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Abstract

Recent breakthroughs in the analysis of multi-objective evolutionary algorithms
(MOEAs) are mathematical runtime analyses of those algorithms which are inten-
sively used in practice. So far, most of these results show the same performance
as previously known for simpler algorithms like the GSEMO. The few results
indicating advantages of the popular MOEAs share the same shortages: They con-
sider the performance for the problem of computing the full Pareto front, (of some
algorithms enriched with newly invented mechanisms,) and this on newly designed
benchmarks. In this work, we overcome these shortcomings by analyzing how
existing popular MOEAs approximate the Pareto front of the established LARGE-
FRONT benchmark. We prove that several popular MOEAs, including NSGA-II
(with current crowding distance), NSGA-III, SMS-EMOA, and SPEA?2, only need
an expected time of O(n?logn) fitness evaluations to compute an additive e-
approximation of the Pareto front of the LARGEFRONT benchmark. This contrasts
with the already proven exponential runtime (with high probability) of the GSEMO
on the same task. This result is the first mathematical runtime analysis showing and
explaining the superiority of popular MOEAs over simple ones like the GSEMO
for the central task of computing good approximations to the Pareto front.

1 Introduction

Theoretical runtime analysis of the evolutionary algorithms is always hard to crack. Early theoretical
results for the multi-objective evolutionary algorithms (MOEAs) [LTZ* 02, [LTZ04] focused on the
simpler ones like the (G)SEMO, which use only dominance criterion for survival selection. Recent
breakthroughs like the runtime analysis on the most widely used MOEAs, NSGA-II [DPAMO2],
successfully conducted in [ZLD22|ZD23], have triggered a new era for the theory of MOEAs. Other
algorithms that are intensively used in practice, like the NSGA-III [DJ14], SMS-EMOA [BNEQ7],
and SPEA2 [ZLTO01], are theoretically analyzed thereafter [WD23| BZLQ23, RBLQ24]. Theory
on these popular MOEAs has become a hot topic [BQ22, |DQ23,[DOSS23bl BZLQ23, IDDHW23|
WD23|[ZD24b, ZLDD24| DZ1." 24, [ZD24a,[ODNS24, RBLQ24, DIK25| [DZD25, LZD25, DZD23].

Interestingly, despite the rapid progress in the analysis of practical MOEAs, only a few results
have demonstrated theoretical advantages of popular MOEAs over simpler algorithms. Dang et
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al. [DOSS23al introduced the Bernoulli noise model, and showed that the GSEMO fails badly on
every noisy fitness function while NSGA-II can cover the whole Pareto front of noisy LOTZ in
polynomial fitness evaluations. Dang et al. [DOS24] proved that three popular MOEAs, i.e. NSGA-II,
NSGA-III and SMS-EMOA, enhanced with a mild diversity mechanism (avoiding genotype duplica-
tion), require O(n log n) expected fitness evaluations to cover the whole Pareto front of their designed
ONETRAPZEROTRAP, which only has two extremal points as the whole Pareto front. In contrast, sim-
pler algorithm GSEMO requires at least n™ number of fitness evaluations in expectation. Meanwhile,
another very recent work [DOS25] constructed an artificial problem with a small Pareto set where
almost all pairs of search points are incomparable, also with only two points in the whole Pareto front,
and proved that any black-box MOEA using only dominance-based selection and bit-value-invariant
variation operators takes exponential time with high probability, while three popular MOEAs, i.e.
NSGA-II, NSGA-III, and SMS-EMOA efficiently cover the Pareto front in expected quadratic time.

However, we see that the above results [DOSS23al IDOS24, [DOS25] indicating the advantages of
the popular MOEASs share the same shortages. They consider the performance for the problem of
computing the full Pareto front, (of some algorithms enriched with newly invented mechanisms),
and this on newly designed benchmarks. In practice, one cannot know the Pareto front beforehand.
The newly invented mechanisms or newly designed benchmarks place the question on the generality
of tailored results. Till now, it is still not convincingly proved in theory why popular MOEAs are
popular in practice.

