
gradient adjacency matrix during their aggregation to compute the final proximity matrix. Table 6
presents the accuracy metrics for various values of β, ranging from 0 to 1 in increments of 0.1. The
additional hyper-parameter settings for the experiment are as follows: ρ = 20%, Dirichlet α′ = 1,
δ = 0.5, tg = 3 rounds of SGD training on local data, each client performing 10 local epochs,
m′ = 25 sampled clients for optimal clustering, and an interval size of α = 0.1.

Higher β values signify greater emphasis on the data adjacency matrix, whereas lower β values
prioritize the gradient adjacency matrix. From Table 6, we observe that in most cases, the data-only
adjacency matrix (β = 1) yields accuracy values closer to the peak, while the gradient-only matrix
(β = 0) results in lower accuracy comparatively. As β approaches the middle range, where both data
and gradient matrices receive roughly equal emphasis, FLAG exhibits higher accuracy by achieving
more robust clustering. Additionally, around this middle range of β values, FLAG tends to produce
nearly identical clustering, leading to similar accuracy across a range of β values. This phenomenon
can be attributed to our data distribution, where clients can be grouped into disjoint sets based on
their data distributions. As a result, FLAG produces consistent clustering even when β values vary
slightly. Depending on the specific data distributions, β can be adjusted slightly (e.g., currently set
at β = 0.5) to fine-tune the algorithm and evaluate whether it yields different results.

Weight range of data similarity matrix δ is the parameter to determine the importance of weights
for computing the data similarity matrix. Since a small set of principal vectors is used to determine
the similarity between clients, the weights take into account the size of those compared datasets. The
weighting scheme ensures the similarity decreases if there are significant differences in the dataset
size. The degree of how much it will decrease is determined by the δ parameter. Smaller values of δ
determine the impact of weights would be minimal and higher values of δ denote a more significant
impact. After computing weights for each data similarity value, the weights are normalized within
a given range of [1 − δ, 1 + δ]. We consider a range of [0,1) for δ, which denotes the similarity
value/cosine angle can increase by a factor of ≈2 at most. Table 7 demonstrates how the accuracy
metric changes over different values of δ on different datasets. Since the weighting focuses on size
difference/quantity shift, we run our experiments on different ranges of quantity shifts, which is
denoted in Table 7 with α′=1 and 0.25. As you can see from the table, for α′ the accuracy pretty
much stays the same regardless of what δ value is used. This happens since the distribution contains
less quantity shift with smaller differences in class values. For α′=0.25 we can observe a slight
increase in accuracy for some cases. Since, in this case, the difference in class data size can lead to
adjusted similar values and different clustering.

Local steps tg determines the number of local training steps each client performs on its local data
before sending the local gradient direction to the server. Since clients undergo multiple epochs of
local training before sending the local update to the server, their local models are already partially
converged with respect to the local data. The server uses the gradient directions to compute the co-

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Table 6: Accuracy metrics for various values of β (ranging from 0 to 1 in increments of 0.1), non-
IID, with 20%, Dirichlet α′ = 1.

Class Skew β CIFAR-10 SVHN FMNIST

20%

0.0 87.47±0.64 84.82±0.14 88.38±0.24
0.1 89.79±0.28 88.02±0.16 91.44±0.21
0.2 91.88±0.21 91.35±0.23 93.72±0.19
0.3 92.33±0.29 94.79±0.22 95.34±0.31
0.4 93.81±0.09 96.64±0.14 96.36±0.13
0.5 93.81±0.09 96.64±0.14 96.36±0.13
0.6 93.81±0.09 96.64±0.14 96.36±0.13
0.7 93.81±0.09 96.64±0.14 96.36±0.13
0.8 93.81±0.09 96.31±0.28 96.36±0.13
0.9 91.12±0.23 96.31±0.28 95.21±0.08
1.0 89.95±0.13 94.91±0.13 94.67±0.05

