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Abstract

Large language models (LLMs) have demonstrated remarkable performance across
a wide range of natural language processing tasks. However, their exponentially
increasing parameters pose significant challenges for deployment on resource-
constrained devices. Vector Quantization (VQ) shows great promise for low-bit
quantization (e.g., 2 to 4 bits), but existing work faces two key challenges: uncon-
strained direction error and suboptimal bit allocation. In this paper, we propose
RSAVQ, a novel VQ framework to enhance extremely low-bit quantization for
LLMs. RSAVQ introduces two geometry-driven innovations that effectively miti-
gate above limitations: (1) Error Direction Sensitivity Guidance (EDSG), which
leverages the Fisher Information Matrix (FIM)-induced Riemannian metric to
project quantization errors onto low-sensitivity directions in the parameter space.
Specifically, this projection is performed along the negative natural gradient direc-
tion, which effectively suppresses error expansion. (2) Weight Channel Sensitivity
Guidance (WCSG) , which constructs a channel-wise sensitivity metric via FIM
curvature analysis to dynamically guide bit resource allocation. The approach
facilitates a globally optimal quantization solution within prescribed bit constraints.
Experiments demonstrate that RSAVQ outperforms existing methods for LLMs.
For example, in 2-bit quantization of LLaMA-3 8B, RSAVQ leads baselines like
VPTQ and QuIP# by 0.4 in perplexity (PPL) and 1.5 in zero-shot accuracy. This
work offers a practical solution for constrained environments and a theoretical
bridge between information geometry and the quantization of neural networks,
advancing efficient deep learning.

1 Introduction

In recent years, large language models (LLMs) have achieved breakthrough results in natural language
processing (NLP), code generation, reasoning, and multimodal tasks[43, 36, 1, 30, 14]. While this
progress is impressive, it comes at the cost of a dramatic increase in model size (e.g., the LLaMA-3
70B[36] model demands around 140GB of memory in FP16 precision), posing significant barriers
when deploying on resource-constrained devices.

Post-Training Quantization (PTQ)[25] has emerged as a promising technique for reducing the resource
footprint of LLMs by converting model weights into lower-bit fixed-point representations without the
need for retraining. A typical strategy in PTQ is Scalar Quantization (SQ), where each individual
weight is quantized independently to a lower-bit value. Recent work [18, 29, 24, 48, 22] has achieved
near-original model accuracy with 4 bit quantization. However, due to the limitations of numerical
representation, SQ struggles to maintain performance at extremely low bits (e.g. 3 bit or fewer), often
leading to significant degradation in model accuracy.
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Figure 1: Schematic diagram of loss per-
turbation from isotropic weight perturba-
tions: natural gradient direction yields
maximum loss increment.

Figure 2: (a) Weight distribution of sampling patch
in down-project layer of final block in LLaMA-3 8B
model. (b) Change in loss after applying the same per-
turbation( + 0.05 per element) to the input channel of
figure (a).

In contrast, Vector Quantization (VQ)[20], another strategy in PTQ shows potential in ultra-low-bit
LLM quantization. VQ maps high-dimensional vectors to a set of predefined lower-dimensional
vectors and achieves more effective data compression than SQ by leveraging correlations and redun-
dancies across different data dimensions. However, we identify that there are two critical limitations in
existing VQ-based methods [44, 46, 32, 15, 51]: (1) unconstrained direction error: these methods
often overlook directional discrepancies between floating-point vectors and their quantized represen-
tations, which significantly affect model performance. In particular, by treating quantization errors as
isotropic perturbations under Euclidean assumptions, they fail to capture the geometric relationship
between the loss function’s sensitivity and the directions of perturbation. As demonstrated in Fig. 1,
errors along the negative natural gradient direction (θ = −135◦) lead to loss reduction or significantly
less loss increase compared to those along the natural gradient direction (θ = 45◦). This highlights
that error direction control is critical for preserving accuracy. (2) suboptimal bit allocation: these
methods often assume uniform sensitivity across weight channels and assign equal bit-widths to each
channel. However, as shown in Fig. 2(b), applying identical perturbations on each channel results in
varying effects on model accuracy, indicating that such a naive bit-allocation policy compromises
quantization performance.

Figure 3: WikiText-2 PPL (left) and average zero-shot accuracy (right) for LLaMA-3 8B quantized at
different bit-widths.

To address these limitations, we propose Riemannian Sensitivity-Aware Vector Quantization
(RSAVQ), a novel VQ framework that leverages information geometry to model the parameter
space (i.e., the weights) of LLMs as a Riemannian manifold with non-uniform curvature—where
the local geometry is described by Fisher Information Matrix (FIM) [2, 27]. RSAVQ employs
FIM to characterize the local geometric structure of the parameter space, including inter-parameter
correlations and manifold curvature, thereby enabling a precise quantification of how parameter
perturbations along different directions affect the loss function. RSAVQ comprises two core com-
ponents: (1)Error Direction Sensitivity Guidance(EDSG) projects inevitable quantization errors
onto low-sensitivity directions (i.e., along the negative natural gradient directions on the Rieman-
nian manifold), minimizing their adverse impact on model performance and effectively mitigating
error accumulation. (2)Weight Channel Sensitivity Guidance (WCSG) utilizes FIM to quantify
each channel’s sensitivity, identifying functionally critical channels and dynamically allocating bit
resources to prioritize high-curvature (sensitive) channels while applying aggressive compression to
low-sensitivity counterparts. This synergistic design enables RSAVQ to optimize the error direction
of each quantized sub-vector through low-sensitivity projection and adaptively allocate bits based on
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channel-wise geometric analysis, thus achieving both ultra-low-bit compression and robust accuracy
preservation in large language models.

Experiments demonstrate that RSAVQ achieves state-of-the-art performance on LLMs (see Fig. 3
for detailed comparisons). Specifically, for the LLaMA-3 8B model, our method significantly
outperforms existing approaches across diverse quantization bit-widths. In particular, under 2-bit
quantization, RSAVQ outperforms baselines such as VPTQ and QuIP# by 0.4 in PPL and 1.5 in
zero-shot accuracy. Our main contributions are summarized as follows:

• We identify and systematically analyze two critical limitations in vector quantiza-
tion—unconstrained direction error and suboptimal bit allocation—and demonstrate that
they are key contributors of accuracy degradation in ultra-low-bit settings.

• We propose RSAVQ, a novel VQ framework grounded in information geometry. RSAVQ uti-
lizes FIM to guide both error direction projection and per-channel bit allocation, integrating
these insights into a single holistic algorithm.

• We validate RSAVQ on LLMs of various model sizes, demonstrating superior performance
compared to existing quantization methods, particularly in extremely low-bit scenarios.

2 Related Work
Recent PTQ methods can be broadly categorized into scalar and vector quantization. These approaches
typically assume a Euclidean parameter space, neglecting the intrinsic geometric structure of deep
networks. Although geometric deep learning advances show that the parameter space is better modeled
as a non-uniformly curved Riemannian manifold, these insights have only been theoretically explored,
with their practical value in extreme low-bit quantization remaining unexplored. Moreover, to date,
no unified framework has integrated information geometry to jointly optimize bit allocation and
project errors onto low-sensitivity directions. This integration is crucial for minimizing performance
degradation. Accordingly, we review related work from two angles: PTQ methods and geometric
deep learning research.

2.1 PTQ Methods
Scalar Quantization (SQ), a classical quantization approach, maps weights to low-bit representa-
tions using fixed scaling factors and zero points. It relies on two key assumptions: (1) isotropic errors,
where quantization errors in all directions equally impact model performance; (2) uniform parameter
sensitivity, treating all parameters as requiring the same bit precision. Methods like GPTQ[18] and
AWQ[29] follow this paradigm, with GPTQ incorporating error compensation and AWQ adjust-
ing outlier weights to stabilize quantization. Techniques such as Quarot[4], OSTQuant[23] and
MambaQuant[50] utilize Hadamard rotations to enhance weight distribution uniformity, yet these
still operate under Euclidean assumptions. Critically, these SQ methods fail to model geometric
sensitivities, leading to severe accuracy degradation in extreme low-bit scenarios (e.g. ≤ 3-bit) where
direction-specific and channel-wise sensitivities dominate error impacts.
Vector Quantization (VQ) [20]methods enhance weight compression by clustering weight vectors
into shared codebooks. For example, GPTVQ[46] integrates error compensation with EM algorithms
to optimize codebooks and indices, while VPTQ[32] and AQLM[15] adopt residual quantization to
refine error fitting. CRVQ[49] achieves 1-bit quantization by iteratively selecting critical channels
for residual processing, and QuIP# [44] uses Hadamard rotations to preprocess weights before
uniform codebook quantization. Despite these advancements, existing VQ techniques lack adaptive
bit allocation guided by channel sensitivity and fail to constrain quantization errors to low-impact
geometric directions, leading to suboptimal performance in extreme low-bit scenarios.