Our contributions: This work takes such an attempt to overcome these shortages and fill this
gap by analyzing how several popular MOEAs (NSGA-II, NSGA-III, SMS-EMOA, and SPEA2)
approximate the Pareto front of the LARGEFRONTZ benchmark (denoted by LF.) proposed in [HNO9].
Note that we do not consider MOEA/D here, since it is structurally very different from the domination-
based algorithms analyzed in this work and poses additional challenges due to its decomposition
mechanism. We prove that, for LF. with problem size n, these four popular MOEAs achieve
an additive e-approximation of LF. in expected O(n?logn) number of fitness evaluations (See
Theorems [9, [12] [I4 and [16). In contrast, existing result [HNO9] showed that the GSEMO fails
in expected polynomial time (See Theorem [5). We also provide a general theorem of expected
O(unlogn) number of fitness evaluations for any MOEA with Property A to achieve an additive
g-approximation of LF. (See Theorem where 1 denotes the maximum population size. Compared
with the GSEMO, which only applies the dominance criterion for survival selection, these popular
MOEAs additionally use a criterion to increase the diversity of the survived individuals in the next
population. This will result in a better approximation when the number of Pareto front points is large
(a property that naturally and widely holds for the Pareto front curve containing a continuous segment
in continuous optimization). This provides the first mathematical runtime analysis showing the
superiority of popular MOEASs over simpler ones like the GSEMO for the central task of computing
good approximations to the Pareto front.

The rest of the paper is organized as follows. Section 2 introduces the approximation measurement
and existing LARGEFRONT. benchmark. Section[3 presents a general approximation theorem, and
Section E] applies it to establish the runtime of NSGA-II, NSGA-III, SMS-EMOA, and SPEA?2 for a
good approximation. Section [5|concludes our paper.

2 Preliminaries

2.1 Additive e-Approximation

Here are some basic definitions for the maximization of a bi-objective problem f = (f1, f2) : Q@ —
R? defined on 2. For z,y € Q, we say x weakly dominates vy, written as x = vy, if fi(z) > f1(y)
and fo(z) > fa(y), and « dominates y, written as © > y, if at least one inequality is strict. A solution
is a Pareto optimum if no other solution dominates it. The Pareto set consists of all Pareto optima and
the set of corresponding objective values is called the Pareto front.

When the Pareto front is unknown beforehand, or the number of Pareto front points is exponential or
infinite (like a segment in continuous space), covering the whole Pareto front is infeasible. A good
approximation of the Pareto front becomes a natural goal. There are multiple approximation measures,
such as e-dominance [LTDZ02], generational distances [V VLIS, BT03,ICCRS04], hypervolume indi-
cator [ZT98] or maximal empty interval size [ZD25]. Here we adhere to the original LARGEFRONTZ
work [HNQ9], and use additive e-approximation (See Definition E) to evaluate how a set of points



approximates the Pareto front. It is built on the additive e-dominance, first defined in [LTDZ02], that
relaxes the usual dominance relation by allowing an additive slack ¢ in each objective.

Definition 1 ([LTDZ02]). A set of objective vectors T is an additive e-approximation of [ :
{0,1}™ — R™ if and only if for each objective vector v € f({0,1}"), there exists at least one
objective vector u € T that additively e-dominates v, where an objective vector u is called additively
e-dominates v (written as u . v) if and only if u; + € > v; forall i € {1,...,m}.

2.2 LargeFront Benchmark

LARGEFRONT, is a benchmark proposed by [HNO8] and [HNO9], and contains two variants,
LF. [HNO8] and LF. [HNQ9]. Different from existing benchmarks for theoretical analysis, like
COCZ [LTZ04], LOTZ [LTZ04], OJZJ [DZ21], which contain the polynomial number of Pareto
front points, both variants have exponential Pareto front points (See Lemma[3). We see its similarity
to the continuous optimization as a segment of a continuous curve in the Pareto front contains infinite
points. It compensates for the situation where the theory of evolutionary algorithms is majorly built
on the discrete space. Since LF. shows more similarity to the arguably most popular ONEMAX
benchmark, this paper will only discuss it, and we believe our findings will inspire the analyses of
MOEAs on the other variant LF.. Following is the definition of LFL.

Definition 2 ([HNQ9]). Letn € N be even and e > 0. The function LF!(z) = (LFE/,l(x)J LFE/Q(x)) :
{0,1}™ — R? is defined by
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where x' and x'" are the prefix of length n/2 and suffix of length n/2 of x,
number of ones and the number of zeros in this bitstring respectively, and BV (y) : {0, 1}”/ — Ris

- |1 and | - |o calculate the

defined by BV (y) = Z?;l on'—i. yi, computing the decimal value of the n'-bit binary number y.