30%

0.0 81.34±0.52 90.05±0.16 92.68±0.11
0.1 83.83±0.39 92.01±0.19 94.02±0.14
0.2 85.87±0.32 94.03±0.43 95.67±0.10
0.3 88.48±0.19 96.42±0.08 96.14±0.11
0.4 90.31±0.23 96.42±0.08 97.71±0.08
0.5 90.31±0.23 96.42±0.08 97.71±0.08
0.6 90.31±0.23 96.42±0.08 97.71±0.08
0.7 90.31±0.23 96.42±0.08 97.71±0.08
0.8 89.68±0.24 96.42±0.08 96.48±0.09
0.9 88.12±0.21 95.57±0.24 95.21±0.17
1.0 87.47±0.13 94.29±0.13 94.65±0.07

Table 7: Accuracy metrics for various values of δ, non-IID, with 20% class, Dirichlet α′ = 1 and
α′ = 0.25.

Quantity shift δ CIFAR-10 SVHN FMNIST

α′ = 1

0.0 93.38±0.21 96.64±0.14 95.84±0.13
0.2 93.38±0.21 96.64±0.14 96.36±0.13
0.4 93.81±0.09 96.64±0.14 96.36±0.13
0.6 93.81±0.09 96.64±0.14 96.36±0.13
0.8 93.81±0.09 96.64±0.14 96.36±0.13
1.0 93.81±0.09 96.64±0.14 96.36±0.13

α′ = 0.25

0.0 88.85±0.25 92.42±0.08 91.97±0.30
0.2 89.32±0.32 92.42±0.08 92.67±0.10
0.4 89.32±0.32 93.19±0.23 93.41±0.23
0.6 90.29±0.12 93.19±0.23 93.41±0.23
0.8 90.29±0.12 93.19±0.23 93.41±0.23
1.0 90.29±0.12 93.19±0.23 93.41±0.23

sine similarity between clients and form the gradient similarity matrix. The number of local steps
tg is important as it impacts the trade-off between efficiency and accuracy. We want the number
of local epochs to be as small as possible while also maintaining the convergence of gradient so
the similarity between clients can be properly determined. Table 8 demonstrates how the accuracy
metric changes over different values of tg on different datasets. To properly exhibit the effects of
tg , without the influence of the data similarity matrix, we set the β=0 to tune out the data matrix.
We perform the experiment on a dataset with class skew and quantity shift combined as ρ = 20%,
Dirichlet α′ = 1, m′ = 25 sampled clients for optimal clustering, and an interval size of α = 0.1.
As shown in the table, increasing tg increases the accuracy of the models, since the gradients become
more converged and similar clients show similar gradient updates. After reaching around tg=20 the
accuracy halts in most cases. This indicates at that point the gradient convergence and gradient
update direction have already established, and training local models any more will not produce any
different similarity values.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Table 8: Accuracy metrics for various values of tg over various dataset, non-IID, with 20% class,
Dirichlet α′ = 1.

Combination Ratio tg CIFAR-10 SVHN FMNIST
β = 0 0 46.20±0.97 74.61±0.36 57.12±0.30

5 68.54±0.72 79.44±0.68 76.86±0.23
10 77.81±0.51 82.32±0.41 83.51±0.49
15 84.81±0.59 84.82±0.24 88.38±0.15
20 87.47±0.64 84.82±0.24 88.38±0.15
25 87.47±0.64 84.82±0.24 88.38±0.15

17

	Introduction
	Literature Review
	Preliminaries
	Flag Algorithm
	Weighted class-wise Data based similarity
	Optimal Clustering & Combining Data and Gradient — blueAlgorithms 2 and blue3
	Clustered Federated Learning

	Experiments
	Label Skew and Quantity shift
	Finding the Optimal Cluster Formation
	Ablation study
	Communication Round

	Conclusions
	Appendix
	Algorithm technical issues
	Experiment on additional data partition
	Hyperparameters tuning