2.2 Geometric Deep Learning
Geometric Deep Learning highlights the non-Euclidean nature of neural network parameter spaces,
suggesting that they can be more accurately modeled as Riemannian manifolds endowed with FIM[8,
2, 27]. Fisher Information Matrix (FIM)-based approaches[47] define a local Riemannian metric
for the parameter space and demonstrate that natural gradient descent achieves faster convergence
by adapting to the underlying manifold structure. To address the computational complexity of FIM,
methods such as K-FAC[34] propose efficient Kronecker-factored curvature approximations, making
second-order optimization feasible for large-scale networks. Beyond optimization, manifold-aware
methods[16] have shown that leveraging geometric structures can further unlock hidden information
in deep models through Riemannian updates.
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Explorations of Riemannian manifolds in quantization. Prior works, including CLRQ[7] (man-
ifold geodesic distances for clustering), GLRSQ[40] (strategies for symmetric positive definite
matrices), MANIQUEANT[11] (FIM-based gradient mismatch mitigation), FIT[52] (information-
geometric metrics for distortion reduction), and PLRQ[41] (probabilistic vector quantization with
manifold learning), have explored geometric approaches in quantization. However, these efforts
remain fragmented—–each focuses on isolated geometric properties (e.g., matrix symmetry, manifold
metrics) or individual quantization issues (e.g., gradient alignment, distortion control)—–without a
unified framework to jointly optimize error direction and channel-wise bit allocation.

3 Preliminaries

To facilitate the presentation of our proposed method, we first introduce three key components:
Information Geometry and Riemannian Manifolds, Natural Gradient, and Cartesian Product Vector
Quantization. Specifically, these concepts form the theoretical foundation of our framework and
provide a unified mathematical structure for subsequent sections.

3.1 Information Geometry and Riemannian Manifolds
The parameter space of deep neural networks is often assumed to be a high-dimensional Euclidean
space. However, this assumption neglects the non-uniform sensitivity of different parameter directions.
Recent studies[8, 2, 27, 3] demonstrate that the parameter space can be more accurately modeled
as a Riemannian manifold endowed with the Fisher Information Metric[47]. This geometric view
better captures the sensitivity of the model to parameter perturbations, providing a theoretical basis
for analyzing quantization errors. LetM denote the differentiable manifold of network parameters
W . The Fisher Information Matrix(FIM), which we denote by FW , defines the metric tensor in
the parameter space as:

Fij(W ) = E
[
∂ log p(x|W )

∂Wi

∂ log p(x|W )

∂Wj

]
, (1)

where p(x|W ) is the model’s output distribution. This metric endows the parameter space with a
Riemannian geometric structure, and the corresponding inner product is induced as follows:

⟨∆W1,∆W2⟩W = ∆W⊤
1 FW∆W2. (2)

This inner product characterizes the geometric distance of parameter perturbations on the manifold,
directly relating parameter changes to the KL divergence of the model output distribution (for the
derivation process, see Appendix A.5). In practical applications, the channel-wise FIM sub-matrix
Fc is used to approximate the global geometric structure for fine-grained sensitivity analysis.

3.2 Negative Natural Gradient
In a flat Euclidean space, the standard negative gradient indicates the direction of the steepest descent.
However, on a Riemannian manifold with complex curvature, the optimal descent direction is given
by the negative natural gradient[2]:

−∇̃L = −F−1
W ∇L. (3)

It geometrically corrects the Euclidean gradient through the FIM, ensuring that the parameter update
descends along the shortest path (geodesic, defined in Appendix A.6) on the manifold. The negative
natural gradient direction −∇̃L is the direction in which the loss function decreases the fastest, and it
is also the "low-sensitivity direction" that the quantization error should try to align with, in order to
minimize the impact of the error on the model performance. The derivation of the natural gradient
can be based on the Taylor expansion and the Lagrange multiplier method. For the specific derivation
steps, refer to Appendix A.4.

3.3 Product Vector Quantization
Product Quantization (PQ)[26] extends vector quantization (VQ) by splitting high-dimensional
vectors into sub-vectors and quantizing them independently, improving compression efficiency and
scalability. Similar to VQ, the optimization process of PQ involves finding the closest cluster center
Ci(the i-th codeword in the codebook) for an input vector v:

argmin
i∈k
∥v − Ci∥2 . (4)
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For a detailed comparison between PQ and VQ, refer to Appendix A.3. RSAVQ adopts this PQ
formulation as its foundation and introduces two key enhancements: specifically, (1) error direction
alignment via Riemannian projections, and (2) adaptive bit allocation guided by channel-wise
curvature. These modifications jointly improve quantization accuracy under ultra-low-bit settings.

4 Method
Traditional quantization methods simplify optimization in Eq. 4 as a Euclidean problem, leading to
suboptimal control of quantization error. Inspired by the Riemannian perspective in Preliminaries 3.1—
which models the parameter space (i.e. weights) as a curved manifold endowed with the Fisher
information metric—we propose the Riemannian Sensitivity-Aware Vector Quantization (RSAVQ)
framework. RSAVQ unifies information geometry and vector quantization via two tightly coupled
modules: (1) Error Direction Sensitivity Guidance(EDSG), which projects clustering errors onto
low-sensitivity (negative natural gradient) directions on the manifold; and (2) Weight Channel
Sensitivity Guidance(WCSG), which measures each channel’s local curvature to dynamically
allocate bits and guide codebook updates. By integrating EDSG and WCSG, RSAVQ minimizes
quantization distortion under extreme low-bit constraints while maintaining computational efficiency.
For full algorithmic details, see Appendix A.13.

4.1 EDSG: Error Direction Sensitivity Guidance
During model quantization, quantization error inevitably occurs, defined as

E = W − C(W ) (5)

where C(·) denotes the pseudo-quantization operator. Traditional methods [32] typically rely on mean
squared error (MSE) or other Euclidean-based metrics to quantify quantization error and determine
optimal coefficients. However, these approaches overlook the geometric sensitivity associated with
the direction of the error. Consequently, errors can amplify along directions that are highly sensitive to
model performance, resulting in significant accuracy degradation. Although existing techniques [46]
attempt to mitigate such errors through post hoc compensation, their initial disregard for directional
sensitivity fundamentally limits their effectiveness. To address this limitation, we propose an Error
Projection algorithm based on information geometry. Specifically, we project the quantization error
onto the negative natural gradient directions of the loss function, which correspond to low-sensitivity
directions on the Riemannian manifold. This projection enables a more precise assessment of the
quantization error’s impact on overall model performance.

Figure 4: Clustering process of error projection along nega-
tive natural gradient direction.

As illustrated in Fig. 4, our goal is to
project the quantization error onto di-
rections that have minimal influence
on the loss function, thereby reduc-
ing performance degradation from the
perspective of information geometry.