To have an intuitive feeling on this function, Figure plots the objective space of LF! fore = 1 and
n = 36.
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Figure 1: Objective space of LF, fore = 1 and n = 36.
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As stated in [HNQ9], all bitstrings are Pareto optimal. Since there exist solutions x and y such that
|2’'|1 = |y'|1, but " # y” and such solutions can be mutually non-dominated, we could easily
see that the size of the Pareto front grows exponentially with the problem size n, also shown in
Figure |I The following lemma collects the results of the Pareto set and the Pareto front w.r.t. LF.
from [HNO9].

Lemma 3 (JHNO9]). The Pareto set of LFL is S* = {0,1}", that is, every bitstring of length
n is Pareto optimal. The Pareto front is F* = {((2k + 27 "/?a)e, (n — 2k + 277/2(27/2 — 1 —
a))e) | k € [0.n/2],a € [0..27/2 — 1]}, where o = 0 for k < \/n or k > n/2 — \/n, and for
Vi <k <nj2 —\/n, a ranges over all integers in [0..2"/% — 1].

The following lemma from [HNO9| gives the necessary and sufficient condition to reach an additive
e-approximation w.r.t. LF..

Lemma 4 (JHNO9)). A set is an additive e-approximation of LF if and only if there exists a solution
x € {0,1}™ with |2'|1 = k for each k € {0,...,n/2}.

As common in the evolutionary computation theory community [NW10, IAD11, Jan13,ZYQ19],
the runtime usually means the number of fitness evaluations to reach a specific goal. Horoba and
Neumann [[HNO9] proved that the GSEMO fails to achieve an additive c-approximation of LF. in
polynomial runtime (See the following theorem).

Theorem 5 ([HNO9]). The runtime until the GSEMO has achieved an additive c-approximation of
LF. is 2200") \yith probability 1 — 2~n"*),

As stated in the above, in this work, we aim to analyze the runtime guarantees of popular MOEAs
required to achieve an additive e-approximation of LF.. Besides, we use the notation of [a..b] :=
{a,a+1,...,b} fora <banda,b € Z.

3 General Approximation Theorem

Before stepping into specific runtime results of popular MOEAs, this section will introduce a general
theorem of the runtime guarantee (to reach an additive e-approximation w.r.t. LF) for a general
MOEA framework with specific property. It will be then used to prove the runtime of popular MOEAs,
in next section, and we believe that it will be useful for future research on LF.. AlgorithmE states
the procedure of the general MOEA framework. The population (the set of solutions) is initialized
uniformly at random. In each generation, the algorithm chooses the mating population, generates
A offspring individuals, and then uses a survival selection to determine the next population. We
note that this framework with A = 1, p. = 0, random parent selection, bit-wise mutation, and
dominance-only survival selection gives the GSEMO. The setting of A = | P;|, the survival selection
of non-dominated sorting and crowding distance gives the NSGA-II. The NSGA-III corresponds to
A = | P, survival selection by non-dominated sorting and reference point mechanism. The setting of
A = | P, the survival selection of non-dominated sorting and hypervolume contribution indicator
gives the SMS-EMOA. The SPEA2 employs strength-and-density estimation in its survival selection
step.

Algorithm 1: A General MOEA Framework

Initialize P uniformly at random;
fort=0,1,2,... do
Choose A individuals from P; to form the mating population P/;
Generate offspring population @); with X individuals from P/ via applying crossover and
mutation with crossover rate p.;
Generate the next population P;;, from R; = P;|J Q) via a specific survival selection;

Here we extract the following property for the survival selection that will be used for our general
theorem.

Definition 6 (Property .A). An MOEA or a survival selection procedure satisfies Property A on LFL.
for any time t, if Ry = P;\J Q: contains x with |2'|; = k, then Py contains y with |y'|; = k,
where x' (y') is the first half sub-bitstring of x (y).



Property .A ensures that once the value of k 1-bits in the first half of bitstring is discovered, it will
never be lost. Together with Lemma[d], we bound the expected number of fitness evaluations required
to achieve an additive e-approximation of LF. by O(unlogn) in the following theorem. Due to the
space limit, we omit all our proofs and put them into the appendix.