Vector quantization (VQ) has
been demonstrated to be a highly
promising technique for large model
compression[32, 45], largely due to its inherent flexibility in adjusting the quantization error
directions. Building on this property, our objective is to design a codebook C that encourages
the quantization error E to lie along "low-sensitivity" directions on the parameter manifold M,
thereby minimizing the growth of the KL divergence induced by quantization. Through Lagrangian
optimization (see Appendix A.4), we formally prove that projecting E onto the negative natural
gradient direction −∇̃L = −F−1

W ∇L minimizes the first-order increase in the loss function on the
Riemannian manifold. Here, FW denotes the Fisher information matrix, characterizing the local
geometry of the parameter space. To enforce this projection during quantization, we define the
negative natural gradient direction projection loss in the tangent space TWM as:

Lproject = ∥E + λ ∗ ∇̃L∥2F (6)

where ∥ · ∥F denotes the norm induced by the Fisher metric, and λ is a hyperparameter that controls
the trade-off between strict error projection and quantization flexibility. By minimizing Lproject,
RSAVQ encourages the quantization error E to remain in low-sensitivity directions, thus preserving
model performance even under extremely low-bit quantization.

5



Building upon the product quantization (PQ) strategy introduced in Preliminaries 3.3, we decompose
the weight vectors into a set of sub-vectors {vi}, each independently quantized. During the PQ
optimization process, we incorporate the projection loss Lproject in the negative natural gradient
directions as an additional constraint, alternately optimizing both the codebooks and the assignment
indices. This procedure ensures that the quantization error is geometrically projected along the
negative natural gradient direction, fundamentally minimizes loss increase and performance degra-
dation However, under a constrained bit budget, different channels exhibit varying tolerances to
quantization error. This observation motivates us to further exploit the local curvature information of
the parameter manifold to dynamically allocate bit resources, thereby achieving a more fine-grained
trade-off between accuracy and compression.

4.2 WCSG: Weight Channel Sensitivity Guidance

Figure 5: Weight channel sensitivity analysis and comparison.

Building on the channel sensitivity characterization via the Fisher Information Matrix, we propose
a geometry-aware bit allocation strategy. Our goal is to further minimize the global quantization
distortion in addition to the error direction projection achieved in Method 4.1.

In practice, different channels exhibit heterogeneous sensitivity to quantization perturbations. Thus,
a naive uniform bit allocation is suboptimal, and an adaptive strategy is needed to allocate bits
proportionally to each channel’s importance, thereby minimizing the overall loss degradation.

Existing Euclidean-based sensitivity metrics—such as the gradient magnitude used in SparseGPT[17]
or the weight-activation product employed by Wanda[39]—fail to capture the underlying curvature
of the parameter space. As demonstrated in Fig. 5, simple statistics like (a) the average weight
magnitude or (b) the average gradient per channel show no clear correspondence with (c) the true
loss sensitivity under perturbations. This mismatch highlights the necessity of a curvature-aware
measurement for accurate sensitivity estimation.

As introduced in Preliminaries 3.1, the negative natural gradient is defined as −∇̃L = −F−1
W ∇L. In

traditional Euclidean space, the negative gradient −∇L represents the direction of steepest descent.
However, on a Riemannian manifold with non-uniform curvature, the optimal descent direction must
be corrected by local metric FW , leading to the negative natural gradient formulation.

While the negative natural gradient addresses the geometrically optimal update direction, quantifying
weight channel sensitivity requires a scalar metric that integrates both gradient magnitude and local
manifold curvature. To this end, we leverage the Riemannian norm of the negative natural gradient,
which measures how parameter perturbations in each channel’s tangent space affect the loss function.
We decompose the weight tensor W channel-wise as {Wc}, and for each channel c, we compute its
Riemannian curvature energy Ic (full derivation in Appendix A.7) as:

Ic =
1

2
| − ∇̃Lc|2W =

1

2
(∇̃Lc)

⊤Fc∇̃Lc. (7)

Here, Fc is the FIM corresponding to channel c. The acquisition of FIM is approximated through
Kronecker decomposition. For detailed acquisition steps and principles, refer to A.9. Intuitively,
Ic captures how sharply the loss landscape curves along the parameters of channel c: a larger Ic
indicates higher sensitivity to perturbations and thus a greater need for precise quantization.

Under a fixed total bit budget Bmax =
∑

bc, how to allocate bits across channels becomes crucial for
minimizing global quantization distortion. Based on the rate-distortion theory [21], the quantization
distortion scales exponentially with the number of bits as D ∝ 2−2b. Considering the channel
curvature sensitivity Ic as an amplification factor for distortion, the global distortion objective can be
formulated as:

GlobalDistortion =
∑

Ic · 2−2bc . (8)

Using Lagrangian optimization (details in Appendix A.8), the optimal bit allocation rule is derived
as: bc ∝ log2 Ic, ensuring that more sensitive channels receive a greater bit allocation.
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Figure 6: Channel sensitivity-driven channel grouping and bit assignment.

In practice, for a layer with C channels, the bit assignment per channel is given by:

bc = Round

(
Bmax ·

log2 Ic∑C
c=1 log2 Ic

)
. (9)

To enable codebook sharing (each group uses a single codebook) while preserving weights channel
sensitivity, we introduce a sensitivity-ordered channel grouping strategy. As shown in Fig. 6. First,
channels are sorted in descending order of their Riemannian curvature energy Ic. We then partition
them into G uniform groups, where the group size is n = ⌈C/G⌉ and the g-th group contains
channels indexed by Gg = [(g − 1)n + 1,min(gn,C)]. For each group, a unified bit-width bg is
assigned by averaging the dynamically allocated bits of its members, that is,

bg = Round

 1

|Gg|
∑
c∈Gg

bc

 , (10)

where bc ∝ log2 Ic under the total bit budget constraint. This strategy clusters sensitive channels (high
Ic) to receive more bits while aggressively compressing less sensitive groups, balancing distortion
minimization with practical deployment constraints.

5 Experiments
Baseline. We focus on weight-only quantization and compare RSAVQ with several strong PTQ
baselines, including GPTQ[18], GPTVQ[46], AQLM[15], DB-LLM[10],QuIP[9], QuIP#[44], and
VPTQ[32]. Baseline results for these methods are cited from their original papers. For RSAVQ, we
use a k-means-based VQ approach similar to VPTQ, with the following settings: the vector length is
set to 6, and weight matrices are divided into 4 groups, with each sharing its own codebook. Unless
otherwise specified, all experiments are conducted on NVIDIA A100-80GB GPU.

Table 1: The perplexity (ppl) of various quantization algorithms on the LLaMA-2 models when the
dataset is Wikitext-2 and the sequence length is 4096, as well as the test performance in various
zero-shot tasks.

LLaMA-2 7B LLaMA-2 13B LLaMA-2 70BMethods Bits W2↓ 0-shot Avg↑ Bits W2↓ 0-shot Avg↑ Bits W2↓ 0-shot Avg↑
FP16 16 5.12 64.7 16 4.57 67.82 16 3.12 70.21
GPTQ 2 50.75 39.16 2 43.84 43.72 2 – 59.18

GPTVQ 2.25 6.71 56.14 2.25 5.72 61.56 2.25 4.25 68.55
DB-LLM 2.01 7.23 55.12 2.01 6.19 59.41 2.01 4.64 65.83
AQLM 2.29 6.29 58.57 2.18 5.41 61.58 2.07 3.94 68.75
VPTQ 2.02 6.13 58.13 2.02 5.32 62.37 2.07 3.93 68.61
QuIP# 2 6.19 58.22 2 5.35 61.96 2 3.91 68.94

RSAVQ 2 5.97 58.66 2 5.29 62.84 2 3.55 69.05
GPTQ 3 8.06 53.1 3 5.85 59.61 3 4.4 65.41

GPTVQ 3.125 5.44 62.69 3.125 4.8 59.63 3.125 – –
AQLM 3.04 5.46 60.88 3.03 4.82 63.49 3.01 3.36 69.86
VPTQ 3.02 5.43 61.72 3.03 4.79 64.21 3.01 3.34 69.58
QuIP# 3 5.41 – 3 4.78 – 3 3.35 –

RSAVQ 3.01 5.26 62.7 3.01 4.74 66.12 3.01 3.25 70.42
GPTQ 4 5.49 60.64 4 4.78 63.87 4 3.35 69.25

GPTVQ 4.125 5.27 62.28 4.125 5.27 64.28 4.125 – –
AQLM 4.04 5.21 62.54 3.94 4.65 65.12 4.14 3.19 69.93
VPTQ 4.01 5.26 61.98 4.02 4.64 64.89 4.01 3.19 69.8
QuIP# 4 5.19 – 4 4.63 – 4 3.18 –

RSAVQ 4.01 5.22 63.62 4.01 4.72 66.82 4.01 3.11 70.34
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Models and Datasets. We conduct experiments on LLaMA-2 7B, LLaMA-2 13B, LLaMA-2
70B[43], and LLaMA-3 8B, LLaMA-3 70B[36] models to evaluate the performance of our proposed
method. The calibration dataset used in our experiments is sampled from the Red_Pajama dataset[42].