Theorem 7. Let the crossover rate p. € [0,1), u be the maximum size of parent population P with
w > n/2, and X the size of offspring population Q with A\ = O(p). Consider using AlgorithmE
with random selection, one-bit mutation or bit-wise mutation to generate P’, and survival selection
with Property A, to optimize LF.. Then the expected number of fitness evaluations for achieving an
additive e-approximation w.r.t. LFL is O(unlogn).

4 Approximation Guarantees for Popular MOEAs

Based on the general approximation theorem (Theorem|[7) in the previous section, this section will
prove O(n?log n) expected runtime for obtaining an additive e-approximation w.r.t. LF., for four
widely used MOEAs, NSGA-II, NSGA-III, SMS-EMOA, and SPEA2, all by majorly proving that
these popular MOEAs satisfy Property A.

4.1 NSGA-II Using the Current Crowding Distance

The Non-dominated Sorting Genetic Algorithm IT (NSGA-II [DPAMO?2]), is the most widely used
MOEA in practice. As stated in the Section E, Zheng et al. [ZLD22, |ZD23] conducted the first
mathematical runtime analysis of the NSGA-II, inspiring a series of follow-up studies. Among them,
only Zheng and Doerr [ZD22, [ZD25] analyzed how the NSGA-II approximates the Pareto front.
In these works, they proved the possible difficulties of the original NSGA-II, but proved that a
simple modification, like using the current crowding distance in the survival selection [KDO6], or
a steady-state mode [DNLAQ9||, will result in a near ideal approximation on the Pareto front for
ONEMINMAX. Since the proofs are quite similar for these two variants, this work will only discuss
the NSGA-II variant with the current crowding distance, and conjecture the similar result of the
steady-state variant.

The NSGA-II (See Algorithm fits into the general MOEA framework (Algorithm , with fixed | P
size of IV, offspring population size A = NN, and special survival selection. The survival selection uses
the dominance as the first criterion, preferring the non-dominated ones, and uses the non-dominated
sorting to divide the combined population R; into several fronts Fy, Fy, . ... For the critical front

F;« with Z;:_ll |Fi] < N < Zi;l |F;|, the crowding distance is calculated (See Algorithm E).

The original NSGA-II directly removes || J;_, F;| — N individuals with smallest crowding distance
in F;« and selects the remaining ones in F;«. This strategy only uses the initial crowding distance,
and ignores the changes of crowding distance of remaining individuals after each removal. Hence,
Kukkonen and Deb [KD06] proposed the survival selection with the current crowding distance and
Zheng and Doerr [ZD25] proved its approximation advancing against the original one. Since each
removal only affects the crowding distance of four individuals, the update of the crowding distance
can be effectively implemented [ZD25].

The following lemma shows that the NSGA-II with current crowding distance satisfies Property A
on LF. when the population is large enough.

Lemma 8. Let N > 2?" + 3. Consider using the NSGA-II with the survival selection based on the
current crowding distance to optimize LF. with problem size n. Assume that at some iteration t, the
combined parent and offspring population Ry = P;|J Q: contains an individual x with |x'|y = k,
then the next parent population Py, also contains an individual y with |y'|, = k.

With Lemma E, we then easily apply Theorem|zto obtain O(n?logn) (when setting N = O(n))
expected runtime to reach an additive e-approximation w.r.t. LF..

Theorem 9. Let N > % +3and p. € [0,1). Consider using the NSGA-II with the survival selection
based on the current crowding distance and employing uniform selection and one-bit mutation or
bit-wise mutation to optimize LF. with problem size n. Then after an expected O(Nnlogn) fitness
evaluations, the population reaches an additive e-approximation w.r.t. LF..
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Algorithm 2: NSGA-II using current crowding distance [KDO06, [ZD25]

Generate Py by selecting N solutions uniformly and randomly from {0, 1}" with replacement;
fort=0,1,2,... do
Generate the offspring population @); with size NV;
Use fast-non-dominated-sort() in [DPAMO2] to divide R; into fronts F}, F5, .. .;
Find i* > 1 such that | J'_,' Fi| < N and | U'_, ;| > N;
Use Algorithm to separately calculate the crowding distance of each individual in
1yeeeyLigx,
while | |J:_, F;| # N do
Let = be the individual with the smallest crowding distance in F;~, chosen at random in
case of a tie;
Find four neighbors of z, two in the sorted list with respect to f; and two for f5. Update

the crowding distance of these four neighbors;
Fi* = Fi* \ {iE},

Py = Uzzl F;

Algorithm 3: Computation of the crowding distance ¢Dis(,S) [DPAMO2]]
Input: S = {51, 55,...,8 s/}
Output: cDis(S) = (cDis(S51), cDis(S2), . .., cDis(S|g|)), where cDis(S;) is the crowding
distance for S;
¢Dis(S) = (0,...,0);
for each objective f; do
Sort S in order of descending f; value: S; 1,...,5; 5|5
cDis(S;.1) = 400, cDis(S;.g) = +00;

forj=2,....|S|—1do
eDis(Si,) = eDis(si, ) + Ll o,

4.2 NSGA-III

The NSGA-II was reported experimentally to encounter difficulties for problems with more objectives
(and is recently proven that at least an exponential runtime is needed to cover the full Pareto front
for nONEMINMAX, with three and more objectives [ZD24a]]). Deb and Jain [DJ14] proposed a
new variant called the Non-dominated Sorting Genetic Algorithm III, NSGA-III, to overcome this
difficulty. It also uses two criteria for the survival selection, but replaces the second criterion of the
crowding distance in NSGA-II by the reference point mechanism. Other components are the same as
the NSGA-II, see Algorithm

We now give a brief introduction on the reference point mechanism. After dividing the combined
population R, into serval fronts, all fronts F; with ¢ < ¢* are selected and denoted as Z;. Following
the first theory work of the NSGA-III [WD23|, we use the improved and more detailed normalization
in [BDR19], by one of the two original authors among others [DJ14]. That is, all individuals in

Z; are normalized by f'(z) = f;n(;z):zzj , where 27 and 73;?2“1 are the ideal point estimate and the

J
Nadir point estimate of objective j. Each normalized individual is then associated with a reference
point with the smallest distance. Finally it repeatedly selects the reference point with the fewest
already-chosen solutions (breaking ties randomly), then adds the unselected solution closest to that
reference point (again breaking ties randomly) until N — Z;Z_ll | F’;] number of solutions are selected.
See Algorithm [6] for more details.

The runtime analysis of the NSGA-III starts since 2023, see [WD23|/ODNS24, WD24], and all focus
on the performance to cover the full Pareto front. Very recently, Deng et al. [DZD25] established
the first approximation guarantee of the NSGA-III and proved that the number of reference points is
more important than the population size which is suggested important in [ZD22,ZD25]. Till now,
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Algorithm 4: Normalization [BDR19]]

Input: Fy, ..., F;+ : non-dominated fronts; f = (f1,..., fim): objective function;
z’]l-” € R™ : observed max in each objective; zj* € R™ : observed min in each objective;
E C R™ : extreme points of previous iteration, initially {co};

forj=1,2,...,mdo

27 = min{z}, min.er, fj(2)};

7 = max{z}’, max.er, f;j(2)};

Determine an extreme point ¢t/) in the j-th objective from R|J E using an achievement

scalarization function;

| E= EU{eW};
valid = False;
if eV ..., (™ are linearly independent then
valid = True;
Let H be the hyperplane spanned by e(V) ... e(™);
forj =1,2,...,M do
Determine the intercept I; of H with the j-th objective axis;
ifI; > eqand I; < z;“" then
=1
else
valid = False;
break;

if valid = False then
forj=1,...,M do
| & = maxeer, fi(2):

forj=1,2,...,mdo
if 2;“’ < 27 + €nad then

| 2 =maxeer Uy ke fi(@):

Define f}'(z) = M foreachxz € {0,1}"andj € 1,...,m;

zmin
J J

there is no other approximation theory for the NSGA-IIIL. Before we prove that the NSGA-III satisfies
Property A, we first show the following lemma that the extremal objective values in the combined
population R; will pass on the next population P;;. Note that Deng et al. [DZD25] proved the
optimal setting of N = N, for approximating ONEMINMAX, and note that Deb and Jain [DJ14]
suggests N =~ N, for the general setting. Here we only consider the setting of N = N,.. It is not
difficult to see from the proofs that our results also hold for N > N,..