To evaluate the performance of the baselines, we compute the perplexity (PPL) of the models on the
WikiText-2 dataset[35]. We evaluate the models by randomly sampling sequences from the dataset
with the same length as the calibration data. Lower perplexity indicates better preservation of the
original output distribution. For direct comparison with methods like VPTQ[32] and Quip#[44], we
use the same sequence lengths during testing. Specifically, we test PPL with sequence lengths 4096
for the LLaMA-2 models and 2048 for the LLaMA-3 models.

Additionally, we evaluate generalization capability on several zero-shot tasks, including
WinoGrand[38], HellaSwag[53], PIQA[5], ARC-e[6], and ARC-c[13]. All evaluations are per-
formed using the open-source LM-Evaluation-Harness[19] toolkit.

Main Experimental Results. Tab. 1
presents the experimental results on the
LLaMA-2 series models. We evalu-
ate LLaMA-2 7B, LLaMA-2 13B, and
LLaMA-2 70B under a 2-bit quantiza-
tion configuration. For the LLaMA-2 7B
model, RSAVQ achieves a perplexity of
5.97 at 2-bits, which is lower than VPTQ
(6.13) and other methods, demonstrating
more robust performance on WikiText-2.
Furthermore, RSAVQ’s zero-shot average
accuracy is comparable to other methods
and even exceeds them. For the LLaMA-
2 70B model, in the 2-bit configuration,
RSAVQ’s performance is nearly identical
to the FP16 baseline, with only a 0.4 PPL

Table 2: PPL on Wikitext-2(seq_len=4096) and 0-shot
task accuracy of PTQ algorithms on LLaMA-3.

LLaMA-3 8B LLaMA-3 70BMethods Bits W2↓ 0-shot Avg↑ Bits W2↓ 0-shot Avg↑
FP16 16 6.14 68.66 16 2.9 75.32
GPTQ 2 210 36.16 2 11.9 45.42
QuIP 2 85.1 36.81 2 13 48.66

QuIP# 2 9.11 – 2 5.6 –
VPTQ 2.08 9.29 60.22 2.07 5.66 70.74

RSAVQ 2 8.79 61.72 2 5.6 71.3
GPTQ 3 8.2 61.7 3 5.2 70.58
QuIP 3 7.5 63.72 3 4.7 72.56

QuIP# 3 6.77 – 3 3.8 –
VPTQ 3.03 6.97 66.66 3.01 3.81 73.68

RSAVQ 3.01 6.34 66.38 3.01 3.69 74.26
GPTQ 4 6.5 67.3 4 3.3 74.88
QuIP 4 6.5 67.12 4 3.4 74.52

QuIP# 4 6.34 – 4 3.21 –
VPTQ 4.03 6.42 68.14 4.05 3.15 74.7

RSAVQ 4.01 6.31 68.42 4.01 3.11 75.1

decrease and a 1.2 accuracy drop, indicating that the model can achieve near original accuracy with
significantly reduced bitwidth. Tab. 2 shows the results on LLaMA-3 8B and LLaMA-3 70B models.
Under the 2 bit quantization configuration, RSAVQ achieves 61.72 and 71.3 zero-shot performance
for the LLaMA-3 8B and LLaMA-3 70B models, respectively. Compared to other methods, such as
GPTQ and VPTQ, RSAVQ not only maintains a lower perplexity but also ensures higher zero-shot
task accuracy. These results validate the robustness of RSAVQ across different model scales.

Ablation Study. To validate the importance of each component in RSAVQ, we performed ablation
experiments to compare the performance of the k-means baseline method with the gradual addition
of the two components: EDSG and WCSG.The test results are recorded in Tab. 3.

Table 3: On the LLaMA-2 7B model, based on the Wikitext-2 dataset and 0-short datasets, test the
effect comparison after using method 1 and method 2 respectively on the original Kmeans basis.

LLaMA-2 7BBits Methods W2↓ AC AE HE QA WI Acc Avg↑
FP16 5.12 43.3 76.3 57.1 78.1 68.7 64.70

Kmeans 9.20 28.9 62.5 43.3 71.5 63.3 53.90
+EDSG 7.29 (-1.91) 31.5 66.0 46.6 73.3 63.6 56.10 (+2.20)2bit
+WCSG 5.81 (-3.39) 37.2 64.4 50.7 75.4 65.7 58.69 (+4.79)
Kmeans 7.25 35.0 68.6 47.7 73.4 64.6 57.86
+EDSG 5.63 (-1.62) 40.1 72.8 53.9 76.6 66.2 61.77 (+3.91)3bit
+WCSG 5.26 (-1.99) 41.0 73.0 54.7 76.7 68.2 62.70 (+4.84)

On the LLaMA-2 7B model, ablation experiments on various datasets (AC, AE, HE, QA, WI) showed:
In the 2-bit quantization setting, the k-means baseline achieved an average accuracy of 53.90. Adding
the Error Direction Sensitivity Guidance (EDSG) module improved metrics such as AC,HE, thereby
lifting average accuracy to 56.10. Introducing channel grouping further improved performance to
58.69. A similar trend in the 3-bit experiments confirmed that both modules reduce the quantization
error and improve accuracy. The results validate their collaborative effect and the framework’s
effectiveness under extremely low-bit conditions.
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Figure 7: Optimal λ Tuning in 2-bit
quantized LLaMA-2 7B.

We conducted an ablation experiment to evaluate the effect of
the hyperparameter λ on the performance of RSAVQ. Specif-
ically, we focused on the LLaMA-2 7B model with 2-bit quan-
tization and analyzed the PPL performance on the WikiText-2
dataset for various values of λ. As shown in Fig. 7. Our ex-
periment showed that as λ increased, the quantization accuracy
first improved and then decreased. This indicates that λ has an
optimal range where the projection between quantization error
and the natural gradient direction is most effective. Based on
our experiments, we found that the optimal range for λ lies be-
tween 0.01 and 0.1.Additional ablation studies across multiple
models under 2-bit quantization are reported in Appendix A.10,
showing that λ values in the range [0.01, 0.1] are robust across
architectures. This result highlights the importance of tuning λ for balancing the projection strength
between quantization error and natural gradient direction, with the optimal value providing the best
trade-off between error reduction and model accuracy. We further analyze the sensitivity of RSAVQ
to group size and codebook vector length in Appendix A.11.
Speed and Efficiency Testing. In terms of hardware efficiency, we conducted speed and memory
usage tests on the LLaMA-2 7B and LLaMA-2 13B models running inference on a single NVIDIA
A100 GPU. The results demonstrate the significant improvements in inference speed and memory
efficiency achieved by RSAVQ under low-bit quantization.

As shown in Tab. 4, for the LLaMA-2 7B model,
the inference speed with the FP16 model was 38.6
tokens/s, while under 2-bit quantization, the speed
achieved a 1.57x speedup. Similarly, the LLaMA-
2 13B model achieved comparable acceleration
under 2-bit quantization. These results highlight

Table 4: Speed and Memory Testing
Bits LLaMA-2 7B LLaMA-2 13B

tokens/s memory(G) tokens/s memory(G)
FP16 38.60 13.16 24.29 25.42

2 60.60 2.28 44.21 4.03
3 50.57 3.83 29.15 5.56

that RSAVQ not only maintains low memory usage but also provides a significant speedup in
inference, making it highly suitable for edge devices or resource-constrained environments where
both memory and computation resources are limited. Beyond inference efficiency, RSAVQ also
reduces the offline quantization time, as detailed in AppendixA.12.

RSAVQ achieves superior low-bit performance by integrating information geometry and channel-wise
bit allocation, outperforming traditional methods in PPL, zero-shot accuracy, and hardware efficiency
across LLaMA models.

6 Conclusion
This paper introduces RSAVQ, a Riemannian geometry-driven VQ framework that addresses extreme
low-bit quantization challenges in LLMs. RSAVQ features two key innovations: (1) Error Direction
Sensitivity Guidance (EDSG), which projects quantization errors onto low-sensitivity directions
(negative natural gradient) using the Fisher Information Matrix (FIM), minimizing performance
degradation; (2) Weight Channel Sensitivity Guidance (WCSG), which dynamically allocates bit
resources based on FIM-derived curvature metrics to prioritize sensitive channels, balancing accuracy
and compression efficiency.

Theoretically, RSAVQ bridges information geometry and neural network quantization by modeling
the parameter space as a Riemannian manifold, enabling geometrically informed error control and
adaptive bit allocation. The proposed Riemannian curvature energy metric Ic offers a principled way
to quantify channel sensitivity, overcoming Euclidean-based limitations. Practically, its hardware-
friendly channel grouping strategy ensures efficient inference while achieving state-of-the-art 2-bit
compression.

Experimental results on LLaMA models demonstrate RSAVQ’s superiority, particularly in extreme
low-bit scenarios (e.g., 2-bit quantization with minimal PPL degradation and high zero-shot accuracy).
By unifying geometric insights with quantization techniques, this work provides a robust solution
for deploying LLMs in resource-constrained environments and opens new avenues for integrating
information geometry into model optimization. While RSAVQ exhibits strong empirical performance,
its limitations–—including limited cross-architecture and cross-domain generality, unexplored scalar
quantization applicability, and hardware-specific memory efficiency constraints–—are analyzed in
detail in Appendix A.1.
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A Appendix

A.1 Limitations

Despite its strong empirical gains, RSAVQ has three main limitations that merit further study:

• Domain and architecture generality. RSAVQ is validated primarily on Transformer-based
language models (e.g., LLaMA), with limited empirical exploration in multimodal models,
computer vision architectures, or reinforcement learning frameworks.

• Quantization method scope. This work focuses exclusively on applying information
geometry to vector quantization (VQ), while its potential utility in scalar quantization (SQ)
remains unexplored. Extending geometric sensitivity analysis to SQ could reveal new
optimization strategies for low-bit quantization.

• Hardware deployment efficiency. Vector quantization’s reliance on codebook lookups intro-
duces memory access overhead, particularly on heterogeneous hardware (CPUs/GPUs/edge
devices), with limited optimization for platform-specific memory systems (e.g., cache-
friendly indexing, parallel computation).

Future work will explore cross-architecture generalization, scalar quantization extensions, and
hardware-aware quantization optimizations to enhance RSAVQ’s practical applicability.

A.2 Acknowledgments

We would like to acknowledge the assistance of large language models in improving the clarity
and readability of the manuscript text. We emphasize that all experiments, analyses, and core
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We are also grateful to the reviewers, the area chairs and the program chairs for their valuable time
and constructive feedback during the review process, which helped us significantly improve the
quality of this work.

A.3 Vector Quantization vs. Product Quantization

Figure 8: Schematic diagram of standard vector quantization (a) and product vector quantization (b).

Vector Quantization (VQ). As shown in Fig. 8(a), given a weight matrix W ∈ RM×N , we first
reshape it into a sequence of v-dimensional vectors W ′ ∈ RMN

v ×v. A codebook C ∈ Rk×v is then
built using k-means clustering.

Each vector in W ′ is quantized by selecting the nearest centroid using:

arg min
i∈{1,...,k}

∥v − Ci∥2 , (11)

where Ci denotes the i-th codeword. The quantized results are stored as an index array referencing
the codebook entries.
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Product Quantization (PQ). To scale quantization to high-dimensional vectors, PQ divides each
v-dimensional vector into n equal-length sub-vectors:

v = [v1, v2, . . . , vn], vi ∈ Rv/n. (12)

Each sub-vector vi is independently quantized using a dedicated codebook Ci ∈ Rk×v/n, producing
n sub-indices. These indices are concatenated into a single composite index that jointly encodes the
original vector.

A.4 Principle of Negative Natural Gradient

Referring to[33], the derivation process is as follows:

Let the small change of the loss function L(W ) at point W be ∆L. According to the first-order
Taylor expansion, we have:

∆L ≈ ∇L⊤∆W (13)
On the Riemannian manifold, we hope to find a direction ∆W so that the loss function decreases the
fastest under the given Riemannian metric. According to the Lagrange multiplier method, introduce
the constraint condition ⟨∆W,∆W ⟩W = 1, and construct the Lagrange function:

L(∆W,λ) = ∇L⊤∆W − λ(∆W⊤FW∆W − 1) (14)

Take the partial derivative of ∆W and set it to zero to obtain:

∇L− 2λFW∆W = 0 (15)

Get ∆W = 2
λF

−1
W ∇L. Let −∇̃L = −F−1

W ∇L, which is the negative natural gradient.

A.5 Detailed Derivation of KL Divergence Approximation

The following presents the detailed derivation of the KL divergence approximation formula, involving
Taylor expansion, the definition of the Fisher Information Matrix (FIM), and differential properties of
probabilistic models:

For parameterized probability distributions p(x|W ) and p(x|W +∆W ), the KL divergence is defined
as:

DKL(p(x|W ) ∥ p(x|W +∆W )) = Ex∼p(x|W )

[
log

p(x|W )

p(x|W +∆W )

]
. (16)

Expanding the logarithmic term:

DKL = E [log p(x|W )− log p(x|W +∆W )] . (17)

Let f(W ) = log p(x|W ). For a sufficiently small parameter perturbation ∆W , the second-order
Taylor expansion of f(W +∆W ) around W (neglecting higher-order terms) is:

f(W +∆W ) ≈ f(W ) +∇f(W )⊤∆W +
1

2
∆W⊤Hf (W )∆W, (18)

where: - ∇f(W ) = ∂ log p(x|W )
∂W is the gradient (score function), - Hf (W ) = ∂2 log p(x|W )

∂W∂W⊤ is the
Hessian matrix.

Substituting into the KL divergence expression:

DKL ≈ E
[
f(W )−

(
f(W ) +∇f⊤∆W +

1

2
∆W⊤Hf∆W

)]
= E

[
−∇f⊤∆W − 1

2
∆W⊤Hf∆W

]
.

(19)

By the property of the score function (regularity condition of probability distributions):

E [∇ log p(x|W )] =

∫
p(x|W ) · ∇ log p(x|W ) dx = ∇

∫
p(x|W ) dx = ∇1 = 0. (20)

Thus, the expectation of the first-order term vanishes:

E
[
−∇f⊤∆W

]
= −∆W⊤E [∇f ] = 0. (21)
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Using the Information Matrix Equality:

E [Hf (W )] = −E
[
∇ log p(x|W )∇ log p(x|W )⊤

]
= −FW , (22)

where FW is the Fisher Information Matrix (FIM), defined as:

FW = E
[
∇ log p(x|W )∇ log p(x|W )⊤

]
. (23)

The expectation of the second-order term becomes:

E
[
−1

2
∆W⊤Hf∆W

]
=

1

2
∆W⊤E [−Hf ] ∆W =

1

2
∆W⊤FW∆W. (24)

Under the Riemannian metric defined in the paper, the inner product is:

⟨∆W1,∆W2⟩W = ∆W⊤
1 FW∆W2, (25)

so the second-order term can be expressed as:

1

2
∆W⊤FW∆W =

1

2
⟨∆W,∆W ⟩W . (26)

Neglecting higher-order infinitesimal terms, the KL divergence approximates to:

DKL(p(x|W ) ∥ p(x|W +∆W )) ≈ 1

2
⟨∆W,∆W ⟩W . (27)

This approximation reveals the direct relationship between parameter perturbations in the Riemannian
manifold (measured by FIM) and changes in the model’s output distribution (KL divergence).

In practical applications, to reduce computational overhead or enable fine-grained analysis, block-wise
approximations (such as diagonal blocks or K-FAC approximation[34]) are often used to decompose
the global Fisher matrix into channel-level (or subnetwork-level) submatrices Fc. These submatrices
provide local geometric information for each channel, laying the foundation for subsequent sensitivity
analysis and bit allocation.