Algorithm 5: NSGA-III [DJ14]

Generate Py by selecting N solutions uniformly and randomly from {0, 1}™ with replacement;
fort=0,1,2,... do

Generate the offspring population ); with size IV;

Use fast-non-dominated-sort() [DPAMO2] to divide R; = P; |J Q; into fronts Fy, Fy, .. .;

Find ¢* > 1 such that | Uz*:_ll F;] < N and | U2:1 F;| > N;
Z=U' Fi

Use Algorithm@to select F. C Fj- such that | Z, U F.
Py = Z U Fps

Lemma 10. Let N = N, > 2n + 3 and a given positive threshold €,,¢ > ne. Consider using
the NSGA-III to optimize LF, with problem size n. Define zj** := min{f;(x) | * € R} and
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Algorithm 6: Selection based on a set U of reference points when maximizing f [DJ14]

Input: Z;: the multi-set of already selected individuals;
Fti* : the multi-set of individuals to choose from;
frn: Normalize(f, Z = Z, | Fti*);
Associate each individual x € Z; | J F}~ to the reference point p(x) based on the smallest
distance to the reference rays;

For each reference point € U, initialize p, := [{x € Z; | rp(x) = r}|;
Initialize " = (and U’ = U;
while True do
Let ryin € U’ such that p,_, is minimal(breaking ties randomly);
Letz, . € F/ \ F}" which is associated with 7, and minimizes the distance between
fn(xy .. ) and 7, (breaking ties randomly);
if ., exists then
o= U, s
Proin = Pron T 15
if | Z;| + |F{"| = N then
return F}
else
L u=u \ {Trnin}
2 = max{f;(z) | ¥ € Ry}, j = 1,2. Then the next parent population Py, will preserve two

individuals x,y such that fi(x) = 2\ and f)(y) = 2}P8*.

With Lemma|[10} we easily see that once (0, ne) and (ne, 0) are covered by R, they will be covered
by the next population. The following lemma even shows that after (0, ne) and (ne, 0) are covered
by R;, Property A will be satisfied.

Lemma 11. Let N = N, > 2n + 3 and €,,q > ne. Consider using the NSGA-III to optimize LF.
with problem size n. Assume that at some iteration t, the two extreme points (0,ne) and (ne,0) are
covered by the combined parent and offspring population Ry = P;\J Qy. If Ry contains an individual
x with |2'|y = k, then the next parent population P,1 also contains an individual T with |Z'|; = k,
and covers (0,ne) and (ne, 0) as well.

With Lemma [10, it is not difficult to obtain the runtime to cover (0,n¢) and (ne, 0). Then from
Lemmal|TT that Property A is satisfied, we use the general approximation theorem (Theorem[7) to
obtain O(n? log n) (when setting N = ©(n)) expected runtime to reach an additive e-approximation
w.r.t. LFL.

Theorem 12. Let N = N, > 2n + 3, €09 > ne and p. € [0,1). Consider using the NSGA-III
with uniform selection and one-bit mutation or bit-wise mutation to optimize LF. with problem size
n. Then after an expected number of O(Nnlogn) fitness evaluations, the population achieves an
additive e-approximation of LFL.

4.3 SMS-EMOA

The SMS-EMOA [BNEOQ7] can be seen as a steady-state variant of the NSGA-II in which crowding
distance is replaced by the hypervolume contribution indicator. In each generation, it generates one
offspring and then only removes one individual from R;. The hypervolume indicator is the most widely
used measure for approximation quality in evolutionary multi-objective optimizations [[SIHP20].
Given a reference point r, the hypervolume of a population .S is calculated as

HVAS)zE(U{hGRm|7“§th(“)}>,

uesS

where L is the Lebesgue measure. The hypervolume contribution of an individual x € Fj« is defined
as A, (z, Fy+) := HV,(F;») — HV,(F;« \ {z}) for z € F}-. Algorithm[7 details the full procedure.



Algorithm 7: SMS-EMOA [BNEO7]

Generate Py by selecting N solutions uniformly and randomly from {0, 1}" with replacement;
fort=0,1,2,...,do
Generate one offspring y;
Use fast-non-dominated-sort() [DPAMO2] to divide R; = P; U {y} into F,..., Fj« ;
Calculate A, (z, Fy+) for all z € F;« and find D = argmin.cp,. A (2, Fi+);
Uniformly at random pick ¢ € D and P, = R \ {¢} ;

It fits into our general MOEA framework (Algorithm T) with fixed population size of N, offspring
population size A = 1, and the survival selection based on hypervolume contribution.