A.6 Geodesic

In Riemannian manifolds, the shortest path between two points is called a geodesic[12], and its length
is defined as the geodesic distance. For two points p, q ∈M on the manifold, their geodesic distance
definition is:

d(p, q) =

∫ 1

0

∥γ̇(t)∥ dt. (28)

Here, γ(t) is the geodesic that connects p and q, and γ̇(t) is the geodesic velocity vector. Geodesic
distance is an important measure of the relationship between points on a manifold. Especially
in quantitative error analysis, it can help us evaluate the impact of quantization error on model
performance. For example, in our method, the direction of quantization error is projected onto a
low-sensitivity direction to minimize its contribution to the geodesic distance. If the manifold is
compared to the surface of the earth, then the geodesic distance is the length of the great circular
arc between two points. In the parameter space of the neural network, the geodesic distance on the
manifold based on the FW measure in Preliminaries 3.1 reflects the actual impact of the parameter
changes on the performance of the model.

A.7 Riemannian Curvature Energy

For each channel c, we aim to measure the impact of parameter perturbations on the loss function. In
deep learning, methods relying on the magnitude of weight gradients to determine weight importance
have long dominated, as the gradient magnitude directly reflects the dynamic contribution of weights
to the loss function. Early studies [28] proposed using the L2 norm of weights to assess importance,
but subsequent work revealed that gradient information can more accurately capture the real-time
impact of weights. For example, [31, 54] introduced the use of the L1 norm of gradients to filter
important weights, and [37] further incorporated gradient direction information by fusing L1 and L2
norms for weight scoring. However, directly using the Euclidean norm of gradients ∥∇Lc∥ overlooks
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a critical fact: the parameter space of deep neural networks is inherently a Riemannian manifold.
Therefore, instead of directly using gradients, we employ the Riemannian norm of the negative natural
gradient:

∥ − ∇̃Lc∥2W = ∇̃L⊤
c Fc∇̃Lc, (29)

where the negative natural gradient −∇̃Lc = −F−1
c ∇Lc projects the Euclidean gradient onto the

tangent space of the Riemannian manifold. Substituting the negative natural gradient into the norm
yields:

∥ − ∇̃Lc∥2W =
(
F−1

c ∇Lc

)⊤
Fc

(
F−1

c ∇Lc

)
= (∇Lc)

⊤F−1
c ∇Lc. (30)

We thus define the Riemannian curvature energy as:

Ic =
1

2
(∇Lc)

⊤F−1
c ∇Lc. (31)

Physical and Geometric Interpretation The formula can be interpreted through two key perspectives:
(1) Balance between Gradient and Metric Scaling: The numerator ∇Lc represents the gradient
magnitude of channel c, indicating the local sensitivity of the loss function to parameter changes. The
matrix F−1

c , the inverse of the Fisher information matrix, characterizes the local metric scaling of
the parameter space. When the eigenvalues of Fc are large in a particular direction (signifying high
local curvature or strong parameter correlations), the corresponding components of F−1

c are small,
which suppresses the gradient contribution in that direction. This mechanism avoids misjudgments
of importance caused by geometric distortion in the parameter space. In contrast, the Euclidean
norm implicitly assumes Fc = I (the identity matrix), ignoring the actual geometric structure of the
manifold.

(2) Impact of Unit Geometric Perturbations: The Riemannian norm of the negative natural gradient
measures the effect of unit-length perturbations in the Riemannian manifold on the loss function. By
normalizing with F−1

c , perturbations in different parameter directions are converted to the manifold’s
intrinsic geometric scale. In high-curvature directions (where Fc has large eigenvalues), the same
Euclidean-distance perturbation corresponds to a smaller effective geometric distance in the manifold,
leading to a weaker impact on the loss. This property enables Ic to accurately capture the dynamic
importance of channel parameters in the true geometric space, overcoming the scale biases inherent
in the Euclidean framework.

A.8 Bit Allocation Principle

Following the inference from [21], the quantization error can be approximated as uniformly dis-
tributed, and the quantization distortion D has an exponential relationship with the number of
quantization bits b, expressed as:

D ∝ 2−2b. (32)
In our framework, for each channel Wc, the quantization distortion is influenced not only by the
number of quantization bits but also by the sensitivity of the channel to the loss function. This
sensitivity is measured by Ic ≥ 1 (where we ensure non-negativity by shifting Ic ← Ic + 1).
Intuitively, Ic reflects that even with the same magnitude of quantization error, the impact on the
final loss can vary: a larger Ic indicates that the channel has stronger gradients and higher curvature,
meaning the quantization error is amplified and causes greater loss degradation; conversely, a smaller
Ic suggests the channel is less sensitive to errors, resulting in smaller loss impact.

Therefore, the quantization distortion for channel c can be formulated as:

Dc(bc) ∝ Ic · 2−2bc . (33)

Under the global bit budget constraint
∑C

c=1 bc = Bmax, where Bmax denotes the total bit allocation
across all channels (e.g., Bmax = 2 × C for 2-bit quantization), we aim to minimize the overall
distortion. To this end, we construct the following Lagrangian:

L({bc}, γ) =
C∑

c=1

Ic · 2−2bc + γ

(
C∑

c=1

bc −Bmax

)
. (34)

Taking the partial derivative of L with respect to each bc and setting it to zero (ignoring discretization
effects), we obtain:

∂L
∂bc

= −2 ln 2 · Ic · 2−2bc + γ = 0. (35)
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which leads to:

2−2bc =
γ

2 ln 2 · Ic
. (36)

Taking the logarithm on both sides, we further derive:

bc ∝ log2(Ic). (37)

Considering the overall bit budget Bmax, the final bit allocation formula is:

bc = Bmax ·
log2 Ic∑C
c=1 log2 Ic

. (38)

A.9 Approximation of FIM

Given the extremely high complexity of directly computing the full FIM (scaling with the square of
the weight dimension), we adopt Kronecker factorization approximation (instead of diagonalization)
to decompose the FIM into the tensor product of two low-dimensional matrices: F ≈ FO ⊗ FI ,
where FO ∈ Rm×m (output channel FIM) and FI ∈ Rn×n (input channel FIM). This decomposition
is implemented as follows:

1. Gradient definition: ∇W ℓ denotes the gradient of the loss function with respect to the weight
W , computed for a single sequence s.

2. Calculation of FI : Input channel statistics are estimated via the expectation of the outer
product of gradients:

FI =
1

m
· Es∼D

[
(∇W ℓ)

T · (∇W ℓ)
]
.

3. Calculation of FO: Output channel statistics are estimated via the expectation of the outer
product of gradients:

FO =
1

n
· Es∼D

[
(∇W ℓ) · (∇W ℓ)

T
]
.

A.10 Additional Experiments on the Projection Hyperparameter λ

We conducted further ablation studies to examine the sensitivity of the projection hyperparameter
λ across different model architectures under the 2-bit quantization setting on the Wikitext2 test set.
Specifically, we tested three representative models: LLaMA2-7B, LLaMA3-8B, and Qwen2.5-7B.
The results are summarized in Table 5.

Overall, we find that λ values in the range [0.01, 0.1] consistently yield strong performance across all
tested models. Based on these results, we recommend setting λ = 0.05 as a robust default choice.

Table 5: Ablation study of projection hyperparameter λ under 2-bit quantization on Wikitext2.
Numbers denote perplexity (lower is better).

Model 0 0.001 0.01 0.05 0.1 0.2 0.4 0.6 0.8

LLaMA2-7B 9.20 7.51 5.94 5.81 5.84 5.87 6.03 6.90 13.10
LLaMA3-8B 13.32 11.19 9.17 8.79 8.78 8.99 14.86 17.63 20.92
Qwen2.5-7B 13.17 10.37 8.75 8.77 9.02 11.27 15.90 19.71 36.74

A.11 Ablation Studies on Group Size and Codebook Vector Length

We provide additional ablation studies to analyze the sensitivity of RSAVQ to two critical implemen-
tation parameters: the number of groups in WCSG and the codebook vector length. These results
complement the main text and justify our chosen default configurations.
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Effect of group size We conducted experiments on the LLaMA2-7B model with WikiText2
(sequence length 4096, 2-bit quantization, vector length 6). Results in Table 6 show that performance
improves as the number of groups increases, but the gain diminishes after 4 groups. Specifically,
perplexity (ppl) drops significantly from 6.03 to 5.81 when increasing groups from 2 to 4, while
further increases (6–10 groups) yield stable results around 5.78–5.79. This indicates moderate
sensitivity to group size, with stable performance at ≥ 4 groups. We thus adopt 4 groups as the
default configuration to balance performance and efficiency.