Although Bian et al. [BZLQ23|] and Zheng and Doerr [ZD24a] have analyzed the runtime of the
SMS-EMOA on bi- and many-objective benchmarks, its theoretical approximation performance
remains unstudied. Brockhoff et al. [BENOS8]| proved that the (x + 1)-SIBE A algorithm, the sim-
plified version of the SMS-EMOA without fast non-dominated sorting, achieves a multiplicative
g-approximation of another LARGEFRONT, variant LF in expected O(un log n) number of fitness
evaluations. No approximation theory for the SMS-EMOA on LF. is given. As in the previous
sections (also similar to the proof of (1 4+ 1)-SIBEA on LF. [BENOS]), we first show that the
SMS-EMOA has Property A, w.r.t. LFL.

Lemma 13. Let N > % +3andr = (ri,re) withry < —¢, 19 < —e. Consider using the
SMS-EMOA to optimize LF. with problem size n. Assume that at some iteration t the combined
parent and offspring population R; contains an individual x with |z'|; = k, then the next parent
population P,11 contains an individual y that |y'|, = k.

Combining Lemma[I3 with our general theorem (Theorem[7), we obtain the expected runtime of
O(Nnlogn), which is O(n? logn) when N = ©(n), required to reach an additive s-approximation
w.r.t. LFL.

Theorem 14. Let N > n/2+ 3, r = (r1,ro) withr) < —¢, 1o < —c and p. € [0, 1). Consider
using the SMS-EMOA to optimize LF. using uniform selection and one-bit mutation or bit-wise
mutation with problem size n. Then after an expected O(Nnlog n) number of fitness evaluations, the
population achieves an additive e-approximation w.r.t. LF..

44 SPEA2

The SPEA?2 algorithm [ZLTO1] is one of the most popular MOEA. In survival selection at generation
t, it creates a new parent population P;, 1 by selecting all non-dominated solutions from R;. If | Py 1|
is smaller than the population size [V, it is then supplemented with the best dominated individuals
determined by the strength and density estimates. For an individual u € {0, 1}", the strength and
density estimate is defined as F'(u) = R(u) + D(u), where R(u) = >_  p ., S(v) of which S(v)
denotes the number of solutions it dominates, and D(u) = U%H of which ¥ denotes the Euclidean

distance (in objective space) of the individual u to its k-th nearest neighbor in R, with k = v/ N + A.
If the number of non-dominated individuals exceeds the population size N, a truncation operator is
used to iteratively remove solutions from P, until |P;11]| = N. At each removal, individual v is
chosen for removal with u <4 v for all v € P;;; where

u<gv:Y0 <k < |Pgy|:of =ckv
<k <|Payi|: [(VO<i<k:o, =d)nal <ol

In other words, at each removal, it removes the individual with the smallest nearest-neighbor distance
and ties are broken by comparing their second-nearest distances and so forth. Once a solution is
removed, its distances to other solutions are no longer considered. See Algorithm §]for more details.
The SPEA?2 fits into the general MOEA framework (Algorithm[T)) with uniform parent selection, and
the survival selection based on strength-and-density estimation.

The first runtime analysis of the SPEA2 was proposed very recently [RBLQ24], where they
proved the runtime bounds for the SPEA?2 on three commonly used multi-objective problems, i.e.,
mONEMINMAX, mLOTZ, and mOJZJ. Prior work by Horoba and Neumann [HNO9] studied the
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Algorithm 8: SPEA2[[ZLTO1]]

Qo A solutions uniformly and randomly selected from {0, 1}™ with replacement and Py <+ 0;
fort=0,1,2,... do
Py, 1 < non-dominated solutions in Ry = P; U Qy;
if |P;41| > N then
| Reduce P, by means of the truncation operator;
elseif |P; 1| < N then
L Fill P, ; with dominated individuals in Ry;

for:=0,1,2,...,Ado
L Generate one offspring x’;

Qiy1 + Qi1 U{z'}:

approximation performance of RADEMO, a simplified version of SPEA2, for solving LF.. Till now,
no approximation guarantee for the SPEA2 on LF. is given. Same as the previous sections, we first
prove that the SPEA?2 also maintains Property .A required for our general approximation theorem.

Lemma 15. Let N > n/2 + 2. Consider using the SPEA2 to optimize LF. with problem size n. If at
some iteration, the combined population R; contains an individual x with |x'|, = k, then the next
population Py, will also include an individual y with |y'|; = k.