Table 6: Perplexity (ppl) of LLaMA2-7B with different WCSG group sizes under 2-bit quantization.
Groups 2 3 4 6 8 10

ppl 6.03 5.88 5.81 5.79 5.78 5.78

Effect of codebook vector length Vector length plays a central role in vector quantization. We
analyzed its impact using LLaMA2-7B on WikiText2 (sequence length 4096, 2-bit quantization,
2 groups for product quantization, 4 groups for WCSG). Table 7 shows that longer vector lengths
yield slight performance gains (e.g., ppl decreases from 5.81 at length 6 to 5.62 at length 14).
However, increasing vector length also raises storage and quantization costs. For example, at 2-bit
quantization, vector length growth from 6 to 14 increases the average bit count from 2.0 to 2.875,
with corresponding bandwidth costs.

This demonstrates that RSAVQ’s sensitivity to vector length lies in the performance–cost trade-off:
longer vectors offer better performance but incur higher costs. To balance accuracy and efficiency,
we use a vector length of 6 in main experiments.

Table 7: Impact of codebook vector length on perplexity (ppl) and average bit count under 2-bit
quantization (LLaMA2-7B, WikiText2).

Vector length 4 6 8 10 12 14

Avg. bits 2.00 2.00 2.00 2.04 2.19 2.88
ppl 5.97 5.81 5.81 5.81 5.75 5.62

The above results confirm that RSAVQ is moderately sensitive to group size and vector length.
Performance saturates after 4 groups, and vector length offers a tunable trade-off between accuracy
and cost. The chosen defaults (group size = 4, vector length = 6) provide a balanced configuration for
our main experiments.

A.12 Quantization Time Comparison

We have supplemented data on the efficiency of the offline quantization process, comparing RSAVQ
with mainstream PTQ methods (VPTQ, GPTVQ) under a 2-bit configuration on an 80GB A100 GPU.
Our method adopts a product quantization scheme, which not only reduces quantization time and
codebook size compared to conventional vector quantization, but also achieves quantization latency
comparable to GPTVQ, where the vector_length = 1.

Table 8: Quantization time comparison of different methods on LLaMA2.
LLaMA2-7B LLaMA2-13B LLaMA2-70B

VPTQ 2 GPU hours 3.5 GPU hours 19 GPU hours
GPTVQ 1 GPU hours 1.8 GPU hours 8 GPU hours
RSAVQ 1.2 GPU hours 2 GPU hours 10 GPU hours
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A.13 Algorithm

Algorithm 1 RSAVQ: Riemannian Sensitivity-Aware Vector Quantization

Input: Original weight matrix W ∈ RM×N , total bit budget Bmax, sub-vector length v, iterations
T , small positive constants λ, number of groups G, Fisher matrices {Fc}Cc=1

Output: Quantized codebook C, index matrix I, original channel positions P

CWSG: Channel-wise Sensitivity Guidance
1: Initialize: P[c] = c (preserve original channel order)
2: Compute channel importance scores using Riemannian metric:
3: for c = 1 to C do
4: Compute natural gradient: ∇̃Lc = F−1

c ∇Lc ▷ Eq 3 in paper
5: Importance score: Ic = 1

2∇̃L
⊤
c Fc∇̃Lc ▷ Fisher-weighted sensitivity, Eq 7 in paper

6: Store Ic in Iimportance[c]
7: end for
8: Sort channels by Iimportance (descending) and reorder W , P
9: Allocate bits proportionally to sensitivity:

10: I[c] = I[c] + 1
11: for c = 1 to C do
12: b[c] = Round

(
Bmax · log2 I[c]∑C

c=1 log2 I[c]

)
▷ Eq 9 in paper

13: end for
14: Channel grouping: Divide sorted channels into G groups with equal size
15: n = ⌈C/G⌉
16: for g = 1 to G do
17: Group g channels: Gg = [(g − 1)n+ 1,min(gn,C)]

18: Average bits per group: bg = Round
(∑

c∈Gg
b[c]

|Gg|

)
▷ Eq 10 in paper

19: end for

EDSG: Error Direction Sensitivity Guidance
20: for g = 1 to G do
21: Extract group weights and reshape into sub-vectors: Wg ∈ RM×|Gg| → {vg,l ∈ Rv}
22: Initialize codebook Cg via K-means with 2bg [g] cluster centers
23: for t = 1 to T do
24: for each sub-vector vg,l do
25: Quantize: ig,l = argmini ∥vg,l − Cg,i∥2
26: Compute error: Eg,l = vg,l − Cg,ig,l
27: Project error to low-sensitivity direction:
28: Lproject ← ∥Eg,l + λ · ∇̃L∥2F ▷ Eq 6 in paper
29: Update Cg via gradient descent on Lproject
30: end for
31: Store index I[g, l] = ig,l
32: end for
33: end for
34: Reconstruct Ŵ from C and I
35: return C, I,P

19



A.14 Additional Experiments

In this section we report additional experimental results for LLaMA-2 models[43] and LLaMA-3
models[36].

Table 9: Perplexity on Wikitext-2(Sequence Length=4096) and Zero-Shot Task Accuracy of Various
Quantization Algorithms on LLaMA-2 7B.

LlaMA-2 7B
seqlen=4096 bit W2↓ AC AE HE QA WI Avg↑

FP16 16 5.12 43.3 76.3 57.1 78.1 68.7 64.7
GPTQ 2 50.75 20.9 34.9 30.5 57.2 52.3 39.16
GPTVQ 2.25 6.71 31.2 66.3 46.4 72.4 64.4 56.14
DB-LLM 2.01 7.23 33.53 45.2 61.98 73.18 61.72 55.12
AQLM 2.29 6.29 34.9 66.5 50.88 74.92 65.67 58.57
VPTQ 2.02 6.13 35.24 63.8 52.08 75.19 64.33 58.13
QuIP# 2 6.19 34.6 64.6 51.91 75.1 64.9 58.22
RSAVQ(ours) 2 5.81 37.2 64.4 50.71 75.4 65.74 58.6
GPTQ 3 8.06 31.1 58.5 45.2 71.5 59.2 53.1
GPTVQ 3.125 5.44 39.93 74.07 54.21 76.17 69.06 62.69
AQLM 3.04 5.46 38.4 68.06 54.12 76.88 66.93 60.88
VPTQ 3.02 5.43 39.3 69.1 54.9 77.3 68 61.72
QuIP# 3 5.41 39.2 68.4 – 77.3 66.5 –
RSAVQ(ours) 3.01 5.26 41 73 54.7 76.7 68.2 62.7
GPTQ 4 5.49 36.8 66.2 55.4 76.6 68.2 60.64
GPTVQ 4.125 5.27 42.83 75.17 56.41 77.37 69.61 62.28
AQLM 4.04 5.21 41 70.2 56 78.2 67.3 62.54
VPTQ 4.01 5.26 39.7 69 56 78.1 67.1 61.98
QuIP# 4 5.19 40.5 69.1 – 78.4 67.6 –
RSAVQ(ours) 4.01 5.22 42 74.7 56.3 76.9 68.2 63.62

Table 10: Perplexity on Wikitext-2(Sequence Length=4096) and Zero-Shot Task Accuracy of Various
Quantization Algorithms on LLaMA-2 13B.

LLaMA-2 13B
seqlen=4096 bit W2↓ AC AE HE QA WI Avg↑

FP16 16 4.57 48.2 79.5 60.1 79.1 72.2 67.82
GPTQ 2 43.84 23.3 43.3 36 61.3 54.7 43.72
GPTVQ 2.25 5.72 38.7 73.6 51.6 75.4 68.5 61.56
DB-LLM 2.01 6.19 38.14 51.64 68.04 75.14 64.09 59.41
AQLM 2.18 5.41 39.42 69.15 54.68 76.22 68.43 61.58
VPTQ 2.02 5.32 40.02 71.55 56.18 77.26 66.85 62.37
QuIP# 2 5.35 39.5 69.3 56.01 77.3 67.7 61.96
RSAVQ(ours) 2 5.29 41.4 72.5 56.3 75.1 68.9 62.84
GPTQ 3 5.85 38.48 65.66 53.47 76.5 63.93 59.61
GPTVQ 3.125 4.8 44.45 77.23 58.18 77.8 71.98 59.63
AQLM 3.03 4.82 42.58 70.88 58.3 77.26 68.43 63.49
VPTQ 3.03 4.79 42.32 73.99 58.42 77.64 68.67 64.21
QuIP# 3 4.78 44 72.5 – 78.4 69.1 –
RSAVQ(ours) 3.01 4.74 44.9 77.7 57.5 78.1 72.4 66.12
GPTQ 4 4.78 42.49 70.45 58.67 77.75 70.01 63.87
GPTVQ 4.125 5.27 42.83 75.17 56.41 77.37 69.61 64.28
AQLM 3.94 4.65 44.8 73.32 59.27 78.35 69.85 65.12
VPTQ 4.02 4.64 44.37 73.19 59.37 77.75 69.77 64.89
QuIP# 4 4.63 45.5 73.9 – 78.9 69.9 –
RSAVQ(ours) 4.01 4.72 46.5 78.8 59 78.3 71.5 66.82
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Table 11: Perplexity on Wikitext-2(Sequence Length=4096) and Zero-Shot Task Accuracy of Various
Quantization Algorithms on LLaMA-2 70B.

LLaMA-2 70B
seqlen=4096 bit W2↓ AC AE HE QA WI Avg↑

FP16 16 3.12 51.11 77.74 63.97 81.12 77.11 70.21
GPTQ 2 NaN 35.8 67 51.8 74.6 66.7 59.18
GPTVQ 2.25 4.25 49.4 80.47 58.26 79.4 75.2 68.55
DB-LLM 2.01 4.64 44.45 55.93 76.16 79.27 73.32 65.83
AQLM 2.07 3.94 47.93 77.68 61.79 80.43 75.93 68.75
VPTQ 2.07 3.93 47.7 77.1 62.98 80.3 74.98 68.61
QuIP# 2 3.91 48.7 77.3 62.49 80.3 75.9 68.94
RSAVQ(ours) 2 3.55 48.03 77.56 62.43 80.19 77.03 69.05
GPTQ 3 4.4 44.11 72.73 60 78.4 71.82 65.41
AQLM 3.01 3.36 50 77.61 63.23 81.28 77.19 69.86
VPTQ 3.01 3.34 48.89 77.06 63.52 80.9 77.51 69.58
QuIP# 3 3.35 50.9 77.7 – 81.4 76.4 –
RSAVQ(ours) 3 3.25 50.8 78.5 63.7 81.6 77.5 70.42
GPTQ 4 3.35 49.15 76.81 63.47 81.23 75.61 69.25
AQLM 4.14 3.19 50.68 77.31 63.69 81.5 76.48 69.93
VPTQ 4.01 3.19 49.57 78.16 63.71 81.18 76.4 69.8
QuIP# 4 3.18 50.6 78.1 – 81.4 77.1 –
RSAVQ(ours) 4.01 3.11 50.9 78.7 64 81.2 76.9 70.34

Table 12: Perplexity on Wikitext-2(Sequence Length=2048) and Zero-Shot Task Accuracy of Various
Quantization Algorithms on LLaMA-3 8B.

LLaMA-3 8B seqlen=2048 bit W2↓ AC AE HE QA WI Avg↑
FP16 16 6.14 50.3 80.1 60.2 79.6 73.1 68.66
GPTQ 2 210 19.9 28.8 27.7 53.9 50.5 36.16
DB-LLM 2 13.6 28.2 59.1 42.1 68.9 60.4 51.74
QuIP 2 85.1 21.3 29 29.2 52.9 51.7 36.81
QuIP# 2 9.11 39.2 72.9 – 75.6 68.2 –
VPTQ 2.08 9.29 36.9 71 52.2 75.1 65.9 60.22
RSAVQ(ours) 2 8.79 40.9 74 51.9 75.7 66.1 61.72
GPTQ 3 8.2 37.7 70.5 54.3 74.9 71.1 61.7
QuIP 3 7.5 41 72.9 55.4 76.8 72.5 63.72
QuIP# 3 6.77 46.4 77.4 – 77.9 72.9 –
VPTQ 3.03 6.97 45.8 77.5 58.4 78.2 73.4 66.66
RSAVQ(ours) 3.01 6.34 46 76.1 57.7 78.2 73.9 66.38
GPTQ 4 6.5 47.7 78.8 59 78.4 72.6 67.3
QuIP 4 6.5 47.4 78.2 58.6 78.2 73.2 67.12
QuIP# 4 6.34 50.2 80.1 – 79.7 72.9 –
VPTQ 4.03 6.42 49.1 78.8 59.3 78.7 74.8 68.14
RSAVQ(ours) 4.01 6.31 48.5 79.7 59.8 78.9 75.2 68.42

Table 13: Perplexity on Wikitext-2(Sequence Length=2048) and Zero-Shot Task Accuracy of Various
Quantization Algorithms on LLaMA-3 70B.

LLaMA-3 70B seqlen=2048 bit W2↓ AC AE HE QA WI Avg↑
FP16 16 2.9 60.1 87 66.3 82.4 80.8 75.32
GPTQ 2 11.9 24.6 38.9 41 62.7 59.9 45.42
QuIP 2 13 26.5 48.9 40.9 65.3 61.7 48.66
QuIP# 2 5.6 18.3 32.2 – 54.7 68.9 –
VPTQ 2.07 5.66 54.2 83.6 61.8 80.1 74 70.74
RSAVQ(ours) 2 5.6 54.4 83.1 61.7 80.2 77.1 71.3
GPTQ 3 5.2 52.1 79.6 63.5 80.6 77.1 70.58
QuIP 3 4.7 54.9 83.3 63.9 82.3 78.4 72.56
QuIP# 3 3.8 31.1 36.6 – 58.8 76.4 –
VPTQ 3.01 3.81 57.3 84.7 65.5 81.7 79.2 73.68
RSAVQ(ours) 3 3.69 58.1 85.2 67 81.1 79.9 74.26
GPTQ 4 3.3 58.4 86.3 66.1 82.9 80.7 74.88
QuIP 4 3.4 58.7 86 65.7 82.5 79.7 74.52
QuIP# 4 3.21 35 67.3 – 71.9 76.7 –
VPTQ 4.05 3.15 59 86.1 66.2 82.4 79.8 74.7
RSAVQ(ours) 4.01 3.11 59.2 86.4 66.1 83.4 80.4 75.1
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We provide both theoretical and empirical results supporting the main claim of
the paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The Appendix A.1 highlights some of the limitation of this work.
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• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
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should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
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address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
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limitations that aren’t acknowledged in the paper. The authors should use their best
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will be specifically instructed to not penalize honesty concerning limitations.
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a complete (and correct) proof?
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Justification: All statements are provided with proofs.
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• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We hope to provide all hyperparameters and experimental details in the
Section 5 and provide code to reproduce the experiments.
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example:
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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to access the raw data, preprocessed data, intermediate data, and generated data, etc.
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• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:[No]
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• It should be clear whether the error bar is the standard deviation or the standard error
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experiment section.
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• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
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• The paper should provide the amount of compute required for each of the individual
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than the experiments reported in the paper (e.g., preliminary or failed experiments that
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Answer: [Yes]
Justification: The paper should be considered a theory and/or conceptual paper. We discussed
implication for efficient LLM deployment in the main text, and can not anticipate that the
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• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
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Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: No data and models realese.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We clearly cite all code packages and datasets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
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Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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