With Lemma we derive an expected runtime of O(n?log n) to reach an additive e-approximation
w.r.t. LFL, by setting N = ©(n) in our general approximation theorem.

Theorem 16. Let N > n/2 + 2 and p. € [0, 1). Consider using the SPEA2 with uniform selection
and one-bit mutation or bit-wise mutation to optimize LF. with problem size n. Then after an expected

O(Nnlogn) number of fitness evaluations, the population achieves an additive e-approximation
w.r.t. LFL.

5 Conclusion and Discussion

The question of why popular MOEAs are popular in practice was not convincingly answered in
theory, as the few results indicating their advantage only considered the performance to cover the
full Pareto front on newly designed benchmarks. This work tackled this question by considering the
approximation ability of several popular MOEAs on the established LARGEFRONT. benchmark. In

contrast to 22(""*) number of fitness evaluations (with high probability) for the GSEMO to reach
an additive e-approximation w.r.t. LF., we gave a general theorem of polynomial runtime for any
MOEA with Property A, and proved O(n?logn) expected runtime for four widely used MOEAs,
i.e., NSGA-II, NSGA-III, SMS-EMOA, and SPEA2. The reason is the second criterion of these
popular MOEAs maintains a good diversity in the survival selection, compared with the GSEMO that
relies only on the dominance criterion. This is the first mathematical runtime analysis showing and
explaining the superiority of popular MOEAs over simpler ones like the GSEMO for the central task
of computing good approximations to the Pareto front.

Although our results might also indicate the advantages in approximation for other benchmark with
large number of Pareto front points (a property that naturally holds for Pareto front curve containing
a continuous segment in continuous optimization), a more thorough and rigorous analysis on a more
general benchmark classes will make our theoretical findings more appreciated, and we are optimistic
and shall try to address in our future work.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Our main contribution is that we establish the first mathematical runtime
analysis showing the superiority of popular MOEAs over the simpler ones like the GSEMO
for the central task of computing good approximations to the Pareto front. Our technical
claim is that all four widely used MOEAs (NSGA-II, NSGA-III, SMS-EMOA, SPEA2)
achieve an additive e-approximation of the LF. benchmark in expected O(n? log n) number
of fitness evaluations, contrasting the existing result of the exponential lower bound for
the GSEMO. This claim accurately reflects our contribution based on the background
introduction and literature review in abstract and introduction.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We discuss the limitations in Section [5. Although our results might also
indicate the advantages in approximation for other benchmark with large number of Pareto
front points (a property that naturally holds for Pareto front curve containing a continuous
segment in continuous optimization), a more thorough and rigorous analysis on a more
general benchmark classes will make our theoretical findings more appreciated, and we are
optimistic and shall try to address our future work.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: All the theorems, lemmas, and proofs in this paper are numbered, cross-
referenced. All required assumptions are stated precisely, e.g., Theorem [7 specifies the
Property A and the bounds on y, A, p.. Due to the page limit, complete, formal proofs are
available in the supplementary material. Moreover, all intermediate results and classical
lemmas invoked, e.g., Lemma are cited with precise references.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [NA]
Justification: The paper is a theory paper and does not include experiments.
Guidelines:

» The answer NA means that the paper does not include experiments.

« If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [NA]
Justification: The paper does not include experiments requiring code.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run
to reproduce the results. See the NeurIPS code and data submission guidelines (https:
/Inips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [NA|
Justification: The paper does not include experiments.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA|
Justification: The paper does not include experiments.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the
experiments?

Answer: [NA|
Justification: The paper does not include experiments.
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We have read and strictly follows the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: This work is purely theoretical, deriving approximation guarantees for widely
used MOEAs on LF.. While these insights may eventually deepen our understanding of
algorithm behavior and have potential societal consequences, none of which we feel must be
explicitly emphasized here. The main contribution of this paper is to advance the theoretical
understanding of popular MOEAs.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.
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11.

12.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA|
Justification: The paper poses no such risks.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]
Justification: The paper does not use existing assets.
Guidelines:
* The answer NA means that the paper does not use existing assets.

 The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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13.

14.

15.

* If assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets has curated
licenses for some datasets. Their licensing guide can help determine the license of a
dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA|
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA|

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:
* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what
should or should not be described.
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